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ABSTRACT In this paper, we address a class of distributed robust cooperative fault-tolerant control problems
for discrete-time multi-agent systems (MASs). The discrete-time MASs considered in this paper have both
uncertainties and actuator faults, and a distributed intermediate variable estimator that does not require a fault
estimation matching condition is designed for obtaining the estimation information of the actuator faults.
In addition, to further obtain higher design freedom and better estimation performance, the intermediate
variable estimator considers both centralised and distributed output estimation errors as feedback terms.
A fault-tolerant control protocol is designed using the fault estimation information to ensure the reliable
operation of discrete-time MASs. It is worth noting that in the method proposed in this paper, there is
no need to know the boundary information about the faults and their changing rates, and the method is
applicable to discrete-time MASs with directed communication topology. In order to ensure the solvability
of the Linear Matrix Inequality (LMI) for better obtaining of the gain matrices of the designed fault
estimators, further decoupling and dimensionality reduction of the LMI are carried out in this paper. Finally,
a numerical simulation and a network of four one-link flexible joint manipulator systems simulation verify
the truthfulness and effectiveness of the method proposed in this paper.

INDEX TERMS Discrete-time multi-agent systems, distributed intermediate variable estimator, cooperative
fault tolerance control, directed communication topology.

I. INTRODUCTION
During the last decades of rapid technological development,
industrial systems have become larger and more complex.
As a powerful processing tool, MASs are often used to
describe and analyze the behavior of complex systems. As a
result, MASs have attracted a lot of attention from scholars
and some remarkable results have been obtained [1], [2], [3],
[4]. MASs have been used in various significant areas, such

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinquan Xu .

as satellite formation control [5], smart grids systems [6], and
flight control systems [7].

MASs is a typically interconnected system which each
agent exchanges informationwith its neighbors to accomplish
the entire control task. It is this distributed cooperation
that allows MASs to accomplish more complex control
tasks with structurally simpler agents. However, a fault in
one special agent can propagate to other normal agents
through the network, so the probability of MASs fault
naturally increases with the number of agents and the
fault of a particular agent may seriously affect MASs,
which may lead to agent instability or even whole system

110088

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4245-0221
https://orcid.org/0000-0003-3278-9395


J. Shi et al.: Robust Cooperative Fault-Tolerant Control for Discrete-Time Multi-Agent Systems

collapse [8], [9], [10]. Moreover, in the context of rapid tech-
nological development, MASs operate under increasingly
complex and harsh conditions [11]. Therefore, it is essential
to consider the reliable operation of MASs.

Ensuring reliability and safety is essential for the stable
operation of the system. In recent years, fault diagnosis
techniques for systems have been widely discussed and
become a hot research topic. Fault diagnosis mainly consists
of fault detection and isolation (FDI) and fault estimation
(FE) [12], [13]. FDI are primarily used to detect the
occurrence of a fault in the system and to determine its
location so as to facilitate the further isolation of the fault.
FE is utilized to obtain detailed information such as the shape
and magnitude of the fault signal. In fact, FE can serve
the purpose of FD-isolation and identification [14]. Fault-
Tolerant Control (FTC) protocols can be designed based
on the fault estimation information obtained through Fault
Estimation (FE) to ensure the reliable operation of the system.
In addition, it is generally recognized that the more detailed
the fault information obtained, the better the performance
of the designed FTC protocols [15]. There have been many
excellent results in the field of FE, such as adaptive estimator,
robust estimator, sliding mode estimator, etc [16], [17].
However, in most of the existing works, most of them only
consider FE for centralized systems, and relatively few study
the distributed FE problem for MASs.

For the leader-follower MASs, in order to obtain infor-
mation on actuator and sensor fault estimation, a novel
distributed unknown input observer (UIO) was designed in
[18]. In [19], the problem of estimating actuator and sensor
faults in MASs with directed graphs is considered based on
intermediate variable observers. In [20], a FIR filter-based
fault estimation scheme was proposed to estimate fault sig-
nals in MASs with stochastic nonlinearities. In [21], sliding-
mode observers(SMO) are used to estimate actuator fault in
MASs. For theMASs with directed communication topology,
[22] designed a full-order fault estimation observers for fault
estimation.

However, in some works including [21] and [22], the
design of the fault estimator must satisfy the fault estimation
matching condition. The limitation of this condition causes
great inconvenience in the design of fault estimators for
some practical systems. In order to overcome this restriction,
[23] and [24] proposed a novel intermediate observers. The
method does not need to satisfy neither the fault estimation.

Furthermore, in many of the existing works, including
those mentioned above, the fault signal under consideration
can only be a constant. Obviously, in the context of
modern systems operating in increasingly complex and harsh
environments, this assumption is very restrictive and even
infeasible. In addition, in some work where time-varying
fault signals are considered, it is necessary to know the
bounds of the fault. Nevertheless, for most practical control
systems, these conditions are highly restrictive. Therefore, the

fault estimation of MASs must take into account the above
situations.

Based on the fault estimation information, further FTC
protocols can be designed. There have beenmany outstanding
results on this aspect: For leader-followers MASs affected by
denial-of-service attacks and actuator faults, [25] obtained
fault estimation information by designing a novel adaptive
edge-event-triggered observer and designed a novel resilient
adaptive event-triggered fault-tolerant controller. For a five
degree of freedom robotic manipulator, [26] obtains fault
estimation information through an adaptive back-stepping
methodology, and then designs an actuator and sensor FTC.
[27] ingeniously combined fast integral terminal slidingmode
control, robust exact differentiator observer, and feed-forward
neural network based estimator, a state-of-the-art control
algorithm was pioneered to solve the robust control and
tuning of the robotic manipulators problem. For a class of
MASs with directed and fixed topology, [28] proposed a
novel FTC protocol and sidestepped the restriction of the
zero initial condition. In order to solve the leader- following
MASs consensus control problem, a distributed adaptive
fault-tolerant scheme is given in [29]. In [30], a distributed
FTC protocol is designed to ensure that discrete-time MASs
are subject to link failures and actuator/sensor faults realize
information consensus control.

It is important to note that in most of the existing
FTC work, the mathematical model must be very accurate.
However, uncertainties in the mathematical model of the
control system are inevitable due to external disturbances
present in the system’s operating environment, errors in
modeling the system, and so on. A large number of excellent
results have emerged to address such problems: In [31],
a FTC protocol for multi-area power systems subject to
actuator faults was devised, considering both multiplicative
and additive perturbations to compensate for uncertainty.
In [32], a distributed FTC protocol was designed for
leader-following MASs subject to the effects of actuator
faults and uncertainties. To resolve the problem of dynamic
uncertainties, [33] employed a fuzzy logic method for FTC
protocol design and obtained better estimation performance.
[34] designed a fault estimation method based on UIO
for MASs, accounting for uncertainty effects. However,
this method is only applicable to MASs with directed
communication topology.

In summary, in most of the existing works, there are few
studies on FTC of MASs with uncertainties, and in some
SMO and UIO-based works, the control system is required
to satisfy the so-called estimation matching condition, which
is undoubtedly a restriction. What is more, some of the
existing works require the assumption that the fault signal is
a constant, or the bounds of the time-varying faults needs to
be known. Obviously, the limitations of these conditions are
highly restrictive and are not conducive to further promotion
and practical application.
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In order to solve the above problems, this paper proposes
a novel fault estimation method and fault-tolerant control
protocol for discrete-time MASs subject to uncertainties and
actuator faults. The main contributions of this paper are as
follows:

1. In order to avoid the restriction imposed by fault
estimation matching condition, this paper designs an inter-
mediate estimator for each agent in MASs for FE. Using this
fault estimation information, an FTC protocol is designed to
eliminate the adverse effects caused by actuator faults and
uncertainties in MASs.

2. The method proposed in this paper is applicable to
time-varying faults and does not require the upper bounds of
the fault and its changing rate.

3. In the fault estimation method proposed in this paper,
both centralised and distributed output estimation errors are
considered as feedback terms for the intermediate estimator,
so that it has the advantages of both distributed and
centralized structures, which greatly enhances the design
flexibility and makes the estimation performance further
improved.

4. The work in this paper applies to MASs with directed
communication topologies.
Notations: In this article, Rn denotes the n-dimensional

Euclidean space. For a vector l ∈ Rn, ∥l∥ represents the
2-Norm. IN denotes a diagonal matrix formed by N unit
matrices. For a matrix S, He[S] = S + ST , λmax(S) denotes
the maximum eigenvalues and λmin(S) means minimum
eigenvalues.

II. PROBLEM STATEMENT
In this paper, consider the following discrete-time MASs
described by:{

xi(k + 1) = (A+ 1A(k))xi(k) + Bui(k) + Efi(k)
yi(k) = Cxi(k)

(1)

where xi(k) ∈ Rn is the state of agent i, ui(k) ∈ Rm is
control protocol and yi(k) ∈ Rq is and output information.
The signal fi(k) ∈ Rr indicates actuator faults when E = B.
The perturbed matrix 1A(k) represents the uncertain-
ties considered in this paper and satisfies 1A(k) =

MF(k)N , where FT (k)F(k) ≤ I . A, B, C , and E are
system constant matrix of the system with appropriate
dimensions.
Assumption 1: The bounds of the fault and its changing

rates are unknown, i.e., the ∥1fi∥ = ∥fi(k + 1) − fi(k)∥ ≤ θ ,
where θ is a positive real number.
Assumption 2: For every complex number s, the following

equation holds:

rank
[
A− sI E
C 0

]
= n+ r

Assumption 3: rank (B,E) = rank (B).
Assumption 4: (A,B) is stabilizable and (A,C) is

observable.

Remark 1: In fact, Assumption 1 suggests that the faults
are energy bounded, which is a very reasonable and natural
assumption in physics and practical systems. For estimating
time-varying signals, this assumption of bounds of energy
is commonly used in FDI [12], [13] and FTC [15]. But
notice that θ can be unknown, so the method proposed in
this paper is more practical and natural than most traditional
observers [16], [17], [21].
Remark 2: Assumption 2 means that the system (A,C,E)

has a fixed number of zeros in the left-half and the matrix E is
column-full rank. Assumption 2 is also common and natural
in most existing works on FD, FI, and FE. It should be noted
that Assumption 2 is not strictly constrained in real systems
compared to the estimator matching condition.
Remark 3: Assumption 3 is common in FTC problems and

implies the possibility that faults can be compensated for by
the inputs of a fault-tolerant control protocol.
Remark 4: Assumption 4 is a common and essential

requirement in FTC. Observability is necessary for the design
of state observers and stabilizability is crucial for ensuring
stable control of the system.

For further work, the following lemma is proposed:
Lemma 1 (Young’s Inequality [19]): The following inequal-

ity always holds:

aT b ⩽
1
p
αp ∥a∥p +

1
q
α−q

∥a∥q

where a, b ∈ Rn and α > 0, p > 0, q > 0, and pq = p+ q.
For discrete-time MASs with uncertainties and actuator

faults, this paper will design a novel intermediate fault
estimator to obtain the fault estimation information so as
to design an FTC protocol to ensure the reliable operation
of MASs.

III. INTERMEDIATE ESTIMATOR DESIGN
In order to design an intermediate fault estimator for agent i,
the following intermediate ξi(k) variable is denoted:

ξi(k) = fi(k) − ωET xi(k) (2)

where ω is the intermediate constant.
Based on (1) and (2), we have:

ξi(k + 1) = fi(k + 1) − ωET ((A+ 1A)xi(k)

+ Bui(k) + Eξi(k) + ωEET xi(k)) (3)

And then, the our intermediate estimator is as shown
below:

x̂i(k + 1) = Ax̂i(k) + Bui(k) + Ef̂i(k)
+ρ1L1Γ1i(k) + ρ2L2Γ2i(k)

ξ̂i(k + 1) = −ωETE ξ̂i(k) − ωET (Ax̂i(k)
+Bui(k) + ωEET x̂i(k))

f̂i(k) = ξ̂i(k) + ωET x̂i(k)
ŷi(k) = Cx̂i(k)

(4)
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where x̂i(k), ξ̂i(k), f̂i(k) and ŷi(k) are the estimation of
xi(k),ξi(k), fi(k) and yi(k), respectively. In addition,Γ1i(k) and
Γ2i(k) are defined as

Γ1i(k) = yi(k) − ŷi(k) (5)

Γ2i(k) =

N∑
j=1

aij[(yi(k) − ŷi(k)) − (yj(k) − ŷj(k))] (6)

where Γ1i(k) and Γ2i(k) means centralized and distributed
output estimation errors, respectively. L1, L2 ∈ Rn represent
the respective gain matrices. Non-negative constants ρ1 and
ρ2 represent the weights of each of the two feedback terms
and satisfy ρ1 + ρ2 = 1.
Remark 5: From (4), it is not difficult to be found that

the intermediate estimator designed in this paper has both
distributed and centralised structural characteristics due to
the introduction of the feedback terms Γ1i(k) and Γ2i(k). The
intermediate estimator can be adjusted by the complementary
regulation of ρ1 and ρ2. Through the complementary
regulation of ρ1 and ρ2, the influence of neighbouring nodes
on itself can be increased or decreased, and the exact size
should be based on the operating conditions of the actual
system. It should be noted that in practical applications, this
design can greatly improve the flexibility and freedom of
design, thus obtaining better estimation performance.

IV. THEORETICAL ANALYSIS
Next, we need to construct the global error dynamic system
and analyse its convergence.

Define exi (k) = xi(k)−x̂i(k), eξi (k) = ξi(k)−ξ̂i(k), efi (k) =

fi(k) − f̂i(k). Since efi (k) = eξi (k) + ωET exi (k), we have:

exi (k + 1) = (A− ρ1LC)exi (k) + Eeξi (k) + ωEET exi (k)

+ 1Axi(k) − ρ2L2Γ2i(k) (7)

eξi (k + 1) =−ωETEeξi (k) −ωETAexi (k)−ω2EETEexi (k)

− ωET1Axi(k) + 1fi (8)

Based on Assumption 3, it implies the existence of a
matrix B∗ such that (I − BB∗)E = 0. Using the obtained fault
estimation information f̂i(k), we propose the following FTC
protocol:

ui (k) = −Kx̂i (k) − B∗Ef̂i (k) (9)

where the matrix K must be such that(A − BK ) is a stable
matrix.
Based on (9) and (1), one has

xi(k + 1) = (A− BK )xi(k) + 1Axi(k) + BKex i (k)

+ Eeξ i (k) + ωEET ex i (k) (10)

From(7), (8) and (10), we can get the global error dynamic
system:

x(k + 1) = (IN ⊗ (A− BK ))x(k) + (IN ⊗ 1A)x(k)

+ (IN ⊗ BK )ex(k) + (IN ⊗ E)eξ (k)

+ (IN ⊗ ωEET )ex(k) (11)

ex(k + 1) = (IN ⊗ (A− ρ1L1C))ex(k) + (IN ⊗ E)eξ (k)

+ (IN ⊗ ωEET )ex(k) + (IN ⊗ 1A)x(k)

− (L ⊗ ρ2L2C)ex(k) (12)

eξ (k + 1) = −(IN ⊗ ωETE)eξ (k) − (IN ⊗ ωETA)ex(k)

− (IN ⊗ ω2EETE)ex(k) − (IN ⊗ ωET1A)x(k)

+ 1f (13)

where x(k) = [x1(k), x2(k), . . . , xN (k)]T , ex(k) = [ex1 (k),
ex2 (k), . . . , exN (k)]

T , eξ (k) = [eξ1 (k), eξ2 (k), . . . , eξN(k)]
T ,

1f = [1f1, 1f2, . . . ,1fN ]T

Theorem 1: If there actually exists matrix P1,P2,P3 > 0,
Q, and the constant δ > 0 such that the following LMI holds:

Π i
=

[
Π̃ i

11 Π̃ i
12

∗ Π̃ i
22

]
< 0, i = 1, 2, . . . ,N (14)

where Π̃ i
11=

Π i
11 Π i

12 Π i
13

∗ Π i
22 Π i

23
∗ ∗ Π i

33

withΠ i
11=He [P1A−P1BK ]+

1
ε1
NTN +

1
ε2
NTN +

1
ε3
NTN, Π i

12 = P1BK + ωP1EET ,
Π i

13 = P1E, Π i
22 = He[(P2A − ρ1QC) + (ωP2EET )] +

δρ2λ̄iCTC, Π i
23 = P2E − ωATEP3 − ω2EETEP3, Π i

33 =

−He[ωP3ETE],

Π̃ i
22 = diag

{
−

1
ε1

, −
1
ε2

, −
1
ε3

, −
1
ε4

}
,

Π̃ i
12 =

P1M 0 0 0
0 P2M 0 0
0 0 ωP3ETM P3

 .

and the observer gain matrices is designed to L1 = P−1
2 Q2,

L2 = δP−1
2 CT . Then, based on Assumption 1-4, the

intermediate estimator (4) make sure that the error dynamic
system (11)-(13) is uniformly ultimately bounded for the
given positive constants ω > 0, εi > 0(i = 1, 2, 3, 4).

Proof: Consider the Lyapunov function shown below:

V (k) = xT (k)(IN ⊗ P1)x(k) + eTx (k)(IN ⊗ P2)ex(k)

+ eTξ (k)(IN ⊗ P3)eξ (k) (15)

From (11) - (13), we have

1V = V (k + 1) − V (k)

= xT (k)He [IN ⊗ (P1A− P1BK )] x(k)

+ 2xT (IN ⊗ P1MF(k)N )x(k)

+ 2xT (IN ⊗ P1BK )ex(k)

+ 2xT (k)(IN ⊗ P1E)eξ (k)

+ 2xT (k)(IN ⊗ ωP1EET )ex(k)

− 2eTξ (k)(IN ⊗ ωP3ETA)ex(k)

+ eTx (k)He [IN ⊗ (P2A− ρ1P2L1C)] ex(k)

+ eTx (k)He [L ⊗ (P2A− ρ2P2L2C)] ex(k)

+ 2eTx (k)(IN ⊗ P2E)eξ (k)

+ 2eTx (k)(IN ⊗ ωP2EET )ex(k)
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− 2ωeTξ (k)(IN ⊗ P3ETMF(k)N )x(k)

+ 2eTx (k)(IN ⊗ P2MF(k)N )x(k)

− 2eTξ (k)(IN ⊗ ωP3ETE)eξ (k)

− 2eTξ (k)(IN ⊗ ω2P3ETEET )ex(k)

+ 2eTξ (k)(IN ⊗ P3)1f (16)

Based on Lemma 1, the following inequalities hold for
positive constants ε1, ε1, ε3, and ε4:

2xT (k)(IN ⊗ P1M1F1(k)N1)x(k)

≤ ε1xT (IN ⊗ P1M1)(IN ⊗ P1M1)T x(k)

+
1
ε1
xT (IN ⊗ NT

1 N1)x(k)

2eTx (k)(IN ⊗ P2M1F1(k)N1)x(k)

≤ ε2eTx (k)(IN ⊗ P2M1)(IN ⊗MT
1 P2)ex(k)

+
1
ε2
xT (k)(IN ⊗ NT

1 N1)x(k)

− 2eTξ (k)(IN ⊗ ωP3ETM1F1(k)N1)x(k)

≤ ε3eTξ (k)(IN ⊗ ωP3ETM1)(IN ⊗ ωMT
1 EP3)eξ (k)

+
1
ε3
xT (k)(IN ⊗ NT

1 N1)x(k) (17)

From Assumption 1, there will always exist a positive real
number θN such that the following equation holds:

2eTξ (k)(IN ⊗ P3)1f ≤
1
ε4
eTξ (k)(IN ⊗ P3)(IN ⊗ P3)eξ (k)

+ ε4θN (18)

Furthermore, based on (17) and (18), we have

1V ≤ xT (k) [He[IN ⊗ (P1A− P1BK )]] x(k)

+ ε1xT (k)(IN ⊗ P1M1M1
TP1)x(k)

+
1
ε1
xT (k)(IN ⊗ NT

1 N1)x(k)

+ 2xT (k)(IN ⊗ ωP1EET )ex(k)

+ 2xT (IN ⊗ P1BK )ex(k)

+ 2xT (k)(IN ⊗ P1E)eξ (k)

+ eTx (k) [He[IN ⊗ (P2A− ρ1QC)]] ex(k)

+ eTx (k)
[
(L + LT ) ⊗ (δρ2CTC)

]
ex(k)

+ 2eTx (k)(IN ⊗ P2E)eξ (k)

+ 2eTx (k)(IN ⊗ ωP2EET )ex(k)

+ ε2eTx (k)(IN ⊗ P2M1MT
1 P2)ex(k)

+
1
ε2
xT (k)(IN ⊗ NT

1 N1)x(k)

− 2eTξ (k)(IN ⊗ ωP3ETE)eξ (k)

− 2eTξ (k)(IN ⊗ ωP3ETA)ex(k)

− 2eTξ (k)(IN ⊗ ω2P3ETEET )ex(k)

+ ε3eTξ (k)(IN ⊗ ω2P3ETM1MT
1 EP3)eξ (k)

+
1
ε3
xT (k)(IN ⊗ NT

1 N1)x(k)

+
1
ε4
eTξ (k)(IN ⊗ P3P3)eξ (k) + ε4θN (19)

where Q = P2L1, L2 = δP−1
2 CT . Obviously, (19) is

equivalent to

1V ≤ x̃T (k)8x̃(k) + ε4θN (20)

where

x̃(k) =

 x(k)
ex(k)
eξ (k)

 , 8 =

811 812 813
∗ 822 823
∗ ∗ 833

 (21)

and 811 = He[IN ⊗ (P1A−P1BK )]+ε1(IN ⊗P1MMTP1)+
1
ε1
(IN ⊗ NTN ) +

1
ε2
(IN ⊗ NTN ) +

1
ε3
(IN ⊗ NTN ), 812 =

(IN ⊗ P1BK )+(IN ⊗ ωP1EET ), 813 = (IN ⊗ P1E), 822 =

He[(IN ⊗ (P2A− ρ1QC)) + (IN ⊗ ωP2EET )]+(L + LT ) ⊗

(δρ2CTC)+ (IN ⊗ P2MMTP2), 823 = (IN ⊗ P2E)− (IN ⊗

ωATEP3)− (IN ⊗ ω2EETEP3), 833 = −He[(IN ⊗ ωP3ET

E)] + ε3(IN ⊗ ω2P3ETMMTEP3) + ε4(IN ⊗ P3P3).
According to (15), it can be obtained that

V (k) ≤ max [λmax (P1) , λmax (P2) , λmax (P3)]

(∥ x(k) ∥
2

+ ∥ex(k)∥2 +
∥∥eξ (k)∥∥2)

= max [λmax (P1) , λmax (P2) , λmax (P3)] ∥ex̃(k)∥
2

(22)

It yields that

∥ex̃(k)∥
2

≥
V (k)

max [λmax (P1) , λmax (P2) , λmax (P3)]
(23)

From (20), we have

1V ≤ λmax (8) ∥ex̃(k)∥
2
+ ε4θN (24)

Due to λmax (8) < 0, one has

1V ≤ κV (k) + α (25)

where κ =
λmax(8)

max[λmax(P1)λmax(P2),λmax(P3)] < 0, α = ε4θN .

Define a set Ω:

Ω = {
(
x(k), ex(k), eξ (k)

)
| λmin(P1)∥x(k) ∥

2
+λmin (P2)

∥ex(k)∥2+ λmin (P3) ∥eξ (k)∥2 ≤ −
α

κ
} (26)

And let Ω̄ represents the supplementary set of Ω .
Obviously, if

(
x(k), ex(k), eξ (k)

)
∈ Ω̄ , the following

inequality holds:

V (k) ≥ λmin (P1)∥ x(k) ∥
2

+λmin (P2) ∥ex(k)∥2

+ λmin (P3)
∥∥eξ (k)∥∥2

≥ −
α

κ
(27)

Based on (25) and (27), if
(
x(k), ex(k), eξ (k)

)
∈ Ω̄ , one

has

1V ≤ 0 (28)
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Therefore, the error system
(
x(k), ex(k), eξ (k)

)
is uni-

formly bounded and will converge to the specified set Ω at a
rate greater than eαt .
Clearly, as long as the Φ < 0 holds, we can ensure that the

global error (11)-(13) is asymptotically convergence. How-
ever, it is evident that Φ < 0 exhibits high dimensionality
and nonlinear characteristics. This is not beneficial to solving
for LMI. Therefore, we need to make further decoupling and
dimensionality reduction.

In (21), considering that the matrix L + LT is a real
symmetric matrix, we have:

L + LT = ŪΛ̄ŪT (29)

where orthogonal matrix Ū is constructed from the eigen-

vectors of L + LT , and Λ̄ = diag
{
λ̄1, λ̄2, . . . , λ̄N

}
,

λ̄i (i = 1, 2, . . . ,N ) are the corresponding eigenvalue of L +

LT . The following orthogonal matrix is proposed:

T =

ŪT
⊗ In 0 0
0 ŪT

⊗ In 0
0 0 ŪT

⊗ Ir

 (30)

And then, by pre-multiplying and post-multiplying
Φ < 0 with T and its transpose matrix, one has

8̃ =

811 812 813

∗ 8̃22 823
∗ ∗ 833

 < 0 (31)

where 8̃22 = He[(IN ⊗(P2A−ρ1Q2C))+(IN ⊗ωP2EET )]+
Λ̄ ⊗ (δρ2CTC) + IN ⊗ P2M1MT

1 P2. It is noted that the
remaining terms are identical to those in (21). Finally,
utilizing the Schur complement lemma, we can get (14).
In this way, we complete the proof of Theorem 1. □
Remark 6: In fact, an LMI with too high dimensions is not

favourable for us to find its feasible solution, and may even
lead to no solution for that LMI. Therefore, the dimensionality
reduction of the LMI is necessary in order to obtain the
estimator gain matrix successfully.
Remark 7: From (11)-(13), it is evident that there exists

coupling among x(k), ex(k), and eξ (k). Therefore, the choice
of a Lyapunov function(15) containing x(k), ex(k), and eξ (k)
is very rigorous and crucial during the convergence analysis.
Remark 8: In the above proof process, we have utilised the

spectral decomposition of the real symmetric matrix L + LT

for decoupling and dimensionality reduction of the LMI, and
it is not difficult to find out that it does not matter whether the
matrix L is a symmetric matrix or not. Therefore, the method
proposed in this paper is applicable to MASs with directed
communication topology.
Remark 9: In the course of the above analysis, we obtain

explicit bounds on convergence of the global error system,
i.e., −

α
κ
. Clearly, by adjusting the parameters K, ω, and εj

(j = 1, 2, 3, 4), we can get a large enough range of con-
vergence. The convergence rate is also given a quantitative
process. Moreover, once K and ω are determined, we can
obtain the observer gain matrix via the LMI. Conversely, if a

FIGURE 1. Topology of MASs.

FIGURE 2. Faults and its estimations in Example 1.

feasible solution exists for LMI, the estimation performance
can be improved by adjusting the parameters K and ω.
Overall, the parameter design method provided in this paper
is highly flexible and can lead to better estimation and control
performance.

V. NUMERICAL SIMULATION
In this subsection, the veracity and effectiveness of the pro-
posed method are verified through two simulation examples.
Example 1: In this example, MASs with four agents is

considered. The topology of the MASs is shown in Fig.1. And
then, we can get the adjacency matrix A and the Laplacian
matrix L:

A =


0 0 0 1
1 0 0 0
1 1 0 0
0 0 1 0

 ,L =


1 0 0 −1

−1 1 0 0
−1 −1 2 0
0 0 −1 1


Clearly, the Laplacian matrixL is not symmetric. Consider

a system with the following parameters:

A =

−2 −1 3
−3 2 1
−2 1 −1

 ,B = E =

 0
0

−3

 ,C =

[
1 −2 0
0 1 0

]
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FIGURE 3. Component states of xi (k) in Example 1.

M =

1 0 0
0 1 0
0 0 1

 ,N =

0.6 0 0
0 0.4 0
0 0 1

 ,F (k) = sin (k)

Apparently, rank(CE) ̸= rank(E), that is, the fault
estimation matching condition is not satisfied. In order to
make the matrices (A − BK ) to be stable, the gain matrix K
is chosen as K =

[
9.1843 −6.6568 −6.8801

]
.

And then, we consider the following faults in each agent
separately:

f1 (k) =

{
0 0s ⩽ k ⩽ 10s

sin (0.2k) + cos (0.3k) 10s < k ⩽ 80s

FIGURE 4. Faults and its estimations in Example 2.

f2 (k) =


0 0s ⩽ k ⩽ 15s

0.1k − 2 15s < k ⩽ 45s
0.1k − 5 45s < k ⩽ 80s

f3 (k) =


0 0s ⩽ k ⩽ 30s

2
(
1 − e−(k−30)

)
30s < k ⩽ 45s

1 − 2
(
1 − e−(k−45)

)
45s < k ⩽ 80s

f4 (k) = 0 0s ⩽ k ⩽ 80s

In addition, we choose sampling time as 0.001s and the
weight value as ρ1 = 0.25, ρ2 = 0.75, respectively. Let the
intermediate constant ω = 0.3. Form Theorem 1, we can get
the gain matrices of fault estimator (4):

L1 = 103 ∗

 17.5310 −3.9315
−32.1705 2.0079
69.3836 −66.3622


L2 = 103 ∗

−0.0261 −0.3609
0.0882 0.4167

−0.9831 −2.3536


The simulation results are shown in Figs.2-3.

Figs.2a-2d illustrate that the estimator proposed in this
paper is satisfactory in terms of estimation performance.
In these figures, the solid line represents the actual fault,
while the dashed line represents its estimation. Since agent 4
is fault-free, its fault estimation is consistently near zero.
Figs.3a-3c give the convergence of the states of each agent
under the fault-tolerant control protocol proposed in this
paper. It can be seen that the states of all the agents converge
to a small 0 domain, even if affected by actuator faults and
uncertainties. Obviously, the method proposed in this paper
is realistic and effective.
Example 2: In this example, a network of four one-link

flexible joint manipulator systems [35] will be considered to
validate the method proposed in this paper. The topology of
the MASs is also shown in Fig.1.
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FIGURE 5. Component states of xi (k) in Example 2.

The system parameter matrices A, B, C, and E are shown
as in [35], that is:

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 10

1.95 0 −1.951 0

 ,

B = E =


0

21.6
0
0

 ,C =

1 0 0 0
0 0 1 0
0 0 0 1

 .

Consider the sameM,N and F(k) as in Example 1. Clearly,
the observer matching condition is also not satisfied in this
example. To ensure the stability of the matrix (A−BK ), let the
gain matrix be:K =

[
3.5134 −0.9144 −2.9466 −1.0852

]
.

Choose the following faults in each of the four agents:

f1 (k) =

{
0 0s ⩽ k ⩽ 5s

1.5 sin (0.4k) + 0.5 cos (0.2k) 5s < k ⩽ 60s

f2 (k) =


0 0s ⩽ k ⩽ 15s
2 15s < k ⩽ 35s
4 35s < k ⩽ 60s

f3 (k) =


0 0s ⩽ k ⩽ 20s

2
(
1 − e−(k−20)

)
20s < k ⩽ 35s

1 − 2
(
1 − e−(k−35)

)
35s < k ⩽ 60s

f4 (k) = 0 0s ⩽ k ⩽ 60s

In addition, we choose sampling time as 0.001s and the
weight value as ρ1 = 0.5, ρ2 = 0.5, respectively. Let the
intermediate constant ω = 0.22. Form Theorem 1, we can
get the gain matrices of fault estimator (4):

L1 = 103 ∗


5.4394 4.7214 11.1519

−127.1607 −113.6532 −115.4788
−16.7119 23.8020 185.7841
−10.1021 71.1253 278.0609



L2 = 103 ∗


2.0216 −0.1107 −0.0041

−0.2015 1.1791 0.3599
0.0786 0.2189 0.9389
0.0821 0.7193 1.2491


The simulation results are shown in Figs.4–5. The simula-

tion results demonstrate that the proposed method remains
accurate and effective for the four one-link flexible joint
manipulator systems.

VI. CONCLUSION
For discrete-time MASs subject to uncertainties and actuator
faults, we presents a novel robust distributed cooperative
fault-tolerant control protocol in this paper. In contrast to
many existing works, the method proposed in this paper
does not require the fault estimation matching condition
and does not require prior knowledge of the bounds of the
fault and its changing rates. During the design of the fault
estimator, both centralised and distributed architectures are
considered, obtaining a higher degree of design freedom and
better estimation performance. Based on the obtained fault
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estimation information, a fault tolerant control protocol is
proposed.To handle the challenges of high dimensionality
and coupling interference in LMI, coordinate transformation
and Schur decomposition techniques are employed. These
methods effectively reduce and decouple the LMI, ensuring
the guarantee of the estimator’s gain matrix.

The future direction of the work is as follows:
1) Considering that the fault-tolerant control protocol in this
paper requires continuous communication between agents,
the introduction of an event-triggering mechanism will be
considered in future work [36].; 2) Consider the effect of
both control input channel and measurement output channel
uncertainties on the MASs FTC problem.
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