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ABSTRACT Due to superior soft tissue contrast afforded by magnetic resonance imaging (MRI),
there is great potential for multi-parametric MRI (mpMRI) for the detection and eventual classifica-
tion of renal masses (RMs). In this study, we investigated fully automated deep learning methods for
RMs detection using T2-Weighted (T2W) spin-echo and two contrast-enhanced T1-Weighted gradient-
echo-corticomedullary (T1W-CM), nephrographic-phase (T1W-NG), T1-Weighted In-phase (T1W-IP) and
opposed-phase (T1W-OP) images. The dataset contained mpMRI images of 108 kidney cancer patients with
an average size of renal mass of 24 &+ 7.8 cm. In the first stage, kidneys were segmented using a 2D attention
U-Net model, which was reported in a previous study. In the second stage, we tested five different state-of-
the-art methods for RMs detections on mpMRI sequences. The model predictions were compared to manual
annotations using precision, recall, specificity, and Dice Similarity Coefficient (DSC). The best-performing
deep learning models were U-Net, U-Net++-, and attention U-Net on the T2W, TIW-CM, and TIW-NG
sequences respectively. Of the 5 mpMRI sequences, we also demonstrated that the TIW-CM is the most
suitable for RMs detection. This automated detection of RMs in mpMRI sequences may be useful for the
subsequent characterization of RMs in a fully automated artificial intelligence-based pipeline.

INDEX TERMS Multi-parametric MRI, kidney cancer, computer-aided detection of cancer, deep learning.

I. INTRODUCTION
The incidence of renal cell carcinoma (RCC), has doubled

practice [5], [6]. Moreover, in cystic masses, benign diagnosis
is common and in solid RMs < 4cm in size, approximately

over the past fifty years [1]. It was estimated that 87,100
adults will be diagnosed with kidney cancer in the North
American continent in 2022 [2], [3]. The increase in kidney
cancer diagnosis is due to the incidental discovery of renal
masses (RMs) in patients undergoing cross-sectional imaging
studies for other reasons [4]. This has increased surgeries
to treat RMs but it has not decreased kidney cancer-specific
mortality in the same period and thus, there may currently
be an overdiagnosis and overtreatment of RMs in clinical
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20% are benign [7]. A desire to diagnose the specific sub-
type of RMs before treatment is therefore desired. For cystic
masses, the Bosniak Classification provides an accurate esti-
mate of the probability of malignancy [7]; however, no such
system exists for solid RMs. Indeed, pre-operative diagnosis
of the histology of a solid RM can only be achieved by
percutaneous renal mass biopsy which is invasive, associated
with low risk of complications, not possible in all patients,
and can be non-diagnostic in up to 20% of cases [7].
Imaging diagnosis of solid RMs subtypes is desirable.
Computed tomography (CT) is commonly used as the clin-
ical standard for imaging RMs; however, provides limited
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information. The multi-parametric (defined as more than one
parametric pulse sequence) nature of magnetic resonance
imaging (MRI), has shown promise for the characterization
of solid RMs [8], [9]. Comprehensive mpMRI of the kidneys
includes: T2-weighted (T2W), T1-weighted (T1W) chem-
ical shift imaging, and, dynamic contrast-enhanced (DCE)
T1W imaging [10]. Nevertheless, studies evaluating the use
of CT or mpMRI scoring systems for solid RMs subtyp-
ing have shown only modest accuracy and inter-observer
agreement [11], [12].

Artificial intelligence (AI) has the potential to not only
speed up but also improve the diagnostic capabilities of
CT and MRI for renal mass diagnosis [13], [14]. Machine
learning-based quantitative texture analysis of CT images has
been extensively studied [15], [16]. Although RMs detection
on a single MRI sequence may have been investigated [17],
but different mpMRI sequences have not been compared.

Chen et al. [18] implemented a three-layer percep-
tron model to discriminate between manually segmented
low-grade and high-grade clear cell renal cell carcinomas
(cc-RCC) with an accuracy of 86.2% using texture fea-
tures of renal masses on contrast-enhanced MRI images.
Dwivedi et al. [19] performed radiomics analysis on manual
tumor segmentation of T2W images and dynamic contrast-
enhanced (DCE) MRI images were superior to tumor size
for the prediction of high-grade histology in cc-RCC.
Said et al. [20] implemented MRI-based radiomics feature
classification using a random forest ML model to characterize
solid renal neoplasms on T2W, T1W pre- and post-contrast,
and DWI. Canvasser et al. [21] evaluated the diagnostic per-
formance of MRI in cTla renal masses prediction of size
less than 4 cm using regression models on 11 MR imaging
features achieved accuracies of 81% and 91% in the diag-
nosis of cc-RCC and papillary RCC (p-RCC) respectively.
Xi et al. [22] studied a deep learning residual convolutional
neural network (CNN) model and radiomics feature-based
bagging classifier for noninvasive differentiation of renal
tumors from RCC on T2W and Tl-post contrast MRI
sequences. A study on the differentiation of RCC subtypes
by Wang et al. [23] suggested that multiple MRI sequences
could help to differentiate the three subtypes of RCC. These
renal mass characterization studies [18], [19], [20] and RCC
subtyping [21], [22], [23] were semi-automated and required
manual labeling by an expert.

A deep learning-based 2D U-Net designed by
Aslam et al. [24] was used to auto-segment the renal cortex
and medulla of chronic kidney disease (CKD) allograft kid-
ney T1 maps. Daniel et al. [25] developed a CNN model for
automated renal segmentation in healthy and chronic kidney
disease subjects to calculate total kidney volume. Automatic
semantic segmentation of kidney cysts in MR images of
patients affected by autosomal-dominant polycystic kidney
disease was developed by Kline et al. [26] using a CNN
model. Kim et al. [27] developed an automated segmentation
of kidneys from MRI in patients with autosomal domi-
nant polycystic kidney disease. Recently, Anush et al. [17]
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proposed an automated RMs detection method for a
T1W-nephrographic contrast-enhanced (T1W-NG) mpMRI
sequence using a mixture of ensembles of deep learning mod-
els. Although kidney segmentation on MRI has been explored
using deep-learning models [28] and cascaded CNN [29],
fully-automated RMs segmentation and detection on MRI
images is still a clinically open challenge.

In this paper, we presented the first comprehensive study
of automated RMs detection on different MRI sequences,
including T2W, TIW-CM, T1W-NG, T1W-IP, and TIW-OP
mpMRI. We also identified TIW-CM as the most suitable
mpMRI for the detection of RMs. We included a diverse spec-
trum of RMs including renal cell carcinoma (RCC) subtypes,
benign fat-poor angiomyolipoma (fpAML), and oncocytoma.
The models were evaluated based on precision, recall, and
specificity in the detection of RMs along with the average
Dice Similarity Coefficient (DSC) of RMs segmentation.

Il. MATERIALS AND METHODS

The algorithm developed for the detection of RMs consists of
two stages as shown in Figure 1. First, we segmented the kid-
neys using separately trained attention U-Net models for three
mpMRI images: T2W, TIW-CM, and TIW-NG [28]. In the
second stage, a separate CNN model was trained on each
mpMRI sequence for RMs detection within kidney ROIs.
The segmented kidney mask was used as a second channel to
prepare the training images for the detection of the RMs using
a deep-learning model. This is called a ‘spatial prior’ to guide
the CNN model to predict within the kidney ROIs which
excludes false positive detections in non-kidney tissues [30].
This 2-stage RMs detection was implemented separately on
T2W, TIW-CM, T1W-NG, T1W-IP, and T1W-OP mpMRI
images.

A. STUDY SUBIJECTS AND IMAGE ACQUISITION

This study was approved by the joint review boards of the
University of Guelph Research Ethics Board (CUREB) and
Ottawa Hospital Research Institute Research Ethics Board
(REB). The mpMRI scans were acquired using Siemens,
GE Healthcare, and Phillips clinical MRI systems with mag-
netic field strengths of 1.5T and 3T. The imaging protocols
for the T2W, TIW-CM, and T1W-NG, mpMRI sequences are
provided in Appendix. Our dataset comprised 108 patients
who underwent partial or total nephrectomy for RMs between
January 1, 2015, and December 31, 2017. We excluded RMs
< lcm in size because at this size threshold imaging charac-
terization becomes difficult and RMs of this size are generally
shrivelled [30]. We further excluded patients with observed
genetic predisposition to develop cystic or solid RMs namely
Autosomal Dominant Polycystic Kidney Disease, Tuberous
Sclerosis, Von Hippel Lindau disease, Birt Hogg Dube Syn-
drome, Hereditary Papillary RCC syndrome who are not
representative of the general population in which incidental
renal masses are detected [31]. The selected 108 patients
with 119 histologically confirmed RMs of mean volume
12.20 &+ 11.92 cm® had diagnoses of 64 clear cell RCC,
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FIGURE 1. An overview of the proposed two-stage methodology for renal mass detections on T2W, TIWCM,
TIW-NG, TIW-IP, and TIW-OP mpMRI sequences where stage 1 is kidney localization and stage 2 are renal mass

detection.

18 papillary RCC, 2 chromophobe RCC, 13 oncocytomas,
10 fpAMLs, 1 metastasis, 1 metanephric adenoma, 1 epithe-
lioid AML and 9 masses of unknown histology observed
during manual segmentation. It is common to have incidental
benign simple or minimally complex Bosniak Type 1 or 2
renal cysts in the images of solid renal mass patients [32],
therefore in a cohort of 108 patients, 61 patients were identi-
fied with synchronous Bosniak Type 1 or 2 renal cysts along
with solid RMs.

B. MANUAL SEGMENTATION OF THE KIDNEYS AND RMs
The kidney boundaries in the dataset were manually seg-
mented slice-by-slice by a fellowship-trained abdominal
radiologist. The same radiologist identified and segmented
the RMs in each MR image correlating the location of each
renal mass from surgical and pathological reports. RMs with-
out any histological confirmation were segmented but no
diagnosis was made. Benign cystic RMs of size >10 mm
in size were also segmented. Manual segmentation was per-
formed using ITK-SNAP v3.2 [33] and saved in NIFTI
format.

C. AUTOMATED KIDNEY SEGMENTATION

Owing to the differences in the acquisition protocols of
the mpMRI sequences, there is substantial variation in
the appearance of RMs in T2W, TIW-CM, T1W-NG, and
TIW-In Phase (T1W-IP) images as shown in Figure 2.
Therefore, a generalized deep-learning model for all mpMRI
sequences [34], [35] was unavailable. We trained separate 2D
attention U-Net-based CNN models for kidney segmentation
on the T2W, TIW-CM, and TIW-NG mpMRI images. These
images were randomly divided into training (N = 86) and
test (N = 22) datasets. The 2D axial slices were resized to
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256 x 256 and preprocessed using histogram equalization to
enhance the local contrast in the images. The training images
were augmented using an elastic deformation technique to
increase the amount of training data. We used binary cross
entropy as a loss function along with the ADAM optimizer to
train the model. The kidney segmentation model was trained
using five-fold cross-validation techniques on the training
data of 86 patient cases and validated on unseen test data of
22 patient cases. This automated kidney segmentation work
was published earlier [28] and we used these kidney segmen-
tations to prepare the kidneys as an ROI for the detection of
RMs.

D. DATA PRE-PROCESSING FOR RMs DETECTION

When the kidney boundaries were segmented on mpMRI
images, the left and right kidney ROIs of size 128 x 128 were
cropped from the 2D axial slice of the original images. The
training and test data for RMs detection were prepared on
T2W, TIW-CM, and TIW-NG mpMRI images. The RMs
detection was the second stage of the model implementa-
tion, therefore the training (N = 86) and test (N = 22)
datasets were prepared using the same patient cases as used
in Stage 1 of kidney segmentation. The extracted kidney
ROI images were preprocessed using histogram equalization,
and the image intensities were normalized to the range of
0 to 1. The training data and test data were prepared such
that the extracted kidney ROI image was the first channel,
and the corresponding segmented kidney mask was used as
the second channel, which was a spatial-prior approach to
minimize false predictions in non-kidney tissues. The training
data were biased towards healthy kidney slices compared
to slices containing RMs. The extracted kidney ROIs con-
taining RMs in them were augmented with random rotation,
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FIGURE 2. Sample axial slices showing malignant (cc-RCC, p-RCC, ch-RCC) and benign (fpAML and oncocytoma) types of SRMs for the same
patient acquired with different acquisition protocols namely T2W, TIW-CM, TIW-NG, TIW-IP, and T1W-OP mpMRI sequences. The yellow arrow

points to the renal mass in each axial slice.

vertical and horizontal flips, random brightness contrast,
and shift-scale rotation using the fast and flexible image
augmentation Albumentation library [36].

E. RMs DETECTION ON T2W, TTW-NG, TTW-IP, AND
T1W-0oP

To develop an appropriate RMs detection model for each
mpMRI, we used five-fold cross-validation where each
fold contained approximately 17 patient cases and testing
it on 22 unseen test data. The training and test datasets
in RMs detection were similar to automated kidney seg-
mentation. We trained and tested five different CNN mod-
els, including U-Net, U-Net++, Attention U-Net, SegNet,
and pre-trained RESNET34 as a backbone in the U-Net
model separately on each mpMRI sequence. These mod-
els were implemented using CNN layers and trained using
an ADAM optimizer with a combination loss function.
The combination loss function was used for class imbal-
ance by leveraging the benefits of binary cross entropy
(BCE) and Dice Loss [37] The loss function is given by
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Equation (1).
L@y, )
-1
=0.5* (7 Z [yilog (3:) + (1 — y;) log (1 — 91')])

3 (1 Xt )
(Xivi+ 23 +1)

where, N is the batch size, y; is the ground truth pixel value
of i, and y; is the predicted pixel value of the pixel. i The
first term in Equation (1) is the BCE loss function which
compares each of the predicted probabilities to the actual
class output which can be either 0 or 1. It penalizes the proba-
bilities based on the distance from the expected value i.e., how
close, or far from the actual value. A class imbalance exists
when segmenting a small foreground from a large context or
background. A combination loss function leverages the dice
function that handles the input class imbalance. It controls
the trade-off between false positives (FP) and false negatives
(FN) by enforcing smooth training using cross-entropy. The

ey
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combination loss function is a weighted sum of modified
cross-entropy and a dice loss function to encode the learning
as shown in Equation (1). One is added to the numerator and
denominator of the second term in Equation (1) to ensure that
the function has defined edge-case scenarios likey =3 =0

The models were trained for 50 epochs with model check-
points to save the best-trained model. The final output layer
in each model used a sigmoid activation function to provide
a probability map for each pixel. We applied a threshold of
0.5 to classify each pixel as background when the probability
was < 0.5 and renal mass or foreground when the probability
was > 0.5.

Of the five different trained models, the best model was
proposed based on the highest precision, recall, specificity,
and average DSC of the RMs segmentation. Deep-learning
algorithms were implemented in Python using Keras on
top of TensorFlow. All models were trained and evalu-
ated on GPU-accelerated high-performance computers of the
Shared Hierarchical Academic Research Computing Net-
work (SHARCNET), a partner organization of the Digital
Research Alliance of Canada.

1) STANDARD U-NET MODEL

We used the standard U-Net model as the basic segmenta-
tion model owing to its effectiveness in segmenting medical
images [38]. Modification regarding the number of filters
and network layers was done on the original U-Net model
to reduce the network complexity and improve segmenta-
tion performance. The U-Net model designed was five-layer
deep with 16 filters in the first layer and doubled them at
each consecutive layer. We used kernel size of 3 x 3 with
‘RELU’ activation with HE_Normal [39] as kernel initializer
and ‘same’ padding at each convolution layer, to minimize
overfitting of the model we used a dropout of 0.1 at the initial
two layers and then 0.3 afterward. We used the MaxPooling
layer after each convolution layer in the encoder path of the
U-Net model. The combination loss function with a learning
rate of 0.0001 for the ADAM optimizer used in the training.
The input to the U-Net model is a 2-channel input with kidney
ROI as a first channel and corresponding kidney segmentation
as a second channel for better segmentation results avoiding
RMs segmentation outside the kidney region.

2) U-NET++ MODEL

The improved U-Net model with increased skip connection
with deep supervision reduces the semantic gap between the
feature maps at the encoder and decoder pathways in the
U-Net++ model [40]. We designed the U-Net++ model
with five layers of convolutional layers in the encoder path
with several filters (8,16,32,64,128) at successive convo-
lutional layers. The activation function was RELU with
kernel initializer as ‘HE_NORMAL’, and ‘same’ padding.
The dropout rate was set to 0.2 after each convolution layer
to avoid overfitting issues in training. The ADAM optimizer
had a learning rate of 0.001 and a combination loss function.
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The final layer output was obtained from the deep supervision
branch where all segmentation branches were averaged.

3) ATTENTION U-NET MODEL

The boundary of renal masses is problematic when there is
less contrast between the RMs and surrounding kidney tis-
sues. To improve the performance of the RMs boundaries an
attention U-Net [41] the model was designed. The attention
U-Net was six layers deep with an initial filter size of eight
and doubled at the following convolutional layers. The con-
volution layer was designed with ‘RELU’ activation, ‘same’
padding, and ‘HE_NORMAL’ as kernel initializer with a
kernel size of 3 X 3. Batch normalization and dropout 0.3 was
used to limit the overfitting of the model in training. ADAM
optimizer with a learning rate of 0.0001 and a combination
loss function.

4) SEGNET MODEL

The SegNet model is an encoder-decoder type architecture
identical to the convolutional layers in the VGGI16 net-
work [42]. In the SegNet model decoder path pooling indices
are transferred from the expansion path instead of the entire
feature set, which results in less memory utilization. The
designed model had 5 layers in the encoder and decoder
paths with two convolutional layers at each stage. The filters
were (32,64,128,256,512) in each layer. The kernel size of
3 x 3 with ‘RELU’ activation with HE Normal as kernel
initializer and ‘same’ padding at each convolution layer. Max-
Pooling was used after every alternate convolutional layer in
the encoder path. This model was trained using an ADAM
optimizer and combined loss function.

5) PRE-TRAINED RESNET34 BACKBONE IN U-NET MODEL
We implemented ImageNet-based pre-trained RESNET34
as a backbone [43] in the U-Net model to study whether
pre-trained weights assist in renal mass segmentation by
addressing the vanishing gradient problem. We used the Seg-
mentation Models Python library to develop ImageNet-based
pre-trained RESNET?34 in the U-Net model.

F. REGISTRATION OF TWO mpMRI SEQUENCE
Generating manual annotations for each type of mpMRI
sequence is time-consuming and laborious. Therefore, there
are limitations to developing a dedicated model for each
mpMRI sequence because of the unavailability of manual
annotations. This part of the study was to test whether a
registration between the source and target mpMRI images
can be used for RMs detection without developing a deep
learning-based model from scratch for RMs detection on
target mpMRI images. By registering two mpMRI sequences,
we can transfer the RMs detection from the source mpMRI to
the target mpMRI.

Initially, we identified the best-performing mpMRI
sequence for RMs detection as fixed and another mpMRI
sequence image as moving images. We registered both
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TABLE 1. Comparison of renal mass detection results on T2W MRI sequence.

Model Precision (%) Recall/Sensitivity (%) Specificity (%) DSC (%)
U-Net 71.23 93.47 86.55 78.13
U-Net++ 61.25 83.37 82.51 77.35
Attention U-Net 66.51 77.84 85.64 75.57
Pretrained U-Net-RESNET34 52.24 75.55 63.17 61.22
SegNet 61.11 72.27 78.28 73.77

FIGURE 3. Sample renal mass detection on T2W kidney ROI images of different patients are shown in each row where
red contours are model predictions and yellow contours are ground truth.

images using the Euler3DTransform of rigid registration
by rotation and translation of the 3D images. Once the
initial transforms were attained, we used a resampling and
gradient descent optimizer with the Mattes Mutual Infor-
mation similarity metric. Voxel intensity differences were
observed between similar types of tissues in the source and
target mpMRI sequences. Therefore, mutual information
was able to consider matching between voxels of different
intensities provided that the shapes and sizes of the voxel
areas were similar [44]. The best-performing model predic-
tions of the fixed images were transferred to the registered
sequence images. The performance of registered predictions
was evaluated using the precision, recall, specificity, and
accuracy of RMs detection as compared to the original, non-
registered images. The main purpose of the registration was
to leverage the best-performing mpMRI sequence predictions
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for other lower-performing sequences. The registration pro-
cess was implemented using the SimpleITK registration
framework [45], [46].

G. EVALUATION METRICS
We evaluated our models using a 5-fold cross-validation
method and tested them on the holdout unseen test data
of 22 patient cases. For a fair comparison, these 22 test
cases in four different mpMRI sequences namely T2W,
TIW-CM, T1W-NG, and TIW-IP were similar in stage 1
of kidney segmentation and stage 2 of the detection of
RMs step. To evaluate the automated kidney segmentation,
we used DSC as a measure of spatial overlap between models
predicted and manually segmented kidneys.

The models for the detection of RMs were evaluated based
on precision, recall, specificity, and DSC. A confusion matrix
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TABLE 2. Comparison of renal mass detection results on TITW-CM mpMRI sequence.

Model Precision (%) Recall/Sensitivity (%) Specificity (%) DSC (%)
U-Net 86.67 82.26 92.34 86.57
U-Net++ 95.34 85.41 99.64 89.79
Attention U-Net 87.62 80.09 96.27 86.64
Pretrained U-Net-RESNET34 82.49 77.65 92.03 85.65
SegNet 79.67 74.89 84.56 82.21

FIGURE 4. Sample renal mass detection on TIW-CM kidney ROl images of different patients are shown in each row where red
contours are model predictions and yellow contours are manual segmentation.

was prepared by comparing slices with and without RMs
predicted by the algorithm with manual delineation. A true
positive (TP) was considered as an overlap between the
model-predicted and manually segmented RMs. No detection
of RMs in model prediction when manually segmented RMs
were present, which was considered a false negative (FN).
When the model predicted RMs in a healthy kidney slice
without any manually segmented RMs label was considered
false positive (FP). No RMs prediction when there were no
RMs identified in manual segmentation were considered a
true negative (TN). When the TP, FP, FN, and TN values were
available for the test data, we calculated the precision, recall,
specificity, and accuracy metrics for RMs detection in each
model.

Ill. RESULTS
The attention U-Net model for kidney segmentation reported
the kidney segmentation average DSC (mean + SD) of
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89.89% + 5.0%, 87.64% =+ 3.5%, 89.34% + 5.31%,
85.42% + 6.0%, and 83.66% + 7.5% on T2W, TIW-CM,,
TIW-NG, T1W-IP, and TIW-OP mpMRI sequences, respec-
tively. The average volume difference (AVD) of kidney
segmentation was 9.89% £ 12.59%, 6.14% =+ 4.21%,
8.42% =+ 10.84%, 9.83% =+ 6.41%, and 15.42% =+ 13.35%
on five mpMRI sequences [28]. The algorithm-generated
kidney segmentations served as the ROI for the proposed
RMs detection models. Here, we evaluated RMs detection
on five different mpMRI sequences using the same test cases
acquired on the respective mpMRI sequence protocols. While
implementing the detection of RMs on T1W-IP and T1W-OP
images, we found that the results were poor compared to
the other three mpMRI sequences, namely T2W, TIW-CM,
and TIW-NG. This was also evident from the stage 1 results
where automated kidney segmentation results were lower in
T1W-IP and TIW-OP images. Therefore, we excluded RMs
detection on T1W-IP and T1W-OP results in the comparison
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TABLE 3. Comparison of renal mass detection results on TIW-NG mpMRI sequence.

Metrics Precision (%) Recall/Sensitivity (%) Specificity (%) DSC (%)
U-Net 69.72 75.43 87.56 79.62
U-Net++ 68.15 74.28 85.20 78.29
Attention U-Net 71.92 78.94 93.36 82.82
Pretrained U-Net-RESNET34 67.56 77.62 87.33 78.47
SegNet 66.90 74.53 85.39 77.45

FIGURE 5. Sample renal mass detection on TIW-NG kidney ROI images of different patients shown in each row where red contours are model

predictions and yellow contours are ground truth.

study. The RMs detection results were compared for the T2W,
TIW-CM, and TIW-NG mpMRI sequences. In the exem-
plary figures of RMs detection, we showed similar 3 patients’
test cases in three patients on T2W, TIW-CM, and TIW-NG
images.

A. RENAL MASS DETECTION ON T2W IMAGES

A comparison of the RMs detection results on T2W test
images using different models is presented and shown in
Table 1. The best-performing results are shown in bold.
The U-Net model outperformed the other models, including
U-Net++, Attention U-Net, Pretrained U-Net RESNET34,
and SegNet.
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The U-Net model produced precision, sensitivity, and
specificity of 71.23%, 93.47%, and 86.55% respectively. The
U-Net model generated the highest renal mass segmentation
DSC of 78.13%. Among these models, the pre-trained U-Net
RESNET34 model performed poorly on T2W test images.
Sample RMs detections using the proposed U-Net model on
T2W images are shown in Fig. 3.

B. RENAL MASS DETECTION ON T1W-CM IMAGES

A comparison of the results of the RMs detection models
for the TIW-CM test cases is presented in Table 2. The
best performance metrics are shown in bold. The U-Net++
model with deep supervision (DS) outperformed the other

112721



IEEE Access

R. Gaikar et al.: Fully Automated Deep Learning-Based Renal Mass Detection

TABLE 4. Comparison of RMs detection results on T2W, T1IW-CM, and T1W-NG mpMRI sequences.

Model Precision (%) Sensitivity (%) Specificity (%) Accuracy (%) DSC (%)
T2W U-Net 71.23 93.47 86.55 81.50 78.13
TIW-CM U-Net++ 95.34 85.41 99.64 93.47 89.79
TIW-NG Attention U-Net 71.92 78.94 93.36 65.43 82.82

MRI

p- RCC

T2W

TIW-CM

T1W-NG

FIGURE 6. Sample clear cell RCC (cc-RCC), papillary RCC (p-RCC), and chromophobe (ch-RCC) detection on 3 MRI sequences where
algorithm-generated contours are in red and manual segmentation are in yellow.

state-of-the-art models (i.e., U-Net, Attention U-Net, Pre-
trained U-Net RESNET34 and SegNet). The U-Net++ with
DS produced RMs detection on TI1W-CM test cases with pre-
cision, recall, and specificity of 95.34%, 85.41%, and 99.64%
respectively. The model showed an accuracy of 93.47% and
an average DSC of RMs of 89.90%. A sample of localized
RMs segmentations using the U-Net4+ model on TIW-CM
is shown in Fig. 4.

C. RENAL MASS DETECTION ON T1W-NG IMAGES

The comparison results of RMs detection by different mod-
els are listed in Table 3, where the values in bold indicate
the highest performance metric. The attention U-Net model
detected RMs with high performance on T1IW-NG test
cases as compared to U-Net, U-Net++, Pretrained U-Net
RESNET34, and SegNet The attention U-Net model gener-
ated precision, recall, and specificity of 71.92%, 78.94%, and
93.36% respectively. The proposed attention U-Net model
produced average accuracy and RMs segmentation DSC of
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65.43% and 82.82% respectively. The sample RMs detection
using the attention U-Net model on TIW-NG is shown in
Fig. 5. A summary of RMs detection using U-Net, U-Net++,
and attention U-Net on T2W, TIW-CM, and TIW-NG images
is presented in Table 4. Due to differences in image acquisi-
tion protocol, it was difficult to suggest a single model for the
three mpMRI sequences. Compared to T2W and TIW-NG,
the results for RMs detection were superior for T1W-CM.
The T2W model produced the highest sensitivity of
93.47% but the lowest specificity of 86.55%, which yielded
an accuracy of 81.50%. The TIW-CM model was best
best-performing mpMRI sequence for RMs detection with
a specificity of 99.64% and an accuracy of 93.47%. The
samples of detected malignant RMs of different RCC types
on T2W, TIW-CM, and TIW-NG images are shown in
Figure 6. Each column in Figure 6 shows different test
cases of the patients, and each row shows the corresponding
MRI sequence image. The benign fpAML and oncocytoma
renal mass detections of these three sequences are shown
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FIGURE 7. Sample benign fat poor AML and oncocytoma detection on 3 MRI sequences where algorithm-generated

contours are in red and manual segmentation is in yellow.

in Figure 7. The predictions of the benign renal mass type
in two consecutive ROI images are shown in Fig.7 for the
three different MRI types. Box plots for the results of RMs
detection and segmentation using the proposed models for
respective mpMRI sequences on a similar test population are
shown in Fig. 8.

D. REGISTRATION OF TTW-CM AND T2W IMAGES

The RMs detection results for the three mpMRI sequences
proved that the RMs detection model on TIW-CM performed
better than the T2W and T1W-NG sequence models. In prac-
tice, T2W and T1W-CM MRI have been studied by clinicians
for renal mass characterization. [8] Therefore, we registered
TIW-CM and T2W images where TIW-CM images were
fixed and T2W images were moving. The results of trans-
ferring the RMs detection of TIW-CM on T2W images were
compared with the RMs detection on original T2W images as
shown in Table 5.

IV. DISCUSSION

The automated detection of RMs is a crucial step in the
research of the study of computer-aided kidney cancer
classification (e.g., benign vs. malignant) and cancer sub-
typing [47]. In this study, we compared five different fully
automated methods for RMs detection on five mpMRI
sequences. We also compared the detection accuracies for
each mpMRI sequence. This was the second stage of our
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cascaded approach to renal mass detection, utilizing the
kidney segmentations as ROI detected in the first stage.
The best-performing deep learning models were U-Net,
U-Net++, and attention U-Net on the T2W, TIW-CM, and
T1W-NG sequences, respectively. The segmented RMs aver-
age DSC (mean £ SD) was highest at 89.79 % + 6.57 %
on the TIW-CM sequence than T2W (78.13 % + 11.62%)
and TIW-NG (82.82 % =+ 13.83%) sequences. Therefore,
we demonstrated that TIW-CM is the most suitable MRI
sequence for RMs detection. Our results are significant as
they are validated on unseen test cases. The earlier study
done by Agarwal et al. [48] for renal mass segmentation
on TIW-NG images using an ensemble approach of deep
learning models achieved recall and precision of 86.2% and
83.3% on the entire TIW-NG dataset. Their results were not
validated on unseen test cases and the ensemble approach
of deep learning models requires higher computational
power than evaluating the prediction of a single model. The
recent systematic review of renal tumor image classification
by Amador et al. [49] highlighted that the time-consuming
expert knowledge of radiologists requires Al assistance in
precise lesion segmentation. Studies evaluating the quanti-
tative assessment of contrast-enhanced imaging have shown
that cc-RCC is enhanced to a greater degree than the renal
cortex during the corticomedullary phase of enhancement
and washout during the nephrographic phase [8]. Com-
pared to T2W and T1W-CM sequences, benign cysts are not
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FIGURE 8. Comparison of boxplots of results generated by proposed RMs detection models on T2W, TIW-CM, and TIW-NG

mpMRI sequences.

TABLE 5. Comparison of RMs detection original and registered T2W images.

RMs detection Method Precision (%) Sensitivity (%)  Specificity (%)  Accuracy (%)
Using original T2W images 71.23 93.47 86.55 81.50
Using T1W-CM results transferred on the 75.55 82.05 55.00 73.77

registered T2W images

prominently visible in TIW-NG [8], [10]. Compared to T1W-
CM, these observations may lead to inferior performance of
T1W-NG for RMs detection. TIW-NG and T2W resulted in
higher false positive detection of RMs because of differences
in tumor-to-kidney SI ratio and tumor-to-spleen SI ratio [50],
[51]. This difference in the SI of RMs in T2W images
may be useful for RMs characterization [52]. As shown in
Figure 8, each model showed outliers, outside the overall
acceptable model performance. This study showed robustness
to vendor-specific variability as the data included MRI scans
from clinical MRI systems of multiple vendors. Of the 22 test
cases, 10 cases showed multiple RMs, which were different
types of solid renal masses and/or cysts. Our models had
accurately predicted a variety of RMs in test cases.

Because these mpMRI sequences were acquired using
different acquisition protocols (see Appendix), there was a
domain shift within them. This domain shift reduces the
ability of the models to generalize across images differ-
ent mpMRI images [35], [53]. Therefore, we used separate
models for RMs detections in each mpMRI sequence. The
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accurately detected RMs on different mpMRI sequences
were malignant RCC and its subtypes, and benign solid
RMs (fpAML, oncocytomas, angiomyolipoma, and cysts)
acquired on heterogeneous MRI systems at different institu-
tions. Our results showed that these RMs detection models
worked equally well for both benign and malignant RMs.

The chemical shift imaging: T1-weighted in phase
(T1W-IP) and opposed-phase (T1W-OP) MRI sequence per-
formed poorly on automated RMs detection with an average
DSC of less than 50%; therefore, we didn’t report these
results. In TIW-IP images, the decreased SI was >25% in
ccRCCs but other RCCs rarely showed minimal SI drop [8].
The drop in SI was non-specific, which may explain the poor
performance of T1W-IP images for RMs detection.

We compared these model performances in an abla-
tion study using binary cross entropy loss function. The
RMs detection models were unable to produce an aver-
age DSC of 60% in all categories of mpMRI sequences.
The main reason was that RMs were small areas to
detect on a large kidney background. The combined loss
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TABLE 6. Multi-parametric MRI technique used for renal masses including imaging at 1.5 and 3 Tesla?.

Pulse Dual echo T1W GRE T2W TSE/FSE Volume Interpolated T1W 3D Diffusion
Sequence GRE? weighted
imaging ¢
2D GRE 3D GRE Single shot TSE/FSE 3T 1.5T Single shot echo-
planar imaging
3T 1.5T
Physiology Breath Hold Breath Hold Breath hold Respiratory Triggered | Breath Hold Breath Hold
Breath hold
Duration 21 sec. 16 sec. 20 sec. 3-4 min. 20 sec. 21 sec
22 sec.
Fat N/A N/A N/A N/A Chemical or Spectral Inversion | Spectral Inversion
Suppression Recovery Recovery
TE (IP/OP)® ; | (4.6/2.3);160- | (2.5/1.3);5.5 (4.6/2.3);7.6 83-88;1030 1.7-2.5;4.0-4.5 1.4;43 60.8-74;2075-
TR (msec) 180 and 4600
(2.2/1.1);4.0
Flip angle | 70 10-12 10 180 10-12 10-12 90
(degrees)
Bandwidth 260 700 313 450 325-460 488 250-1446
(Hz)
Number of | 1 0.7-1 1 Half-Fourier 1 1 2
excitations
Acceleration 2 2 1 1 2 2 2
factor
2
Matrix Size 256/320 X | 294x 224 192 x 320 170 x 256 256 x 320 132x 320 130-38;96-75
134/152
Field of view | 25x35 25x35 25x 35 25x35 25x 35 25x 35 40-380;28-75
(cm)
Slice thickness | 5-6 3-4 3-5 5 2.5-4 2.5-4 6
(mm)

@lmaging performed on clinical 1.5 Tesla (Symphony, Avanto or Aera, Siemens Healthcare; Optima, GE Healthcare or Achieva, Philips
Healthcare) or 3 Tesla (TRIO, Siemens Healthcare; Discovery 750W, General Electric Healthcare) systems.

®VIBE (Siemens Healthcare), LAVA (General Electric Healthcare), THRIVE (Philips Healthcare).

¢ Diffusion weighted imaging performed with two b values (0 and 600 mm2/sec) with ADC map automatically derived.

41P=in phase, OP=opposed phase

function has a dice score involved in it which helps to
improve training. This was verified as the model’s perfor-
mance was improved. RMs can be multiple instances in
the same image, therefore we investigated the YOLOv4
model [54] for RMs detection. It was implemented on
T2W mpMRI sequence images. The mean average preci-
sion (mAP) compared the ground-truth bounding box to
the detected box returned a score of 40%. The lower mAP
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score resulted from false RMs detection in the YOLOv4
model.

Image registration for RMs detection on target MRI
sequences showed that RMs detection on one MRI sequence
(source) could be transferred or overlaid on another MRI
sequence (target) without the need to develop a dedicated
CNN model on the target MRI sequence. In this study T2W
images were registered on the TIW-CM images. Owing to
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registration differences, the transfer of RMs detection of
TIW-CM images on target T2ZW images did not achieve
results similar to those of TIW-CM. We observed that
five T2W test images were acquired with higher resolu-
tion than the corresponding TIW-CM images. Although
down-sampling of the T2W images was performed in the
registration process, there was a difference between T1W-CM
and registered T2W images. Therefore, some RMs detec-
tions were false negative detections, resulting in reduced
sensitivity. This helped to improve the precision of the RMs
detection in registered T2W images by eliminating the false
positive predictions in RMs detection in the deep learn-
ing model trained with original T2W images. This study
demonstrated that registration could help in RMs detection
in MRI sequences for which a trained deep-learning model is
unavailable.

The limitation of this study was that there were three
different models for three different MRI sequences for renal
mass detection. Therefore, in future studies, it will be worth
exploring domain adaptation techniques using Generative
Adversarial Networks (GAN) to propose a single generalized
deep learning model on different MRI sequences. Design-
ing and developing a separate renal mass detection model
for each multi-parametric MRI was computationally exhaus-
tive and time-demanding. Therefore, in future research work
instead of developing a dedicated deep learning model for
each MRI sequence, one can implement image registration
techniques to transfer renal mass detection results on target
MRI sequences for which a renal mass detection model is
unavailable.

V. CONCLUSION

The best-performing deep learning models were U-Net,
U-Net++, and attention U-Net on the T2W, TIW-CM,
and TIW-NG sequences, respectively. Of the five different
mpMRI sequences, the T1W-CM sequence was the most suit-
able for RMs detection compared to the T2W and TIW-NG
images. We also demonstrated that segmentations can be
transferred from the source to the target domain via image
registration when manual segmentations are not available for
the target mpMRI sequence.

APPENDIX

MRI RENAL MASS PROTOCOL

The multi-parametric MRI technique was used for renal
masses, including imaging at 1.5 and 3 Tesla?.
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