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ABSTRACT The central nervous system is affected by multiple sclerosis (MS) which destroys the
neurocommunication. Among the diagnostic imaging systems, magnetic resonance imaging is the most
preferred one to track new and enlarged MS lesions. In this paper, we propose a deep-attention V-Net
architecture with modified compression and expansion sections to segment MS. The first network performs
feature extraction and expansion, thus delivering enhanced feature maps for segmenting the region of
interest. The second network performs feature extraction with modified V-Net architecture and performs
segmentation using the soft-max function. This model is evaluated on the publicly available MICCAI 16,
MSSEG-2, and Brain MRI Dataset of Multiple Sclerosis with Consensus Manual Lesion Segmentation and
PatientMeta Information dataset (2022) datasets and comparedwith the existingmodels. The proposed deep-
attention V-Net model is also compared with sequential models, using V-Net and U-Net in terms of precision,
sensitivity, accuracy, loss, mean IOU, F1 Score, and dice score. The suggested approach delivers a dice score
of 0.8900 using the MICCAI 16 dataset, 0.9000 using the MSSEG-2 dataset and 0.9638 using the combined
MSSEG 2 and Brain MRI Dataset of Multiple Sclerosis with Consensus Manual Lesion Segmentation and
Patient Meta Information dataset (2022) datasets. These dice score values are superior to other deep-learning
networks.

INDEX TERMS CNN, deep learning, lesion, MRI, MICCAI, multiple sclerosis.

I. INTRODUCTION
Multiple Sclerosis (MS) is a progressively demyelinating and
neurodegenerative autoimmune disease characterized patho-
logically by mononuclear inflammatory cells, axonal loss,
gliosis with the focal formation and diffused abnormalities
in the central nervous system (CNS) [1]. The lesions or
plaques are formed due to multiple sclerosis in the CNS.
These lesions are commonly circular to elliptical and vary in
diameter from millimeters to one-centimeter [1]. The initial
stage of MS has separate lesions. As the MS advances,
these lesions will join together. Normally MS lesions form
in periventricular and juxta cortical white matter [1]. The
indications of MS are optic disorder, aches, weakness, and
imperfect motor functions. The signs and span are different
for different persons. MS is affected by age, gender, family
history, climate, etc [2]. Among the imaging techniques
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suggested for MS diagnosis, Magnetic Resonance Imaging
(MRI) is a non-penetrating visual representation method
that is widely preferred for brain imaging. The different
modes of MRI and the appearance of brain tissues [3] are
presented in Figure 1. Identification and segmentation of
MS lesions play crucial roles in aiding MS diagnosis and
follow-up. The human-assisted segmentation of MS lesions
is tedious and liable to intra and inter-reader changes [4].
The automatic segmentation of MS lesions is complex due
to the lack of information regarding the size, shape, and
localization. Several automatic segmentation models have
been proposed in the last two decades for MS segmentation
[2]. Machine Learning (ML) and Deep Learning (DL)
methods have been proposed to observe the fundamental
and hidden attributes of MRI data. The notable advantage
of DL-based methods is the automatic feature extraction that
leads to effective segmentation [5]. This paper proposes a
DL model named Deep Attention V-Net (DAVNet ) for MS
lesion segmentation. This model has two networks. A Deep
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FIGURE 1. Different types of MRI. (a) T1-w MRI, (b) T2-w MRI,(c) PD MRI
and (d) FLAIR MRI of an MS patient.

Attention Network (DANet ) for giving attention to the MS
tissues, and a Modified V-Net (MVNet ) architecture for MS
segmentation. Each network has compression and expansion
paths. Every path has convolutional layers, non-linearity
function, and skip connections. One more block with the
above-said components is introduced in each network to
provide more attention for the extraction of the region of
interest for improved segmentation. The effectiveness of
the suggested network is analyzed by accuracy, mean IOU,
precision, sensitivity, specificity, loss, and dice score. The
important findings of our work are itemized below.

• DANet which focuses on the MS tissues leading to
improved segmentation followed by a MVNet architec-
ture for MS segmentation.

• Implemented Other sequential networks like V-Net,
U-Net: MVNet , and MVNet : U-Net and proposed model
on MICCAI 16 dataset, This experiment proves the
effectiveness of the proposed sequential model.

• The proposed method delivers good results for smaller
andmore complexMS lesionswith better dice scores, F1
scores, accuracy, mean IOU, loss, precision, sensitivity,
and specificity.

This paper is systematized as follows, Section II is about
the related works and publicly available MS datasets for MS
lesion segmentation. Section III is about the proposedmethod
it includes the network architecture and a detailed description
of all the blocks. Section IV presents results and discussion
including dataset description, performance measures, and
eight conducted experiments followed by a conclusion in
Section V.

II. RELATED WORK AND MS DATASETS
This section presents various DL models proposed for MS
lesion segmentation followed by publicly available different
MS Datasets.

A. DL NETWORKS FOR MS LESION SEGMENTATION
There are many DL models for MS segmentation and classi-
fication. It includes Convolutional Neural Network (CNN),
U-Net, Fully Convolutional Neural Networks (FCNN),
Generative Adversarial Networks (GAN), Recurrent Neural
Networks (RNN), Residual Network (ResNet), Inception
V3-Net, etc. The CNN architecture comprises a convolutional
layer, pooling, batch normalization, and fully connected
layers [2]. U-Net is a CNN with two sections such as

encoding and decoding sections. The encoder has several
down-sampling segments together with the convolutional
layers and the decoder has several up-sampling sections and
layers of convolution [6]. The increase in lesion size results
in robust segmentation and improvement of segmentation [7].
To get the best outcome from CNN, the number of layers can
be increased.

In the inception network [8], wider layers are considered
instead of considering deeper layers. The inception V3-Net
has three various convolutions along with one max pooling
layer. The main feature of inception V3-Net is the splitting of
the convolutional kernel which will make the model flexible
for different scales and also reduce overfitting. Another DL
model for reducing the vanishing gradient problem is the
Residual Network (ResNet). It has mainly two blocks such
as identity and convolutional blocks. In this network, every
residual layer undergoes convolution with the inputs of the
upcoming layer. The shortcut connections are present to add
the inputs and outputs [9].

CNN-based DL architectures are used for 2D medical
image segmentation in an efficient way [10], [11] [12].
With the availability of three-dimensional (3D) imaging data
for disease prediction, CNN-based 3D segmentation is also
available. Vaidya et al. [13] proposed a 3D 4-layer CNN-
based method in 2015. All the CNN layers use the softmax
activation function. In 2017, Valvendra et al. [14] widened
the research to use 3D information for the segmentation.
Millertari et al. [15] paper is based on CNN with the hough
voting approach but this is applicable only for blob-like
shapes and not an end-to-end phenomenon. Another method
is a 3D segmentation by Kholmovski et al. [12], which is an
all-along-in-line method but not a deep network structure on
multiple scales.

Isensee et al. [16] suggested a DL model called nnu-net
for image segmentation which uses the encoder-decoder
hyperparameters to specify the dataset. It uses adaptive pre-
processing, training schemes, and inference. A work by
Brosch et al. [17] is a seven-layer network based on a 3D
convolutional encoder with a shortcut connection for the
segmentation of lesions with different sizes. SMORE is a
method by Zhao et al. [18] based on CNN. It is an end-to-
end learning network and it puts back the image quality by
increasing the resolution and reducing the aliasing. Kang,
et al. [19] proposed an end-to-end network called Attention
Context U-Net (ACU-net) for MS lesion segmentation. it has
an attention block that will enrich the spatial details and
attribute depiction in an extraction step.

Raura et al. [20] worked on that statistical evaluation
which gave a better performance concerning precision while
keeping similar results on sensitivity and Dice similarity.
Schmidt et al. [21] proposed a threshold-based lesion
detection method. The 3D-based image segmentation mainly
focused on features and labels for the prediction.

The summary and the performance measures of dif-
ferent DL-based models for MS lesion segmentation are
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TABLE 1. Related Works.

presented in Table 1. To enhance the performance measures
of MS lesion segmentation, we put forward the DAVNet
architecture.

B. MS DATASETS
The problem of smaller size datasets for MS detection
and classification was somehow compensated by the Med-
ical Image Computing and Computer-Assisted Intervention
(MICCAI) and IEEE International Symposium Imaging
(ISBI) MS lesion segmentation challenge datasets. The
description of MS datasets used for many studies is given in
Table 2. MICCAI 2016 challenge was organized for the study
of multiple sclerosis segmentation algorithms. It includes
an extensive range of automatic algorithms for independent
evaluation comprising thirteen methods for segmenting MS
lesions against fifty-three MS cases. This dataset contains
T1-w, T2-w, FLAIR, and PD-w images and was acquired
through various MRI scanners using different magnetic field
strengths [22]. The MICCAI 2021(MSSEG-2) dataset has
a total of 100 images. The brain MRI Dataset of multiple
sclerosis with Consensus Manual Lesion Segmentation and
Patient Meta Information-2022 (Brain MRI for MS-2022)
dataset has 60 patient data. The proposed network is tested on
the MICCAI 2016 dataset for comparison with the existing
models and four sequential DL networks. The proposed
network was also trained and tested on the MSSEG-2
dataset. For generalization, the network is also trained on
the MSSEG-2 dataset and tested on brain MRI for the
MS- 2022 dataset.

C. PRE-PROCESSING
Pre-processing is applied to the raw dataset before the
segmentation process. These steps are applied to improve the
data quality, noise reduction, artifact correction, and make
the data more suitable for segmentation. In this work, the
denoising is performed by median filtering and intensity
normalization by histogram matching which reduces the
intensity variation due to different factors like scanner
setting, patient positioning, etc. The resampling was also
done to standardize the dimensions of the data. Here the

TABLE 2. MS Datasets.

TABLE 3. Network description of DAVNet .

downsampling was applied to each MRI data of the MICCAI
dataset with a reduction factor of 8. The downsampling factor
of 2 is used for the Brain MRI MS-2022 dataset.
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FIGURE 2. Block diagram of DAVNet .

FIGURE 3. DAVNet architecture.

III. PROPOSED METHOD
The DAVNet is a modified sequential V-Net architecture.
It does the role of squeezing the features in the form of

feature maps for segmentation using encoding and decoding
paths. The DAVNet has two networks named as DANet and
MVNet . Both networks have 11 blocks and hence there are

VOLUME 12, 2024 110553



V.P. Nasheeda, V. Rajangam: Deep Attention V-Net Architecture for Enhanced MS Segmentation

22 blocks in DAVNet . The feature maps from the last block
of DANet are combined and given to the first block of MVNet
(block 12). In DANet , the feature maps that are very much
relevant to segmentation are extracted by compression and
expansion paths. There is no softmax function in the first
network. The block diagram of DAVNet is shown in Figure 2
and the architecture ofDAVNet is shown in Figure 3. The Input
image was initially given to DANet and will pass through the
different blocks ofDANet then the enhanced region of interest
is given toMVNet . The network description ofDAVNet is given
in Table 3. Each block of DAVNet has a convolutional layer,
PReLU nonlinearity, downsampling, or up-sampling layers.
The convolutional operation is done by applying the kernel
to the input image. The output will be the convoluted feature
maps. Each link of the convolutional layer shown in Figure 3
has a unique kernel and produces different feature maps. This
convolution is followed by the PReLU nonlinear function
for producing nonlinear decision boundaries of the feature
map. The downsampling of the feature map is done by the
convolutional kernel of size 2×2×2 with a stride two. Then
the resultant image size is cut in half. All the first six blocks
perform the same operation with twice the number of feature
maps in each block. The 6t

h
block reduces the feature map to

4× 4× 4 and the 7t
h
block does the expansion by a factor of

two by the deconvolution. Blocks 7−11 do the deconvolution
with the location information from the compression path.
At the end of the 11t

h
block, the output image dimension

is the same as the input image dimension and supplied to
the input of MVNet . The layers of MVNet perform the same
operations as DANet , and softmax activation is applied at the
last block of MVNet for the classification of pixels. Each
pixel will be classified into MS pixel or non-MS pixel.
The convolution kernels present in DANet perform feature
extraction, meanwhile, the expansion path reconstructs the
image to the original spatial resolution. Here, the details
in the input image are appropriately retained to meet the
requirement of segmentation. The feature maps from the
DANet deliver enhanced image details for better segmentation
which can further be processed by MVNet for segmentation
using the softmax function. The pixel-wise segmentation can
be represented by binary numbers 1 to indicate the presence
of MS lesion and 0 for the normal tissue. The segmentation
can be represented by the following expression [17].

A = argmin
N−1∑
n=0

(E(Sn, s(In)) (1)

where, In: Training images, Sn: Segmentation, E: Error that
occurred in the segmentation process.

A. NETWORK ARCHITECTURE
DAVNet is a sequential framework consisting of two

networks. Each network has compression and expansion
paths with eleven blocks. We are applying downsampling to
five blocks and upsampling to the next five blocks followed

FIGURE 4. Internal diagram of block 1.

FIGURE 5. Internal diagram of block n.

by the softmax activation function to the last block of the
second network,MVNet .

1) DANET
DANet performs feature extraction using compression and
expansion paths. The feature maps from block 11 are
combined to get a single feature map. Different blocks of
DANet are presented below.

2) BLOCK 1
The internal architecture of block 1 is shown in Figure 4.
Each block in the DANet has a convolutional kernel of size
5 × 5 × 5 with stride 1. This kernel will move on the entire
image and provide the features as the output. The input image
is initially used for the first convolutional layer of the first
path. It is represented as

I (K )
j = Max

N−1∑
n=0

W
(k)
n,i,j ∗ I

(k1)
(i) + a(k)(j) (2)

FIGURE 6. Internal diagram of block m.

where, Ij(K ) feature map corresponding to the filter (W(i,i,j),
k: convolutional layer index, α(j): bias factor. In the DAVNet ,
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FIGURE 7. Internal diagram of Block 11.

the convolution kernel has a size of 5 × 5 × 5. The term
‘j’ belongs to (1, M) where M is the number of kernels in
the current layer. It is three in each layer of DAVNet . The
symbol ’*’ corresponds to the convolution operation. W is
the inverted version of W. An activation function, parametric
rectified linear unit (PReLU), is given to the outcome of the
convolution layer. PReLU can be defined as,

f (I j) = I j, if I j > 0 (3)

f (I j) = cI j, if I j < 0 (4)

where ‘c’ is a small and fixed value. This PReLU results in
only fewer extra parameters which is equal to the total number
of channels. The resultant parameter size is much less relative
to the whole number of weights present, hence the risk of
overfitting is reduced. Block 1 has 16 channels of size 128×

128 × 64, a summation block, and a convolutional layer of
size 2× 2× 2 with a stride 2. This block extracts the features
by considering non-overlapping patches. The output of this
layer is,

I
′(K )
j = Max(0,

N−1∑
n=0

Z
(k)
n,i,j ∗ f (I(j))

(k−1)) + b(k)(j) ) (5)

where, Zn,i,j is a 2 × 2 × 2 filter, b(j): bias factor.
The convolution operation with stride two will reduce

the size of a feature map by a factor of two. The number
of feature extraction kernels doubles at each block of the
compression path such that the size of the image reduces and
the feature map size increases. The location information from
the compression path will be forwarded to the expansion path.

Then the block 1 output is given to block 2. There will be
a reduction of dimension by a factor of 2 while moving from
block 1 to block 2.

3) BLOCK 2-6
The block 1 output is given to block 2. The output of block 2
is given to block 3, and so on. Figure 5 shows the internal
block diagram of block n where n is the number of blocks
n = 1, 2 . . . 6. The channels are illustrated by i × j × k . For
the blocks n = 2, 3, 4, 5, and 6, the input image size and
the number of channels are presented in Table 4. Every block
comprises a convolutional layer of size 5×5×5 with a stride
one, PReLU, summation block, and a convolutional layer of
size 2×2×2 with a stride two. The size of the image becomes
halved after each block. The line indicates the passage of

location information to block m = 10,9,8,7 respectively from
n = 2,3,4, and 5 for the expansion process.

Algorithm 1 DAVNet
• Input: Brain MRI along with MS masks.
• Output: Segmented images.

Step 1: Select MRI of n patients Ni with the corresponding
masks Mi where i=1,2,..n.
Step 2: Change the size of the Image.
Step 3: Divide the images in to nT1 images for training, nT2
for validation, and nT3 for testing.
Step 4: Construct the DAVNet model, S with convolutional
layers and PReLU layers as shown in figure 3.

• Applying convolutional mask on inputs

I(K )
j = Max

N−1∑
n=0

W
(k)
n,i,j ∗ I

(k1)
(i) ) + a(k)(j) .

• PReLU Nonlinearity

f(I j) =

{
I j, if I j > 0
cI j, if I j < 0

• Feature extraction by nonoverlapping patches

I
′(K )
j = Max(0,

N−1∑
n=0

Z
(k)
n,i,j ∗ f (I(j))

(k−1)) + b(k)(j) )

• Deconvolution Operation

I
(K−1)
j = Max(0,

N−1∑
n=0

W
(k)
n,i,j ∗ I

(k−1)
(i) ) + a(k−1)

(j) )

• Predicted output: Output of softmax layer

Step 5: Train the model S using nT1 images with its MS
mask to obtain the trained model S1.training steps are given
below.

• Initialize the model with random weights.

• Select the binary cross entropy as a loss function.

• Select Adam optimizer with a learning rate of 0.001 to
minimize the loss function.

• Repeat the process of forward propagation, backward
propagation, and evaluation iteratively until the model
doesn’t improve significantly (early stopping criteria).

Step 6: Validate the trained model S1 with nT2 images with
its MS mask.The step should be performed iteratively until
the early stopping.
Step 7: Evaluate the performance of the the model S1 with
nT3 images.

4) BLOCK 7-11
The spatial expansion of lower-resolution images is donewith
the help of the feature map derived from the compression
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FIGURE 8. (a) Input image (b) Heat maps of the feature maps from the output of Block 11 (c) Heat map of input to block 12 (d) Heat maps of the feature
maps from the output of Block 12.

FIGURE 9. Outputs from different blocks. (a)-(k) Output from blocks 1-11 of DANet respectively. (l)-(v) Output from blocks 12-22 of MVNet respectively.

block. Figure 6 shows the internal block diagram of block m.
Where m is the block number of the expansion process. The
value of m is 7,8,9,10 corresponding to the blocks 7,8,9 and
10 and channel sizes of 8× 8× 4, 16× 16× 8, 32× 32× 16,
64 × 64 × 32, 128 × 128 × 64 respectively. These blocks
use the location information from corresponding blocks for
the expansion process. The up convolution will increase the
image size by a factor of 2.

Figure 7 shows the internal block diagram of block 11.
It has 32 channels of 128×128 ×64 and up convolution with
2 × 2 ×2 kernel with a stride 2 for the expansion process.
Then, the output of block 11 is given toMVNet .
Block 11 does the expansion operation. it includes

deconvolution operations. It is done withW (n,i,j)

I
(K−1)
j = Max(0,

N−1∑
n=0

W
(k)
n,i,j ∗ I

(k−1)
(i) ) + a(k−1)

(j) ) (6)

It unfolds the spatial support of lower pixel density details by
combining the important information. The size interpolation
is done by deconvolution with a 2×2 ×2 kernel with a stride

two operation along with the convolution layers in each stage
of expansion paths.

5) MVNET
The output ofDANet is the input toMVNet which has a similar
11 blocks as DANet along with a softmax layer as shown
in Figure 3. Two feature maps are computed by the last
1×1×1 convolution layer. The final output is the summation
of two outputs from the convolution layer on par with the
input image size. The classification of the pixels into MS
lesions or normal tissue is done by applying a soft-max layer.
The predicted output fromMVNet is,

I
(K−1)
j = Max(0,

N−1∑
n=0

(W
(k)
n,i,j ∗ I

(k−1)
(i) ) + a(k−1)

(j) ) (7)

The output image from block 11 of MVNet retains the same
size as the input image.

IV. RESULTS AND DISCUSSION
All the models are implemented using Python version
3.9.13 and Keras 2.11 ran on intel(R) core (TM) i7 10870H
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FIGURE 10. (a) Input MRI (b) Ground truth, (c) bounding box shows the diseased part using MVNet (d) Output of MVNet , (e) bounding box shows the
diseased part using MVNet (f) Output of DAVNet .

CPU @ 2.20GHz 2.21 GHz and RAM is 16GB. The
experiments were conducted on this model with 50 epochs,
using an Adam optimizer with a learning rate of 0.001 and
the loss function considered is the binary cross entropy
loss. The stopping criteria is the early stopping criteria that
is the model stops the the training process when the model
performance on a validation set starts to worsen, preventing
overfitting by selecting the model with the best generalization
performance.

This section includes a dataset description, performance
measures, and performance analysis. The following exper-
iments were carried out to analyze the effectiveness of
the DAVNet . The first experiment evaluates the output
of DANet (block 11) and the feature maps generated by
block 12 of MVNet in terms of heatmaps. The second
experiment is the blockwise output analysis using entropy.
The third experiment compares the performance of the
DAVNet with other DL models, the fourth experiment is the
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TABLE 4. Entropy of output images of all the blocks.

comparison of DAVNet with other MICCAI 16-based DL
models, the fifth experiment is the comparison of DAVNet
with other DL models based on MICCAI 16 dataset, the
sixth experiment is the performance analysis of DAVNet
based on MICCAI 16 and MSSEG -2 datasets, the seventh
experiment is the comparison of DAVNet with other DL
models based on MSSEG-2 dataset and in the eighth
experiment we have added the results of DAVNet trained
with MSSEG-2 dataset and tested on brain MRI MS-2022
dataset.

A. EXPERIMENT 1: ANALYSIS OF HEATMAPS OF
BLOCK 11 AND BLOCK 12
This experiment is based on applying the proposed model
to the MICCAI 16 dataset. As per Table 3, block 11 and
12 feature maps have the same resolution and block
12 delivers better feature maps than the feature maps from
DANet . Figure 8 shows the heatmaps of different featuremaps.
Figure 8 (a) is the input, Figure 8 (b) is the heat map of block
11 feature maps, Figure 8 (c) is the heat map of block 12 input
and Figure 8 (d) is the heat map of feature maps of block
12 outputs. by comparing Figure 8 (b) and (d), it is clear
that the feature maps of block 12 better represent the details
compared to block 11. The observation from this experiment
is that more layers in a DL model can contribute more details
to the segmentation process.

B. EXPERIMENT 2: BLOCK-WISE OUTPUT ANALYSIS
USING ENTROPY
Figure 9 is an example of the output from different network
layers of different blocks. The first row shows the output from
blocks 1 to 11 of DANet , and the second row shows the output
from blocks 12 to 22 ( blocks 1 to 11 of MVNet ). Table 4
shows the corresponding image entropy of the successive
blocks from two networks. While comparing the entropy of
the grayscale images from different blocks of DANet with
the corresponding block of MVNet , it is observed that the
entropy for the MVNet blocks is higher. The MVNet layers in
different blocks have more details and contribute fine details
for segmenting the region of interest. the output from the 22d

block is the segmented part since it is the binary image as
shown in Figure 9(v) has low entropy.

FIGURE 11. Confusion matrix corresponding to segmentation using
(a) V-Net, (b) MVNet : U Net, (c) U Net: MVNet , (e) Sequential V-Net, and
(e) DAVNet .

TABLE 5. Comparison of the DAVNet model with existing models.

TABLE 6. Comparison of V-Net(N1)Sequential V-Net (N2), U-Net: MVNet
(N3), MVNet : U Net (N4) and DAVNet (N5) models based on MICCAI
16 dataset.

C. EXPERIMENT 3: PERFORMANCE ANALYSIS DAVNET
WITH OTHER SEQUENTIAL MODELS
Figure 10 shows inputs and corresponding outputs of MVNet
and DAVNet .MVNet is a V-Net architecture with an additional
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FIGURE 12. Performance measures of DAVNet . (a) Epoch Vs accuracy
(b)Epoch Vs loss (c) Epoch Vs F1 Score (d) Epoch Vs dice loss (e) Epoch Vs
dice score (f) Epoch Vs mean IOU (g) Epoch Vs precision (h) Epoch Vs
sensitivity.

block in the encoding and decoding paths. The segmented
lesion appears closer to the ground truth lesion than the
segmented MS lesion region from MVNet . U-Net is a type of
CNN used for medical image segmentation. Here, we have

used U-Net with downsampling and upsampling layers for
the segmentation. There are four downsampling blocks with
series convolutional and max-pooling layers. convolutional
layer extracts the feature map followed by ReLu activation
and the maxpooling layer does the dimensionality reduction.
Four upsampling blocks and one output block are present.
TheUp-sampling path has a concatenation layer, convolution,
and upsampling layers. The output layer consists of the
convolution with a softmax activation function. Residual
Neural networks (ResNet) is also a DL architecture with a
skip connection to learn residual mapping. Inception V3-Net
is also a CNN architecture with encoding, decoding layers,
skip connection and output layer. The performance measures
of these DL models and the proposed DAVNet model are
presented in Table 5. From Table 5 it is clear that DAVNet
provides better segmentation results than the U-Net, ResNet,
and Inception V3-Net models.

We have combined different DL models like U-Net and
MVNet in different ways to obtain the DL models like
Sequential V-Net, U-Net: MVNet , and MVNet : U-Net. The
above networks are tested for MS lesion segmentation in
connection with the MICCAI 16 dataset. The V-Net has
nine blocks and the MVNet has an additional two blocks,
blocks 6 and 7, as shown in Figure 3. This MVNet serially
connects with U-Net and generates two models such as
MVNet : U-Net and U-Net: MVNet . Sequential V-Net is the
DL model obtained by serially connecting two V-Net models
having nine blocks. The analysis of the networks justifies
the role of sequential arrangement of networks for improved
segmentation.

1) CONFUSION MATRIX ANALYSIS
The confusion matrices for analyzing the performance of
V-Net, MVNet : U-Net, U-Net: MVNet , sequential V-Net, and
DAVNet are presented in Figure 11. The confusion matrix
presents the percentage of classified pixels as True Positive
(TP), False Positive (FP), True Negative(TN), and False
Negative (FN). The precision is the correctness of the positive
prediction, By comparing the confusion matrices of the five
models, V-Net has the least precision and a high number of
FP. The number of FP of the MVNet : U-Net is less than the
V-net and higher than the U-Net: MVNet . The precision of
the MVNet : U-Net is higher than the V-Net and less than the
U-Net:MVNet . The FP of sequential V-Net is higher than the
MVNet : U-Net. It is inferred from Table 6 and Figure 11 that
as the FP increases, the precision of the DL model decreases.

D. EXPERIMENT 4: COMPARISON OF DAVNET WITH
OTHER DL MODELS
The following performance metrics are analyzed to compare
predicted images with the ground truths.
Sensitivity(Recall) = TP/(TP+ FN ) (8)

Precision = TP/(TP+ FP) (9)

Accuracy = TP+ TN/(TP+ TN + FP+ FN )

(10)
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TABLE 7. Results of MICCAI16 based DL models.

where the TP is the number of MS pixels correctly classified
as MS, FP is the number of background pixels misclassified
as MS, TN is the number of background pixels correctly
classified as background and FN is the number of MS
pixels misclassified as background. The Other two metrics
in medical image segmentation are IOU (Intersection-over-
Union) and F1 Score. The F1 Score is the harmonic mean
between sensitivity and precision [1]. IOU penalizes under
and over-segmentation more than the F1 Score. F1 Score is
the most used metric in medical image segmentation.

IOU = TP/(TP+ FP+ FN ) (11)

F1 Score = 2TP/(2TP+ FP+ FN ) (12)

The loss function considered here is the Binary cross-
entropy loss. The binary cross entropy loss in the medical
image segmentation compares the pixel-wise probabilities of
input data and ground truth. It penalizes the model according
to the deviation from the ground truth. DAVNet delivered
a precision of 0.9930, higher than all three models. The
proposed method has a Dice score of 0.8900 and an F1
Score of 0.8740, higher than the existing three models. The
proposed model achieves the lowest loss value compared to
the three models. The sensitivity, specificity, and accuracy are
higher for the proposed model than the existing DL models.

E. EXPERIMENT 5: COMPARISON OF DAVNET WITH
OTHER DL MODELS BASED ON MICCAI 16 DATASET
The models that were evaluated using dice score, F1 Score,
and sensitivity are considered for comparative analysis and
included in Table 7. Regarding dice score, sensitivity, and
F1 Score, DAVNet model-based segmentation delivers better
results of 0.890,0.990, and 0.874 respectively.

F. EXPERIMENT 6: PERFORMANCE ANALYSIS DAVNET
BASED ON MICCAI 16 AND MSSEG-2 DATASETS
The DAVNet model is evaluated on the combined MICCAI
16 and MSSEG-2. MICCAI 16 contains 53 NIfTI data and
MSSEG-2 contains 100 data. So the dataset has a total
number of 153 data. In this experiment, we used nT1 = 70%
of data for training, nT2 = 19% of data for validation, and
nT3 = 11% of data for testing. The performance metrics
such as accuracy, loss, F1 Score, dice loss, mean IOU, dice

score, precision, and sensitivity of the DAVNet are evaluated
and presented in Figure 12. It is observed that the number
of epochs and loss function have opposite trends. As the
epoch increases the accuracy also increases. Table 8 gives the
evaluation result on test data.

TABLE 8. Test evaluation results corresponding to MICCAI 16 and
MSSEG-2 datasets.

G. EXPERIMENT 7: COMPARISON OF DAVNET WITH
OTHER DL MODELS BASED ON MSSEG-2 DATASET
MSSEG-2 dataset having 100 patients data obtained at two
different time instants [33]. From the dataset. 40% data is
used for training and 60% for testing. The values of the dice
score compared with the results of the MSSEG-2 challenge
are given in Table 9. Compared to the other models, the
proposed model delivers a dice score of 0.9.

TABLE 9. Results of MSSEG-2 based DL models.

H. EXPERIMENT 8: SEGMENTATION RESULTS OF DAVNET
WITH COMBINED MSSEG-2 AND MS MRI-2022 DATASETS
In this experiment, we have used two separate datasets. For
training, we have used the MSSEG-2 dataset with 100 NIfTI
data. The brain MRIMS 2022 dataset was used for validation
and testing. 60 NIfTI data are available in the brain MRI MS
2022 dataset. Out of 60, 30were used for validation and 30 for
testing. The cross-validation results are presented in Table 10.
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FIGURE 13. Segmentation results using combined MSSEG-2 and MRI MS
2022 dataset. (a) Input MRI,(b) Ground truth, (c) The bounding box shows
the region of interest, (d) Outputs of DAVNet .

This experiment is included in the study to generalize the
model. Figure 13 shows a few output images and the
performance measures corresponding to this experiment are
presented in Table 10. Figure 14 shows the confusion matrix
corresponding to experiment 8 regarding the number of
pixels.

FIGURE 14. Confusion matrix corresponding to experiment 8.

TABLE 10. Performance measures corresponding to experiment 10.

V. CONCLUSION
MS is a progressive illness of the CNS. It is due to
demyelination and begins with the blood barrier breakdown.
Even though remyelination occurs in the initial stage of the
disease, nerve damage and irreversible loss of neurons occur
in the initial phase of the disease. In this paper, a DL network,
DAVNet , is proposed for MS segmentation and tested on the

MICCAI MRI data set. The experiments were conducted
to analyze the role of the deep attention network and the
effectiveness of the suggested model. The precision, sensi-
tivity, accuracy, and loss based on the MICCAI 16 dataset are
0.9930, 0.9900, and 0.9993, 0.0007 respectively. The various
experiments conducted using different datasets prove that
the DAVNet model performs well compared to the other DL
models.
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