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ABSTRACT One major factor in the rising incidence of traffic accidents is the driver’s drowsiness.
Innovations in computer vision technology have made it possible to construct smart cams that can recognize
driver fatigue. By alerting drivers, this technology successfully lowers the total number of accidents caused
by weariness. This study proposes a DrowsyDetectNet that utilizes a shallow Convolutional Neural Network
(CNN) architecture to identify driver drowsiness. The 68-point face landmark identification approach is
used to identify faces and extract eye areas. The proposed system employs a shallow CNN architecture
with fewer layers and parameters to detect driver drowsiness with limited training data. Feature extraction
focuses on relevant visual cues for drowsiness detection, such as eyelid closure. The transfer learning
models, such as VGG19, ResNet50, MobileNetV2, and InceptionV3, are also used to identify driver
drowsiness. Two datasets, Dataset-1 and Dataset-2, were utilized to assess this study. On two datasets,
the proposed DrowsyDetectNet produced an accuracy of 99.23% and 99.14%, respectively. The proposed
DrowsyDetctNet framework achieved better accuracy when compared with state-of-the-art models and
pre-trained models.

INDEX TERMS Drowsiness detection, DrowsyDetectNet, shallow CNN, limited training data, pre-trained
models.

I. INTRODUCTION
Drowsiness is an unpleasant feeling of being excessively
weary or drowsy during the day, which might make you
forget things or make you nod off unnecessarily. This is a
common event that may cause people to become distracted
and put motorists in danger. Any of two methods can be
used to determine whether someone is sleepy or not. The
first includes non-intrusive approaches, whereas the second
includes intrusive approaches, such as patterns of lateral
acceleration, lateral displacement, steering wheel motion,
and break patterns, without any need for direct physical
contact. These patterns can be changed based on the road
conditions [1]. Intrusive approaches, like electroencephalog-
raphy (EEG) and electrocardiography (ECG), which assesses
the driver’s physiological factors, including pulse rate and
heartbeat, can be used to ascertain whether a driver is drowsy
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or not [2]. Physiological signals can accurately and promptly
indicate a driver’s level of exhaustion, but collecting these
signals necessitates the use of numerous sensors that come
into touch with the driver [3], [4]. Intrusive techniques
provide more precise detection than non-intrusive ones.
However, it might be challenging to apply these strategies in
practical situations [5].

Numerous car accidents, injuries, and fatalities have been
associated with drowsiness. This highlights how important
it is to have systems that monitor driver drowsiness and
issue alerts when it occurs—according to approximations
furnished by the National Highway Traffic Safety Adminis-
tration (NHTSA), driving while fatigued caused $12.5 billion
in economic loss, 71,000 injuries, and 1,550 fatalities. Statis-
tics (NHTSA) [6] show that in 2017, accidents involving
drowsy drivers resulted in 50,000 injuries and 795 fatalities.
Researchers believe that it is crucial to be able to recognize
signs of fatigue based on behavioral indicators, such as
changes to the lips, eyes, or other facial characteristics.
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By analyzing these indicators, researchers want to create tools
for spotting driver weariness and putting safety precautions
in place to avoid accidents [7], systems for identifying
driver inebriation [8], human-computer interaction (HCI) [9],
facial expression recognition (FER) [10], brain-computer
interface (BCI) [11], healthcare [12], etc. can be designed
and developed more easily with the use of eye state detection
systems. Most of the applications make use of eye status data,
both directly and indirectly.

Several computer vision-based methods for sleepiness
detection have been developed over the past few decades to
monitor driver alertness. Eyes closing, nodding, and yawning
are all examples of facial expressions that can indicate
sleepiness. Drivers’ eye closure frequency and duration
increase and their eye open frequency and duration decrease
when they are fatigued [13].
Researchers are making significant advancements in

drowsiness detection technology. New deep-learning tech-
niques addressed pose variations and incorporated mouth and
eye features for improved accuracy [21], [34]. Lightweight
models and hierarchical frameworks were also being devel-
oped for real-time applications and specific environments like
suburban roads [30], [31]. To ensure real-world effectiveness,
research focuses on evaluating robustness against challenges
like occlusions and generalizability across various conditions
and populations [27], [29]. Furthermore, the field is expand-
ing beyond car drivers by developing drowsiness detection
models for crane operators, highlighting its potential for
diverse applications [22]. While our study introduces the
DrowsyDetectNet framework, there’s still a gap in literature
regarding the development of lightweight models for this pur-
pose. Current methods often relied on complex architectures
unsuitable for resource-constrained environments like vehicle
systems. Hence, there’s a crucial need for lightweight models
with reduced computational complexity, that maintain high
accuracy in drowsiness detection. Through exploring novel
approaches, such as our proposed shallow CNN architecture
with fewer layers, and utilized limited dataset, can address
this gap and enhance driver safety systems.

A. MOTIVATION
The following are a few major reasons for creating and using
driver fatigue detection technology:

• Safety:Monitoring in real-time driver fatigue can assist
in averting collisions by informing drivers of their
impairment and enabling them to adopt the appropriate
safety measures.

• Reducing Accidents: Accidents can be significantly
decreased by identifying tiredness early.

• Improved Productivity: Systems that detect drowsi-
ness may preserve users’ concentration, lower accidents,
and boost overall productivity.

• Cost Savings: Drowsiness detection devices can save
money for both individuals and businesses by reducing
accidents.

• Technological Advancements: The need for drowsi-
ness detection systems in vehicles has surged as a result
of recent developments in sensor technology, machine
learning, and artificial intelligence, which have made
it feasible to build accurate and fairly cost-effective
systems.

B. CONTRIBUTIONS
• Designed a shallow CNN architecture with fewer layers
to determine driver fatigue depending on eye state.

• Identified the face in a driver image utilizing the 68-point
face landmark detector.

• Utilized the 68-point face landmark detector to identify
eye area after the face has been detected.

• The effects of hyperparameters such as batch size,
number of epochs, optimizers, and learning rate were
tuned on the proposed shallow CNN model.

• The performance of the suggested work was evaluated
using a variety of metrics, including the Receiver Oper-
ator Characteristic (ROC) curve, Precision-Recall (PR)
curve, accuracy, precision, F1-Score, recall, confusion
matrix, and so on.

One of the main contributions of this paper is the novelty of
the shallowCNN architecture for driver drowsiness detection.
Unlike models like VGG19, InceptionV3, MobileNetV2, and
ResNet50, the shallow CNN is lightweight, computationally
efficient, and optimized for limited training data, focusing on
visual cues like eyelid closure. Its efficiency makes the ideal
for real-time applications on embedded systems.

The following is the manuscript’s structure: The second
section discusses the sleepiness detection literature; the
third section discusses the components and methods used
in the suggested system; and the fourth section presents
the results of the experiments along with a breakdown of
each CNN design. The fifth section concludes with the
recommendations and findings for further study.

II. RELATED WORK
During this study, Phan, et al. [14] for drowsiness detection
involved testing and training phases. In the training stage,
footage captured by a vehicle’s security system is prepro-
cessed to detect faces and head regions using a specific
network. These extracted images are then used to train deep
neural networks, like Inception-V3, DenseNet, LSTM, and
VGG-16, with improvements made to their layers for drowsi-
ness detection. In the testing phase, the trained models are
evaluated on a separate dataset to identify sleepy conditions
with a 98% accuracy rate. Faisal et al. [15] proposed a real-
time CNN-based system for detecting driver drowsiness. The
system starts by capturing frames of the face of the driver
using a camera and, after that, detects the location of the
eyes. The technology detects whether the driver is tired or not
and notifies them depending on predetermined parameters.
The CNN model is identified through image extraction,
preprocessing, and the optimization of hyperparameters such
as order of kernel, learning speed, maximum pool size,
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and epochs. The CNN’s trained model is assessed on the
dataset utilizing a training efficiency of 99.87% and a
testing accuracy of 97.98%. Ganguly et al. [16] proposed
detection systems that make use of a traditional CNN and
a faster region-based CNN. These are the two deep learning
frameworks. The system first detects eye regions using the
Faster region-based CNN, which consists of convolutional
neural networks and max-pooling layers. Then, the Fast
RCNN detector utilizes proposed areas to generate object
proposals and estimate the probability of object detection.
Finally, the eye states are detected and classified using layers
of pooling and convolution in the classical CNN.

Magan et al. [17] proposed using image sequences that
use the driver’s facial features to build a system that
gauges their level of fatigue. The device, which is a
component of a driver-basedADAS system, aims tominimize
false positives while maximizing early fatigue detection.
The system uses 10 frames per second (FPS) to capture
600 frames over a 60-second period, which are then processed
and analyzed to assess the level of drowsiness and activate
appropriate alarms if necessary. Florez et al. [18] proposed
six steps in the process of identifying driver drowsiness:
data acquisition, pre-processing of video frames using facial
landmark detection, constructing a dataset, testing trained
models, training CNN architectures, and forecasting driver
fatigue. The pre-processing step includes a methodology for
selecting a region of interest (ROI) surrounding the eyes by
calculating distances between facial points, ensuring the ROI
captures relevant information even during head movements.
The trained models are evaluated, and the best-performing
model is used for driver drowsiness prediction. Jahan et al.
[19] proposed using a customized CNN model named 4D
to identify sleepiness depending on the eye condition. The
model consists of various layers: convolution, activation,
batch normalization, dropout, max-pooling, fully connected,
and output. Additionally, this paper mentions the use of
transfer learning CNN models, specifically VGG19 and
VGG16, for image classification tasks. TheMRLEye dataset,
comprising 47,173 images of both open and closed eyes,
was utilized in this instance to train the model, resulting
in an accuracy of 97.53%. Akrout and Fakhfakh [20]
suggested a system that tracks eye area, estimates facial
landmarks, and calculates head posture using the Media
Pipe Face Mesh. Subsequently, they utilize an innovative
method for iris identification and normalization, succeeded
by MobileNetV3 architecture-based feature extraction. The
resulting features, including distances between various facial
points and head angles, are fed into a deep LSTM network to
detect driver fatigue. Additionally, it discusses the analysis of
the iris and its surroundings, including the segmentation and
normalization of the iris for feature extraction.

Kumar et al. [21] proposed an approach that utilizes a
hybrid deep learning approach, combining InceptionV3 and
LSTM, to analyze the mouth and eye regions for spatial
feature extraction. The modified InceptionV3 incorporates a

global average-pooling layer and dropout layer to enhance
adaptability and prevent over-fitting, respectively. The out-
come of the InceptionV3 modification is then fed into LSTM
for determining if the driver is drowsy or not, with an
accuracy of 93.69%. Liu et al. [22] proposed a workflow
and hybrid deep neural network design for fatigue detection
in crane operators. The workflow involves capturing videos,
detecting operators’faces, extracting facial landmarks, and
extracting fatigue features for training fatigue classifiers.
The three primary modules of the architecture—he Face
Detector, the Extractor of Spatial Features using MobileNet,
and the Time-Based Characteristic Modeling using LSTM—
are coupled by learning networks to determine the degree
of fatigue and, if necessary, initiate alerts. Mu et al. [23]
proposed a technique used to eliminate interference factors
such as noise and uneven lighting in collected images.
Common image noises include Gaussian noise and impulse
noise, and techniques for filtering like Gaussian, median,
and mean filters are employed to reduce their influence.
Additionally, human eye state recognition methods, such as
theHough transform,which is useful for determining the state
of the human eye based on detecting the presence or absence
of a circle, indicating an open or closed eye respectively.

Phan et al. [24], two techniques for drowsy alert systems,
were proposed. The first approach does away with the
requirement for pre-determination by using facial landmarks,
blink, and yawn features (EAR, LIP) are computed to
determine customizable thresholds for every driver. The
second approach builds adaptable deep neural networks with
changes in certain layers to improve drowsiness detection
by utilizing cutting-edge deep learning techniques, such as
SSD-ResNet-10, derived from MobileNet-V2 and ResNet-
50V2. Transfer learning is applied to achieve faster learning,
improve classification accuracy, and eliminate the require-
ment for large training datasets. Zhu et al. [25] suggested
a methodology for driver fatigue recognition utilizing the
algorithms of the tasks-constrained deep convolutional net-
work (TCDCN). Drivers using sunglasses or glasses-wearing
facial feature images are used to train the algorithm offline,
and it performs multiple tasks simultaneously, such as
gender identification, face position detection, and glasses
recognition. The TCDCN algorithm shows potential in
handling challenges like occlusion and position change, and
it utilizes parameter sharing across multiple subnetworks
to make use of all available information for accurate
face detection. Abbas et al. [26] recommended the deep
learning architecture ReSVM to detect driver attention.
A support vector machine (SVM) is fed deep features
for categorization using ReSVM, an enhanced ResNet-50
version. The deep features are taken through the ResNet-50
pooling layer. The ReSVM model takes images of different
sizes and lighting conditions as input, stacks the features
obtained from the final ResNet-50 convolution layer, and
determines the feature map’s mean before classifying the data
using SVM.
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Jia et al. [27] developed a system based on a deep learning
approach for detecting driving weariness. The improved
Convolutional Neural Network(MTCNN) for multitasking is
utilized by finding the driver’s face to detect facial cues of
significance. The algorithm also incorporates techniques such
as adding a Spatial Pyramid Polling (SPP) layer to the net-
work structure and the Batch Normalization(BN) algorithm
is applied to improve network accuracy and performance.
Mohamed et al. [28] explained the role of deep learning
algorithms and the data sources and data augmentation tech-
niques used in the study. It also briefly describes the technical
summary of the deep learning algorithms considered and the
assessment metrics that are employed for measuring their
performance. The configuration of the study, including the
datasets used and their properties, as well as the training and
testing process, is also discussed. Dua et al. [29] proposed a
driver fatigue identification system consisting of four models:
FlowImageNet, AlexNet, VGGFaceNet, and ResNet. To feed
these models, frames are taken out of the input video stream.
Each model is trained to learn specific features related to
drowsiness, such as behavioral, environmental, facial, and
hand gesture features. The outcomes of these models are then
combined using an ensemble strategy to categorize the video
as either sleepy or awake.

Jamshidi et al. [30] proposed an approach for drowsiness
identification in drivers that utilizes a driver-based approach,
obtaining visual information from the vehicle’s camera. The
framework consists of four main phases: facial recognition,
detecting the condition of the eyes and mouth, situation
recognition, and tiredness identification. The technique uses
a hierarchical framework to identify pertinent data, like the
presence of glasses and illumination. It utilizes a network
for situation detection to increase the accuracy of mouth and
eye state detection. Saurav et al. [31] proposed an approach
for eye state recognition that entails multiple steps, like eye
patch extraction, pre-training 2 CNN models (CNN Model1
and CNNModel2) on a facial emotion dataset, individual and
ensemble fine-tuning of the transfer learning models to eye
state datasets, and intended eye state datasets. The DCNNE
model integrates the learned features from both CNN models
to create a stronger eye state classifier. Bajaj et al. [32]
proposed various approaches to develop an effective model
for identifying driver drowsiness. In this study, they mention
the publication trends in driver drowsiness detection systems,
with a focus on the interest in developing countries like
India. Additionally, it provides information on the hardware
components used, including the Raspberry Pi 3 model B+

and other sensors, for implementing the hybrid model.
Flores-Monroy et al. [33] suggested a real-time technique

for identifying driver fatigue consists of several stages,
including face identification employing the Viola & Jones
formula, face analysis employing a shallow CNN (SS-CNN)
that has been specially created, and consecutive results
analysis. The SS-CNN is designed to categorize the face
region into open and closed eyes. The selected configuration
of the SS-CNN has roughly 600K trainable parameters,

FIGURE 1. Proposed DrowsyDetectNet framework.

enabling real-time operation utilizing a compact GPU system.
Chirra et al. [34] suggested a deep CNN-based technique for
identifying drowsiness that extracts eye regions and detects
faces using the Viola-Jones face detection method. After
feeding these eye areas into a CNN with four convolutional
layers for feature extraction, the images are classified as
drowsy or not using a Softmax layer. Using test data samples
with an accuracy of 96.42%, the suggested approach proved
to be successful in identifying driver fatigue depending on eye
state.

III. METHODOLOGY
A. PROPOSED DrowsyDetectNet FRAMEWORK
This work aims to develop a DrowsyDetectNet framework
to find out whether a driver is drowsy or not. FIGURE 1
renders the suggested system architecture. To determine
the driver’s face location for an input image or video, the
68-point facial landmark detection algorithm is employed.
Subsequently, the eye region is removed from the face.
To identify an ‘‘open eye’’ or ‘‘closed eye, ’’ that
extracted eye image is loaded into a suggested shallow
CNN model.
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FIGURE 2. Extraction of region of interest (ROI).

B. RECOGNITION OF FACES AND EYE REGION
EXTRACTION
The Region of Interest(ROI) extraction process involves
isolating and analyzing specific areas within an image
that contains relevant information about the eyes, which
is depicted in FIGURE 2. To identify the drowsiness of
a driver, no need to use the full face, but merely the eye
region. The 68 (x, y) positions corresponding to the face’s
facial structures are estimated using the Dlib library’s facial
landmark detector. In FIGURE 2, the following represents the
68 coordinates: The jaw ranges from 1 to 17, the right and
left eyebrows range from 18 to 22, and 23 to 27, the nose
ranges from 28 to 36, the right and left eyes range from 37 to
42 and 43 to 48, the mouth ranges from 49 to 60, and the lips
from 61 to 68.

The process involved detecting and cropping eyes from an
image using the Dlib library for face detection and landmark
prediction, along with OpenCV for image manipulation.

First, the shape predictor extracts the 68 facial landmarks
for the current face. Specific indexes within these 68 points
correspond to the left and right eye regions. The x and y
coordinates of each eye corner are extracted based on the
indexes 43 to 48 of the left eye and 37 to 42 of the right
eye. Using these coordinates, the left and right eye regions
are cropped from the image. These cropped eye regions are
then provided to the model to identify drowsiness.

The Figure 3 [39] can be downloaded at The-face-shape-
with-68-landmarks.

FIGURE 3. The-face-shape-with-68-landmarks.

This study uses direct eye images, allowing the model
to extract features like eyelid closure directly to detect
drowsiness.

The process detailed in Algorithm 1, from detecting facial
landmarks to identifying the eye regions, is primarily by the
68-point face landmarks detector algorithm. Users supply
a picture of a human face, which the pre-trained detector
uses to identify 68 distinct landmarks that define the main
features of the face, such as the mouth, nose, eyes, and
contours of the face. The algorithm determines the indices
corresponding to the eyes of the left (indices 37 to 42)
and right (indices 43 to 48), calculating the bounding box
coordinates to define the eye regions. While the identification
steps are, cropping of the eye regions from the image is
performed manually using the calculated coordinates. These
manually cropped eye regions are subsequently fed into a
shallow CNN model, which processes the eye regions to
detect signs of drowsiness, particularly focusing on eyelid
closure. This approach combines detection for accuracy with
manual intervention for precise preparation of input data for
the drowsiness detection model.

C. DESIGN OF PROPOSED SHALLOW CNN MODEL
The convolution process begins in the upper left corner of
the supplied image, scanning horizontally until it covers the
entire row, then moves downwards to repeat the process. The
output values of this operation would create the feature map,
which is specified by equation(1):

X (m, n) = (I × K )[m, n]

=

∑
a

∑
b

I [a, b] × K [i− a, j− b] (1)

where K stands for the kernel, I for the input image, X for the
feature map, m for the index rows of the convolved matrix,
and n for the index columns.

The input image’s size I(m × n) determines the size of the
feature-mapX, the filter K(u× v), and several strides gwithin
the image provided by equation(2).

Y (i, j) = Y
(
m− u
g

+ 1,
n− v
g

+ 1
)

(2)

The CNN architecture utilized in the suggested system
to determine the factors that contribute to drowsiness is
schematically represented in FIGURE 4. The proposed
shallow CNN comprises four convolutional blocks, four
max-pooling layers, two dropout layers, and two FC layers.

To create thirty-two 128 × 128 feature maps, thirty-two
3 × 3 filters are convolved with an input image of 128 ×

128 pixels. Following 2 × 2 max-pooling processes, reduces
the spatial dimensions by taking the maximum value in each
window, retaining important spatial features and reducing
computational complexity. These feature maps are reduced
to thirty-two 64 × 64 feature maps. Next, downsized feature
maps are passed to the dropout layer with 0.2. Sixty-four 64×

64 feature maps are produced in the 2nd convolution layer by
utilizing 64 filters. The generated feature maps are reduced
to sixty-four 32× 32 feature maps by the second 2 × 2 max-
pooling layer. The downsized feature maps are then fed to
the dropout layer with 0.2. Next, the outcome of the dropout

110480 VOLUME 12, 2024



M. Venkateswarlu, V. R. R. Ch: DrowsyDetectNet: Driver Drowsiness Detection

Algorithm 1 Extracting the Region of Interest (ROI)
input:
• Image, I contain a human face.
• 68-point face landmarks vector L.
Output:
• ROI_Left_Eye, ROI_Right_Eye
Facial Landmark Detection:

• Use a robust facial landmark detector to obtain the 68-point landmark vector L from an image I:
– Determine which face region(s) is/are in the image.
– For each detected face, use a landmark detector to predict the 68 landmark locations within that face region.

Eye Region Extraction:
• Extract the eye regions R_left and R_right from the face image and landmarks:
– Define key landmark indices:

∗ Left eye landmarks: left_eye_indices = [37, 38, 39, 40, 41, 42]
∗ Right eye landmarks: right_eye_indices = [43, 44, 45, 46, 47, 48]

For the left eye:
min_x_left = min(landmark_x[37:42])
max_x_left = max(landmark_x[37:42])
min_y_left = min(landmark_y[37:42])
max_y_left = max(landmark_y[37:42])
For the right eye:
min_x_right = min(landmark_x[43:48])
max_x_right = max(landmark_x[43:48])
min_y_right = min(landmark_y[43:48])
max_y_right = max(landmark_y[43:48])
For the left eye region:

• R_left = image[min_y_left:max_y_left, min_x_left:max_x_left]
For the right eye region:

• R_right = image[min_y_right:max_y_right, min_x_right:max_x_rightt]

FIGURE 4. Proposed shallow CNN model.

layer is supplied to the third convolution layer of one-twenty-
eight 3 × 3 filters, yielding one-twenty-eight 32× 32 feature
maps. The third 2 × 2 max-pooling operations downsize the
produced feature maps to one-twenty-eight 16 × 16 feature
maps. The last convolution layer of one twenty-eight 1 ×

1 filters (with unitary strides), yielding one-twenty-eight 16×

16 featuremaps, which is then downsized to one-twenty-eight
8 × 8 feature maps using the last max-pooling operation of
size 2 × 2.

The ReLU activation function applies across convolution
blocks to execute the nonlinear process. When the input value
is negative, it outputs a null value, which is represented by the
equation(3):

H (z) =

{
0 z < 0
z z >= 0

(3)

Here ‘z’ is the function’s input. The last two levels of the
shallow CNN consist of fully-connected layers. Sigmoid and
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Softmax are two of the most commonly used activation
functions, the final fully-connected layer. The outcome
of fully-connected layer, denoted as y, is computed as
equation(4):

y = f (W × x + b) (4)

where:
• The weighted total of the inputs is denoted by W × x,
where the weight assigned to each input is multiplied.

• b signifies bias.
• f signifies an activation function
The sigmoid activation function, which is referred to as

the logistic function, is widely used in convolution neural
networks. When solving binary classification issues, where
the goal is to reach a binary conclusion, it is typically utilized.
Here’s the mathematical representation of the sigmoid
function in equation(5):

σ (y) =
1

1 + e−y
(5)

where y denotes the Sigmoid function’s input, which can be
any real number and the natural logarithm’s base is e. As seen
in FIGURE 4, the suggested system’s 12th layer presents the
aforementioned procedure. The tenth layer’s feature maps are
flattened and then run through two fully connected layers
with 128 nodes. Lastly, the output layer’s Sigmoid activation
function regulates whether the eyelids are closed or open.

D. TRANSFER LEARNING MODELS FOR DROWSINESS
DETECTION
1) VGG NETWORK
Especially in image classification, there are various uses
for the popular neural network architecture known as VGG
(Visual Geometry Group). VGG-19 is a variant of the
VGG network, which in short consists of 19 layers. The
construction of VGG-19 is shown in FIGURE 5. The five
blocks that make up VGG-19 have 16 convolution layers.
Following each convolutional block is a Max-pool layer that
minimizes the input image’s size by two while increasing
several filters in the convolution layer by two. Three dense
layers, each measuring 4096, 4096, and 1000 pixels, make
up Block 6. Using VGG, the input photos are divided into
1000 unique groups. The dimension of fully-Connection
layer 8 is set to two in this study; since there are two output
classes.

2) MobileNetV2 MODEL
A new CNN layer called the inverted residual and linear
bottleneck layer is included in MobileNetV2, allowing
for excellent performance in embedded and mobile vision
applications. This new layer serves as the foundation for the
MobileNetV2 network, which may be customized to carry
out semantic segmentation, item classification, and detection.
19 leftover bottleneck layers are positioned after the first
fully-convolution layer, which has 32 filters in the overall

FIGURE 5. [35] VGG-19 architecture.

design of MobileNetV2. The basis of MobileNetV2 is an
inverted residual structure made up of three layers in order:
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• A 1 × 1 convolution to expand some channels.
• A depth-wise separable convolution.
• A 1 × 1 convolution to return several channels to its
initial value.

MobileNetV2 also uses a technique called linear bottle-
neck convolutions. This involves using a 1 × 1 convolution
without any nonlinearity at the end of the bottleneck layer.
This lowers the total parameters and computations required
while maintaining the network’s accuracy. The construction
of MobileNet-V2 is depicted in the FIGURE 6.

3) ResNet50 MODEL
The ResNet-50 architecture is displayed in FIGURE 7. It has
one max-pool layer, one average pool layer, and forty-eight
convolutional layers. An artificial neural network (ANN)
that builds networks by stacking leftover blocks is called
a residual neural network. The 50-layer Reset’s building
block has a bottleneck-like architecture. A bottleneck residual
block reduces matrix multiplications and parameter counts by
employing 1 × 1 convolutions, often known as a bottleneck.
This trains each layer considerably fast.

Skip connections in a residual neural network, which run
parallel to the convolutional layers, aid in the network’s
comprehension of global features. After a few weight levels,
the shortcut connection is connected to the output to add
the input x (FIGURE 8). The network can optimize many
layers for faster training through these shortcut connections
by eliminating training on unneeded levels. In terms of
mathematics, the output H(x) is defined as equation(6):

H (X ) = F(X ) + X (6)

Weight layers are designed to acquire a specific type of
residual mapping, denoted by equation(7):

F(X ) = H (X ) − X (7)

and the non-linear weight layers stacked are represented by
F(x).

4) InceptionV3 MODEL
The InceptionV3 architecture depicted in FIGURE 9 is based
on a series of Inception modules. This enables the network to
learn characteristics at various spatial resolutions and scales.

The InceptionV3 architecture consists of the following
blocks:

• Stem block: This block uses several convolution and
pooling layers to shrink the input image to 32×32 pixels.

• Inception blocks: The InceptionV3 architecture contains
nine Inception blocks, which are arranged in a sequential
order. Each Inception block consists of four parallel
convolution layers with different kernel sizes: 1 × 1,
3 × 3, 5 × 5, and a pooling layer.

• Reduction blocks: The InceptionV3 architecture con-
tains two Reduction blocks, which are employed to
lower the feature maps’ spatial resolution.

• Auxiliary classifier: The InceptionV3 architecture con-
tains an auxiliary classifier, which is trained to predict
image labels from feature maps of an intermediate layer.

• Global average pooling: The InceptionV3 architecture
combines feature maps into a single vector representa-
tion using global average pooling. GAP is often used
to create a fixed-size output for fully connected layers
or classifiers, making it suitable for tasks requiring a
fixed-length output.

• Fully-connected layer: A fully-connected layer, the last
layer in the InceptionV3 architecture, categorizes the
image.

E. DATASETS
In this study, we utilize two datasets for evaluating the
proposed methodology. The first dataset, Dataset-1, was
created by the authors Chirra et al. [34]. This dataset consists
of 324 images categorized into open and closed eyes. These
images were specifically collected to detect drowsiness based
on eye state. The dataset is used to assess the performance of
our proposed approach, as illustrated in Figure 10.

On the other hand, Dataset-2 was obtained from Kaggle
and is named ‘‘yawn_eye_dataset_new’’ [40]. This dataset
comprises 1452 images categorized into open and closed
eyes. Dataset-2 was compiled to address drowsiness detection
based on eye state, as illustrated in Figure 11. These datasets
provide a diverse set of eye images, enabling thorough
evaluation and validation of our proposed methodology.

The current datasets, consisting of well-lit RGB images,
only partially represent nighttime driving scenarios. This
model’s primary feasibility is its potential integration into
driver monitoring systems for commercial and personal
vehicle drivers, providing timely alerts to prevent accidents.

The datasets were split into training, validation, and testing
sets as shown in Table 1.

TABLE 1. Datasets splitting.

IV. EXPERIMENTAL RESULT AND ANALYSIS
In this work, two datasets were taken to perform experiments.
One dataset contains only eye images, another dataset
contains face images. From those face images, first identified
the face and then detected the eye area, cropped both
eyes separately using a 68-point face landmarks detector
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FIGURE 6. [36] MobileNetV2 architecture.

FIGURE 7. [37] ResNet 50 architecture.

FIGURE 8. [37] Skip connection.

algorithm. There are training and testing categories within
this dataset. 40% of the images were taken for testing, while
the remaining 60% were part of the training samples. The
dataset was available in two categories: closed and open eyes.
In FIGURE 10, the sample images are displayed.

A. PROPOSED SHALLOW CNN HYPERPARAMETER
SELECTION
ACNN’s settingsmust be adjusted for optimumperformance.
Some important parameters are batch size, which influences
generalization and training speed; convergence behavior is

influenced by optimizers like Adam, SGD, Adagrad, etc.;
multiple epochs, which shows that the neural network is
trained by running the complete dataset multiple times; and
learning rate, which determines the optimization step size.
The suggested shallow CNN model needs to be adjusted,
which requires experimenting with these settings.

1) EFFECTS OF LEARNING RATE
One significant element influencing the CNN model’s effi-
ciency is the learning rate. While the loss function gradually
decreases with a lower learning rate, a greater learning rate
expedites the learning process and raises it. To minimize
the cost function in the sleepiness detection classification
problem, the ideal learning rate must be chosen. Training of
the proposed model with varying learning rates of 0.1, 0.01,
0.001, and 0.0001 was conducted. FIGURE 11 displays the
accuracy rate for different learning rates. Depending on the
findings, setting the learning rate to 0.001 produced results
with higher classification accuracy. The model’s reduced
learning rate prevents over-fitting by progressively lower
errors.

2) EFFECTS OF EPOCHS
It was determined how many epochs yielded the best results
in classification accuracy. Trainingwas done on the suggested
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FIGURE 9. [38] Inception-V3 architecture.

FIGURE 10. Dataset-1 and Dataset-2 sample images.

FIGURE 11. Variations in accuracy based on learning rates.

shallow CNN model over 10, 25, 50, and 100 epochs.
FIGURE 12 illustrates that both datasets’ categorization
accuracy was high at 100 epochs. Accuracy performance is

enhanced by a larger number of epochs. As a result, 100 was
chosen as the ideal for several epochs.

FIGURE 12. Variations in accuracy based on epochs.

3) EFFECTS OF BATCH SIZE
One significant factor that affects the model’s accuracy of
classification is the batch size. Because of the longer running
time and constant weights caused by the larger batch size,
the model performs less well overall and uses more memory.
As a result, to raise the model quality, the correct batch size
is chosen. Evaluations of the suggested model are conducted
using batch sizes of 4, 8, 16, and 32. FIGURE 13 compares
the model performance for two datasets with varying batch
sizes. At 0.0001, the learning rate was implemented for
100 training epochs in the model. According to the results of
the experiment, a batch size of 32 is used to train the model
to improve final accuracy.

4) EFFECTS OF OPTIMIZER
In deep learning, the optimizer’s job is to lower the
cost function by updating the bias and weight parameters.
By altering the bias and weight values of the model,
an optimizer for the problem is selected, leading to faster
and better outcomes. The proposed model was assessed using
the optimizers RMSprop, Adam, Adagrad, Adadelta, and
SGD (Stochastic Gradient Descent). FIGURE 14 displays the
model’s performance using different optimizer techniques on
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FIGURE 13. Variations in accuracy based on batch size.

FIGURE 14. Variations in accuracy based on optimizers.

TABLE 2. Evaluation table for test data.

two datasets. When compared to other optimizer techniques,
the shallow CNNmodel’s accuracy increased when using the
Adam optimizer.

B. PROPOSED SHALLOW CNN MODEL’S OVERALL
PERFORMANCE
A key assessment in the methodology is classification
accuracy, which is provided by equation(8):

Accuracy =
TN + TP

TN + FN + TP+ FP
× 100 (8)

where FN means False Negative, FP means False Positive,
TN is for True Negative, and TP is for True Positive.

According to the suggested model, closed eyes were
classified as negative and open eyes as positive.

The precision was used to calculate the classification’s
correctness by using the equation(9):

Precision =
TP

FP+ TP
× 100 (9)

The effectiveness of classification was calculated using the
recall, which is provided by equation(10):

Recall =
TP

FN + TP
× 100 (10)

FIGURE 15. Dataset-1 training and validation graphs.

FIGURE 16. Dataset-2 training and validation graphs.

Finally, the F1-score was computed by applying the
equation(11):

F1_Score =
2 × Recall × Precision
Recall + Precision

× 100 (11)
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TABLE 3. Accuracy (%) comparison: proposed shallow CNN vs. deep learning algorithms on both datasets.

FIGURE 17. Accuracy comparison of various deep learning models and
Proposed shallow CNN Model of both Datasets.

FIGURE 18. Confusion matrices of two Datasets for proposed model.

In binary classification, the output layer usually uses the
Sigmoid activation operation, while the cost function is
binary cross-entropy. Equation (12) provides the formula for
the binary cross-entropy cost function.

L(a, â) = −[a× log(â) + (1 − a) × log(1 − â)] (12)

In this study, an evaluation of the proposed shallow
CNN model on Dataset-1 and Dataset-2 is presented.
FIGURE 15(a) and FIGURE 15(b) displayed loss and
accuracy graphs of the proposed model for Dataset-1, while
FIGURE 16(a) and FIGURE 16(b) provided the same
visualization specifically for Dataset-2.

Table 2 presents performance metrics for a binary
classification task involving eye state detection, catego-
rized into ‘‘Closed’’ and ‘‘Open’’ states, in two distinct
datasets(Dataset-1 and Dataset-2). The measures, which are

FIGURE 19. Confusion matrices for Dataset-1.

expressed as percentages, include recall, precision, F1-score,
and total accuracy.

The classifier obtained high recall (1.0), F1-score (0.99),
and precision (0.99) for the ‘‘Closed’’ condition, yielding
an accuracy of 99.23%. Similarly, the classifier showed
perfect precision (1.0), good recall (0.98), and an F1-score
of 0.99 for the ‘‘Open’’ condition, resulting in an accuracy
of 99.23%. For both the ‘‘Closed’’ and ‘‘Open’’ states, the
classifier maintained high recall(0.99) and precision(0.99),
yielding F1-scores of 0.99 for both classes. On Dataset-2, the
combined accuracy for both classes was 99.14%.

These findings imply that the suggested shallow CNN
model performed exceptionally well on both datasets,
achieving high precision, recall, and F1 scores, which
ultimately translated into impressive accuracy rates. The
robustness of the classifier across different datasets indicates
its effectiveness in accurately detecting eye states, making it
drowsiness detection.

Table 3 provides a comparative analysis of different CNN
models trained on datasets to identify the drowsiness of the
driver, showcasing their performance in terms of accuracy
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TABLE 4. Comparing different approaches for detecting drowsiness.

FIGURE 20. Confusion matrices for Dataset-2.

on two separate datasets(Dataset-1 and Dataset-2) across
various hyperparameters like epochs, batch size, optimizer,
and learning rate.

The CNN architectures utilized in this study, include
Inception-V3, MobileNet-V2, ResNet-50, VGG19, and a
proposed shallowCNNmodel. TheAdam optimizer was used
for all models.Inception-V3 model attained an accuracy of
96.15% on Dataset-1 and 93.12% on Dataset-2.MobileNet-
V2 demonstrated improved performance with an accuracy
of 97.69% on Dataset-1 but a lower accuracy of 91.06% on
Dataset-2. ResNet-50 model displayed high accuracy on both
datasets, with 98.46% on Dataset-1 and 98.1% on Dataset-2.

VGG19 model yielded similar accuracy to ResNet-50,
achieving 98.46% on Dataset-1 and slightly higher accuracy
of 98.62% on Dataset-2. The Proposed Shallow CNN
model outperformed all other models, achieving the highest
accuracies of 99.23% on Dataset-1 and 99.14% on Dataset-2.

In summary, the proposed shallow CNN model demon-
strated superior performance compared to pre-trained
CNN architectures such as Inception-V3, MobileNet-V2,
ResNet-50, and VGG19, on both datasets. These outcomes
highlight the usefulness of the suggested model architecture
when it comes to driver sleepiness detection datasets that are
assessed based on eye state.

The accuracy attained by five distinct CNN architectures
on two distinct datasets is displayed in FIGURE 17.
The models were trained using the Adam optimizer for
100 epochs with a learning rate of 0.001 and a batch size
of 32.

The x-axis of the graph lists the five CNN architectures:
MobileNet-V2, VGG-19, ResNet-50, Inception-V3, and the
proposed shallow CNN. The y-axis represents the accuracy
achieved by each model, expressed as a percentage.

According to FIGURE 17, the proposed shallow CNN
model outperformed all other models on both datasets,
obtaining an accuracy of 99.23% on Dataset-1 and 99.14%
on Dataset-2. VGG-19 and ResNet-50 achieved similar accu-
racy, with 98.46% and 98.10% on Dataset-1, respectively.
Inception-V3 and MobileNet-V2 had lower accuracy on
Dataset-2, at 93.12% and 91.06%, respectively.

Overall, the suggested shallow CNN model is a more
effective architecture for determining drowsiness detection.

The confusion matrices of proposed shallow CNN
are depicted in FIGURE 18(a) and FIGURE 18(b).
The pre-trained models confusion matrices are shown in
FIGURE 19 and FIGURE 20.

For both Dataset-1 and Dataset-2, the ROC curves are
displayed for the proposed shallow CNN in FIGURE 21.
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FIGURE 21. Receiver operating characteristic(ROC) curves.

At the same time, the PR Curves for both datasets can be
found in FIGURE 22 respectively.

A thorough comparison of the face techniques applied
in the region of interest (ROI) for drowsiness recognition
in other relevant publications is shown in Table 4. The
suggested approach achieved an accuracy better than 99%
in these studies, while the other approaches’ accuracy varied
from 87.19% to 98.4%. Some methods [20], [21], [27]
and [30] focused on both the eyes and the mouth, while
one approach [26] focused on the entire face to identify
drowsiness. The methods employed by [15], [16], [19], [31]
and [34] concentrated on the eyes.
While models like Inception V3 and MobileNet V2 are

well-established and widely used, the novelty of this study
lies in the proposed shallow CNN model, which used Dlib’s
68-point facial landmarks to find eye regions and to determine
whether the eyes are open or close. The shallow CNN
model employed fewer layers than the pre-trained models.
However, the shallow CNNmodel got high accuracy and was
computationally efficient.

FIGURE 22. Precision-recall curves(PRC).

C. DISCUSSION
This study compared the drowsiness detection results of
the pre-trained models VGG-19, ResNet50, MobileNetV2,
and InceptionV3 with those of a shallow CNN architecture.
With fewer layers, the shallow CNN focuses on extracting
key visual information like eyelid closure. It offers speed,
simplicity, and a lower risk of overfitting, making it effective
with limited training data. This ensures excellent accuracy
and quick processing of recognized drowsiness-related
characteristics from facial landmarks.

However, the generalizability of our results is limited due
to the small size and lack of diversity in the datasets used. The
study’s accuracy, while commendable, raises concerns about
robustness in real-world scenarios. Future research needs to
address significant limitations by incorporating larger and
more diverse datasets that account for variations in lighting
conditions, ethnicities, and head poses. This will help validate
the model’s performance across different environments and
populations. The discussion will highlight these constraints
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and potential biases to provide a clearer understanding of the
study’s limitations.

The inference time of our shallow CNN model with
several pre-trained models. For Dataset-1, inference times
were: shallow CNN (1430.141 ms), VGG19 (1851.106ms),
ResNet50 (2494.112 ms), MobileNetV2 (2897.924 ms), and
InceptionV3 (3233.497 ms). For Dataset-2, times were:
shallowCNN (164.497ms), VGG19 (390.445ms), ResNet50
(3794.743 ms), MobileNetV2 (1547.561 ms), and Incep-
tionV3 (7229.007 ms). These results show that the proposed
shallow CNN model has significantly lower inference times,
making it more suitable for real-time driver drowsiness
detection compared to more complex pre-trained models.

V. CONCLUSION
This research explored the effectiveness of utilizing a shallow
Convolutional Neural Network (CNN) for driver drowsiness
identification with limited training data by focusing on
key visual cues like eye closure. To address the challenge
of drowsiness classification, pre-trained models such as
MobileNetV2, ResNet-50, InceptionV3, and VGG-19 were
leveraged, and their results were compared with the proposed
model. The impact of hyperparameters was also examined.
The findings show that, with its suitable architecture,
the suggested shallow CNN model surpasses pre-trained
models in classifying eye states, achieving classification
accuracies of 99.23% and 99.14% on Dataset-1 and Dataset-
2, respectively. This research underscores the advantages
of employing a shallow CNN: reduced data dependency,
lightweight architecture, and efficient computation. However,
limitations remain, such as the need for a more diverse dataset
and the potential for overfitting due to the small size of
the data. Future work will involve training the model with
infrared or near-infrared images for better performance in
low-light conditions and exploring diverse datasets, including
nighttime and adverse weather scenarios. This will enhance
the model’s real-world applicability, ensuring it can benefit
a wide range of drivers by improving road safety and
reducing accidents caused by driver fatigue. Also, it explores
integrating additional modalities like physiological sensors
or EEG data and incorporating yawning or head pose to
enrich the feature space and improve detection accuracy.
Personalized drowsiness models that adapt to individual
driver characteristics could also enhance safety interventions.
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