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ABSTRACT In non-cooperative communication systems such as radio spectrum resource regulation and
modern electronic warfare, automatic modulation recognition is a key technology. Traditional modulation
recognition methods mainly rely on manual feature extraction, decision theory, and recognition selection.
The Deep Leaning (DL) algorithm automatically obtains signal features directly from massive data, and
realizes feature extraction and recognition at the same time. However, most of the research on DL-AMR
methods focuses on single input single output (SISO) systems, while there are few studies on DL-AMR
methods in multiple-input, multiple-output (MIMO) systems, so the integration of deep learning models
into modulation recognition of MIMO systems has attracted the attention of many researchers. The purpose
of this paper is to provide a comprehensive review of modulation recognition methods for MIMOsystems
based on DL. Firstly, the basic theory of MIMO and its derivative systems and modulation recognition
is introduced in detail, then the traditional modulation recognition algorithms and deep learning-based
modulation recognition algorithms of MIMO systems are introduced, and finally, on the basis of discussion
and summary, the problems to be solved, the challenges and potential research directions are proposed.

INDEX TERMS Deep learning, MIMO systems, modulation recognition, neural networks, signal
classification.

I. INTRODUCTION
With the evolution of the era, the new generation of
communication technologies, led by 5G and 6G, has garnered
significant attention from both the academic and commer-
cial sectors. Among these, 5G technology supports three
major application scenarios: enhanced mobile communica-
tion, ultra-reliable low-latency communication, and massive
machine-type communication. Furthermore, it has facilitated
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the practical applications of artificial intelligence products
[1]. The integration and development of 5G technology span
various fields, as the demand for communication quality
and efficiency continues to rise. Wireless communication
technology is rapidly advancing towards digitization, intelli-
gence, and integration. In increasingly complex communica-
tion environments, to enhance the effectiveness and reliability
of information transmission, the sender needs to perform rel-
evant processing such as modulation and channel coding on
the raw data.In cooperative communication scenarios, where
communication parties have pre-agreed on communication
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signal coding methods, modulation schemes, and parameters
through communication protocols, the signal receiver can
use the known information to demodulate the signal and
thereby obtain the content of the communication. On the other
hand, in non-cooperative communication scenarios such
as communication reconnaissance and electronic warfare,
due to the lack of communication means and many prior
pieces of information, the party intercepting the signal has
limited knowledge about the intercepted signal. To extract
useful information from the communication content, the
intercepting party needs to utilize automatic modulation
recognition technology to identify the communication signal,
thereby obtaining valuable information from the signal.

Automatic Modulation Recognition (AMR) serves as
an intermediary step between signal detection and signal
demodulation. This technology has the capability to iden-
tify the modulation type of a signal in the absence of
known system parameters, thereby extracting information
embedded within the signal. It is evident that AMR is a
prerequisite for demodulating signals at the receiving end,
playing a pivotal role in both civilian and military domains
[2]. In civilian applications, AMR is primarily employed
for spectrum monitoring and interference detection. Given
the limited availability of spectrum resources in wire-
less communication, the extensive occupation of spectrum
by various communication services poses a challenge,
potentially leading to spectrum scarcity. AMR technology
emerges as a solution to identify the modulation schemes
of interfering signals compared to legitimate user signals,
enabling the analysis of signal attributes and facilitating
spectrum management [3]. In the military domain, AMR
proves invaluable for identifying adversarial interference
signals and extracting critical military intelligence. It aids
military forces in formulating targeted reconnaissance and
counter-reconnaissance strategies. The role of AMR extends
beyond mere signal recognition; it contributes significantly
to maintaining order in the dynamic and congested wireless
spectrum environment. Its applications span from civilian
spectrum governance to supporting military operations,
showcasing its indispensable role in contemporary wireless
communication scenarios [4].

In traditional SISO systems, the problem of modulation
recognition is relatively simplified [5]. Satisfactory results
can usually be obtained through traditional methods based on
likelihood or features. As the modulation recognition of SISO
systems gradually matures, the continuous development of
communication systems and the introduction of MIMO
systems bring new challenges and opportunities to modu-
lation recognition technology. The relatively simple signal
transmission structure and lower complexity of SISO systems
make the problem of modulation recognition relatively
easy to solve. However, with the rise of MIMO systems,
the introduction of multiple transmitting and receiving
antennas leads to a significant increase in signal space
dimensions, making the problem of modulation recognition
more complex.

To further enhance the capacity and anti-interference
capability of the system, Multiple Input Multiple Output
technology was developed. By deploying multiple antennas
at both transmitting and receiving ends, MIMO establishes
independent parallel transmission channels in space, utilizing
spatial freedom to improve information transmission rates
and increase system capacity. With a minimum number of
transmit and receive antennas, MIMO can linearly increase
channel capacity without requiring additional power or
bandwidth. Compared to single antenna systems, MIMO
offers significant advantages in communication distance,
reliability, and throughput; as such it is widely used in mobile
phones, wireless local area networks (WLANs), and wireless
metropolitan area networks (WMANs) [6].
Improving the accuracy of AMR in MIMO systems

remains a challenge in current wireless communication
systems [7]. Modulation recognition techniques in MIMO
systems, developed over decades, can be broadly categorized
into two types: likelihood-based methods and feature-based
methods. Likelihood-basedmethods, while theoretically opti-
mal, require extensive computation; feature-based methods
rely on manual feature extraction, making the recognition
results heavily dependent on the expertise of the extractor.
Hence, both approaches are unsuitable for increasingly
complex MIMO systems. In recent years, deep learning
has been successfully applied in image processing [8] and
speech recognition [9], entering the communication field and
successfully constructing AM schemes [10], [11], modula-
tion classifiers [12], [13], and channel estimators [14], [15].
Deep learning-based modulation classification automatically
and efficiently categorizes received signals without prior
knowledge. By feeding raw signal data or its transformations
into neural networks and obtaining modulation categories
directly at the network output, deep learning approaches
signal classification [17], [18], [19], [20], [21], [22], [23] with
higher accuracy and less computational overhead compared
to traditional methods based on expert features, such as
higher-order cumulants [12] and time-frequency analysis
[16].

In this paper, modulation recognition of MIMO systems
based on deep learning is reviewed. The recent summaries
of deep learning-based modulation recognition methods
in MIMO systems are enhanced by this review, and the
contributions of this paper are as follows:

1) This paper conducted a comprehensive investigation
into the traditional modulation recognition algorithms
for MIMO systems, providing a detailed summary of
the advantages and disadvantages of these conventional
algorithms.

2) The application of deep learning in modulation recog-
nition for MIMO systems is introduced in this paper,
presenting a comprehensive summary of modulation
recognition algorithms based on deep learning.

3) Authors must convince both peer reviewers and the
editors of the scientific and technical merit of a paper;
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FIGURE 1. The structural layout of this paper.

the standards of proof are higher when extraordinary or
unexpected results are reported.

4) The challenges faced by current deep learning
approaches in recognizing modulated signals inMIMO
systems are outlined in this paper, and potential future
research directions are identified.

The organizational structure of this paper is as follows:
Section II introduces the fundamental theoretical knowledge
of MIMO systems, MIMO-OFDM, MIMO-STBC, massive
MIMO systems, and modulation recognition. In Section III,
traditional modulation recognition algorithms for MIMO
systems are described, and a summary of the advantages
and disadvantages of traditional modulation recognition algo-
rithms is provided. Section IV presents deep learning-based
modulation recognition algorithms for MIMO systems, along
with a discussion of modulation recognition algorithms
based on MIMO-OFDM systems, MIMO-STBC systems,
and massive MIMO systems. Section V outlines the chal-
lenges faced by modulation recognition and future research
directions. Finally, Section VI summarizes the entire paper.
The structural layout of the article can be illustrated in Fig 1.
For ease of reading, Table 1 summarizes the main acronyms
used in this paper.

II. MIMO SYSTEM MODEL AND MODULATION
RECOGNITION FUNDAMENTAL
MIMO systems employ multiple antennas at both the
transmitting and receiving ends, with diversity and mul-
tiplexing techniques widely used in multiple antenna
technology. These two techniques enable MIMO systems
to transmit more user information within the same fre-
quency band compared to traditional single-antenna systems
while also ensuring service quality for each user. Fur-
thermore, diversity and multiplexing techniques provide

TABLE 1. List of major alphabetic acronyms.

MIMO systems with advantages such as high channel
capacity, high link reliability, wide coverage, and low power
consumption.
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FIGURE 2. Structure of MIMO system.

A. MIMO SYSTEM MODEL
Nt transmitting antennas at the broadcasting end and Nr
receiving antennas at the receiving end make up the MIMO
system of Nt × Nr . The fundamental concept of MIMO
communication, which is illustrated in Fig. 2, is that
each antenna at the receiving end can receive the signals
transmitted by all Nt transmitting antennas, that is, the
signals transmitted by various transmitting antennas are
superimposed on one receiving antenna, and the outgoing
signals are recovered through signal detection and other
methods.

We assume that the MIMO channel is a flat fading time-
invariant channel, then the received signal at the nth sampling
time can be expressed by Equation (1)

Y (n) = HX (n) + N (n). (1)

where H denotes the channel matrix of size Nt × Nr (Nt ≥

Nr ), and the elements in matrix H obey a zero-mean and
unit variance of the circularly symmetric complex normal
distribution. The elements hj,i in H denote the path gain
between the ith transmitting antenna and the j th receiving
antenna, namely

H =

 h1,1 . . . . . . h1,Nr
...

...

hNt ,1 · · · · · · hNt ,Nr

 . (2)

Y (n) = [Y1(n),Y2(n), · · · ,YNr (n)]
T is the received signal

vector, which is obtained by Nyquist sampling without phase
and frequency offsets; X (n) = [X1(n),X2(n), · · · ,XNt (n)]

T

is the nth transmitted signal vector; and N (n) =

[N1(n),N2(n), · · · ,NNr (n)]
T is an additive Gaussian noise

whose elements obey a normal distribution with zero mean
and variance.

More research is being done on MIMO-OFDM systems,
space-time block code MIMO-STBC systems, and massive
MIMO systems, in addition to general MIMO systems.
Consequently, we shall explore the MIMO-OFDM, MIMO-
STBC, and massive MIMO systems.

B. MIMO-OFDM SYSTEM
We consider a MIMO-OFDM system with Nc subcarrier,
Nt transmit antenna, Nr receive antenna, and M OFDM
symbol. It is assumed that the channel is a multipath
frequency-selective Rayleigh fading channel. The entire

FIGURE 3. Structure of MIMO-OFDM system.

MIMO-OFDM system is shown in Fig. 3. In accordance with
the data presented in Fig. 3, The receiver is equipped with
a modulation identification module that automatically deter-
mines the modulation type of the MIMO-OFDM signal. The
input bits at the transmitter are encoded by the system through
a pre-established digital modulation technique, resulting in
the generation of symbols. Subsequently, these symbols
are inserted alongside the guide frequency, organized into
frequency bins of equal spacing through a series-parallel
mechanism, and transformed into numerous orthogonal
overlapping sinusoids in the time domain by means of a fast
Fourier inverse transform (IFFT) accompanied by an extra
cyclic prefix (CP). In several OFDM systems, known guide
frequency symbols are included to aid in channel estimation
and equalization. Given the complex data of the modulated
signal on the nth subcarrier xnt [n,m] transmitted by the nth
antenna, the kth baseband signal for the mth OFDM symbol
can be written as Equation (3)

snt [n,m] =

N−1∑
n=0

xnt [n,m] e
j2πnk/N , 0 ≤ k ≤ N − 1. (3)

where N = η × Nc is the number of IFFT points and η

is the oversampling factor. Then, the length Lcp of the CP
information is prefixed to prevent inter-symbol interference
problems with neighboring OFDM symbols. This step can be
expressed by Eq. (4)

Snt [m, k] =

{
snt [m, k + N ] , −Lcp ≤ k ≤ −1
snt [m, k] , 0 ≤ k ≤ N − 1.

(4)

To increase the outer band radiation of the subband signals,
a filter with sinusoidal impulse response needs f [k] to be
applied, and this process can be described by equation (5).

ynt [m, k] = S̃nt [m, k] ⊗ f [k]. (5)

where represents the convolution. Under the assumption of
symbol timing and carrier frequency OFDM synchronization,
the OFDM signal received by the RT antenna at the receiver
on a MIMO channel with frequency-selective multipath
Rayleigh fading can be expressed by Equation (6)

Zrt [m, k]

= ynt [m, k] ⊗ hnt ,rt [m, k] + δ[m, k], 0 ≤ k ≤ Ls − 1. (6)
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FIGURE 4. Structure of MIMO-STBC system.

where δ[m, k] denotes the additive Gaussian white noise,
Ls = Lcp + N is the OFDM signal length, and hnt ,rt is an
element of the Nr × Nt channel matrix corresponding to the
pulse.

C. MIMO-STBC SYSTEM
Nt transmit antenna andNr receive antenna theMIMO-STBC
system is explored in this research, and the system’s topology
is depicted in Fig. 4. In an STBC MIMO system, the
transmitter first performs spatiotemporal block encoding of
the v group to be sent symbol sv = [s1, s2, · · · , sK ]T of length
K to obtain a transmission matrix X (sv) of Nt × L, where
L is also called the length of X (sv), and each symbol in e
is a non-Gaussian random variable with a mean of 0 and
is independently and equally distributed. C(sv) reaches the
receiving end after passing through channelH , and the signal
on Nr receiving antennas is represented as (7).

Yv = HX (sv) + Nv. (7)

where Yv represents theNr×L -dimensional receivingmatrix,
element hq,pin H is a Gaussian variable with a mean of 0 and
a variance of 1,Nv represents aNr×L -dimensional Gaussian
white noise matrix, Nv and X (sv) are independent of each
other, and themean of each element inNv is 0 and the variance
is σ 2

n .

D. MASSIVE MIMO SYSTEM
Massive MIMO technology offers a qualitative increase in
antenna count as compared to MIMO technology. Hundreds
of thousands of antennas can be used in a huge MIMO
system. As seen in Figure 5 above, these antennas are
positioned and assembled centrally using massive MIMO
array technology to create a large-scale antenna array. Using
a large antenna array allows the signal to be dynamically
adjusted in both horizontal and vertical directions, focusing
the energy more precisely on the individual user and lowering
inter-cell interference. This increases the rate at which
system spectrum resources are utilized overall and supports
spatial multiplexing between multiple users. Massive MIMO
antenna arrays simultaneously offer array gain and diversity
gain, which greatly raises efficiency.

E. BASIC THEORY OF MODULATION RECOGNITION
Communication modulation recognition refers to the process
of determining themodulationmethod used in the transmitted
signal in the presence of noise and interference without prior
knowledge of the modulation information and parameters.
It involves identifying the modulation method of each type of

FIGURE 5. Schematic diagram of massive MIMO system.

FIGURE 6. Block diagram of communication signal recognition process.

signal in a signal set containing a mixture of different types
of signals.

1) OVERALL PROCESS OF MODULATION SIGNAL
RECOGNITION
The preprocessing of communication signals, the extraction
and selection of signal features, and the classification and
identification of signal modulation types make up the typical
three steps, and the recognition process is shown in Figure 6.
After receiving the signal, preprocessing operations are
applied, and different preprocessing methods are chosen
for various recognition tasks. Signal preprocessing aims
to provide data that is more conducive to analysis and
processing. As signal preprocessing significantly impacts
the feature extraction for communication signal modulation
recognition, the presence of noise in the signal severely
affects the recognition accuracy of communication signal
modulation patterns. Therefore, designing algorithms with
better noise-resistant performance for preprocessing the raw
signal is crucial for the subsequent modulation recognition
classifier based on deep learning.

In the modulation recognition process, the extracted
features are input into a classifier for identification, a crucial
step. The computational complexity has a crucial impact
on the final recognition performance. Initially, due to
technological limitations, manual classification by experi-
enced professionals was required. With the application of
automatic modulation recognition methods in this field,
automated classification methods have gradually replaced
manual approaches. With the rise of machine learning
(ML) technology, modulation recognition methods based on
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FIGURE 7. Block diagram of deep learning-based modulation recognition
process.

ML have become popular. This method involves inputting
preprocessed signals into designed classifiers, with com-
monly used classifiers including SVM, DT, KNNS, HMM,
etc. However, ML-based AMR methods are not suitable
for communication scenarios with massive data. Therefore,
this method is no longer applicable.To address modulation
recognition in scenarios with massive communication data,
some scholars have started incorporating deep learning (DL)
technology into AMR in recent years. Commonly used
deep learning networks include Recurrent Neural Networks
(RNN), Convolutional Neural Networks (CNN), Residual
Neural Networks (ResNet), and a series of combined neural
networks. The process of modulation recognition based on
deep learning is illustrated in Figure 7. As deep neural
networks classify and recognize different communication
modulation patterns mainly by autonomously learning the
features of input signals, selecting preprocessing features that
significantly differentiate between different communication
modulation patterns is crucial for communication modulation
recognition methods.

2) MODULATION SIGNAL DATA PREPROCESSING
Due to the shared statistical properties between the trans-
mitted and received signals in the SISO system, it becomes
feasible to ascertain the modulation type of the received
signal through direct extraction. The inclusion of the MIMO
channel in a MIMO system will modify the statistical charac-
teristics of the received signal, necessitating the elimination
of the channel’s impact before extracting the features in order
to restore the transmitted signal. The ICA and ZF algorithms
are currently employed by most researchers to restore the
received signal. Below, you will find a comprehensive
introduction to both the ZF algorithm and the ICA algorithm.

a: ICA ALGORITHM
The sent signal can be recovered using the ICA technique
since it is statistically independent and the received signal
is a linear mixture of the transmitted signal and noise.
Three separation techniques that are frequently employed in
ICA under MIMO systems were compared in the literature.
Among these, the Joint Approximate Diagonalization of
Eigenmatrices (JADE) approach in ICA has a reduced bit
error rate when the data is tiny and requires smaller data sizes.
Furthermore, there’s no need to change the settings while the

calculation is running. Some academics recover the broadcast
signal using the JADE technique. The number of transmitting
antennas, or information sources, must be known in order to
use the JADE algorithm. To solve this problem, Tianqi et al.
[92] estimated the transmitting antenna number based on the
MDL criterion to estimate the process.

(1) Find the autocorrelation matrix of the received signal
y(k)

Y = E[y(k)yH (k)]. (8)

where H stands for conjugate transpose.
(2) Perform eigenvalue decomposition for Y and arrange

the obtained eigenvalues in descending order.
(3) The MDL algorithm is used to estimate the number of

transmitting antennas.

N̂t = argmin
n

− lg


Nt
5

i=n+1
λ
1/(Nt−n)
i

Nt∑
i=n+1

λi/(Nr − n)


K (Nt−n)

+
n(Nr − n) + 1

2
lgK

. (9)

where n = 0, 1, · · · ,Nr − 1, λi represents theicharacteristic
value, and K represents the number of symbols on a single
antenna.

After estimating the number of transmitting antennas, it is
necessary to do the signal-whitening processing. The first Nt
eigenvalues form a diagonal matrix D, and the corresponding
eigenvectors form amatrix F . Take the mean of the remaining
(Nt−Nr ) eigenvalues λ̃, so that the noise variance is estimated
at σ̂ 2

n = λ̃. Make

B = D− σ̂nI . (10)

where I is the identity matrix of Nt × Nr -dimension. The
whitening matrix V is represented by

V = B−1/2FH . (11)

Then the whitening signal can be expressed as

q(k) = V · r(k). (12)

After whitening, the dimension of the signal is reduced
from Nr × 1 to Nt × 1, thus reducing the amount of
subsequent computation. After the above pre-processing, the
JADE algorithm can be used to restore the sent signal. The
separation process of the JADE algorithm is as follows: First,
the high-order cumulant matrix C of q(k) is calculated, and
then the singular value ofC is decomposed to calculate theNt
eigenvalues of the maximum modulus and the corresponding
eigenmatrix {φi,Ui|1 ≤ i ≤ Nt }; The matrix set Ae =

{φi,Ui|1 ≤ i ≤ Nt } is approximated diagonally jointly, and
the separation matrixXcan be obtained after operation. The
recovered transmission signal can be expressed as

ŝ(k) = X · q(k). (13)
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b: ZF ALGORITHM
InMIMO systems, the presence of a large number of antennas
affects communication performance. Using ZF equalization
technology can improve the classification performance under
perfect CSI and imperfect CSI because ZF equalization can
improve the signal-to-noise ratio of the received signal under
perfect CSI or imperfect CSI (the channel estimation error is
limited). The received signal, equalized by ZF, can be written
as

R̂(n) = ZF(Ĥ )R(n). (14)

where ZF(Ĥ ) = Ĥ†
= (ĤH Ĥ )

−1
ĤH is the equalization

matrix, where (ĤH Ĥ )
−1
ĤH is denoted as the pseudo inverse

operation of Ĥ . In addition, Ĥ is the estimated channel
matrix. In this paper, we consider perfect CSI cases (i.e.,
Ĥ = H ) and imperfect CSI cases (i.e., Ĥ ̸= H ).

3) PERFORMANCE EVALUATION METRICS FOR
MODULATION RECOGNITION
Accuracy Metrics: In evaluating the performance of modu-
lation recognition models, the considered accuracy metrics
include the highest accuracy, average accuracy, and the
variation of accuracy with signal-to-noise ratio (SNR). The
highest accuracy represents the peak performance a model
can achieve, typically obtained at a high SNR value. The
average accuracy reflects the overall performance level of the
model across all tested SNR levels. The variation of accuracy
with SNR illustrates how model performance changes under
different SNR conditions, usually presented visually.

Model Complexity and Training Time: The complexity of
a model is primarily indicated by the number of learning
parameters, while training speed is represented by training
time and epochs. Designing models with fewer learning
parameters and faster training speeds that can achieve high
recognition accuracies is indicative of superior performance.

Confusion Matrix: The confusion matrix provides a
straightforward representation of classification errors among
different modulation types. With the vertical axis represent-
ing true labels and the horizontal axis representing predicted
labels for N modulation classes, the confusion matrix is an
NN matrix. It is a direct visual method to reflect the overall
classification performance of a model.

Model Generalization: Most deep learning models for
Automatic Modulation Recognition (AMR) are trained
using data generated under specific channel conditions.
For practical application, these models are expected to
exhibit generalization and robustness, performing well across
different datasets at the experimental level.

III. TRADITIONAL METHODS OF MIMO SYSTEM
MODULATION RECOGNITION
Early attempts of modulation recognition mainly depended
on manual tasks carried out by knowledgeable specialists.
It was difficult to assure correctness because of the significant
degree of subjectivity resulting from the final judgment’s

FIGURE 8. Flowchart of the likelihood modulation identification method.

subjective nature. Many academics have currently put out
pertinent algorithms for the problems with AMR in MIMO
systems. The two main categories of traditional modulation
recognition algorithms are feature-based and likelihood-
based algorithms. In this part, we offer a thorough overview
of these two classic recognition procedures.

A. LIKELIHOOD-BASED MODULATION RECOGNITION
ALGORITHM
Likelihood-based modulation recognition algorithms require
the calculation of likelihood functions for the signals of
all candidate modulation modes and then make classifi-
cation decisions based on the maximum values of these
functions. As can be seen, the likelihood functions of
the potential modulation schemes must be calculated for
the likelihood-based modulation recognition algorithm to
work. Figure 8 illustrates the method’s flow. Consider the
probability function being used for a specific modulation,
where R stands for the received signal vector, for the
modulation mode, and H for the channel matrix. Maximizing
the likelihood function is the modulation identification
process’s most likely outcome, and Eq. (15) can be used to
define the final modulation identification result.

ϕ̂ = argmax
ϕ∈2

(3(R/ϕ,H )). (15)

where ϕ̂ denotes the estimated modulation and 2 =

{ϕ1 , ϕ2, · · · , ϕn} denotes the candidate modulation that
maximizes the likelihood function.

When determining the modulation mode of the received
signal, it is crucial to consider various unidentified com-
munication factors at the receiver, including the channel
matrix. Different methods of identifying modulation based
on likelihood can be classified into three types: those
that rely on average likelihood ratios, those that rely on
generalized likelihood ratios, and those that rely on mixed
likelihood ratios. The modulation recognition algorithm,
which relies on the average likelihood ratio, must consider
the unknown parameters as random variables with known
probability density functions and subsequently solve the
mean value of the likelihood function of the variable.
Similarly, the modulation recognition algorithm, which relies
on the generalized likelihood ratio, considers the unknown
parameters as fixed quantities, solves the estimated value of
the parameters under multiple assumptions, and replaces the
likelihood function to estimate the likelihood ratio. Lastly,
the modulation recognition method, which relies on the
mixed likelihood ratio, considers a portion of the unknown.
The mixed likelihood ratio-based modulation identification
method employs the generalized likelihood ratio approach to
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TABLE 2. Comparison of parameter volume calculations.

determine the highest likelihood estimate, considering certain
unknown parameters as predetermined values. The average
likelihood ratio method is used to calculate the average value
of the probability density function, which takes into account
some of the unknown parameters as random variables.

In 2020, Shah and Dang [28] proposed a low-complexity
maximum likelihood-based modulation recognition method
for Space-Time Block Code (STBC) Multiple-Input
Multiple-Output (MIMO) systems. The authors initially
utilized Zero Forcing (ZF) technique to modify the typical
average likelihood ratio function. The modified likelihood
function, independent of the number of transmit and
receive antennas, exhibits lower computational complexity
compared to other likelihood-based Automatic Modulation
Recognition (AMR) algorithms, while maintaining high
classification accuracy. Moreover, it demonstrates robustness
against high Channel State Information (CSI) error variance.
In 2021, Pathy et al. [29] designed a tree-based modulation
recognition algorithm for asynchronous MIMO-Orthogonal
Frequency Division Multiplexing (OFDM) systems. The
algorithm involves the following steps: preprocessing the
received signal to compensate for timing offsets, calculating
high-order cumulants of the frequency-domain signal as
critical features, and determining the likelihood ratio of the
signal based on these critical features as the classification
threshold to achieve modulation recognition. Experimental
results indicate that this algorithm can perform AMR
even in the presence of unknown frequency, timing, and
phase offsets, without the knowledge of CSI. In this
paper, we summarize the research results of the likelihood
function-based modulation identification methods for MIMO
systems in Table 2.

Based on the preceding introduction, it is evident
that likelihood-based modulation identification techniques

prioritize the development of the likelihood function, which
is typically associated with the quantity of transmitting and
receiving antennas, thereby resulting in significant computa-
tional intricacy. In spite of this, the likelihood-based approach
requires knowledge of the channel state information, which
is not feasible in a completely blind communication sys-
tem; thus, the likelihood-based modulation identification
approach is not suitable for the current communication
system.

B. FEATURE-BASED MODULATION RECOGNITION
ALGORITHM
The first step in applying conventional feature-based AMR
algorithms for MIMO systems is to recover the sent signal
from the received signal during the signal preprocessing
stage by employing equalization and blind channel estimating
techniques. After each transmitted signal’s statistical prop-
erties (including higher-order moments and cumulants) are
retrieved for modulation recognition, the statistical features
are used to make classification decisions. Figure 9 shows
the steps involved in this procedure. Feature-based AMR
algorithms for MIMO systems can be broadly divided
into two main categories according to how features are
processed: decision-fusion-based and feature-fusion-based
techniques.

1) DECISION FUSION-BASED APPROACH
The decision fusion algorithm utilizes feature vectors
extracted from each estimated transmit signal to train the
appropriate classifiers, such as artificial neural networks
(ANNs) and support vector machines (SVMs), in order to
estimate the modulation scheme of each transmit signal. The
choices made by each classifier are subsequently combined
to generate the ultimate classification and identification

VOLUME 12, 2024 112565



X. Zhang et al.: Deep Learning-Based Modulation Recognition for MIMO Systems

FIGURE 9. Flowchart of feature-based modulation recognition algorithm.

FIGURE 10. Decision fusion-based modulation identification method in
MIMO systems.

determination regarding the modulation mode of the received
signal. Fig. 10 can be used to demonstrate the decision-
fusion-based AMR approach. At present, the research
results of decision fusion-based modulation identification
approaches are as follows: In 2012, Hassan et al. [30]
suggested a modulation identification algorithm based on
decision fusion to address the issue of modulation identi-
fication in MIMO systems when spatial fading correlation
is present. The authors employed multiple higher-order
cumulants of the transmitted signals as distinguishing char-
acteristics and trained an artificial neural network (ANN)
as a classification system with a backpropagation algorithm,
and then the decision vector generated by the classifiers
of multiple ANNs was combined and utilized for ultimate
decision-making. Through experiments, the algorithm has
been shown to have high recognition accuracy within a
reasonable range of signal-to-noise ratios for cases with
and without CSI knowledge at the receiver side. In 2014,
Kharbech et al. [31] proposed a decision fusion-based AMR
algorithm for MIMO systems, which takes the various
higher-order cumulants of the estimated transmit signals as
discriminative features and uses an ANN for classification,
and then the average Bayes rule is utilized as a decision fusion
rule. The algorithm works mainly on time-varying channels,
where a slidingwindow technique is used to counter the effect
of fading on the transmitted signal. It has been shown that

FIGURE 11. Feature fusion-based AMR algorithm in MIMO systems.

the algorithm improves the classification performance but
increases the computational complexity due to the use of the
sliding window technique in the algorithm.

2) FEATURE FUSION-BASED APPROACH
In the feature fusion-based technique, feature vectors are
taken from the signal and fused into a single vector before
being sent to the classifier for classification. The advantage
of the feature fusion-based approach is that classification
is required only once, which reduces the computational
complexity. The feature fusion-based AMR algorithm in the
MIMO system can be illustrated in Fig. 11. The findings of
the present research on modulation recognition algorithms
utilizing feature fusion are as follows: In 2010, Hassan et al.
[32] and colleagues The authors proposed an AMR algorithm
that uses feature-complementary fusion for MIMO systems.
This algorithm uses various higher-order statistics of the
estimated transmitted signals as distinguishing features and
fuses them. However, since the algorithm cascades various
features to form a fused feature vector, which improves the
dimensionality of the feature vectors, the Principal Com-
ponent Analysis (PCA) method is used for dimensionality
reduction. Finally, the feature vectors are input into the neural
network to complete the classification. The algorithm has
demonstrated its ability to attain high recognition accuracy
when the receiving side possesses complete knowledge of the
CSI and coding information. Despite the challenge of having
a thorough understanding of CSI and coding information
on the receiver side in actual communication situations, this
approach is not suitable for practical use. In 2014, a feature-
based AMR algorithm was proposed in the work [33], [34].
The authors combined the features of the data found in
the first-order and second-order correlation functions of the
received signals and used a statistical test based on the
likelihood of false alarms as a criterion for making decisions.
MIMO systems with frequency-selective channels can make
use of this technique. Bahloul and colleagues [42] suggested
the implementation of a feature fusion-based modulation
classification (MC) algorithm for multiple-input multiple-
output (MIMO) systems. The transmitted signal stream is
classified as a broad set of modulation types using two higher-
order cumulants, without any prior knowledge of channel
state information. To begin with, blind channel estimation
and compensation are used to calculate the MT transmit
signal flow from the linear combination of noise in the MT
transmit signal flow. Furthermore, the estimation of the post-
processing signal-to-noise ratio (PPSNR) for each of these
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TABLE 3. Summary of advantages and disadvantages of traditional modulation recognition algorithms.

streams is currently underway. Subsequently, the statistical
characteristics for modulation classification are computed
for every retrieved stream. An optimal soft decision fusion
scheme is used in the last step of the proposed algorithm
to decide the modulation type of the MIMO signal based
on the PPSNR and the characteristics of all streams. They
used a soft decision-fusion technique to find the classification
results.

Considering the preceding introduction, it is found that
feature-based modulation recognition methods are usually
accomplished by using features of the signal and a machine
learning framework of traditional classification algorithms.
However, these algorithms require manual feature extraction
and the design of suitable machine-learning classifiers to
achieve better results. On the other hand, due to the
complexity of communication systems nowadays, conven-
tional feature-basedmodulation identificationmethods are no
longer useful.

We illustrate the benefits and drawbacks of the Likelihood
Bias (LB) and Feature (FB) recognition approaches, as shown
in Table 3, based on the preceding pertinent introduction to
these two techniques:

The emergence of deep learning in recent years has been a
pivotal moment in resolving the issue of the inadequate preci-
sion of conventional modulation recognition. A multitude of
scientists have endeavored to utilize deep learning algorithms
in the realm of modulation recognition, and a plethora of
remarkable outcomes have been attained. We have outlined
the pros and cons of conventional modulation recognition
techniques and deep learning-based modulation recognition
techniques, as demonstrated in Table 4. In Section IV, we will
concentrate on deep learning-based modulation recognition
techniques.

IV. DEEP LEARNING-BASED MODULATION
RECOGNITION FOR MIMO SYSTEMS
Deep learning is a powerful artificial intelligence technique
capable of learning features from vast amounts of data
and fitting nonlinear networks. As a result, it has found
widespread applications in computer vision, natural language
processing, and speech recognition, achieving considerable
success. Traditional modulation recognition methods pri-
marily rely on feature extraction and classifier design.

FIGURE 12. Deep learning-based modulation identification method for
MIMO system.

However, these methods require manual feature extraction,
and different modulation schemes necessitate the design
of distinct classifiers, introducing certain limitations. Deep
learning-based modulation recognition can automatically
learn signal features, enabling automatic classification. This
approach offers advantages such as high automation, strong
robustness, and adaptability.

Modulation recognition algorithms of MIMO systems
based on deep learning mainly include convolutional neural
networks (CNN), multi-layer perceptron, and so on. The flow
chart of the modulation recognition method based on deep
learning in the MIMO system is shown in Figure 12. First
of all, because the MIMO system contains Nt transmitting
antennas and Nr receiving antennas, according to the char-
acteristics of the wireless channel, each receiving antenna
will receive the contents of different transmitting antennas.
In order to facilitate the subsequent feature extraction, some
scholars proposed applying ICA, ZF, and other algorithms
to recover the received unknown signals and then carry
out feature extraction. The extracted features are directly
input into the neural network for modulation classification,
or different features are fused, and the fused features are
input into the neural network for modulation classification.
In this section, we will provide a detailed overview of the
application of deep learning to modulation recognition in
MIMO systems.

A. MODULATION RECOGNITION ALGORITHMS FOR
MIMO SYSTEMS
The accuracy of modulation recognition is affected by
the channel. Due to the complexity and multipath effect
of the channel in MIMO systems, the signal experiences
the Keyhole effect, which means that there is a major
transmission path (Keyhole) in the signal transmission path,
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TABLE 4. Summarizes the advantages and disadvantages of traditional modulation recognition algorithms and modulation recognition algorithms based
on deep learning.

resulting in a change in the transmission characteristics of
the signal. This channel characteristic is a challenge for
modulation classification tasks. To address this problem,
Dileep et al. [36] proposed a deep learning-based auto-
matic modulation classification method for MIMO systems.
Specifically, a convolutional neural network (CNN) is used
to process the received signals and perform modulation
classification. The construction process of the dataset is
first described, including the signal generation of different
modulation methods and the modeling of the keyhole
channel. Then, the paper designs a CNNmodel for extracting
features from the received signals and performingmodulation
classification. This CNN model includes multiple convolu-
tional and fully connected layers for learning the relationship
between the time-frequency features of the signal and the
modulationmode. To improve the classification performance,
techniques of data enhancement and regularization are also
introduced. Data augmentation increases the diversity of the
data and improves the robustness of the model by randomly
transforming and expanding the training data. Regularization
techniques, on the other hand, are used to reduce the
overfitting risk of the model and improve its generalization
ability.

Lightweight devices have a restricted capacity for storage
and processing because of their size and energy usage
limitations. Furthermore, the complexity of deep neural
networks, combinedwith their numerous parameters, restricts
their use in MIMO systems. Wang et al. [37] propose
an automatic modulation recognition method based on
lightweight complex-valued residual networks and design
a hybrid data enhancement method to compensate for the
potential performance degradation caused by lightweight
networks, which improves the accuracy of the method by at
least 8%.

The traditional method of signal modulation detection
relies heavily on the signal’s spectral characteristics, but
in high-noise settings, the spectral characteristics are eas-
ily interfered with, lowering the recognition accuracy.
To improve the performance of signal modulation recogni-
tion, researchers have begun to explore the cumulant-based
method. This method extracts features such as instantaneous
amplitude and instantaneous frequency of the signal by ana-
lyzing the cumulative amount of the signal to achieve accurate

recognition of the signal modulation mode. Following
this, numerous academics adopted higher-order cumulative
quantities as characteristics for modulation categorization
[39], [40] and attained satisfactory outcomes. As deep
learning progressed, certain academics merged deep learning
with higher-level cumulants to investigate the novel AMR
algorithm.

The cumulant aspects of the received signal are linearly
differentiable by utilizing hyperplanes following the signal
distribution properties of various modulation types. As a
result, the modulation types are classified using a support
vector machine (SVM), and weight vectors are utilized to
determine the contributions of various cumulant properties.
Given this, Zhou et al. [41] suggested a recursive feature elim-
ination (RFE) algorithm based on support vector machines to
decrease the size of features in MIMO systems and enhance
classification effectiveness. A one-to-one multiclassification
segmentation approach is employed to transform multiclassi-
fication intomultiple binary classifications, and the combined
weight vectors of all binary classifications are combined to
get the overall weight vector. At each step, the features with
the least weight are eliminated according to the overall weight
vector. The SVM-RFE algorithm allows for the ranking of
cumulant features, enabling the selection and utilization of
specific cumulants based on their respective contributions to
modulation identification.

For MIMO systems with less-than-ideal channel condi-
tions, m-quadrature amplitude modulation (QAM) signals
are identified in [43] using a classifier based on random
graph theory. For undirected random graph classification,
the method makes use of feature data from discrete Fourier
transforms and sparse transforms. The approach obtains
acceptable classification results using simulated data. A gen-
eralized CNN-driven technique for modulation identification
in IoT systems was put forth by Zhang et al. [48].
In comparison to conventional CNN algorithms, the method
is more robust and utilizes data in various noise situations.
The findings demonstrate that the technology is more capable
of classifying data than conventional CNN. Designing
modulation identification techniques for MIMO systems has
been the subject of extensive research. See, for instance,
several pertinent review papers [49]. Khosraviani et al. [50]
suggested an approach based on received data for identifying
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TABLE 5. Modulation recognition algorithm of the MIMO system based on deep learning.

digital modulation in MIMO systems, specifically targeting
the segmentation of received data samples with higher
statistics like cumulants. It is believed that the modulation
type of the received sample corresponds to the modulation
whose theoretical cumulant is in closest proximity to the
average cumulant. A cumulative sum is calculated for every
segment. A comparison is made between the average of
the computed cumulants and the theoretical cumulants of
different modulations. Existing approaches ignore the advan-
tages of simultaneously considering the multimodality and
complementarity of multiple-input multiple-output (MIMO)
systems in a single DL framework. To address this issue,
the literature [52] proposes an AMC algorithm based on a
dual-mode multichannel configurable DL forMIMO systems
with ideal channel state information and a forced-zero
equalizer. The suggested DL framework comprises two con-
current multichannel convolutional layer structures, wherein
one multichannel structure incorporates in-phase/quadrature
(I/Q) as the initial modal information, while the other
multichannel structure incorporates magnitude/phase as the
subsequent modal information. The features taken from
this parallel structure are processed by a Long Short-Time
Memory (LSTM) layer to effectively extract the temporal
information. At long last, the fully connected layer has
finished the categorization. The simulation results showcase
the framework’s resilience, resulting in a 0.6% to 12%
enhancement in average accuracy when compared to the
current DL models. In Table 5, this study outlines the
modulation recognition techniques that deep learning has
recently applied to MIMO systems.

B. MODULATION RECOGNITION FOR MIMO-OFDM
SYSTEMS
Modern wireless communication systems use the well-known
multicarrier modulation technology known as orthogonal
frequency division multiplexing (OFDM). Long-Term Evo-
lution Advanced (LTE/LTE-A), Worldwide Interoperability
for Microwave Access (WiMAX), and high-speed Wireless

Local Area Network (WLAN) standards like 802.11n all
make use of OFDM in the 4G Third Generation Partnership
Project (3GPP). It is a part of 5G New Radio (NR) cellular
as well. The primary characteristic of OFDM lies in its
capacity to convert frequency-selective fading into flat-fading
channels. OFDM modulation methods have been selected
as the primary transmission method for large data-rate
systems [53] because of their high spectrum utilization and
remarkable resistance to multipath interference. M-PSK and
M-QAM are the prevailing modulation techniques employed
in OFDM. In addition to 5G and wireless communications,
the study of the MC of OFDM signals poses a significant
research hurdle, with AI serving as the fundamental building
block of the communication system [54], [55], [56], [57].
MC methods based on the statistical characteristics of
received OFDM signals are studied in [58]. This approach
utilizes mean, skewness, and kurtosis to differentiate between
QPSK, 16-QAM, and 64-QAM modulation strategies. This
technique does not perform well when it comes to timing and
frequency synchronization errors. Regerence [59] delves into
the discussion of the MC algorithm, which takes into account
the magnitude moment. This approach makes use of the rela-
tionship between any two subcarriers to differentiate between
16-QAM and 64-QAM modulation schemes. The classifi-
cation of M-PSK/M-QAM modulation schemes is achieved
through the utilization of the nonparametric Kolmogorov-
Smirnov (KS)-based technique introduced in [61] and [62].
It functions effectively when there are established timing
offsets, unidentified frequency and phase offsets, and noise
channels that deviate from the Gaussian distribution. The
majority of the aforementioned MC algorithms for OFDM
signals are restricted to the established CSI and/or flawless
synchronization scenarios. The utilization of discrete Fourier
transform (DFT) and normalized higher-order cumulants [60]
for blind modulation identification has also been explored in
the classification of low-order digital modulation schemes
for OFDM systems. The classification accuracy is not up
to par and is affected by channel degradation. In [63], the
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authors developed a high-performance deep residual network
(ResNet) with a three-hop residual stack (TRNN)-based MC
algorithm for real-time OFDM signal classification under
dynamically fading channel conditions. A methodology for
indexed modulation MIMO-OFDM signal detection using
deep neural networks was proposed by Altin G [64].
The deep learning model training and feature extraction
enable accurate modulated symbol index detection with good
robustness. In [65], active subcarriers and modulation orders
are estimated using DNN for modulation detection in OFDM-
IM systems. [66] investigates deep learning channel estimates
for OFDM-IM-based hydroacoustic communication systems.
A 3D convolutional network-based technique to categorize
MIMO-OFDM modulations in received signals is proposed
in [67]. The method learns the modulation patterns based
on the assumption of unknown frequency selective fading
channels and signal-to-noise ratio. Simulation results show
that the method achieves a classification accuracy of about
95% at 0 dB SNR. This study lists the modulation recognition
techniques that deep learning has recently been used to
apply to MIMO-OFDM systems in Table 6. In terms of
modulation identification for MIMO-OFDM systems, some
research methods have achieved some results. For example,
the method based on matrix decomposition can decompose
the received signal matrix into a modulation matrix and
channel matrix. In addition, the method based on the
joint probability density function can utilize the statistical
properties of the received signal for modulation identifica-
tion. As for the modulation identification of MIMO-STBC
systems, there are relatively few research methods, but some
methods have made some progress. In the next section, the
modulation identification methods in MIMO-STBC will be
introduced.

C. MODULATION RECOGNITION FOR MIMO-STBC
SYSTEMS
Although there is some research literature on modulation
identification [28], [35], [47], [71] and STBC identification
[72], [73] for MIMO communication systems, these studies
only focus on modulation identification or STBC identi-
fication. Despite the fact that the received signal contains
both modulation information and STBC information from the
source, these two types of studies are carried out separately.
Neglecting STBC to solely identify the modulation pattern
results in interference with the information contained within
the symbols; conversely, disregarding STBC to solely iden-
tify the modulation pattern hinders the recognition of STBC.
This section concentrates on the modulation recognition
technique employed in MIMO-STBC systems, despite the
fact that there are certain restrictions in practical applications.

Hu et al. [74] suggested the implementation of a combined
recognition technique for STBC and modulation. Firstly,
the correspondence between the combination of STBC,
modulation mode, and received signal trajectory image
is analyzed, and the feasibility of the joint identification
of STBC and modulation mode based on the trajectory

image is demonstrated. To improve the differentiation of
different STBs on the trajectory image under BPSK and
the detailed information contained in the trajectory image,
two improvement schemes for the trajectory image are
given. Finally, the trajectory images are classified using
the improved Lene T network. In [34], Alamouti (AL)
employed the statistical properties of the correlation function
to determine the modulation type of the received signal in
their space-time packet code (STBC). This study lists the
modulation recognition techniques that deep learning has
recently been used to apply to MIMO-STBC systems in
Table 7. In MIMO-STBC systems, due to the introduction
of space-time coding, the signal features are more complex,
and modulation identification is more difficult. In massive
MIMO systems, the signal has a higher dimension due to
the use of massive antenna arrays and also faces more
interference and complex channel conditions. Although the
modulation identification methods forMIMO-STBC systems
and massive MIMO systems have yet to be further studied
and developed, some methods have made some progress.
The modulation identification methods for massive MIMO
systems are described next.

D. MODULATION RECOGNITION METHODS FOR MASSIVE
MIMO
Massive MIMO (m MIMO) communication has been rec-
ognized as a key and important technology to meet the
expected demands of fifth-generation (5G) and beyond 5G
systems. By deploying too many antennas at the base station,
it provides huge potential for 5G systems. Thus increasing
the possibility of using different modulations by different
transmitters to reduce the BER as well as increase the data
rate. It leads to the development of intelligent receivers that
can efficiently classify and recognize accurately modulated
and decoded data. To solve this problem, Huaji et al. [84]
investigated an automatic identification method for modu-
lation modes based on integrated classifiers. The authors
analyzed the overall performance of integrated classifiers for
several radio modulation signals. The accuracy level of the
integrated classifiers is 93% to 98%, which is much higher
than the accuracy level of other individual classifiers. The
accuracy level proves its ability to classify and recognize
modulation labels. The experimental results show that the
proposed integrated classifier model outperforms other ML
models. Wu et al. [85] introduced an innovative uplink BMR
algorithm that incorporates deep learning to assist in the
analysis of cyclic stationary features (CF) for blind modu-
lation identification in large-scale MIMO systems. Initially,
the researchers employed a minimum description length
(MDL) approach combined with the complex fast indepen-
dent component analysis (CFICA algorithm) to segregate
multiuser signals with diverse modulation schemes from
an unspecified number of transmitters. Subsequently, they
utilized a convolutional deep confidence network (CDBN)
to scrutinize the correlation between CF and modulation
type, producing reliable modulation identification outcomes.
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TABLE 6. Modulation recognition algorithm of the MIMO-OFDM system based on deep learning.

TABLE 7. Modulation recognition algorithm of the MIMO-STBC system based on deep learning.

The efficacy of the proposed method was confirmed through
simulation results.

Liu et al. [86] considered that in real communication
scenarios, additive noise usually exhibits non-Gaussian char-
acteristics, and thus AMR methods developed for Gaussian
noise cannot be well applied in practice. To solve this
problem, the authors proposed a modulation identification
classifier based on a single-sample KS test for MIMO sys-
tems with Cauchy-Gaussian two-parameter hybrid ground.
Considering multiple receivers, to facilitate the computation
and reduce the complexity of the algorithm, the authors
combine the signals from different receivers and process them
together as a set of data, then the orthogonal components of
the data are used as the features, and finally, theKS test is used
to compute the suitability of the theoretical distribution values
with the empirical distribution values and finally complete the
modulation classification and recognition. Experiments show
that the method has a modulation recognition accuracy higher
than 90%when the signal-to-noise ratio is greater than 10 dB.

In real communication scenarios, the labeled and unlabeled
samples are large. In this case, it is almost impossible to
realize the previously proposed deep learning-based AMC
algorithms. Wang et al. [44] proposed a TL-based semi-
supervised AMC (TL-AMC) method in zero-forcing-assisted
multiple-input-multiple-output (ZF-MIMO) systems. With
limited samples, TL-AMC outperforms CNN-based AMC,
and TL-AMC achieves recognition accuracy at high SNR as
well, similar to CNN-based AMC trained on a large number
of labeled samples.

The modulation recognition methods applied to massive
MIMO systems are fewer, and further research and
development are needed. Deep learning has a wide range
of application prospects in MIMO system modulation
identification, which can help improve the performance
and reliability of the system. In the future, with the
continuous development of deep learning technology, its
application in MIMO system modulation identification will
be more extensive. In MIMO systems, automatic modulation
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identification is an important means to realize high-speed
data transmission and improve system performance. How-
ever, automatic modulation identification in MIMO systems
requires accurate identification and estimation of channel
state information, which puts higher requirements on
modulation identification algorithms. Currently, feature-
based modulation identification methods, machine learning-
basedmethods, and deep learning-basedmethods are applied,
but there are still some challenges and problems.

V. RESEARCH CHALLENGES AND FUTURE DIRECTIONS
Despite recent advancements in DL-AMR models, numer-
ous problems remain that need to be resolved in further
studies. Generally speaking, the creation of the perfect
robust classifier is still an open topic even with notable
advancements and encouraging outcomes in earlier work.
For example, some algorithms are restricted to a limited
number of modulation schemes, while others require prior
knowledge of the signal (e.g., carrier frequency, baud rate,
timing offset, etc.). Furthermore, some algorithms are not
appropriate for real-time applications due to their high
computational cost. Others are predicated on idealized
notions that hold false in real-world scenarios. Unlike real-
world situations, certain classifiers have high signal-to-noise
ratio (SNR) requirements.Consequently, in order tomaximize
the success of current DL-AMR research, focus must be
placed on the extraction of critical features and the choice of
classification criteria in low signal-to-noise ratio scenarios.
The remaining part of this section will specifically highlight
some unresolved issues and potential research directions.

A. MIXED SIGNAL SEPARATION
Mixed signal separation mainly includes methods based on
independent component analysis (ICA), wavelet transform,
singular value decomposition (SVD), etc. Mixed signal
separation can reduce the noise mixed with signals with a low
signal-to-noise ratio, which provides a basis for subsequent
signal processing and analysis and has a significant impact on
signal modulation recognition and classification. In MIMO
systems, signals are mainly affected by ambient noise and
space-time aliasing of signals from different transmitting
antennas. The receiver receives mixed signals, and the
modulation recognition of mixed signals is more difficult.
Some scholars propose to use the ICA algorithm to separate
the transmitted signals from the received mixed signals,
extract the features of the separated transmitted signals, and
use a neural network classifier to identify the modulation
types of signals. Under the condition of 0 dB, the algorithm
can achieve an average recognition rate of 90.71% for
low-order modulated signals [35]. Therefore, the separation
of mixed signals helps to improve the overall performance,
and mixed-signal separation is the focus of future research.

B. FEATURE FUSION
The majority of deep learning-based modulation recognition
techniques tend to focus on a single signal feature with

superior recognition as the network input or modify the
network architecture to extract more abstract features to
enhance the accuracy of modulation recognition, without
taking into account the interdependence between different
transform domain features and different classifiers. Although
Zhang et al. [87] proposed a modulation recognition method
based on multi-mode feature fusion, which fuses features
of different modes, multi-mode feature fusion can combine
information from different feature perspectives, thus provid-
ing more comprehensive and accurate modulation recogni-
tion results and improving modulation recognition perfor-
mance under different channel interference. However, the
robustness of multi-mode feature fusion recognition methods
is not good, so improving the robustness of existing modula-
tion recognition methods is the focus of future research.

C. ESTABLISHING A STANDARDIZED SIGNAL DATASET
Researchers have produced a number of publicly accessible
datasets, the most well-known of which is the Radio
ML dataset, to assess and compare the effectiveness of
modulation recognition techniques for various SISO systems.
There are limited data sets for MIMO systems, however,
they include RML2016.10a, RML2016.10b, RML2016.04.C,
RML2018.01a, and HisarMod2019.1 [88]. Building reliable
and sufficient signal data sets for MIMO systems is crucial
for future study because of this.

D. COMBINING CHANNEL ESTIMATION WITH
MODULATION RECOGNITION TASKS
After the above research, it was found that deep
learning-based modulation identification methods applied to
MIMO systems usually need to be combined with signal
separation techniques, i.e., using Zero-breaking Equalization
(ZF) or ICA algorithms to recover the desired transmit
signals, and then extracting features of the recovered signals
from different signal forms (e.g., IQ sequences, constellation
diagrams, higher-order moments, higher-order accumulators,
etc.), and then finally using deep neural networks to learn
the features from the different features to complete the
task. different features to learn, thereby accomplishing the
modulation recognition task. However, it is worth noting
that the use of the broken zero equalization (ZF) method
to recover the signal requires knowledge of the channel
matrix, but in the full-blind condition, the channel matrix
information is not known, which requires a more accurate
channel estimation, so it is promising to combine channel
estimation with the modulation recognition task in future
research.

E. BLIND CHANNEL ESTIMATION IS TRANSFORMED INTO
ONLINE ESTIMATION
Considering the computational cost of signal processing
brought by the massive MIMO system and the time of blind
channel recognition, the next research needs to transform
the batch blind channel estimation algorithm into an online
estimation algorithm.
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VI. CONCLUSION
Deep learning is gaining popularity in the field of AMR for
MIMO systems, where research is still in its infancy, but
remarkable results have been achieved. This paper describes
the advanced modulation recognition algorithm of theMIMO
system based on deep learning published in recent years.
The system model and the basic theory of modulation
recognition of the MIMO system and its derivative commu-
nication system are detailed. Then the traditional modulation
recognition algorithm of the MIMO system is described,
and the advantages and disadvantages of the traditional
modulation recognition algorithm are summarized. The
modulation recognition algorithms of the MIMO system
based on deep learning are introduced, and the modulation
recognition algorithms based on the MIMO-OFDM system,
the MIMO-STBC system, and the Massive MIMO system
are discussed. Finally, based on the review of modulation
recognition algorithms, the unsolved problems and potential
research directions of MIMO system modulation recognition
are proposed, hoping to provide some references for future
research.
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