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ABSTRACT Plant diseases and pests caused by harmful insects has always been a significant threat to
agricultural and forestry production. In addition, the threat of invasive insects causes damage to local
ecosystems with a decrease in biodiversity and even the extinction of some species, seriously harming
the local economy. Governments around the world have invested a significant number of efforts in insect
detection and control. With the development of AI, automated identification is an irreversible trend to
improve efficiency and reduce government input. Recent researches attempt to apply deep learning tools into
the detection and identification of insects, but meeting a series of difficulties. Insect identification abstracted
to a fine-grained vision classification task provides unique challenges including the small difference between
classes and the large difference within a class. In this study, we propose a pest identification model guided
by visual attention, designed to address the above challenges. We establish an attention mechanism from
these two perspectives, enhancing attention to foreground features by amplifying fine-grained features
and eliminating attention to background biases through counterfactual inference. Our approach ultimately
achieves a classification accuracy of 74.5% for 102 insect categories on the IP102 dataset, and similarly,
achieves an exceptional 99.8% accuracy for 40 insect categories on the D0 dataset. The approach proposed
in this study will contribute to the automatic insect detection and identification system in the future as the
core technique.

INDEX TERMS Counterfactual inference, deep learning, insect identification, visual attention.

I. INTRODUCTION
Plant diseases and pests caused by harmful insects have
become a significant challenge faced by agriculture and
forestry globally, severely impacting the production and
quality of agricultural and forestry products such as grains,
vegetables, fruits, and timber [1]. Pests not only directly
result in reduced crop yields and quality decline but may also
lead to issues such as pesticide residues and environmental
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degradation, posing a serious threat to the sustainable devel-
opment of agriculture and forestry. According to statistical
data, global annual crop losses due to pests and diseases
amount to billions of dollars, significantly affecting agricul-
tural production and food security. Particularly in developing
countries, where agricultural technological levels are rela-
tively low and monitoring and warning systems are inade-
quate, pest issues are more pronounced, causing significant
losses to farmers and national economies. According to [2],
with the acceleration of global climate change and the process
of globalization, the issue of pest invasions exacerbates the
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consequences and challenges of pest and disease control.
Governments worldwide have consistently prioritized this
issue, investing significant research efforts in establishing
pest detection systems. Pest identification, as a crucial com-
ponent, represents a highly challenging task in this regard.

The realm of artificial intelligence (AI) has witnessed rapid
advancements, showing its robust vitality in various fields
as a pivotal catalyst for the Fourth Industrial Revolution.
Under this technological backdrop, our research goal could be
transformed into fine-grained insect classification. It shows
challenging work considering the nuanced similarity in insect
appearances, the intricacy of color, texture, shape, and the
varied complexity found within insect image backgrounds.
Through the lens of deep learning, the task of insect clas-
sification can be inherently categorized as a fine-grained
classification challenge [3]. In contrast to coarse-grained
tasks, fine-grained classification deals with subtler distinc-
tions and narrower inter-class variations. Current researches
have predominantly been confined to the agricultural sphere
including plant pests and diseases. These studies typically
leverage common benchmark models to conduct relatively
simplistic insect classification, characterized by a limited
scope of categories and sample sizes. However, our research
delves into a more complex multi-class classification task.
It has been observed that benchmark models fail to cover
fine-grained tasks [12]. Recent researches [13], [14], [15],
[16], [17], [18] attempt to use hybrid attention mechanisms,
ensemble models or large language models to achieve their
objectives.

In this study, we analyze the unique characteristics of insect
classification issues and propose innovative methods to han-
dle the hurdles of fine-grained insect classification. Specif-
ically, we focused on two aspects including fine-grained
features enhancement and background biases elimination,
which culminated in an efficacious classification of insects
without inflating computational demands and simultaneously
elevating the model’s interpretability. The main contributions
of our paper are as follows:

• We have developed a fine-grained feature enhancement
approach utilizing a mixed attention mechanism and
attention-based resampling.

• We have devised an interpretable counterfactual atten-
tion learning methodology to effectively eliminate
background biases.

II. RELATED WORKS
In this section, we review existing research work on insect
classification and provides an in-depth analysis of the
strengths and limitations of existing research.

A. DATASETS
It is found that there are very few large public insect data
sets.Most of the published studies collect insect images them-
selves, and the types and numbers of established data sets are
small. The shortage of these studies is the limited applica-
tion range that they only suit to insect recognition tasks in

specific environments or under specific classes or orders. For
example, the study by Alves et al. published in 2020 focused
on cotton-plant pests [4]. Moreover, environment interfer-
ence makes it impossible to catch pictures of insects with
clean background in the real world. Some research captures
insects and collects images under ideal conditions, such as the
research on field insect recognition published by Yuan et al.
in 2020 [5]. Although clean datasets can obtain better results
under specific research objectives, it leads to the poor general-
ization. In addition, half of the datasets used in related studies
also contains multimodal information like sound, dynamic
motion, DNA sequences or 3D images, which is very difficult
to collect and not conducive to practical applications. The
largest public insect dataset available is TensorFlow’s open
source i_naturalist2017 dataset [6], but this dataset covers
5089 insect species, which is too many categories and too
large a volume of data to be suitable for our study. We will
conduct this study on the insect dataset IP102 published
on 2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR 2019) [7]. Dataset IP102 contains
tens of thousands of images on 102 categories. The rather
dataset size allows the utilization of more advanced computer
vision models in this study.

B. DEEP LEARNING MODELS
Deep learning models have been extensively applied to insect
classification, with a predominant focus on the agricultural
domain in published research. The investigations primar-
ily address pest and disease occurrences within specific
botanical gardens, resulting in a relatively constrained scope
with a limited number of insect species. Consequently, the
classification tasks undertaken in these studies are gener-
ally uncomplicated, allowing common models to achieve
optimal performance. Noteworthy among the employedmod-
els are CNN architectures such as AlexNet, ResNet-50,
Inception-v3, which have demonstrated efficacy in achieving
commendable classification results on smaller datasets [8],
[9], [10]. However, these models exhibit limitations in
terms of generalization across diverse datasets. A notable
research trend in this domain revolves around optimiz-
ing computational efficiency, particularly the realization of
lightweight classification models. Although several studies
have made advancements in this direction, the overarch-
ing objective remains enhancing the models’ adaptability to
diverse datasets. Notably, only a limited number of studies
have extended their investigation to encompass more than
100 species classification tasks. Notable among these is the
work by Sagar et al. in 2020 [11], where they successfully
employed deep convolutional neural networks to identify
over 100 species of Indian butterflies and moths, marking a
significant achievement in the field.

C. CURRENT RESEARCHES ON DATASET IP102
The classification of the IP102 dataset poses a notable
challenge, prompting extensive research endeavors [12],
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[13], [14], [15], [16], [17], [18]. Key contributions in this
domain are highlighted in the following studies. In 2019, the
creators of the IP102 dataset conducted comprehensive eval-
uations using various state-of-the-art architectures, including
AlexNet, GoogleNet, VGGNet, and ResNet. Notably, ResNet
emerged as the top-performing model, achieving a classifica-
tion accuracy of 49.5%. Addressing the issue of imbalanced
data distribution within the IP102 dataset, Reza et al.
proposed a solution in 2019 [12] by employing data augmen-
tation techniques such as rotation, translation, and flip. They
utilized three deep neural networks—VGG16, ResNet, and
Inception-v3—individually for classification, with Inception-
v3 demonstrating the highest accuracy at 57.08%. In 2020,
Liu et al. [13] introduced a novel approach by constructing
a Deep Multi-branch Fusion Residual Network (DMF-
ResNet). This architecture facilitated the extraction of image
features from three distinct branches, enabling the learn-
ing of multi-scale features. The application of DMF-ResNet
resulted in a notable improvement, achieving a classification
accuracy of 59.22% on the IP102 dataset. These studies
collectively contribute to advancing the understanding and
methodologies for effective classification tasks on the chal-
lenging IP102 dataset.

In 2021, Yang et al. [14] introduced the Convolu-
tional Rebalancing Network (CRN), addressing the chal-
lenge of unbalanced datasets by incorporating two sampling
methods—balanced sampling and reverse sampling. The
model further enhanced classification performance through
an image enhancement module based on region cropping and
region coverage. The feature fusion module optimized the
training process, resulting in a notable classification accu-
racy of 70.42% on the IP102 dataset. Another significant
contribution in 2021 comes from Yang et al. [15], who
proposed a model integrating channel attention and spatial
attention into the CNN architecture. By combining the Spatial
Transformer Network (STN) with the ResNet50 backbone
network, the interference of image background on classifica-
tion tasks was minimized. This approach yielded an impres-
sive classification accuracy of 73.29% on the IP102 dataset.
Additionally, Luo et al. [16] presented the Salience-Guided
Discriminant Learning Network (SGDL-Net) in 2021, fea-
turing original and fine-grained branches. Coarse-grained
features were extracted through primitive branches, and
image clipping was guided by the Salient Object Location
Module (SOLM). Fine-grained features were subsequently
mined by the Fine-Grained FeatureMiningModule (FFMM).
When utilizing DenseNet121 as the backbone network, the
SGDL-Net achieved a classification accuracy of 72.65% on
the IP102 dataset. In the same year, Ung et al. [17] pro-
posed a model integrating three modules including Attention
Network, Feature Pyramid Network, and Multi-Branch and
Multi-Scale Attention Network (MMAL-Net). This model
demonstrated remarkable effectiveness, achieving a classifi-
cation accuracy of 74.13% on the IP102 dataset. There are
also some related works [18] published in recent years.

In recent years, thanks to advances in artificial intelligence,
Transformers have shown remarkable progress in various
fields. While some researches [19] on Transformer-based
models excel in representation learning and cross-domain
generalization, their massive parameter sizes and extensive
pre-training data limit the application in specific domains
like agriculture. On the one hand, agricultural images require
visual attention avoiding the disturb of background infor-
mation rather than self-attention with global information.
On the other hand, agriculture demands high practical effec-
tiveness, imposing strict constraints on model efficiency
and resource consumption. Despite the theoretical poten-
tial of large models, their high computational costs hinder
widespread adoption in agricultural practices. To address
these challenges, our research focuses on exploring model
methods suitable for practical implementation in agri-
culture. We have chosen Convolutional Neural Networks
(CNNs) for their efficiency and suitability for agricultural
applications, offering advantages in parameter size, com-
putational efficiency, and resource consumption over large
models.

However, above studies observed that fine-tuned CNN
models exhibited unsatisfactory classification performance
on the IP102 dataset. The findings underscore the limita-
tions of relying solely on a single, fine-tuned CNN model
for fine-grained classification tasks, particularly in sce-
narios with small inter-specific differences but substantial
intra-specific variations and uneven data distribution. The
research indicates that while improved CNNmodels or trans-
fer learning may be effective for small-scale or distinctly
different datasets, they prove insufficient for fine-grained
tasks such as insect classification on datasets like IP102. Inte-
grating advanced models, although enhancing classification
performance, entails high computational requirements and
training costs, presenting challenges that need careful consid-
eration. In summary, the deficiencies of existing researches
inspire us to think about solutions from the perspectives of
fine-grained issues and data balance.

III. MATERIALS AND METHODS
A. DATA PREPROCESSING
Data Source: In this study, we utilize two main datasets
as experimental materials, i.e., IP102 and D0. The dataset
IP102 was first proposed in 2019 as a benchmark dataset
like ImageNet and COCO, containing 75,222 images from
102 different species of insects. Correctly classifying insects
on the dataset IP102 is a challenging task because of the
poor quality of images with noisy background especially
under serious data imbalance. To make matters worse, this
dataset also meets significant obstacle of fine-grained clas-
sification, namely, the same class shows difference while
different classes show similarity as illustrated in Fig. 1. Dur-
ing implementation, we follow the standard partition ratio to
divide dataset IP102 into a training set, a validation set and a
test set by 6:1:3.
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The dataset D0 was first proposed by Xie et al. in 2018
[20], containing 4508 images from 40 different species of
insects. The typical characteristics of this dataset include
clean background and large target proportion as shown in
Fig. 2. To compare with existing research, we divide dataset
D0 into a training set, a validation set and a test set with the
ratio of 7:1:2.

FIGURE 1. Illustrating examples from dataset IP102.

FIGURE 2. Illustrating examples from dataset D0.

Preprocessing: Data preprocessing is a crucial step before
we start training our model. Image normalization is an essen-
tial step to feed the neural network which often requires input
images being resized to 224 × 224 or 448 × 448. Then a
set of transformations including random flipping, cropping
and color variation are utilized to augment input images. The
operation of data augmentation could improve the robustness
and generalization of model. Under the conditions of dataset
IP102, data augmentation can help getting rid of data noise.
Under the conditions of dataset D0, data augmentation can
effectively reduce the risk of model overfitting resulted from
the limited training sample size.

B. ENHANCING FINE-GRAINED FEATURES
The framework of the proposed end-to-end system is illus-
trated in Fig. 3 where the two core designs are highlighted in
colors.
Network With Attention: In tasks of image processing,

especially in fine-grained classification, attention mecha-
nism is indispensable. Attention helps to locate the target
objects and extract fine-grained features. Many researches
coming out suggesting a variety of different approaches to

build attention including spatial attention, channel atten-
tion and mixed attention. Inspired by CBAM (Convolutional
Block Attention Module) proposed by Woo et al. [21],
we add the mixed spatial and channel attention into our
identification model. Given the features with the dimen-
sion of b × c × h × w, we realize the feature weighting
on spatial domain and channel domain sequentially. Chan-
nel feature weighting first squeezes feature maps by global
pooling to obtain the flattened features with the dimension of
b × c × 1 × 1. The flattened features are then fed into MLP
layers to generate weight matrix W c. Weighting the feature
maps withW c to obtain feature vectors with the dimension of
b × 1 × h × w, we then realize spatial attention. Similarly,
the channel weighted features are convolved and activated to
obtain the final weight matrixW . The mixed attention can be
added into the network by weighting features withW .
Attention Resample: Fine-grained objects and discrimina-

tive features usually make a small part of the image resulting
in the introduction of redundant information after convo-
lution of the input images. Attention mechanism aims to
figure out the significant pixels where fine-grained objects
and discriminative features lies. Every attention mechanism
represents the attention as a weight matrix to indicate the
importance of each element’s position. In order tomake better
usage of the learned attention, different methods were used
to guide the update of model parameters. A straight-forward
approach is to crop out the fine-grained objects from the
original images. But the simple cutting operation fails to fully
utilize the attention information by exchanging the attention
weight matrix into a binary crop mask. Therefore, we adopt
an attention-based sampling method to replace the simple
cropping, which introduces attention gradient characteristics
when cropping images.

Given the input data I(with the dimension of b × c×
h×w) and the average attentionmatrix Ā(with the dimension
of b × 1 × h × w), we generate a resample network to
resample the input data. A first step is the normalization of the
attention maps by matching shape with bilinear interpolation.
The most crucial step is to generate sampling net according to
the attention maps following the principle that the sampling
points are more densely distributed higher up in attention
weight value. Considering that the spatial distribution of
sampling points is two-dimensional, this nonlinear sampling
task can be decomposed into two dimensions h andw. Taking
the h dimension as an example, sampling rate is in direct
proportion to the attention weight value on h dimension.
First, we calculate the maximum of attention weight on hi
according to attention matrix Ah×w:

Ahi· = max
1≤wj≤w

Ahiwj , (1)

the value of Ahi· represents the degree of attention. Then we
calculate the integral of Ahi· on the axis of h:

S(h)w =

∫ h

1
Ahidhi =

∑h

1
Ahi , (2)
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where the gradient of S(hi,w) represents the sampling den-
sity. At this occasion, target nonlinear sampling distribution
can be calculated by finding the corresponding coordinate
hsample when uniformly sampling S(h)w:

hsample = S−1(h)w. (3)

FIGURE 3. Framework of proposed approach (the two core designs are
colored). I. In training stage, input batch images are first fed to the
feature extractor with a mixed attention module to generate
corresponding feature maps and attention maps for further process. The
attention guides the image resampling for data augmentation. Then the
features are optimized through counterfactual learning module. II.
Predicting stage follows the dual-stream strategy, the test image is first
fed to the main model to produce a prediction and the attention to guide
resampling. The final prediction is calculated by the first prediction and
that of the resampled image.

Similar operations on w dimension could lead to target non-
linear sampling distribution wsample. So far, we are able to
combine hsample and wsample to build the two-dimensional
sampling net. Applying it to the input data I , we use inter-
polation to generate the resampled image Iresample with the
same shape as original I .
Dual-Stream Training and Predicting: To implement the

above in an end-to-end system, we adopt a dual-stream train-
ing and predicting strategy where the first stream achieves
the workflow from features learning to attention weighting
while the second stream achieves attention-based resampling.
As shown in Fig. 3 I, in the model backbone, the feature
extractor maps the input image to feature vector. The con-
volution features of input images are then weighted through
bilinear attention pooling (BAP) in the first stream. Given
the features F(with the dimension of b × c × h × w),
we obtain the attention maps A to weight F:

F̄ = G(F,A) =
1

h× w
(F ∗ A), (4)

where ∗ means element-wise matrix multiplication. The
weighted features F̄ are then fed to the fully connected
layer to output the first prediction Y1. In the second stream,

attention-based resampling is performed following the main
backbone. The resampled images are fed to the beginning of
the model as augmented data to output the second prediction
Y2. In the gradient backward stage, Y1 and Y2 are respec-
tively calculated by loss function to obtain L1 and L2. During
prediction stage (shown in Fig. 3 II), the inference result is
determined by a weighted summation of Y1 and Y2. The
weight matrix is selected from a group of suitable weights
according to the experience of model training. This strategy
will be further analyzed in the Discussion part since it is not
the core technique of the study.

C. COUNTERFACTUAL ATTENTION
Enhancing the fine-grained features of foreground objects by
attention is efficient to train our model to focus on more
discriminative features. But this attention mechanism not
always leads to an ideal result. Because it depends on the
assumption that we have already found the correct attention
which is uncertain. The uncertain attention augments discrim-
inative features as well as redundant features under the former
enhancement mechanism leading to the degradation of model
performance. We intend to analyze this dilemma through
causal inference [22]. The crucial issue is the uncertainty of
attention, which stems from the failure on the part of model
training to catch sight of the causal relations between atten-
tion learning and ground truth. This neglect is resulted from
current strategy of attention learning, depending on the loss
function based on final prediction to indirectly supervise the
quality of the learned attention. Bias brought from datasets
produce inaccurate attention and influence model perfor-
mance under this traditional training strategy. For example,
Xylotrechus usually appears on tree trunk while wheat sawfly
usually appears on wheat leaves, therefore, it is likely to
infer what on the tree trunk is Xylotrechus while what on
wheat leaves is wheat sawfly. However, Xylotrechus may
also appear on the background of wheat leaves and wheat
sawfly may also appear on the background of tree trunk.
This example shows a typical bias current attention learning
cannot avoid, especially when it comes to long-tailed dis-
tribution. Considering the task of insect identification, bias
introduced by datasets is represented as background bias.
We adopt causal inference to optimize the former attention
learning mechanism.

Causal inference makes an explainable connection
between the learned attention and class prediction. A tradi-
tional workflow of attention model includes the following
steps as shown in Fig. 3: (1) a CNN backbone extracts feature
mapsX from input images, (2) the attentionmodule generates
attention maps A from input features, (3) (X,A) jointly
predict the final outcome Y = G(X,A), (4) the model
trains to update parameters by supervising the consistency
between class prediction and ground truth. Traditional atten-
tion model overlooked the quality of the learned attention
could impact the model prediction. We adopt counterfactual
causal inference to guide the attention learning by quanti-
fying the contributions of attention to proper predictions.
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Counterfactual causal inference jumps out of the positive
feedback loop and shift the focus from the established facts
to the contrary possibilities. In the assessment of attention
quality, counterfactual causal inference establishes a fake
attention called counterfactual attention Ã to intervene the
learning procedure. Ã is generated through uniform probabil-
ity distribution and then throwed into the same workflow as
original attention maps A. (X,Ã) jointly predict the counter-
factual outcome Ỹ :

Ỹ = G(X , Ã), (5)

which represents the wrong predictions produced by wrong
attentions. Therefore, the quality of the learned attention can
be represented as follows:

Yquality = Y − Ỹ . (6)

During training, Yquality is added into the objective func-
tion to adapt loss function:

L3 = Lce(Yquality, y). (7)

In addition, we utilize center loss L4 to assess feature center.
Together with the loss L1 and L2 of dual-stream procedure,
the final loss function is defined as:

Lfinal = λ1L1 + λ2L2 + λ3L3 + L4, (8)

where λ1, λ2 and λ3 are hyper-parameters optimizing the
training process.

D. EVALUATING INDEX
In order to evaluate the performance of our identification
model, we use the metrics of accuracy on test set, i.e., Top-1
accuracy. Accuracy is a popular evaluation index can be
expressed as the following equation:

Acc =

∑N
i yi
N

, (9)

where N represents the total numbers of test samples, yi
represents the correctness of the ith prediction:

yi =

{
1, ground truth = 1st prediction
0, ground truth ̸= 1st prediction

(10)

IV. RESULTS
We assess the performance of proposed method on dataset
IP102 and D0. This section details the implementation of
experiments and lists the results of ablation and comparison
research.

A. IMPLEMENTATION
All the experiments are carried out on a single RTX3090GPU.
We utilize ResNet50 and ResNet101 as benchmark mod-
els to design the experiments. Considering the matching
of computing resources and different size of dataset IP102
and D0, images are resized to 224 × 224 and 448 × 448
respectively. We apply random cropping and flipping as
data augmentation to improve model performances. During

training phase, we use stochastic gradient descent (SGD)
optimizer with the initial learning rate of 10−3, momentum
of 0.9 and weight decay of 10−5. The batch size is set
to 32 and the maximum of epochs is set to 100. Hyper-
parameters in the loss function are set to λ1 = 1/3,λ2 =

2/3,λ3 = 1.

B. ABLATION EXPERIMENTS
Previous section detailed the two crucial techniques consti-
tuting our proposed method. We design ablation experiments
to compare our method with the baseline model whose
results are shown in Table 1. Baseline model is set as a
classical ResNet with BAP optimization. The first ablation
experiment aims to verify the effectiveness of fine-grained
enhancement designed to teach the model to focus on fine-
grained foreground. The proposed dual-stream strategy of
attention weighing and resampling successfully improve the
baseline performance on dataset IP102 and D0 by 1.3% and
0.4% respectively. The second ablation experiment aims to
verify the effectiveness of counterfactual causal inference
designed to eliminate the background bias. The proposed
counterfactual attention learning successfully improve the
model performance on dataset IP102 and D0 by 1.1% and
0.2% respectively. All the ablation experiments executed with
backbone ResNet50 are repeated with backbone ResNet101
indicating the same conclusion as that on ResNet50. Fur-
thermore, a stronger backbone like ResNet101 can lift the
identification performance leading to the best results of
74.5% in this study.

TABLE 1. Results of ablation experiments indicating the effectiveness of
each module proposed.

C. COMPARISON WITH PREVIOUS RESEARCHES
We compare our method with the up-to-date and best results
approaches in Table 2. The best results of our experiments
reach state-of-the-art stage among homogeneous studies.
In this study, identification accuracy on dataset IP102 and D0
reaches the best 74.5% and 99.8% respectively, outperform-
ing other researches.

Table 3 and 4 shows the top 10 classes with the highest
identifying accuracy and the lowest accuracy implementing
on dataset IP102. Analyzing the tables that identification
accuracy differs in different species, we find that it has a lot to
do with the dataset itself. Three characteristics of the classes
with low accuracy are figured out comparing with that high
accuracy: (1) multiple objects in a image, (2) multiple forms
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TABLE 2. Comparisons of accuracy with the SOTA insect classification
researches on IP102 and D0.

in the same class, (3) few samples in these classes caused by
long-tail distribution.

TABLE 3. Top 10 classes with the highest identifying accuracy in dataset
IP102.

TABLE 4. Top 10 classes with the lowest identifying accuracy in dataset
IP102.

V. DISCUSSION
A. CONTRIBUTIONS OF FINE-GRAINED ENHANCEMENT
The attention mechanism and resampling operations figure
out where the discriminative features locate and then extract
them to generate a new image contains the fine-grained
objects as Fig. 4(b) shows. During the procedure of CNN,
an input image with the dimension of 3 × h × w will be
convolved into an output feature vector with the dimension

of 1024 × h × w (taking Inception Net as an example).
Therefore, the model can find the optimal solution easily with
a larger occupancy of effective information in the image.

In previous experiments, we set a fixed ratio to combine
the predictions of original images and resampled images
to obtain the final prediction. To analyze the essence of
fine-grained features advancing identification performance,
we design an extra experiment. Requiring a minimal variant,
we alternatively set a learnable ratio α to sum up the predic-
tions of raw features and fine-grained features:

Y = (1/2 + α)Y1 + (1/2 − α)Y2. (11)

FIGURE 4. Visualization of attention learned by proposed approach.
Illustration of fine-grained attention enhancement process and
counterfactual attention learning process (image samples from dataset
IP102): (a) original image, (b) attention based resample, (c) attention
heatmap before counterfactual optimization, (d) fake attention
(counterfactual attention) heatmap, (e) attention heatmap after
counterfactual optimization.

Under this setting, we implement the same end-to-end
training to analyze the change brought by the variable ratio.
The final model finds that the optimal ratio is 0.5 indicating
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that the original image plays a major role in prediction.
Results above indicate that all the enhancing approaches of
fine-grained features including the attention mechanism and
attention-based resample enhance the capability of feature
extraction rather than directly increase the quality of pre-
diction decision. Testing the convergence speed in training
phase, we find that the model with enhancing approaches
tends to the optimal solution more quickly.

B. CONTRIBUTIONS OF COUNTERFACTUAL CAUSAL
INFERENCE
We implemented causal inference through counterfactual
attention optimization in this study aiming to eliminate the
background bias. Fig. 4(c)(d)(e) shows the heatmaps of
attention produced in different phases: (c) attention before
optimization has large scope of interests and some mistak-
enly focuses on environment background, (d) fake attention
generated from uniform distribution simulating counterfac-
tual conditions, (e) attention after optimization obviously
narrow the region of interest to focuses more on the tar-
geting object. Comparing the heatmaps of columns (c) and
(e), it is found that the counterfactual optimization process
successfully eliminates the wrong attention focusing on the
background andmakes the area of interest more concentrated.
The wrong attention roots in the preference that exists in
dataset sources leading to an unexplained result. It is consid-
ered a kind of overfitting that an incorrect attention obtains a
proper prediction defying the causal relationship. Therefore,
we introduce the counterfactual inference to establish the
relationship between the learned attention and the final pre-
diction. Counterfactual inference [23], also known as causal
inference, is to answer the counterfactual question. In the
forward learning process, the model could learn either true
attention or incorrect attention, which can be expressed as
follows:

Y =

{
1,U = 1(True attention)
Z ,U = 0(Fake attention)

, (12)

P(Z = k) = pk (1 − p)1−k , k = 0, 1, (13)

where Y = 1 represents a correct prediction while Y = 0
represents an incorrect prediction, U represents the factor of
concern, namely attention in this study. The above expres-
sions mean that the true attention leads to a correct prediction
and the fake attention leads to a correct prediction with a
probability p, respectively. There is no evidence to tell U
when we observe that the model outputs a correct prediction.
But we can get:

P(Y = 1 |U = 1) , (14)

meaning we first obtain a fact that the learned attention leads
to a correct prediction. The corresponding counterfactual
question is what the fake attention would lead to. Apply-
ing counterfactual intervene to get Yx, the question can be
expressed mathematically as:

P(Yx = 0 |Y = 1,U = 0) (15)

Factual output minus counterfactual output Y(1) − Y(0)
represents individualized treatment effect, namely the quality
of the learned attention in this study.

We consider the dataset bias as background bias in this
study. In fact, bias is a very common problem also treated by
many other different algorithms like re-weighting methods,
stratification methods, matching methods, tree-based meth-
ods, representation-based methods, multi-task methods and
meta-learning methods etc.

C. LIMITATIONS AND PROSPECTS
Classification accuracy performed on dataset IP102 is signif-
icantly lower than that on other popular fine-grained datasets
owing to the characteristics of dataset itself. Dataset IP102
contains many limitations including noisy images, noisy
labels and unbalanced data distribution etc. We listed the
three challenges in Section IV leading to the unsatisfying
performance. We need extra supervision to instruct multiple
objects in one image. Multiple forms in one species and
long-tail distribution are two challenges of dataset IP102
itself, the first of which requires a specific classification
strategy. Although the counterfactual inference alleviates the
problems caused by unbalanced distribution to a certain
extent, more straightforward approaches should work to han-
dle the long-tail bias. Moreover, a possible utilization of data
cleaning and uncertain label deleting could greatly improve
the model performance.

Our approach captures the most useful fine-grained fea-
tures without significant decreasing performance across
different field backgrounds and imaging devices. Therefore,
this study provides the algorithmic basis for future pest con-
trol system including both a small-scale usage like farm pest
control and a large-scale usage like wild insect detection.
In practical application, our model can be integrated into
the pest control and management systems as a computing
module. The integration of the module requires an extra
lightweight procedure like knowledge distillation. Another
way is incorporating cloud computing to reduce the reliance
on local computing resources. These practical procedures
make our approach available in future agricultural engineer-
ing projects.

VI. CONCLUSION
In this paper, we have designed an end-to-end deep learning
system of insect identification. We analyzed the challenges
existed in current researches to propose approaches for fine-
grained characteristics. First, for insect objects are small,
we designed fine-grained enhancement approach to extract
target foreground. Second, for image background is interfer-
ence, we adopted counterfactual inference to eliminate the
bias. Experiments carried on dataset IP102 and D0 showed
identification accuracy of 74.5% and 99.8% respectively
with the above two techniques. Our proposed deep learning
approach can be trained end-to-end and requires limited com-
puting resources which will contribute to the automatic insect
detection and identification system in the future.
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