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ABSTRACT This research investigates implementing and optimizing microgrid energy management
systems (EMS) utilizing artificial intelligence (AI). Inspired by the need for efficient resource utilization
and the limitations of traditional control methods, it addresses essential aspects of microgrid design,
such as cost-effectiveness, system capacity, power generation mix, and customer satisfaction. The primary
goals are to optimize energy management, control techniques, and AI applications in microgrids. The
study critically examines the classification of energy management systems, various EMS applications, and
their associated challenges. Additionally, it discusses different optimization techniques relevant to EMS,
highlighting their applications, benefits, and challenges. The research emphasizes the importance of hybrid
systems, demand-side management, and energy storage in addressing the intermittency of renewable energy
sources. AI techniques, such as unsupervised learning (USL), supervised learning (SL), and semi-supervised
learning (SSL), are extensively analyzed in relation to their specific applications. The study explores
AI-based hierarchical controls at primary, secondary, and tertiary levels. Furthermore, AI methods like
deep learning for load forecasting and reinforcement learning for optimal control are emphasized for their
substantial contributions to enhancing microgrid reliability and efficiency. The research concludes that
integrating distributed energy resources (DER) and using advanced optimization algorithms can lead to
significant financial benefits and improved sustainability in microgrid operations. Over 200 research papers
were referenced in this study.

INDEX TERMS Artificial intelligence, control, distributed generation, energy management, energy storage,
environment, machine learning, microgrid, optimization, renewable energy.

I. INTRODUCTION
The microgrid is the electrical network that produces, con-
sumes, stores, and controls the electrical power locally [1].
A centralized power grid generates units at a more consid-
erable distance from the consumers. A large and complex
network from generating units to end consumers is needed
for transmission, distribution, and controlling of power [2].
A long transmission network requires extensive infrastructure
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and has significant transmission losses. Failure of a small
entity may cause power failure in the whole system, which
may become problematic for critical and sensitive loads.
Reliability and security are the points of concern in the case
of a centralized power system network. For the planning
and operation of a reliable and stable system, the power
system’s resilience and consideration of the low probability
and high-impact events are crucial [3]. Distributed generation
is used in microgrids [4]. Microgrids generate, consume,
control, and store power in the same locality (as shown in
Fig. 1), so they are reliable, resilient, and secure [5], [6], [7].
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FIGURE 1. Microgrid architecture.

Self-sufficiency and autonomy create an energy system that
makes users and different stakeholders equal, with a balanced
distribution of costs and benefits [8].

Conventional energy sources include coal and oil, and
most power-generating units are based on thermal power
plants. Coal is used as a fuel in thermal power plants, and
the burning of coal produces harmful oxides of nitrogen,
oxides of carbon, and particulate matter. The emission of
harmful components in the environment deteriorates the air
quality, which results in many deadly diseases [9]. A sig-
nificant percentage of microgrids’ energy-generating sources
are renewable. Renewable and non-renewable energy sources
like wind, photovoltaic cells, geothermal energy, biomass,
wave power, diesel engines, gas turbines, and microtur-
bines generate electricity [10]. The generation of electricity
from renewable sources of energy results in less pollution
being released into the atmosphere. Using renewable energy
sources does not incur any financial cost and is accessible
in massive quantities [11]. Thus, it reduces the operational
cost of microgrids. Since many RES depend on geographical
location, combining two or more RES can be utilized to form
a hybrid microgrid [12].

Microgrids (MG) have different operation ranges, such as
low and medium voltage, which is between 400V and 69kV.
MG can be a small unit in a few kW range, supplying a
small number of consumers. On the other hand, it can be
a large and complex network with a range in MW that has
multiple generating resources, storage units, and power sup-
ply to large loads [13]. Depending upon the functionalities,
microgrids have two different configurations. They exist in
islanded and grid-connected forms. Microgrids are dynamic
since they can link and disengage themselves from the utility
grid at any time [14]. In an isolated operation, the microgrid

provides electricity to the neighbourhood’s users without
being connected to the utility grid. Examples of islanded
microgrids include shipboard microgrids and small satellite
microgrids [15], [16], [17]. Different types of microgrids are
mentioned in Fig. 2.

In the context of microgrid operations, it is critical to
use energy management systems (EMS) to maximise power
production, minimise operating expenditures, prolong the
lifetime of energy storage systems, and reduce environmental
costs. In order to ensure proper functioning when isolated
from the main power grid, microgrids generally require
implementing a control mechanism that can effectively man-
age the real and reactive power equilibrium in real-time [18].
Additionally, this control strategy must be capable of deter-
mining the optimal allocation of resources over an extended
period. Determining the appropriate timing and method for
connecting to and disconnecting from the power grid is an
essential control system function.

The combination of hardware and software components
known as control in a microgrid system provides stability,
reliability, and optimality [19]. Instead of using a single con-
trolling unit, the microgrid’s components may have a local
control function. The control units’ primary duties include
preserving the proper voltage, current, and frequency ranges,
balancing the power supply and demand, carrying out eco-
nomic dispatch and demand side management, and switching
between an islanded and a grid-connected mode of oper-
ation [20]. The communication network between the main
control unit, switches, components, and metering devices is
integrated inside the microgrid. Microgrid control can be
on a local basis, known as decentralized control, and it can
have control on a centralized basis, referred to as central-
ized control. Decentralized and intelligent control has better
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FIGURE 2. Microgrid classifications.

voltage control solutions [21]. Distributed control, in contrast
to decentralized control, interacts among the units. In the
standard mode of operation, a hierarchical control approach
can be used, which involves the implementation of primary,
secondary, and tertiary-level controllers across the microgrid
system. This strategy is aimed at ensuring optimal power
transfer to the utility grid. The number of control levels in
a microgrid’s hierarchical control system is determined by
various factors, including but not limited to functionality,
degree of control, communication requirements, and energy
supply. High penetration of RES in power systems causes
degradation in power quality [22]. Renewable energy gener-
ation is naturally intermittent. Integrating renewable energy
sources in microgrid applications with an energy storage
system (ESS) is noteworthy since it stores energy during
off-peak hours and delivers it during peak load periods.
In microgrids, batteries, supercapacitors, Superconducting
magnetic energy storage, and flywheels may be employed
as ESS [23]. Microgrids utilise ESS for energy arbitrages,
peak cutting, load surging, spinning surpluses, voltage sup-
port, black start, frequency regulation, power quality, power
reliability, RES transitioning, stabilising transmission and
distribution upgrade restriction, congestion relaxation, and
off-grid services. Energy storage placement decisions are
taken using optimization techniques. However, the need for
a proper energy management system for the ESS is still a
challenging task [24]. EMS is used for intelligent control
for power sharing and load shedding [25]. Given their sim-
plicity and effectiveness in handling the energy management
issue in microgrids, mixed integer programming methods
may be used extensively in EMS. Due to the decentralised
character of the EMS issue in microgrids and the capacity
of multi-agent-based approaches and meta-heuristics algo-
rithms to operate effectively in such settings, these strategies
surpassed the other traditional solutions regarding system
efficiency [26]. Accurate microgrid control is typical for
DERS because of their stochastic and highly uncertain nature.
Many microgrids are interconnected to form the network
microgrid system for effective remedies for operating large

numbers of DERS. Network microgrids enhance the reliabil-
ity, security, and resiliency of microgrid systems.

In addition, the use of sophisticated optimization
approaches in forecasting and demand management is
restricted. In a community microgrid, there is a require-
ment for an end-to-end energy management solution and a
transactive/collaborative energy-sharing capability [27]. For
the complex and heavy data of the microgrids, AI finds
its application to make the microgrid’s operation safe, reli-
able, and better controlled. Machine learning (ML) and
deep learning (DL) are the two subbranches of AI [28].
Based on the type of training data set, whether trained or
untrained, ML and DL models are categorized as super-
vised or unsupervised. To overcome the issues associated
with observability and controllability, effective microgrid
management and analysis demand physical and data-driven
models [29]. Integrating artificial intelligence (AI) technolo-
gies into the present framework can potentially enhance the
precision, velocity, and effectiveness of microgrid manage-
ment and functioning [30]. A requisite for implementing
model-based conventional control strategies is a thorough
understanding of the system’s dynamics. ML algorithms,
such as Deep reinforcement learning (DRL) algorithms,
which acquire knowledge from their environment and estab-
lish a correspondence between inputs and outputs, exhibit
significant promise for model-free design [31]. Thus, EMS
is a crucial tool for efficiently managing and regulating the
functioning of renewable energy generation, consumption,
storage, transmission, and sub-transmission systems.

The organization of the remaining paper is as follows.
Section III describes the energy management of microgrids,
section IV gives a detailed analysis of optimization tech-
niques used in EMS, while section V provides the critical
analysis of control techniques in EMS, Artificial Intelligence
techniques for EMS in microgrids are comprehensively ana-
lyzed in section VI, the discussion is written in section VII,
and the paper is concluded in section VIII.

II. METHODOLOGY
The methodology of the systematic literature review in this
paper is explained in Fig. 3. The process starts with identi-
fying databases, selecting keywords, and formulating search
strings depending on the inclusion and exclusion criteria.
In this article, a total of 879 papers were initially identified.
Out of these peers, only 169 were chosen. After the screening
process, 109 were taken for study objectives. Fig. 4 illustrates
the categories of papers included in this research.The pie
graphic illustrates that 93% of the articles are journal papers,
4% are conference papers, and the remaining 3% are from
other sources in the relevant research area.

A. METHODS AND MATERIALS
This article is written using the two major processes:

1. The first process is the conduction of a survey of
879 papers related to microgrids, energy management
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FIGURE 3. Prisma framework explaining the methodology of research work.

FIGURE 4. Pie chart for the selected papers.

in microgrids, control in microgrids, centralized and
decentralized control inmicrogrids, andArtificial intel-
ligence control inmicrogrids that resulted in 109 papers
that aligned with the objectives of the review study.

2. The second process is articulating recommendations
and best practices derived from a comprehensive eval-
uation and assessment of the extensive literature.

B. RESEARCH QUESTIONS AND FORMALIZATION
Considering the problems the engineers face in energy man-
agement in microgrid implementation and control, this study
addresses the issues. This work is done with motivation and
objectives towards solving the issues about the microgrid
domain. Special focus is placed on the energy management,
optimization, control, and application of artificial intelligence
in microgrid operations and control.

Motivation is based on the following:
i. Energy management is necessary for better utilization

of resources.
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FIGURE 5. Energy management in microgrid.

ii. The traditional operation system of microgrids is slug-
gish and costly.

iii. Control techniques are less efficient than novel, devel-
oped, and state-of-the-art approaches.

iv. Artificial intelligence control is efficient and reliable
for better operation of microgrids.

The main objective of this study is to perform a detailed
analysis of energy management techniques in microgrids.
The following are the research questions that are intended to
address in this study:

RQ1: How are the different resources utilized for better
energy management?

RQ2: What is the role of optimization techniques for the
best output of different components in the micro-
grid?

RQ3: What is the role of traditional control methodolo-
gies and their impact in the current arena?

RQ4: What is the impact of artificial intelligence tech-
nologies on microgrid management?

C. SOURCE SELECTION
The databases chosen for this research encompass IEEE
Xplore, ScienceDirect – Elsevier, SpringerLink, and Google
Scholar. ‘‘title,’’ ‘‘Abstract,’’ and ‘‘entire document’’ are the
parameters that have been considered for inclusion and exclu-
sion.Works directly linked to research questions are included,
and papers not directly linked to research questions are
excluded as shown in table 1.

TABLE 1. Keywords and the search string.

D. SELECTION EXECUTION
In the initial phase of this study, literature articles related to
the objectives are selected. The inappropriate articles that do
not precisely meet the objectives are excluded. The appropri-
ate and efficient issues addressing papers are selected for the
detailed study.

III. ENERGY MANAGEMENT
RQ1: How are the different resources utilized for better
energy management?

Although there are numerous benefits of using a micro-
grid, designing a microgrid that is both cost-effective and
efficient is a complicated process since it requires considering
all available options simultaneously. Since each decision in
the planning process will have an impact on the capacities
of the system. Every planning process depends on a con-
straint (technical, environmental, geographical, social and
regulatory constraints) or goal. Uncertainties also have an
enormous impact on the planning process. A few issues must
be considered when designing microgrids, including power
generation mix selection and sizing, location, and operating
schedule. Customer satisfaction (reliability, quality, and envi-
ronmental friendliness) and cost efficiency are two objectives
that should be addressed throughout the design phase of a
microgrid project. One strategy for designing a microgrid
is considering it a series of optimization issues. Depending
on the circumstances, an appropriate optimization strategy
is selected for the application [32]. Energy management of
microgrids can be explained using Fig. 5. Energy manage-
ment are classified as AI based and conventional techniques
based as demonstrated in Fig.6.

The intermittency of demands and renewable energy
sources makes it difficult for microgrids to provide the
required energy. Therefore, an energy management system
(EMS) must tackle these issues. EMS considers hybrid
systems, demand-side management (DSM), non-renewable
energy sources, and energy storage systems (ESS). Load and
renewable energy forecasting can be done using deep learn-
ing [33]. To manage the deregulated electricity system, DSM
plays a vital role in the management of the load as well as the
intermittent nature of renewable energy sources (RES) that
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FIGURE 6. Energy management classifications.

generate power. To get a smooth load profile via the use of the
demand response (DR), proper switching and efficient stor-
age are required [34]. The primary goal of DSM is to reduce
the peak demand and the cost of power while simultaneously
increasing the use of RES to lower emission rates [35].
Controllable and uncontrolled power sources, energy storage
systems (ESS), hybrid electric vehicle (EV), and demand
response (DR) programs are the components that make up
the coordinated functioning of a grid-connected microgrid.
The stochastic optimization algorithm can find the optimal
generation schedule, battery performance, and cost-effective
DR program. The optimized DER integration leads to finan-
cial benefits for the utility. The profitability of prosumers in
a microgrid is augmented through the DR program, which
boosts RE utilization [36]. EMS may be implemented using
modeling approaches, aim functions, constraints, and opti-
mization methods. From a source point of view, EMS is
aimed at the optimal use of Distributed generation to feed
the loads. EMS aims to provide the load generation bal-
ance, reduce emissions to net zero, and optimize microgrid
power exchanged based on the market price and security con-
straints [37]. An energy management system (EMS) utilizes
the microgrid elements optimally for reliable and efficient
operation. It may contain the implementation of robust and
fast decisions for critical operation objectives. It mainly con-
tains the control and communication in the microgrid [38].
EMS is holistic information based on forecasting, load shar-
ing, load forecasting, weather forecasting, and planning. It is
designed to deal with dynamic and steady-state features of
DER, the intermittent nature of sources, the planning and
management of ESS, the type of operation of the microgrid,
and power quality. Thus, EMS is a comprehensive automated
and real-time system used for automated scheduling andman-
agement of distributed energy resources(DRS) and control
loads operating within an electrical distribution system [39].
The EMS provides the data management, grid information,
supervision, and control over all the automated distributed
generation sources (DGS) and energy storage systems (ESS)
that compose the microgrid [40], [41]. Demand on an hourly
basis can be forecasted using state-of-the-art techniques such
as deep learning. Table 2 discusses the benefits of energy

management while Energy management classifications are
discussed in table 3.

EMS manages all the DGS, ESS, and controllable loads
in case of resynchronization of the microgrid with the main
grid [42], [43].

TABLE 2. Benefits of energy management systems.

EMS is used for intelligent power-sharing and load-
shedding management [46]. Although microgrid has many
advantages, planning a cost-effective microgrid is a complex
process because of considering all alternatives at a time. The
classification of EMS methods is discussed in Table 3. Since
each decision in the planning process will impact the system’s
capacities, centralized and decentralized schemes are widely
used in EMS. Centralized EMS (CMES) has a great role to
play in the optimization of microgrids, while decentralized
EMS has the primary goal of maximizing power production
to meet the load demands and export surplus power to the
utility. Fig. 7 and Fig. 8 show the structure of centralized and
decentralized EMS (DEMS) schemes.

A. CENTRALIZED EMS
In microgrids, a centralised controller manages and regulates
distributed energy resources (DERs) such as solar panels,
wind turbines, and energy storage devices. This enables
centralised energy management as shown in Fig. 7. The
controller strategically allocates resources based on real-time
data on energy output, consumption, and grid conditions
to meet demand, maintain grid balance, and ensure stabil-
ity [47]. This technology enables the seamless integration
of renewable energy sources, enhances the power grid,
and creates opportunities for energy markets and demand
response programmes. Centralised energy management aims
to achieve maximum system efficiency, minimise running
costs, and reduce greenhouse gas emissions [48]. Utilising
advanced optimisation algorithms and fault detection systems
enables the achievement of this goal [49]. In light of various
factors, this contributes to the microgrid’s transformation into
a reliable and sustainable energy ecosystem. Table 4 explores
the centralized control in details.

B. DECENTRALIZED EMS
The decentralisation of energymanagement inmicrogrid con-
trol involves distributing decision-making among multiple
points within the microgrid system, rather than relying on
a single controller. Fig.8 depicts the decentralization control
of EMS in microgrid. Every node, representing either an
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TABLE 3. Classification of EMS methods.

FIGURE 7. Centralized control of EMS.

individual DER or a smaller group of assets, independently
makes decisions [55]. The decisions are informed by local
data, such as energy production and consumption levels,
as well as the condition of the power grid. This network of
linked nodes enables the decentralisation of energy produc-
tion, storage, and usage. Protocols facilitate communication
and collaboration between entities [55]. The objectives of
this approach aim to enhance system security and mitigate
the impact of communication issues. Microgrids are capable

of promptly adapting to fluctuations in the power grid’s
operations or issues due to their autonomous energy manage-
ment system. In addition, they have the ability to efficiently
integrate various energy sources and adapt to fluctuations in
demand. Table 5 explores the centralized control in details.
Different EMS techniques can be implemented to address

the management issues of microgrids. Many energy manage-
ment strategies can be applied to obtain the desired output.
Different algorithms for different constraints find application
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TABLE 4. Centralized EMS.

FIGURE 8. Decentralized control of EMS.

in strategy making. Table 6 demonstrates the understanding
of different EMS strategies.

IV. OPTIMIZATION IN EMS
RQ2: What is the role of optimization techniques for the best
output of different components in the microgrid?

Optimization techniques are the actions that optimize the
value of the objective function. Fig. 9 shows the flow chart
of optimization solution. The concept of computational opti-
mization refers to a range of mathematical procedures centred
on selecting the best possible solution from among a number
of accessible options. The term ‘‘optimization’’ refers to
determining the optimal solution for an objective function
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TABLE 5. Decentralized EMS.

given a list of constraints. This process may be used for
various objective functions and domains [101]. A large field
of applied mathematics is used to expand optimization theory
and methodologies.

Optimization techniques play a critical role in the energy
management ofmicrogrid control systems, but their effective-
ness hinges on several factors. While these techniques lever-
age algorithms and models to allocate resources efficiently
and minimize operating costs, they often face challenges in
accurately predicting complex and dynamic energy patterns
within microgrid [102]. Factors such as variable renewable
energy generation, uncertain load demands, and grid distur-
bances introduce significant uncertainty, making it difficult
for optimization algorithms to achieve optimal solutions in
real-time. Moreover, the computational complexity of these
algorithms can lead to increased processing times, limiting
their ability to respond quickly to changing conditions [103].
Additionally, the implementation of optimization techniques
may require accurate data, which can be challenging to obtain
due to issues such as sensor inaccuracies or communica-
tion delays. Furthermore, the trade-offs between conflicting
objectives such as cost minimization, system reliability, and
environmental sustainability present additional challenges in

designing effective optimization strategies [104]. Thus, while
optimization techniques hold promise for improving the effi-
ciency and performance of microgrid energy management,
addressing these challenges is crucial to realizing their full
potential in real-world applications.

Since effort/resources or output expectations in every
assignment/work/project may be connected with a particular
decision variable, optimization can be utilised to find the
circumstances that maximise or minimise that function. Tech-
nically, optimization is not new; it has been known since the
times of Newton, Lagrange, and Cauchy.

No single optimization approach effectively analyses
all circumstances and constraints. Various optimization
approaches have been developed. The optimum-seeking
approaches are used in operation mathematics research for
decision-making issues with optimal solutions. Operation
research was used in World War II [105]. Various opera-
tional research methodologies include (1) stochastic process,
(2) statistical methods (3) Programming or optimization
methods based on mathematics: Included in these optimiza-
tion techniques are Calculus methods, Calculus of varia-
tions, Non-linear programming, Geometric programming,
Quadratic programming, Linear programming, Dynamic
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TABLE 6. Energy management systems in microgrid.
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TABLE 6. (Continued.) Energy management systems in microgrid.

programming, Integer programming, Stochastic program-
ming, Separable programming, Multi-objective program-
ming, Network methods: CPM and PERT, and Game theory.
Genetic algorithms, Simulated annealing, Ant colony opti-
mization, Particle swarm optimization, Neural networks, and
Fuzzy optimization are non-traditional or contemporary opti-
mization approaches.

The microgrid uses both AC and DC types of sources. The
microgrid largely uses renewable energy, among which solar
cells, fuel cells, and batteries are DC sources, whereas wind
turbines andmicroturbines are examples of AC sources. Since
the AC sources are of variable frequency and voltages, both

types of sources, i.e., AC and DC, use inverters to get a fixed
range of voltage and frequency. AC sources use a rectifier for
conversion to DC and AC by the inverter. Similarly, the DC
source utilizes the inverter to convert the DC to AC [106].
The control methods determine the output frequency, voltage
and current parameters. Different application strategies are
adopted for power flow control management based on the
number of sources used. The energy management system is
utilized for the sources’ activation and deactivation [107]. The
grid-connected mode uses control strategies such as Sliding
mode control, Model predictive control, Power reactive con-
trol, Droop control, Fuzzy logic control, and Distortions in
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FIGURE 9. Flow chart for optimization solution.

different parameters of the microgrid system to cause fault
conditions.

The dynamic response of grid-connected microgrids can
be analyzed using different control strategies. The control
methods comprise the single or hybrid algorithm. The per-
formances of these methods are different for the same cases;
therefore, they have some advantages and disadvantages con-
cerning each other in table 7. Optimization algorithms can
control transient stability in frequency, voltage regulation,
and current ripples in islanded microgrid operation [108].

V. CONTROL IN MICROGRIDS
RQ3: What is the role of traditional control methodologies
and their impact in the current arena?

The controllability of a microgrid is one of the primary
characteristics that set it apart from a normal distribution sys-
tem. Proper control techniques are necessary for microgrids’
minimum consumption and cost-effective operation [80].
In the transition from isolated to grid-connected operation
and vice versa, power flow between microgrids and the main
grid plays a vital role in controlling the stochastic behavior
of distributed generation sources control techniques. This
property allows microgrids to function as coordinated and
controlled modules linked to an upstream network [148].
Network interface upstream,microgrid protection and control
and local control are three Control functions in microgrid.
The upstream network decides whether a grid-connected or
isolated mode of operation is used. Control of the microgrid

regulates voltage and frequency, P and Q control, forecasting
of load and scheduling, monitoring, and microgrid protec-
tion [149]. In local control, regulation of primary voltage
and frequency, primary P and Q control for local generat-
ing and ESS units is done. PQ control, V/F control, and
droop control are three major control methods in micro-
grids. PQ control keeps the active and reactive power of the
power source constant while keeping voltage and frequency
within acceptable limits. However, V/F control maintains the
voltage and frequency constant irrespective of output active
and reactive power [150], [151]. Droop control helps share
the demand to the generating units so that the generator
can change its output power based on the frequency divi-
sion [152]. Fig. 10 represents the classification of control
techniques. Conventional control techniques can stabilize
frequency and maintain standard voltage limits during dis-
turbing events. Table 8 explains the classification of control
methods.

Conventional techniques comprise droop control, MPPT,
MAS control, virtual impedance, and primary-secondary
control. Droop control utilizes frequency to control active
power. For the prevention of overloading droop control
technique is implemented [153]. Maximum power point
tracking (MPPT) technique can be implemented for maxi-
mizing the power production from the solar or wind energy
sources [154], [155]. A multiagent system (MAS) comprises
two or more intelligent agents assigned for a specific assign-
ment. It depends on constraints and stabilizes the variable
voltages, frequency, and power [151], [156]. A decentralized
type of MAS is utilized to improve security and stabilise
microgrids. Frequency-based control strategies are looking
after microgrid outages. MAS is majorly used in plan-
ning, monitoring, control, and automation. Virtual output
impedance technology is implemented to improve power-
sharing accuracy. It also improves transient and steady-state
responses [157]. Interface converters of generating units
and microgrid systems can be coordinated using primary-
secondary technology. During power outages, the primary
device’s voltage can be utilized by the secondary device as
a reference. PCC can regulate the utility grid and MG by
implementing the primary-secondary technique [158]. In a
standalone mode of operation, DG or ESS works as the
primary unit [159]. This technique is difficult to implement
in larger systems.

Using novel control techniques enhances performance as
it utilizes more sophisticated methods [160], [161]. Smart
and flexible technologies are implemented for robust con-
trollers to optimise constraints in the control process [162].
In microgrid intelligent techniques, during the operation of
the MG unit, the implementation of intelligent techniques
improves the stability and performance of DG units [29].
System adjustment for an increased number of parameters
is a complicated process. Many approaches are effective for
the regulation of those parameters. Adaptive control tech-
niques are used to maintain stability, resiliency, convergence,
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TABLE 7. Optimization techniques used in Microgrid.

123306 VOLUME 12, 2024



M. Bilal et al.: Review of Computational Intelligence Approaches for Microgrid Energy Management

TABLE 7. (Continued.) Optimization techniques used in Microgrid.

FIGURE 10. Classification of control methods in MG.

TABLE 8. Attributes of control methods in MG.

and optimization [163], [164]. This technique finds applica-
tion in the solution of uncertain constraints and disturbance
events. For optimal power production, adaptive control reg-
ulates the voltage and frequency variations [165]. Microgrid
supervisory controllers are used to make the system advanced
and smarter [166]. It can be centralized or decentralized

types [167], [168]. It has additional control features, such as
quality control for performance enhancement. Hierarchical
control is a sub-part of supervisory control.

In novel control techniques, the hierarchical control tech-
niques perform a challenging task as it must provide real-time
frequency and voltage stability at the time of disturbance
caused in the microgrid [169]. Generation from RES is con-
trolled by using a central controlling unit, which predicts
the demand and power generation so that operation plan-
ning can be done using that information. In a grid-connected
mode of operation, the IEEE 1547-2003 standard is fol-
lowed by a microgrid using a valid detection algorithm [170],
[171]. In a standalone system, P and Q are generated within
specified voltage ranges at constant frequency. In hierar-
chical control of microgrids, there are three different levels
of control, which comprise of primary, secondary and ter-
tiary levels of controls as shown in Fig.11 [172]. In this
control scheme, the primary level of control deals with
local energy control and distributed energy sources. Mean-
while, the secondary control in the hierarchy must look
after the primary deviation in the frequency variable and the
voltages.

In the case of AC microgrids, the secondary level of
control deals with the voltage and frequency, while in the
case of DC microgrids, it controls the voltages only. Energy
Management System(EMS) is the tertiary level of control
in the hierarchy as mentioned above it uses the intelligence
system to manage and coordinate the operational power flow
between different microgrids as well as in the main grid
[40], [173].
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FIGURE 11. Hierarchical control of microgrid.

VI. AI IN MICROGRID CONTROL
RQ4: What is the impact of artificial intelligence technolo-
gies on microgrid management?

AI-based microgrid control offers promising prospects for
enhancing energy management, but it also entails other cru-
cial factors that need to be taken into account. First and
foremost, the use of AI algorithms brings about challenges in
the design and implementation of systems, namely in terms of
the understandability and reliability of the models [174]. The
complex nature of some AI models presents a difficulty in
interpreting the underlying reasoning behind their decisions,
hence generating issues over accountability and transparency,
particularly in crucial domains such as energy management.
Furthermore, the efficiency of AI-driven control systems is
greatly influenced by the accessibility and calibre of data used
for training and validation purposes. Erroneous or prejudiced
data might result in less than ideal performance and may even
worsen preexisting inequalities in energy accessibility and
cost [175]. In addition, AI algorithms may have difficulties
in adjusting to unexpected or severe occurrences, such as
natural calamities or cyber assaults, that might interrupt reg-
ular operational circumstances and jeopardise grid stability.
Moreover, the use of AI in microgrid control gives rise to
ethical concerns about privacy, autonomy, and socioeconomic
effects, emphasising the need of strong governance structures
and involvement of stakeholders [176]. Hence, it is crucial to
overcome these crucial difficulties and guarantee responsible
and fair deployment in practice in order to fully harness the
potential of AI in boosting microgrid energy management.

AI has machine learning as its major part, which can be
used to improve the operation and control of the microgrid
functioning. Based on the data, the ML techniques can be
categorized into four subsets: Supervised learning, Unsuper-
vised learning, semi-supervised learning, and reinforcement
learning [177].

The flow chart shown in Fig. 12 depicts the different
types of machine-learning technologies used in microgrid

systems [29], [175], [178], [179], [180], [181], [182], [183],
[184], [185], [186], [187].

A. AI-BASED HIERARCHICAL CONTROL
The use of artificial intelligence (AI) in the hierarchical
control ofmicrogrid energymanagement presents both poten-
tial benefits and significant obstacles. Hierarchical control
structures provide a scalable framework for effectively con-
trolling large microgrid systems. These structures organise
control tasks into various levels, including local, distributed,
and centralised control layers. Artificial intelligence meth-
ods, such as machine learning and optimisation algorithms,
may be used at every level to enhance decision-making
and enhance system performance. Nevertheless, the suc-
cessful implementation of AI-based hierarchical control in
microgrids requires meticulous evaluation of several pivotal
elements [188]. Initially, the incorporation of AI algorithms
into control frameworks presents difficulties concerning the
transparency, interpretability, and dependability of the algo-
rithms. The opaque nature of many AI models might impede
comprehension and confidence in decision-making proce-
dures, perhaps resulting in operational inefficiencies or safety
issues. In addition, hierarchical control systems depend on
abundant data inputs to train AI models and make well-
informed judgements, which raises problems around data
privacy, security, and quality. Preserving the authenticity
and secrecy of sensitive information in microgrid systems
is of utmost importance, particularly due to the possibil-
ity of cyber threats and hostile assaults [189]. Furthermore,
the implementation of AI-based hierarchical control may
face challenges in adjusting to dynamic and unpredictable
operating circumstances, such as variations in renewable
energy production or sudden increases in demand. Strong
and reliable methods for confirming the accuracy of models,
measuring uncertainty, and adjusting learning processes are
crucial for improving the ability of AI-controlled systems
in microgrids to withstand challenges and operate effec-
tively [190]. Moreover, hierarchical control structures need
to include socio-technical aspects such as stakeholder prefer-
ences, regulatory requirements, andmarket dynamics in order
to guarantee that they are in line with wider energy transition
objectives and societal values. Ensuring a harmonious combi-
nation of technical intricacy, user-friendliness, and inclusivity
is essential for promoting the acceptance and implementa-
tion of AI-driven hierarchical control systems across various
individuals and groups within microgrid communities [191].
To fully harness the potential of AI-based hierarchical control
in microgrids for improving energy management, it is crucial
to tackle key challenges such as transparency, data gover-
nance, adaptability, and socio-technical factors. This will
ensure the realisation of sustainable and fair energy systems.

1) PRIMARY CONTROL
Primary control (as shown in Fig. 13) in hierarchical con-
trol deals with inertia control, power sharing, and maximum
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FIGURE 12. Machine learning in microgrid.

FIGURE 13. Primary control flow chart using ML techniques.

power point tracking control. Since power sharing is a com-
plex assignment, implementing AI can boost the primary
control function of microgrids. AI helps improve the inertia
in microgrids, which have non-rotational generating sources.
Compared to the conventional control techniques, AI can
track MPPT more accurately, giving the best results.

2) SECONDARY CONTROL
The primary level of control can cause v/f variation. This
variation can be compensated by applying the secondary level
of hierarchical control as shown in Fig. 14. Response delay,
accuracy, communication infrastructure, protection and sta-

FIGURE 14. Secondary control flow chart using ML techniques.

bility are the major challenges in conventional secondary
control. Therefore, Novel AI techniques can be implemented
to address these challenges.

3) TERTIARY CONTROL
It is the zenith of a hierarchical control system. It deals with
energy exchange with the utility grid.

Tertiary-level control ensures optimized power dispatch
and cost-effective operation as depicted in Fig 15. Large
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FIGURE 15. Tertiary control flow chart using ML techniques.

data can be easily used for optimal power exchange and AI
techniques can easily manage the control scheme.

The flow chart depicted in Fig. 16 gives a detailed analysis
of all three categories of hierarchical control [29], [162],
[172], [182], [192], [193], [194], [195], [196], [197], [198],
[199], [200], [201], [202], [203], [204]
The table 9 depicts the different AI techniques used for

three levels of hierarchical control. Every technique is rep-
resented for its application in control, and its associated
challenges are also analysed.

VII. DISCUSSION AND INTERPRATATION
The primary source of power production is renewable energy
sources, which are abundant, economically feasible, and envi-
ronmentally beneficial. Designing microgrids while simulta-
neously considering all aspects is a complex procedure. It is
important to remember that each step of the planning process
substantially influences the overall capability and efficiency
of the renewable energy system. As a result, it is essential
to examine a variety of criteria while putting in place an
Energy Management System (EMS). Customer satisfaction,
renewable energy sources (RES), cost efficiency, regula-
tory compliance, geographical limits, environmental effects,

demand-side management (DSM), energy storage systems
(ESS), and switching are among these considerations. EMS
delivers a sustainable load-generating solution that reduces
pollution and maximizes power exchange efficiency while
prioritizing market pricing and security considerations inside
the microgrid.

It is critical to emphasize that EMS technology offers
a long-term solution for producing power without emitting
hazardous pollutants. Furthermore, it enables efficient power
exchange based on market rates and protects the micro-
grid system’s security. Implementing an EnergyManagement
System (EMS) may improve power availability and reliabil-
ity while increasing the amount of renewable energy used.
An EMS may also increase power quality, minimize oper-
ating and emission losses, limit energy losses, reduce fuel
usage, and lessen dependency on grid power input. Based
on the EMS’s operating mechanism, it might be used for
intelligent load-shedding management and power sharing.
Centralized and distributed energy management systems may
improve microgrid performance and enhance power gener-
ation. The central controller controls data collecting, online
dispatch, and distributed resource scheduling in a centralized
control energy management system.
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FIGURE 16. Flow chart of AI-based hierarchical control in microgrid.
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TABLE 9. Attributes of hierarchical control in microgrid.

On the other hand, local controllers make all required
choices in a decentralized energy management system. The
Centralized Energy Management System (CEMS) is typi-
cally used in small-scale microgrids but is also utilized in
larger microgrids. DEMS (Decentralized Energy Manage-
ment Systems) are intended to manage enormous volumes
of data and high workloads effectively. This enables local
controllers to handle the system seamlessly, guaranteeing
optimum renewable energy use. Because of its slower pro-
cessing speed, complexity, and restricted flexibility, CEMS
may create specific issues. With its speedier processing capa-
bilities, dependability, and resilience, DEMS looks to provide
a more efficient and trustworthy option. In the context of
CEMS and DEMS, single controlling units in CEMS may

increase the chance of failure, while DEMS are intended to
prevent single-point failures.

Table 6 illustrates various methodologies that are being
implemented in a wide range of contexts. Commercial build-
ings employ HMG technology that can adapt design accord-
ing to BLP and DG power. However, due to the stochastic
nature of BLP and RES intermittency, HMG has a low BEC
and a significant RI. The utilization of FOBT-EMS, EMS
with enhanced converter and control of PV battery storage,
holistic power management, stochastic energy management,
and DRS is implemented to achieve economical operation.
The Advanced Metering Infrastructure-Energy Management
System is employed to operate an isolated Microgrid. The
DRMRC-EMS, COVP-EMS, and SEM methodologies are
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currently being employed. The utilization of MAF and IIOT
has the potential to enhance the robustness of MGDRS. DTF,
EMS based on a model-free approach, FOBT-EMS, and EMS
based on data-driven techniques are potential methods for
stochastic energy management in multi-microgrid network
systems. Various types of EMS, such as AMEMS, APEM,
NILM-EMS, CAD-based EMS, and data-driven EMS, are
employed to achieve optimal energy production.

The optimization of energy management in ESS can be
achieved through the utilization of Lyapunov optimization-
based EMS, APEM, Markov chain-based solar generation
model, and Prosumer energy management techniques. Sys-
tem security management can be effectively achieved through
stochastic energy management based on blockchain technol-
ogy. A smooth power profile and frequency improvement
can be managed using FLEMS and BMSC. The utilization
of CAD-EMS is implemented to achieve efficient voltage
regulation. The load profile management can be effectively
executed using IPCEM and NLIM methodologies.

The utilization of DRS, DRMPC, AMEMS, HMG, APEM,
Markov chain-based model and EMS with advanced con-
verter control of a PV battery system presents certain
challenges in power generation. The phenomenon of time
delay challenge is observed in CAD-EMS, APEM, andMAF,
while the level of computational intricacy is the primary
aspect of consideration in IPCEM. Energy storage challenges
are observed in various energy management systems such as
COVP-EMS, DRM, model-free EMS, EMS with advanced
converter control of PV battery, and data-driven EMS. The
implementation of control mechanisms in Demand Resource
Management (DRM) can be a costly endeavor. Developing
Model Predictive Control (MPC) for online structured control
also poses challenges in the context of fair-optimal bilevel
transactive energy Management Systems (FOBT-EMS). The
challenges in implementing two-layer stochastic power man-
agement primarily stem from reliability, operation, and
security limitations. Despite these challenges, this approach
can effectively reduce energy losses. Collaboration amongst
prosumers is a favorable aspect of DPES-EMS. However,
it presents certain obstacles in prosumer energy provision-
ing. Implementing a dual pricing system in retail electricity
pricing has encountered challenges in market competition
among participants. Implementing blockchain technology in
stochastic energy management systems exhibits favorable
system security and cost-efficiency benefits, rendering it a
viable option for deployment in interconnected microgrid
networks. Nevertheless, it encounters obstacles in incentive
mechanisms centring on smart grid systems.

Based on the data presented in Table 7, it is evident that
a uniform methodology is not employed across all instances.
A novel methodology is employed to optimise various lim-
itations and achieve optimal gains. The efficacy of certain
techniques is contingent upon the specific constraints to
which they are applied and may not necessarily yield opti-
mal results when applied to alternative constraints. Various
techniques such as HO, ADE, WO, fuzzy algorithm, MFO,

SA, and BCA are employed to optimise operational expenses.
Additionally, AFSO and HSO are utilised to forecast power
generation schedules for the upcoming day. The ACO, SA,
WO, BCA, GA, and Fuzzy algorithms exhibit limitations
in achieving rapid convergence. The phenomenon of HSO
exhibits a high degree of stochasticity, while the robust
approach is constrained in its ability to account for multi-
ple sources of variability. The utilization of GA in power
systems has been observed to exhibit higher computational
speed. However, it is important to note that this approach
may converge to a local optimum. The utilization of CSO
presents the benefit of unconstrained parameter limitations.
The settling time of SFO is superior. However, the issue of
premature convergence remains a point of concern. The PSO
algorithm exhibits superior performance in the presence of
fluctuating power sources and linear and nonlinear loads.
However, it is susceptible to oscillations in the operating point
around the maximum power point. The GHO, MFO, WO,
CSO, and PSO algorithms have reached their local optimal
constraints. PSO is a viable technique for enhancing battery
longevity. The implementation of ACO has the potential to
mitigate frequency and voltage fluctuations.

Implementing control mechanisms is imperative for the
efficient and sustainable functioning of microgrids. Imple-
menting local control functions is crucial in regulating
primary voltage and frequency and P and Q while ensuring
a constant v/f ratio. The control of unit demand can be
regulated by implementing drop control techniques. Various
applications employ both traditional and innovative control
methodologies. The established methodologies encompass
MAS, MPPT, droop control, virtual impedance approach,
and primary-secondary technique. Contemporary control
methodologies rely on cutting-edge technology. Artificial
intelligence (AI) methods exhibit high levels of intelligence,
adaptability, and speed. Implementing SL, SSL, USL, and
RL machine learning methodologies has diverse use cases
in managing energy in microgrids. The research discusses
various applications of primary, secondary, and tertiary con-
trol levels in hierarchical control that are based on artificial
intelligence. GRNN and SNRBFN are viable for detecting
maximum power point tracking, whereas RL can be effec-
tively executed for inertia management. The primary level
of hierarchical control enables real-time power sharing of
microgrids. Implementing V-f control at the secondary level
can be achieved by utilising ELM, FFNN, SVM, LSTM,
and MLP techniques. Reinforcement learning (RL) and
DMQL techniques are employed to minimise communication
latency. On the other hand, support vector machines (SVM),
fast Fourier transform (FFT), k-nearest neighbours (KNN),
and ANFIS control methods are utilised for fault prediction
and correction at the secondary control level. The tertiary
level of hierarchical control can regulate market autonomy,
power flow management, and economical operation.

Table 9 illustrates various artificial intelligence (AI)
methodologies for optimising the functionality of energy
systems, as well as the challenges associated with their imple-
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mentation. The primary level control’s distributed control
category includes DRL, Q learning, data-driven control, and
FFNN. Implementing ANN for power sharing is feasible.
However, stability remains a critical concern. The implemen-
tation of voltage regulation can be achieved by utilising Q
learning, DTDNN, and data-driven control techniques. The
primary obstacle encountered in Q learning and ANFIS con-
trol is the issue of communication latency. At the secondary
level of hierarchical control, the use of BEL can result in
reduced computational requirements. The implementation of
ANFIS control for frequency regulation necessitates exten-
sive computations. Implementing artificial neural network
(ANN) technique has shown promise in enhancing power
quality. However, the issue of communication delay poses a
significant challenge in this regard. At the tertiary level of
hierarchical control, the optimal power flow can be achieved
through the utilisation of RML and DNN techniques. These
methods present challenges in the form of transients and
storage systems, respectively. The detection of microgrids in
an islanded state can be achieved through the utilisation of
cloud-based machine learning techniques, specifically artifi-
cial neural networks.

Additionally, mixed-integer nonlinear programming with
quadratic constraints and linear objectives can effectively
manage energy. The analysis of transients poses a challenge
in Monte Carlo tree-based reinforcement learning, whereas
stability analysis is a challenge in support vector regression.
Reinforcement learning (RL) has demonstrated efficacy in
energy trading, while legs are useful in mitigating commu-
nication delays.

VIII. CONCLUSION
The concept and applications of microgrids are thoroughly
discussed, along with energy management systems that
include centralized and decentralized approaches. The inte-
gration of advanced optimization techniques and machine
learning models addresses the inherent challenges of renew-
able energy intermittency and system efficiency. Detailed
discussions cover optimization techniques applicable to
these energy management systems and various control tech-
niques for managing energy in microgrids. The research
highlights the critical role of EMS in balancing load gener-
ation, reducing emissions, and optimizing power exchange
within microgrids. Additionally, the role of artificial intel-
ligence techniques in microgrid control is explored in
depth. The study concludes that AI-driven approaches are
pivotal for the future of microgrid energy management
and control. AI applications, including deep reinforcement
learning and data-driven control schemes, demonstrate sig-
nificant potential in enhancing operational reliability and
cost-effectiveness. The findings show that adopting these
innovative methods achieves sustainable and economically
viable microgrid systems. Future research should focus on
refining AI models and exploring their scalability across
different microgrid configurations to maximize their impact
on global energy management practices. Developing novel

optimization techniques for complex microgrids is essential
to enhance their efficiency. Additionally, implementing more
applications of state-of-the-art technologies can significantly
improve microgrid operations. To achieve this, infrastructure
must be developed to support the integration of artificial
intelligence techniques in microgrid operations.
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