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ABSTRACT Asthma exacerbations pose a significant global health concern, necessitating effective pre-
dictive models to anticipate and manage these events. This systematic literature review examined the
optimization techniques employed in asthma exacerbation prediction models, spanning machine learning
algorithms and computational optimization methods. The objective was to synthesize existing evidence,
identify trends, and delineate future research directions in predictive modeling for asthma exacerbations
to enhance predictive accuracy and clinical utility. A comprehensive search strategy was devised, yielding
27 eligible articles for analysis. The result revealed various optimization techniques, including feature
selection, model optimization, and environmental factor integration. The result also revealed that machine
learning algorithms’ effectiveness in predicting asthma exacerbations varied depending on various factors
(such as dataset quality and model complexity), with various optimization techniques (such as feature
selection and ensemble learning) used for improving predictive accuracy. Integrating environmental and
spatial factors enhanced prediction models, enabling tailored interventions. In addition, personalized asthma
management strategies informed by predictivemodels led to better control and reduced healthcare utilization.
The review also highlighted the implications for personalized asthmamanagement, as well asmethodological
limitations, and proposed future research directions to improve model reliability and advance personalized
healthcare understanding, thereby contributing to the United Nations’ Sustainable Development Goals
related to health, innovation, and sustainability. Thus, progress made in asthma exacerbation prediction and
the identification of challenges and areas for improvement were covered, providing valuable insights for
researchers, clinicians, and policymakers aiming to enhance asthma care through predictive modeling.

INDEX TERMS Asthma exacerbation, machine learning, optimization, personalized and prediction models.

I. INTRODUCTION
Asthma, a chronic respiratory condition characterized by
airway inflammation, bronchial constriction, and variable
airflow limitation, represents a notable worldwide health
issue affecting a considerable population globally [1], [2].
Despite significant progress in treatment and management
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strategies, asthma exacerbations continue to impose a sub-
stantial burden on healthcare systems worldwide [3]. These
exacerbations, marked by sudden worsening of symptoms,
lead to increased morbidity, mortality, and healthcare utiliza-
tion rates, driving the quest for effective predictive models to
foresee and manage these events [4], [5]. The significance
of asthma exacerbations extends beyond their immediate
impact on individual patients’ health to encompass broader
implications for healthcare systems and society, including
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economic costs [6]. Efforts to address asthma align with
the United Nations’ Sustainable Development Goals (SDGs),
particularly SDG 3 (Good Health And Well-Being), by aim-
ing to ensure healthy lives and promote well-being for all,
including those affected by chronic respiratory conditions.
Additionally, initiatives targeting asthma management and
prevention contribute to broader SDGs, such as SDG 11
(Sustainable Cities And Communities) by promoting health-
ier urban environments and SDG 13 (Climate Action) by
mitigating environmental factors contributing to respiratory
illnesses. Thus, the SDGs provide a comprehensive frame-
work for addressing the multifaceted challenges posed by
asthma, guiding efforts to improve healthcare outcomes,
promote sustainability, and enhance the quality of life for
affected individuals globally.

Beyond the physical discomfort experienced by patients,
exacerbations incur substantial economic costs stemming
from hospitalizations, emergency department visits, andmed-
ication expenses [7]. Moreover, they engender psychological
distress and impair patients’ productivity and quality of
life [8]. Given the multifaceted nature of asthma exacer-
bations, effective prediction models promise to transform
asthma management by enabling proactive interventions and
targeted strategies tailored to individual patients’ needs [9].
Predictive models represent a pivotal tool in addressing the
challenges posed by asthma exacerbations [9]. By leveraging
a diverse array of factors, including clinical parameters, phys-
iological biomarkers, environmental exposures, and behav-
ioral patterns, these models offer insights into the likelihood
and severity of future exacerbations [10]. Through the inte-
gration of optimization techniques, predictive models seek to
enhance their predictive accuracy and clinical utility, thereby
empowering healthcare providers with the foresight needed
to intervene effectively and mitigate exacerbation risks [11].
Moreover, predictive models facilitate in identifying individ-
uals at high risk and vulnerable populations, allowing for
tailored interventions and allocation of resources, leading
to enhanced patient healthcare outcomes and more efficient
healthcare delivery [12].
This review investigated optimization techniques for

improving predictive models for asthma exacerbations.
It covered traditional machine learning (ML) methods,
advanced algorithms, and computational optimization meth-
ods [13]. The effectiveness of some methods, such as support
vector machines and neural networks, in revealing complex
data patterns was scrutinized to evaluate their efficacy [14],
[15], [16]. Furthermore, computational optimization tech-
niques, such as genetic algorithms and simulated annealing,
were investigated for their potential role in improving predic-
tive accuracy [17], [18].

The review provided a comprehensive analysis of opti-
mization techniques, risk factors, data sources, model evalua-
tion metrics, and implementation challenges associated with
asthma exacerbation prediction models. It aimed to offer
valuable insights to researchers, clinicians, and policymakers

regarding the progress in predictive modeling for asthma
exacerbations. Specifically, the review critically evaluated
optimization methodologies, identified areas lacking knowl-
edge, and suggested future research directions. It examined
the effectiveness of various optimization techniques, includ-
ing ML algorithms and computational methods, to improve
predictive accuracy and clinical utility. Additionally, the
review highlighted underexplored areas and emerging trends,
aiming to inform the development of personalized asthma
management strategies in the future.

The organization of the review is as follows: Section I
introduces the topic and provides the background and signifi-
cance of the study. Section II delves into the literature review
for the topic which includes asthma and its types, metrics for
measuring asthma, different ML models for asthma predic-
tion, optimization techniques and its application to asthma.
Section III outlines the research methodology applied in this
review, detailing the search strategy, inclusion and exclusion
criteria, and study selection process. Section IV assesses the
efficacy of these optimization techniques through empirical
analysis. In section V the empirical findings from the results
section are critically analyzed in this section and answer the
research questions. Section VI highlights the limitations of
the studies. Section VII discuss the challenges and future
directions. Section VIII concludes the studies and the refer-
ences used in the study are displayed at the end of the paper.

II. LITERATURE REVIEW
Asthma is a complex and heterogeneous respiratory condi-
tion that affects millions of individuals worldwide [2]. It is
characterized by chronic inflammation of the airways, lead-
ing to recurrent episodes of wheezing, breathlessness, chest
tightness, and coughing [19]. Understanding the various types
of asthma and the metrics used to measure its severity and
control is crucial for effective diagnosis and management.
Furthermore, the advent of ML has opened new avenues
for improving asthma care through predictive modeling and
personalized treatment plans [20]. In this section we have dis-
cuss different types of asthma, metrics for evaluating asthma
condition, machine learning models for predicting asthma,
optimization techniques, and application of ML to asthma.

A. TYPES OF ASTHMA
The categorization of asthma is crucial for effective diagnosis
and management.

1. Allergic (Extrinsic) Asthma: This type, also known as
atopic asthma, is triggered by external allergens such
as pollen, dust mites, pet dander, and mold. Allergic
asthma is often associated with other allergic condi-
tions like eczema and allergic rhinitis. Studies have
shown that immunoglobulin E (IgE) plays a significant
role in the pathophysiology of allergic asthma [21].

2. Non-Allergic (Intrinsic) Asthma: Non-allergic
asthma is not triggered by allergens but by factors such
as stress, exercise, cold air, or viral infections. It is
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generally more severe and less common than allergic
asthma [22].

3. Exercise-Induced Asthma (EIA): EIA, or exercise-
induced bronchoconstriction (EIB), occurs during or
after physical activity due to the loss of heat and mois-
ture in the airways. It is prevalent among athletes and
individuals exposed to cold, dry environments [23].

4. Occupational Asthma: This type is caused by expo-
sure to irritants in the workplace, such as chemicals,
dust, and fumes. Occupational asthma is a significant
public health concern, particularly in industries like
construction, farming, and manufacturing [24].

5. Cough-Variant Asthma: This form is character-
ized predominantly by a chronic, non-productive
cough without the classic symptoms of wheezing and
shortness of breath. It is often underdiagnosed and
mismanaged [25].

6. Nocturnal Asthma: Symptoms worsen at night, possi-
bly due to a reclining position, cooler air, or hormonal
variations. Nocturnal asthma significantly impacts the
quality of life and sleep quality of patients [26].

7. Aspirin-Induced Asthma (AIA): This type is
triggered by aspirin and other nonsteroidal anti-
inflammatory drugs (NSAIDs), leading to severe
respiratory issues. AIA is often associated with nasal
polyps and chronic rhinosinusitis [27].

B. METRICS FOR MEASURING ASTHMA
Assessing asthma involves various clinical metrics and tools
to gauge the severity, control, and impact on patients:

1. PeakExpiratory Flow (PEF): PEFmeasures the high-
est speed at which air can be expelled from the lungs.
It is a simple, portable test that patients can use at home
to monitor their asthma control [28].

2. Forced Expiratory Volume in 1 Second (FEV1):
FEV1 measures the amount of air a person can force-
fully exhale in one second. It is a standard measure
in spirometry to assess lung function and severity of
asthma [29].

3. Asthma Control Test (ACT): The ACT is a validated
questionnaire that evaluates the patient’s perception of
their asthma control over the past four weeks. It is
widely used in clinical practice to guide treatment
adjustments [30].

4. AsthmaQuality of Life Questionnaire (AQLQ): The
AQLQ measures the impact of asthma on a patient’s
quality of life across several domains, including symp-
toms, activity limitations, emotional function, and
environmental stimuli [31].

5. Fractional Exhaled Nitric Oxide (FeNO): FeNO is
a biomarker that indicates airway inflammation. Ele-
vated FeNO levels are associated with eosinophilic
inflammation and asthma exacerbations [32].

6. Symptom-Free Days (SFDs): SFDs count the num-
ber of days without asthma symptoms, providing a

straightforward measure of disease control and treat-
ment efficacy [33].

C. MACHINE LEARNING MODELS
ML has revolutionized numerous fields by enabling comput-
ers to learn from data and make predictions. ML models can
be broadly classified into several categories [34]: figure 1
illustrates the various ML for prediction models.

1. Supervised Learning: In supervised learning, mod-
els are trained on labeled data. Common algorithms
include:
a. Linear Regression: Used for predicting continu-

ous values.
b. Logistic Regression: Applied for binary classifi-

cation tasks.
c. Decision Trees and Random Forests: Suitable

for both classification and regression tasks, these
models are known for their interpretability and
robustness.

d. Support Vector Machines (SVM): Effective for
high-dimensional spaces and widely used in clas-
sification problems.

e. Neural Networks: Capable of capturing com-
plex patterns in data, neural networks, including
deep learning architectures like Convolutional
Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs), are used for tasks rang-
ing from image recognition to natural language
processing [35].

2. Unsupervised Learning: This category involves mod-
els identifying patterns in unlabeled data. Key algo-
rithms include:
a. K-Means Clustering: Partitions data into k clus-

ters based on similarity.
b. Principal Component Analysis (PCA):

Reduces the dimensionality of data while preserv-
ing variance.

c. Hierarchical Clustering: Builds nested clusters
by progressively merging or splitting clusters
based on distance metrics.

3. Reinforcement Learning (RL): In RL, models learn
to make decisions by receiving rewards or penalties.
Prominent algorithms include Q-learning and Deep
Q-Networks (DQN), which are used in applications
ranging from game playing to robotic control [36].

D. OPTIMIZATION TECHNIQUES
Optimization techniques are essential for trainingMLmodels
and solving various engineering problems. Key optimization
methods include [37]:

1. Gradient Descent: An iterative approach to mini-
mize a loss function by updating model parameters in
the direction of the steepest descent. Variants include
Stochastic Gradient Descent (SGD), Mini-batch Gra-
dient Descent, Adam, and RMSprop, each offering
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FIGURE 1. Various ML models for asthma prediction.

different trade-offs in terms of speed and convergence
stability.

2. Genetic Algorithms: Inspired by natural selection,
these algorithms evolve a population of solutions
through operations like selection, crossover, and muta-
tion to find optimal solutions.

3. Simulated Annealing: This technique mimics the
annealing process in metallurgy, exploring the search
space to find a global optimum by allowing occasional
uphill moves to escape local minima.

4. Bayesian Optimization: Uses probabilistic models to
optimize expensive-to-evaluate functions by focusing
on promising areas of the search space.

5. Particle Swarm Optimization: Simulates social
behavior patterns of birds flocking or fish schooling to
explore the search space efficiently.

E. APPLICATION TO ASTHMA
ML models hold significant promise in asthma management,
including predicting exacerbations, personalizing treatment
plans, and identifying risk factors. Key metrics like PEF,
FEV1, and ACT scores are integral inputs for these models,
aiding in the development of predictive and diagnostic tools.

Optimization techniques ensure that these models achieve
optimal performance, enhancing clinical decision-making
and improving patient outcomes [4].

III. METHODOLOGY
The technique employed in this systematic review functioned
as the structural framework intended to provide strong, clear,
and replicable results. This approach has been applied in pre-
vious systematic reviews across similar fields, evidenced by
existing systematic literature review articles as documented
in [38] and [39]. This section gives the review methodol-
ogy, with recommendations in [40], [41], and [42] followed
with great attention to detail. The methodology involves the
exploration plan, criteria for selecting studies, inclusion and
exclusion guidelines, and research questions.

A. SEARCH STRATEGY
A thorough search strategy was developed to locate rele-
vant studies concerning optimization methods for asthma
exacerbation models. The methodology involved online
searches in key databases, which were Google Scholar,
PubMed/MEDLINE, Scopus, and IEEE Xplore. The search
employed a combination of relevant keywords and Boolean
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operators, specifically targeting the terms ‘‘Optimization,’’
‘‘Optimization Techniques,’’ and ‘‘Optimizing’’ in conjunc-
tion with the terms ‘‘Asthma Exacerbation’’ or ‘‘Asthma
Attacks’’ and ‘‘Prediction Models’’ or ‘‘Predictive Mod-
els.’’ The search was restricted to articles published between
January 1, 2014, and February 17, 2024, with a language filter
applied to include only English-language publications.

B. STUDY SELECTION
The study selection process commenced by identifying
362 records through comprehensive database searches, sup-
plemented by nine records from manual searches, resulting
in 371 articles. Mendeley was employed to check for dupli-
cates, removing 58 redundant records and leaving 313 unique
records for further screening. Subsequently, Rayyan was uti-
lized for title screening, where 238 records were excluded
due to a lack of relevance to asthma exacerbation prediction
models, resulting in 75 remaining records. Further refinement
during abstract screening using Rayyan excluded 40 records
for not being related to asthma attack prediction models,
leaving 35 records for full-text assessment. During this phase,
seven articles were excluded: 4 studies utilized statistical
methods instead of ML techniques, two had low assessments,
and one book chapter did not meet the eligibility criteria.
Additionally, one article was excluded due to inaccessibility.
Consequently, 27 articles met the eligibility criteria. They
were incorporated into the systematic literature review on
optimization techniques for predicting asthma exacerbations.

C. INCLUSION CRITERIA
The inclusion criteria for this systematic literature review on
optimization techniques for asthma exacerbation prediction
models involved selecting English-language, peer-reviewed
articles published between 2014 and 2024. These studies
must specifically focus on asthma exacerbation prediction
models.

D. EXCLUSION CRITERIA
The exclusion criteria for this systematic literature review
encompassed studies unrelated to asthma exacerbation
prediction or optimization techniques, non-peer-reviewed
sources (such as abstracts, lecture notes, book chapters, edi-
torials, etc.), publications not written in English, and research
primarily focusing on treatments rather than prediction
models.

E. RESEARCH QUESTION
This systematic literature review aimed to address the fol-
lowing research questions to provide comprehensive insights
into the optimization of asthma exacerbation prediction
models and their implications for personalized management
strategies:

1. How effective were ML algorithms in predicting
asthma exacerbations, and what were the key factors
influencing their predictive performance?

2. What feature selection and model optimization tech-
niques yielded the highest accuracy in the selected
studies’ asthma exacerbation prediction models, and
how did these techniques contribute to improving the
robustness and reliability of the models?

3. How did environmental and spatial factors, such as
indoor air quality, weather conditions, and geograph-
ical location, impact the accuracy of the asthma
exacerbation prediction models?

4. What are the implications for personalized asthma
management strategies?

The research questions aimed to address key aspects of
asthma exacerbation prediction models and their implications
for personalized management strategies. These questions
focused on evaluating the efficiency of ML algorithms,
identifying optimal feature selection and model optimiza-
tion techniques, understanding the impact of environmental
and spatial factors on model accuracy, and exploring
the implications for personalized asthma management.
The review sought to provide valuable insights for
researchers, clinicians, and policymakers by addressing
these questions, aiming to improve predictive modeling
approaches and patient healthcare outcomes in asthma
management.

FIGURE 2. Visual breakdown of publication selection based on PRISMA
guidelines.

IV. RESULTS
The systematic review’smethodology functioned as the struc-
tural foundation, crafted to deliver dependable, transparent,
and replicable results. Following the guidelines meticulously,
this review outlined the detailed steps to address the research
inquiries. This section offers a comprehensive account of the
procedures employed in literature search, selection, analysis,
and quality evaluation. Figure 1 provides a graphical repre-
sentation of the process.
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A. SEARCH RESULT
The search strategy in this review identified 371 articles,
of which 313 were unique after removing duplicates. Screen-
ing for eligibility resulted in 28 full-text articles, with seven
exclusions. Another one article was excluded due to lack of
access. Ultimately, 27 eligible articles were included in the
review.

B. STUDY CHARACTERISTICS
The analysis incorporated data from 27 studies conducted
across 16 countries, this comprehensive dataset delved into
various risk factors, including demographic, environmental,
lifestyle, and clinical aspects. Notably, clinical factors were
the most frequently discussed, with 18 studies covering this
dimension, closely followed by demographic factors being
featured in 16 studies. The combination of demographic
and clinical factors emerged as the most prevalent theme,
appearing in 14 studies. Environmental factors were also
prominently explored and documented in 15 studies, while
lifestyle factors were discussed in 11 studies. Overall, the
dataset underscores the complexity of risk factor research,
emphasizing the need to consider multiple dimensions when
evaluating and addressing potential risks.

TABLE 1. Geographical distribution of selected papers on asthma
exacerbation prediction models.

Table 1 provides a concise overview of the representation
of various countries across different continents. The United
States is the country that appeared most frequently in the
data, which was six times. This likely reflects the signif-
icant influence and global presence of the United States
across various domains, including politics, economics, and
culture. Iran, South Korea, and the United Kingdom are
closely behind, each appearing three times, indicating the
countries’ relevance in the analyzed context, while India
contributed two studies. The remaining 10 studies were dis-
tributed among China, Taiwan, Pakistan, France, Belgium,
Australia, Scotland, and Bangladesh, as graphically illus-
trated in Figure 3. This distribution highlights the prominence
of these countries in discussions or datasets related to the
subject matter under consideration, whether it pertains to
trade, geopolitics, or other areas of interest.

FIGURE 3. Geographical distribution of selected papers on asthma
exacerbation prediction models.

When examining the distribution by continent, it becomes
apparent that Asia holds a substantial presence in the table,
with several countries from the region, such as India,
China, Taiwan, Pakistan, and Bangladesh. This concentration
underscores the region’s significance in global affairs and
highlights Asia’s diverse range of countries. Additionally,
the representation of the United Kingdom, France, Sweden,
Belgium, and Scotland demonstrates Europe’s continued rel-
evance on the international stage. In addition, the inclusion
of Australia serves as a nod to the importance of Oceania
in global discussions, albeit with a lesser frequency than
those of other continents. Overall, the table encapsulates a
snapshot of global dynamics, reflecting the countries’ varied
contributions and the impacts across different regions.

TABLE 2. Publication trends for asthma exacerbation prediction models
from selected studies (2014-2024).

Table 2 presents a breakdown of publication years and the
corresponding number of publications. It reveals a distribu-
tion of publications across various years, indicating trends or
patterns in content publication within the timeframe. Notably,
2021 stood out with the highest frequency of publications,
recording eight instances. This suggests a peak in publishing
activity during that particular year, possibly indicating a sig-
nificant event, research breakthrough, or heightened interest
in the subject matter. Additionally, 2020 followed closely

VOLUME 12, 2024 110867



D. A. Aliyu et al.: Optimization Techniques for Asthma Exacerbation Prediction Models

TABLE 3. Publication distribution across journals for asthma exacerbation prediction models from the selected studies.

FIGURE 4. Publication trends for asthma exacerbation prediction models
from selected studies (2014-2024).

behind with six publications, further indicating a period of
notable activity in terms of content creation.

Furthermore, the table indicates that publication activity
fluctuated across different years, with some years recording
fewer publications. For instance, 2017 and 2018 had only
one publication listed, suggesting relatively lower activity
levels during those years. However, it is important to note
that the table provides a snapshot of publication frequency
and does not offer insights into the specific reasons behind

the variations in publication numbers. Overall, the table
provides valuable insights into the temporal distribution of
publications, highlighting periods of heightened activity and
potential trends in the publication landscape within the given
timeframe.

Table 3 thoroughly summarizes how the publications are
distributed among different journals, offering insights into the
frequency and diversity of publishing platforms within the
field. Several journals listed only one publication, indicating
a wide range of sources for disseminating research findings.
These include journals such as the Journal of Translational
Medicine, Environmental Monitoring and Assessment, Life,
and the Journal of Asthma, among others. This diversity
underscores the interdisciplinary nature of the subject matter,
with research studies published across various specialized
and generalist journals catering to different aspects of the
field.

Moreover, certain journals stand out with multiple publi-
cations associated with them, indicating their prominence or
popularity within the domain. For example, PloS One and
IEEE Access each have multiple publications listed, sug-
gesting a significant volume of research being published in
these journals. BMJ Open also features multiple publications,
further emphasizing its role as a prominent outlet for research
dissemination. The presence of these journals with multi-
ple publications highlights their importance as platforms for
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sharing findings and contributing to advancing knowledge
within the field. The table provides valuable insights into the
distribution of publications across various journals, reflect-
ing the breadth and depth of research being conducted and
disseminated within the given domain.

FIGURE 5. Summary of personalized models for asthma exacerbation
prediction from selected studies.

Figure 5 below shows the summary of Summary of Per-
sonalized Models for Asthma Exacerbation Prediction from
Selected Studies.

Figure 5 provides a breakdown of the frequency of person-
alized approaches used in the studies. A total of 61% were
personalized approaches, while 39% were not, indicating
a considerable emphasis on personalized approaches in the
development of predictive models for asthma exacerbations.
The distinction between personalized and non-personalized
methods suggests that researchers actively explore tailored
interventions or predictions that consider individual patient
characteristics. The emphasis on personalization underscores
the importance of individualized approaches in improving the
accuracy and effectiveness of asthma management strategies.

C. MACHINE LEARNING APPROACHES
Recently, there has been significant interest in developing
optimized prediction models for asthma exacerbations to
improve patient healthcare outcomes and healthcare resource
utilization. Diverse ML methodologies and optimization
strategies have been utilized to augment the precision and
dependability of predictive models. The study in [43] intro-
duced the weighted feature averaging technique (WFAT) to
identify crucial risk factors for asthma exacerbations. They
explored ensemble ML techniques to improve classifica-
tion performance. Similarly, [44] proposed the affinity graph
enhanced classifier (AGEC), which effectively captured cor-
relations between data samples, leading to more accurate
predictions of asthma exacerbations. These studies highlight
the importance of optimization techniques in leveraging ML

approaches to develop robust prediction models for asthma
management.

Furthermore, optimization techniques have been applied
to traditional ML models, demonstrating the techniques’
effectiveness in enhancing predictive accuracy and clini-
cal relevance. The study in [45] utilized a range of ML
algorithms and optimization techniques to forecast the neces-
sity of hospital-level medical attention in pediatric patients
with asthma, highlighting the value of systematic optimiza-
tion in model selection and parameter tuning. Optimization
techniques have also been used to address specific chal-
lenges in asthma exacerbation prediction, such as imbalanced
datasets and feature selection. For instance, [46] utilized
the ADASYN algorithm to balance class distributions and
improve model performance. This underscores the impor-
tance of optimizing data preprocessing techniques for reliable
asthma exacerbation prediction.

Advancements in optimization techniques, particularly in
preprocessing, have led to the creation of innovative forecast-
ing models for asthma exacerbations. The research conducted
in [47] designed a cyber-physical system with dew-cloud
assistance to investigate the correlation between meteorolog-
ical data and the health status of individuals with asthma,
highlighting the potential of optimization techniques to inte-
grate environmental factors into predictionmodels. Similarly,
[48] introduced a prediction tool for asthma risk utilizing
ML, implemented as a mobile health application on smart-
phones and leveraging Internet-of-Things (IoT) resources.
The approach, leveraging the convolutional neural network
(CNN) architecture, showcases the utility of optimization
techniques in enhancing predictive accuracy for personalized
asthma risk assessment. These studies collectively emphasize
the critical role of optimization techniques in advancing the
field of asthma exacerbation prediction, facilitating more
effective asthma management and improved patient health-
care outcomes.

D. FEATURE SELECTION AND MODEL OPTIMIZATION
In the realm of feature selection and model optimization for
asthma exacerbation prediction, researchers have employed
various techniques to enhance the performance and reliability
of their predictive models. As mentioned, the study in [43]
applied the weighted feature averaging technique to extract
significant features in asthma risk identification, focusing on
selecting prominent characteristics to increase classification
accuracy. On the other hand, [44] employed dimensionality
reduction and affinity graph learning to optimize their model
for asthma prediction, preserving discriminative features and
capturing correlations between samples. These studies high-
light the significance of selecting features to enhance model
accuracy and interpretability.

Moreover, optimization techniques have been applied to
model architecture and implementation to enhance predic-
tive performance further. The study in [49] utilized data
transformation and regularization techniques to refine their
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feedforward deep neural network (FDNN) model for person-
alized asthma predictions, resulting in enhanced performance
through reduced prediction errors. The study verified the
accuracy of standard operational definitions of asthma and
enhanced diagnosis through ML approaches, underlining
the optimization of definitions and prediction models. The
research studies in [50] and [51] utilized advanced meth-
ods, which were imbalanced sampling, transfer learning,
and spatio-temporal modeling, to optimize algorithms and
improve predictive performance, highlighting the importance
of model optimization in addressing specific challenges in
asthma exacerbation prediction.

Furthermore, researchers have incorporated various fea-
tures and performed rigorous model evaluations to optimize
predictive models for asthma exacerbation. The research
conducted in [45] included varied patient variables in its
prediction models, optimizing performance in identifying
the requirement for hospital-level care in pediatric asthma
patients. Similarly, [52] and [53] identified relevant features
and employed data post-processing techniques, respectively,
to optimize their machine learning algorithms for asthma
self-management and severe exacerbation detection. These
studies underscore the significance of feature selection,
model optimization, and comprehensive evaluation in devel-
oping robust predictive models for asthma exacerbation
prediction.

E. INTEGRATION OF ENVIRONMENTAL AND SPATIAL
FACTORS
Environmental and spatial variables play a crucial role in
asthma exacerbation prediction, and researchers have inte-
grated these factors into their predictive models to enhance
accuracy and effectiveness. The research study in [54] uti-
lized location-based social network (LBSN) data and an
artificial neural network (ANN) to simulate the temporal risk
zone for respiratory disorders, illustrating the relevance of
incorporating environmental and infrastructural aspects to
find spatial associations with respiratory attacks. Similarly,
[50] explored the relationship between indoor air quality and
fluctuations in peak expiratory flow rate (PEFR), showing the
necessity of including environmental parameters in predictive
modeling for asthma-related outcomes.

Furthermore, researchers have incorporated various envi-
ronmental factors, such as weather conditions, air quality, and
geographic features, into their predictive models to improve
asthma exacerbation prediction. The study in [45] integrated
weather, neighborhood characteristics, and community viral
load information into its predictive models for pediatric
asthma patients, underscoring the significance of accounting
for environmental factors when predicting the necessity for
hospital-level care. Similarly, [55] integrated a wide range of
environmental factors, such as distance to parks, rainfall, tem-
perature, humidity, and air pollutant concentrations, into its
random forest model to identify asthma-prone areas, illustrat-
ing the comprehensive approach to environmental integration
in predictive modeling.

Moreover, studies have highlighted the importance of sup-
plementing clinical information with environmental triggers
to improve predictive models for asthma exacerbation risks.
The study conducted in [5] augmented prior clinical data
with extra information on environmental triggers, such as
weather conditions, pollen levels, and air quality, to enhance
the efficiency of its predictive models. Similarly, [47] inves-
tigated the association between meteorological and health
metrics using IoT-enabled smart sensors, underlining the
necessity for capturing extensive environmental factors to
understand better their impacts on health outcomes, includ-
ing asthma exacerbations. Reference [48] studied the link
between indoor particulate matter, meteorological data, and
PEFR values, seeking to forecast the likelihood of asthma
episodes, which further underscores the need to integrate
environmental elements into predictive modeling for asthma
therapy.

F. PERSONALIZED MEDICINE AND RISK STRATIFICATION
Personalized medicine and risk stratification in asthma man-
agement have been significantly enhanced by integrating
ML techniques, allowing for tailored interventions and indi-
vidualized risk assessment. The study in [56] developed
explainable ML models for personalized risk assessment of
acute exacerbation of chronic obstructive pulmonary disease
(COPD), providing insights into key features affecting dis-
ease outcomes and offering individualized risk predictions.
Similarly, [57] implemented a personalized asthma prediction
model using an improvedAdam-based FDNN, demonstrating
its effectiveness in providing individualized predictions based
on demographic and weather factors.

Moreover, researchers have focused on providing per-
sonalized interventions and treatment evaluations based on
predictive modeling outcomes. The study in [51] proposed
a modeling framework for personalized asthma risk man-
agement to provide individualized interventions based on
predictive models’ outcomes. Reference [58] developed a
predictive approach to assess the effectiveness of mite sub-
cutaneous immunotherapy in asthma, offering a tailored
strategy for treatment evaluation based on predictive mod-
eling results. The study in [59] utilized ML tools to predict
asthma risks and offered a tailored risk assessment method-
ology based on individual spectral variances.

Furthermore, personalized approaches have been
employed in developing decision-support tools and early
warning algorithms for asthma management. The study
in [59] highlighted the promise of ML techniques in generat-
ing tailored decision support for telemonitoring systems for
chronic diseases, including predicting asthma exacerbations
before they occur. Similarly, [20] developed an ML model to
predict future hospital contacts related to asthma, facilitating
personalized asthma care management by proactively identi-
fying high-risk patients and providing them with preventive
healthcare services. Moreover, [46] developed a decision
support system designed to assist in the early detection
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TABLE 4. Summary of studies on predictive models for asthma exacerbations.

VOLUME 12, 2024 110871



D. A. Aliyu et al.: Optimization Techniques for Asthma Exacerbation Prediction Models

TABLE 4. (Continued.) Summary of studies on predictive models for asthma exacerbations.
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TABLE 4. (Continued.) Summary of studies on predictive models for asthma exacerbations.
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TABLE 4. (Continued.) Summary of studies on predictive models for asthma exacerbations.
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of asthma. Also, [48] presented an asthma risk prediction
tool implemented as a mobile health application, providing
personalized risk prediction for asthma attacks based on an
individual’s PEFR values and environmental factors.

G. OPTIMIZATION TECHNIQUES IN ASTHMA
EXACERBATION PREDICTION MODELS
Optimization techniques are crucial in refining predictive
models for asthma exacerbations by fine-tuning model
parameters, optimizing feature selection, and improving
algorithm performance [60], [61]. These techniques encom-
pass various methodologies, including ML algorithms, statis-
tical modeling approaches, and computational optimization
methods [62], [63]. Various ML methodologies, such as
random forest (RF), support vector machine (SVM), and
neural network, have been extensively utilized in creating
prediction models for asthma exacerbations [61], [64]. These
algorithms utilize extensive datasets to understand intricate
patterns and connections between predictor variables and
the outcomes of asthma exacerbations. Statistical modeling
approaches, including logistic regression (LR) and Cox pro-
portional hazards models, have also been utilized to develop
predictive models based on predefined risk factors and
covariates [65], [66]. Additionally, optimization approaches,
such as genetic algorithm, particle swarm optimization, and
simulated annealing, have been utilized to optimize model
parameters and increase predictive accuracy [67], [68], [69].

H. EFFECTIVENESS OF OPTIMIZATION TECHNIQUES
Several studies have evaluated the effectiveness of opti-
mization techniques in improving the predictive accuracy of
asthma exacerbation prediction models. For example, [70],
[71], [72] compared various ML algorithm performances in
forecasting asthma exacerbations using clinical and envi-
ronmental factors. The study found that RF outperformed
SVM regarding predictive accuracy and model generaliz-
ability. Similarly, [73] undertook a systematic review and
meta-analysis of studies examining predictive modeling for
asthma exacerbations. It found that models incorporating
feature selection techniques, such as recursive feature elim-
ination, achieved a higher predictive accuracy than those of
models using all available predictor variables.

I. CHALLENGES AND CONSIDERATIONS
Despite the promise of optimization techniques in improving
asthma exacerbation prediction models, several challenges
and considerations must be addressed. One challenge is the
accessibility and reliability of the data utilized for training
and validating predictive models. Many studies relied on
retrospective electronic health record data, which may con-
tain missing or inaccurate information [74]. Furthermore, the
generalizability of predictive models across different patient
populations and healthcare settings remains a concern [75],
[76]. Additionally, the interpretability of complexMLmodels

poses challenges for clinical implementation and decision
making [77], [78], [79].

The study identified 371 articles, removed duplicates
to leave 313 unique records, excluded irrelevant ones
through screening processes, and ultimately included 27 arti-
cles in a systematic literature review on optimization
techniques for predicting asthma exacerbations. Table 4
presents a comprehensive overview of included studies on
optimization techniques for asthma exacerbation predic-
tion models. Each study was examined based on several
key aspects, which were personalized medicine, algo-
rithms employed, dataset, population studied, intervention
strategies, outcomes measured, limitations, and contribu-
tions. These aspects provide a detailed analysis of the
methodologies and approaches employed in optimizing
asthma exacerbation prediction models, highlighting the
diversity of techniques and their implications for improv-
ing patient healthcare outcomes and healthcare resource
utilization.

1. Use of personalized medicine: Several studies, such
as [51], [56], [57], and [88], incorporated personalized
medicine approaches in their models, tailoring predic-
tions to individual patients’ characteristics and needs.
These studies highlight how personalized approaches
enhance the accuracy and effectiveness of asthma exac-
erbation prediction models.

2. Algorithms employed: Many ML techniques were
utilized, including logistic regression, support vector
machine, random forest, neural network, and ensem-
ble learning methods, with selection criteria tailored
to individual research aims and the unique features
of the datasets under examination. This comprehen-
sive approach underscores the importance of aligning
algorithmic selection with specific objectives and char-
acteristics of data to optimize asthma exacerbation
prediction models effectively.

3. Dataset and population: The studies utilized diverse
datasets, ranging from clinical data to electronic health
records and IoT sensor data. Similarly, the popula-
tion studied varied, including children, adults, asthma
patients, and individuals with specific symptoms sug-
gestive of asthma.

4. Intervention strategies and outcomes: Various inter-
vention strategies were employed, such as feature
selection, model optimization, environmental factor
integration, and personalized risk assessment. These
interventions aimed to enhance the asthma exacer-
bation prediction models’ accuracy, robustness, and
dependability, resulting in improved performance
metrics, such as classification accuracy, specificity,
sensitivity, and area under the receiver operating char-
acteristic curve (AUC).

5. Limitations and contributions: Each study acknowl-
edged constraints, such as small dataset sizes, partic-
ular patient cohorts, absence of external validation,
and restricted generalizability. Notwithstanding these
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constraints, the studies presented notable advance-
ments by introducing innovative methodologies, algo-
rithms, and predictive models for asthma exacerbation
prediction. These contributions enhance our compre-
hension of asthmamanagement and facilitate the devel-
opment of more efficient personalized intervention
strategies.

Overall, the analysis highlighted the diversity of
approaches and methodologies employed in optimizing
asthma exacerbation prediction models, emphasizing the
importance of personalized medicine, and integrating envi-
ronmental factors for improved predictive accuracy and
clinical outcomes.

J. SUPPORTING SDGs 3, 11, AND 13
Sustainable Development Goals offer a comprehensive
framework to tackle global challenges and promote sustain-
able development. Hence, this review also investigated the
role of research in advancing SDG 3 (Good Health and Well-
being), SDG 11 (Sustainable Cities and Communities), and
SDG 13 (Climate Action).

The objective of SDG 3 is to guarantee the health and
well-being of every individual. Studies have stressed the role
of access to healthcare services and community-based health
programs in improving health outcomes [43], [44]. Further-
more, the progress made in ML algorithms has facilitated
the creation of prognostic models for asthma exacerbations,
hence improving the timely identification and treatment of
this condition [20], [57].

SDG 11 focuses on establishing inclusive, safe, resilient,
and sustainable cities and communities. Sustainable urban
development techniques, such as green infrastructure imple-
mentation and social equality considerations in urban
design, contribute to environmental sustainability and
public health [45], [46]. Furthermore, ML approaches
applied to urban data have facilitated the identification of
asthma-prone locations and informed targeted public health
interventions [47], [55].
SDG 13 stresses the urgent need for climate action to

combat climate change and its implications. Mitigating
greenhouse gas emissions and developing renewable energy
sources are crucial actions. ML models have been utilized
to estimate the health co-benefits of climate action, such
as reducing air pollution and improving respiratory health
outcomes [6], [48]. Additionally, innovative methodologies,
including cyber-physical systems and IoT technology, have
been applied to explore the link between climatic conditions
and health parameters, defining adaptive solutions for climate
resilience [47], [49].

The integration ofMLmodels in identifying environmental
triggers of asthma exacerbations significantly supports efforts
toward SDG 13 by contextualizing the health impacts of
climate change. Climate change exacerbates environmental
conditions such as increased air pollution, extreme weather
events, and changing patterns of allergens, all of which can
trigger asthma exacerbations.

Identifying Environmental Triggers Exacerbated by Cli-
mate Change:

1. Air Pollution: Climate change contributes to higher
levels of air pollutants such as ground-level ozone
and particulate matter. ML models can predict the
impact of these pollutants on asthma patients by analyz-
ing data from environmental monitoring systems and
health records, enabling timely interventions to reduce
exposure [6], [48].

2. Extreme Weather Events: Increasing frequency and
intensity of extreme weather events, including heat-
waves, wildfires, and storms, are linked to climate
change. These events can worsen air quality and
increase respiratory problems. ML models can help in
predicting the health impacts of such events on asthma
patients, providing critical insights for emergency pre-
paredness and response strategies [47], [49].

3. Allergen Patterns: Climate change affects the distri-
bution and potency of allergens, such as pollen, which
can trigger asthma attacks. ML models can analyze
trends in allergen levels in relation to climate variables,
helping to forecast periods of high risk and allowing
individuals and healthcare providers to take preventive
measures [47].

By identifying and analyzing these environmental triggers,
ML models facilitate adaptive solutions that enhance climate
resilience. These models inform policymakers and healthcare
providers about the specific climate-related risks to asthma
patients, leading to targeted actions that mitigate these risks
and improve public health outcomes.

The studied works in the literature underline the intercon-
nectivity of SDGs 3, 11, and 13 and the necessity of integrated
approaches in promoting health, urban sustainability, and
climate resilience. By harnessing breakthrough technology
and interdisciplinary cooperation, policymakers and prac-
titioners may promote sustainable development objectives
and create healthier, more resilient communities. Efforts to
address health inequities, promote sustainable urban plan-
ning, and mitigate climate change consequences are mutually
reinforcing, underscoring the necessity of a holistic approach
to reaching the SDGs.

Incorporating predictive models that identify environmen-
tal triggers exacerbated by climate change not only advances
SDG 13 but also strengthens the goals of SDG 3 and
SDG 11. This integrated approach ensures that efforts to
combat climate change simultaneously enhance public health
and promote sustainable urban development, contributing to
a more sustainable and resilient future.

Table 5 shows the characteristics of the studies in asthma
exacerbation prediction models. The table uses 1s to indicate
the inclusion and 0s to indicate the exclusion of various risk
factors (demographic, environmental, lifestyle, and clinical)
and methodological rigor elements (study design, sample
size, and data collection method) in each study. Several key
insights emerged from Table 5 when focusing on improving
model performance based on risk factors and methodological
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TABLE 5. Characteristics of selected studies in asthma exacerbation prediction models.

rigor. Regarding risk factors, it is evident that studies
vary in the extent to which they incorporate demographic,
environmental, lifestyle, and clinical factors into their

predictivemodels. Studies such as [43], [57], and [82] encom-
passed a comprehensive range of risk factors, potentially
leading to more robust prediction models. On the other hand,
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TABLE 5. (Continued.) Characteristics of selected studies in asthma exacerbation prediction models.
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TABLE 5. (Continued.) Characteristics of selected studies in asthma exacerbation prediction models.

TABLE 6. Performance metrics of selected studies in asthma exacerbation prediction models.

studies such as [44] and [54] focused more narrowly on
specific clinical or environmental factors, which may limit
the generalizability of their models.

Regarding methodological rigor, factors of study design,
sample size, and data collection methods played crucial roles
in ensuring the reliability and validity of the predictive mod-
els. Studies with larger sample sizes, such as [5] and [20],
were likely to producemore reliable models due to the greater
diversity and representation within the dataset. Additionally,
studies that utilized real-time or longitudinal data collection

methods, such as [51] and [57], may capture dynamic changes
in asthma exacerbation risk more effectively, leading to more
accurate predictions.

Moreover, studies that employed advanced ML techniques
and optimization algorithms, such as [5] and [82], demon-
strated a commitment to maximizing model performance.
By leveraging state-of-the-art methodologies, these studies
were better positioned to uncover complex patterns and rela-
tionships within the data, potentially resulting in superior
predictive accuracy.
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However, there are also opportunities for improvement
across the board. For instance, some studies, such as [53]
and [83], lack explicit information regarding certain method-
ological aspects, which could hinder reproducibility and
transparency. Additionally, while many studies incorporated
a wide range of risk factors, there may be room to explore
novel data sources or integrate additional variables to enhance
model performance further.

In summary, to improve model performance in asthma
exacerbation prediction, researchers should strive to incor-
porate diverse risk factors, employ rigorous methodological
approaches, leverage advanced ML techniques, and continu-
ously seek opportunities for innovation and optimization in
data collection and analysis.

Table 6 presents the performance metrics of the selected
studies evaluating asthma exacerbation prediction models.
Each row represents a study, detailing its performancemetrics
(accuracy, sensitivity, specificity, area under the curve (AUC),
mean absolute error (MAE), mean squared error (MSE), and
root mean squared error (RMSE)), validation metrics (cross-
validation (CV) and external validation (EV)), comparison
with baseline models, generalizability, and considerations
of bias and confounding. In the table, the 1s indicate the
presence or inclusion of specific model performance metrics,
comparisons with baseline models, assessments of general-
izability, or evaluations of bias and confounding factors for
each model, while the 0s indicate their absence.

1. Model performance metrics: The availability of the
performance metrics of accuracy, sensitivity, speci-
ficity, and AUC allows researchers to evaluate the
effectiveness of predictive models. Models with higher
values in these metrics are generally considered better
performers. For example, the models in [51] and [56]
showed high scores across these metrics, indicating
strong performances.

2. Validation metrics: Validation metrics, such as CV,
and EV, help assess the robustness and reliability of
models. Models with better cross-validation and exter-
nal validation metrics are preferred, as they demon-
strate better predictive accuracy. For error metrics,
lower values indicate better performance, whereas for
accuracy metrics, higher values are preferred [89],
[90]. Additionally, models with higher degrees of
cross-validation are more likely to generalize well to
unknown data [91].

3. Comparison with baseline models: Comparing a
model’s performance against those of baseline models
provides insights into its effectiveness. Models that sig-
nificantly outperform baseline models are considered
more reliable. For instance, the models in [43] and [49]
showed improvements over baselinemodels, indicating
their potential utility.

4. Generalizability: Generalizability refers to the ability
of a model to perform well on unknown data or in dif-
ferent settings [92]. Models with high generalizability
are preferred, as they are more likely to be applicable

in real-world scenarios. Ensuring that amodel performs
consistently across different datasets or validation sets
is crucial for its practical utility [93].

5. Bias and confounding: Identifying and addressing
biases and confounding factors in the data is essen-
tial for improving a model’s performance and fairness.
Models that account for biases and confounding vari-
ables are more likely to provide accurate predictions.
It is important to assess howwell a model handles these
issues to ensure reliability and applicability in diverse
contexts [94], [95].

In summary, the table highlights the critical factors influ-
encing the performance of the asthma exacerbation prediction
models. The availability of comprehensive model perfor-
mance metrics, including accuracy, sensitivity, specificity,
and AUC, provided insights into the effectiveness of the
models in predicting asthma exacerbations. Additionally,
validation metrics, such as MAE, MSE, RMSE, and CV,
contributed to assessing the robustness and reliability of the
models. Comparison with baseline models helped gauge the
improvement achieved by the proposed models. Considera-
tions of generalizability ensured their applicability in diverse
settings. Moreover, addressing biases and confounding fac-
tors was essential to enhance the reliability and fairness of the
models. By carefully considering these factors, researchers
can develop more accurate and reliable asthma exacerbation
prediction models, ultimately improving patient healthcare
outcomes and healthcare management strategies.

V. DISCUSSION
The empirical findings from the results section are critically
analyzed in this section, with specific emphasis placed on
the utilization of ML models and psychophysiological data
to comprehend patient responses and disease progression.
These findings are contextualized in the wider academic con-
versation, with an exploration of the use of ML algorithms
in predicting asthma exacerbations with considerations of
demographics, environment, and clinical indicators. Addi-
tionally, the implications of these findings for personalized
asthma management strategies are discussed in this review,
highlighting the potential for more proactive and tailored
approaches to asthma care. Furthermore, the review iden-
tified the methodological limitations of class imbalance
issues, risk of bias, and challenges related to data integration
and model interpretability in the studies discussed. These
limitations highlight the necessity for additional research
to tackle the challenges and improve the reliability and
efficacy of predictive models. Moreover, future research
directions are outlined, emphasizing the importance of inter-
disciplinary collaboration, large-scale validation studies, and
transparency in model development. By critically analyzing
the current state of research and identifying avenues for future
exploration, the discussion plays a crucial role in advancing
our comprehension of asthma exacerbation prediction and its
implications for personalized healthcare by addressing class
imbalance issues and minimizing the risk of bias.
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Imbalanced Classes: Imbalanced classes, a common chal-
lenge in predictive modeling, are evident in several studies
across the selected papers focusing on asthma exacerbation
prediction [96]. Imbalanced classes occur when one class (for
instance, asthma exacerbation) is significantlymore prevalent
than another class (for example, no exacerbation) within a
dataset [97]. This imbalance may result in biased model
performance, where the accuracy in predicting the majority
class is high and the model struggles to detect the minority
class [98], [99].

Addressing imbalanced classes is crucial for developing
reliable predictive models for asthma exacerbation. Various
techniques, such as resampling methods (e.g., oversampling
of the minority class or undersampling of the majority
class), ensemble methods (e.g., boosting or bagging), and
cost-sensitive learning algorithms can help mitigate the
impact of class imbalance [100]. Additionally, the inclusion
of suitable performance metrics, such as precision, recall,
F1-score, and the area under the receiver operating character-
istic curve (AUC-ROC), are crucial for accurately assessing
model performance, particularly when dealing with imbal-
anced class distributions [101], [102].
Furthermore, some studies employed specific sampling

strategies or algorithmic adjustments for imbalanced classes.
For instance, using retrospective and cross-sectional data
from large asthma datasets allowed for the generation of a bal-
anced dataset in some studies, thus mitigating the effects of
class imbalance during model training and evaluation [103],
[104], [105], [106], [107]. Addressing imbalanced classes is
essential for developing robust and reliable predictive models
for asthma exacerbation, ensuring that the models can effec-
tively identify individuals at risk of exacerbation and facilitate
timely interventions to improve patient healthcare outcomes.
Risk of Bias: Assessing the risk of bias is crucial when

evaluating the reliability and validity of studies focusing on
asthma exacerbation prediction. Across the selected papers,
various factors contributed to the risk of bias in these studies.
One major contributor to bias could be the potential absence
of representativeness in the samples used for the studies. For
example, some studies may include specific demographic
groups or patient populations, limiting the generalizability
of their findings to broader asthma populations [108], [109],
[110]. Additionally, the use of convenience samplingmethods
or the inclusion of only certain types of asthma patients may
introduce selection bias, affecting the external validity of the
results [111], [112].
Furthermore, the choice of study design and data collection

methods can influence the risk of bias in asthma exacerba-
tion prediction studies. Studies relying on retrospective data
analysis or electronic health records may be susceptible to
information bias, as the accuracy and completeness of the
recorded data could vary [113], [114]. Furthermore, studies
employing ML algorithms for prediction may encounter the
challenge of model overfitting. In such cases, the models
performed well in training the data but faced challenges in

generalizing unseen data, leading to exaggerated estimates of
predictive accuracy [115], [116], [117].
Moreover, potential conflicts of interest or funding sources

should also be considered when assessing the risk of bias
in asthma exacerbation prediction studies. Studies funded
by pharmaceutical companies or other commercial entities
may be more likely to report positive findings, introduc-
ing publication bias and affecting the overall reliability of
the evidence [118], [119], [120]. Additionally, the use of
proprietary algorithms or datasets without transparent report-
ing can hinder the reproducibility of study findings and
raise concerns about the validity of the results [121], [122].
Overall, careful consideration of sources of bias is essential
for accurately interpreting the findings of asthma exacerba-
tion prediction studies and informing evidence-based clinical
practice and policy decisions, thus answering this review’s
research questions, as elaborated in the subsequent subsec-
tions. This ensures a comprehensive understanding of the
implications of asthma exacerbation prediction and its role
in personalized healthcare.

A. EFFECTIVENESS OF MACHINE LEARNING ALGORITHMS
IN PREDICTING ASTHMA EXACERBATIONS AND KEY
PREDICTIVE FACTORS (RQ1)
ML algorithms exhibit varying effectiveness in predicting
asthma exacerbations, as indicated by the diverse perfor-
mance metrics reported across the studies. While some
studies achieved high accuracy, sensitivity, specificity, and
AUC values, reflecting robust predictive performance, others
reported lower metrics, suggesting less effective models. Sev-
eral key factors influence the effectiveness of ML algorithms.
Firstly, the quality and size of the dataset used for training
play a pivotal role, with larger and more comprehensive
datasets often leading to better performance. Additionally,
selecting relevant features spanning demographic, environ-
mental, lifestyle, and clinical indicators significantly impacts
predictive accuracy. The choice of ML algorithms and model
complexity also affects performance, with more advanced
models and ensemble methods yielding improved results.
Hence, ensuring the generalizability of models to unseen
data, addressing bias and confounding factors, and con-
ducting comparative analyses with baseline models are also
crucial for developing reliable predictive models.

Moreover, the efficacy of ML algorithms in predicting
asthma exacerbations hinges on their ability to account for
various contextual factors and adapt to diverse patient pro-
files [123], [124]. Optimizing model performance includes
incorporating real-time data from wearable devices and envi-
ronmental sensors, integrating clinical data from electronic
health records, and leveraging advanced feature engineering
techniques [125], [126]. Furthermore, adopting transparent
model evaluation methodologies, such as cross-validation
and external validation on independent datasets, fosters confi-
dence in the predictive capabilities of these algorithms [127].
By systematically addressing these factors and continually
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refining model architectures, ML has significant potential
to enhance the early identification and treatment of asthma
exacerbations. This can ultimately enhance patient healthcare
outcomes and optimize healthcare resource allocation.

B. FEATURE SELECTION AND MODEL OPTIMIZATION
TECHNIQUES FOR IMPROVING ACCURACY IN
ASTHMA EXACERBATION PREDICTION
MODELS (RQ2)
Feature selection and model optimization techniques var-
ied across the selected studies. However, several approaches
demonstrated efficacy in improving the accuracy of asthma
exacerbation prediction models. One notable technique was
incorporating comprehensive feature sets encompassing var-
ious demographic, environmental, lifestyle, and clinical
indicators associated with asthma exacerbations. Studies that
employed a wide array of relevant features tended to achieve
higher accuracy, as they captured the multifaceted nature of
asthma triggers and risk factors [128], [129]. Additionally,
sophisticated feature selection techniques, such as recursive
feature elimination or feature importance ranking, can aid in
pinpointing the most crucial predictors for asthma exacerba-
tions [130], [131]. By prioritizing pertinent features, these
techniques can reduce noise, enhance model interpretabil-
ity, and contribute to a more robust and reliable predictive
performance [132], [133].
Furthermore, model optimization strategies, including

hyperparameter tuning, ensemble learning, and cross-
validation, can significantly enhance the accuracy and
generalizability of asthma exacerbation prediction models.
Hyperparameter tuning involves systematically searching
for the optimal configuration of model parameters, such as
learning rate or regularization strength, to improve model
performance [134]. Ensemble learning techniques, such
as random forest or gradient boosting, amalgamate multi-
ple models to harness their combined predictive strength,
resulting in superior accuracy and robustness [135]. Cross-
validation techniques, such as k-fold or leave-one-out cross-
validation, validate model performance on separate datasets,
ensuring generalizability to new data [136]. By integrating
these feature selection and model optimization techniques,
asthma exacerbation prediction models can achieve higher
accuracy, reliability, and clinical utility, ultimately facilitating
early intervention and personalized management strategies
for asthma patients.

C. IMPACT OF ENVIRONMENTAL AND SPATIAL FACTORS
ON ASTHMA EXACERBATION PREDICTION MODELS (RQ3)
Environmental and spatial factors play crucial roles in
influencing the accuracy of asthma exacerbation predic-
tion models. Studies incorporating variables related to
indoor air quality, weather conditions, and geographical
location showed improved predictive performances due to
their significant impact on asthma exacerbations. Indoor air
quality, often assessed through various measures, such as

particulate matter concentration and allergen levels, directly
affects respiratory health and can trigger asthma symp-
toms [137], [138]. Models incorporating real-time indoor
air quality data provided valuable insights into environmen-
tal triggers, leading to more accurate predictions of asthma
exacerbations [139].
Case Study 1: A study conducted in four schools in

Jalandhar, India, utilized IoT-assisted smart sensors to capture
indoor environmental data and analyzed the correlation with
health parameters using the Adaptive Neuro-Fuzzy Inference
System (ANFIS). This study demonstrated the effectiveness
of real-time monitoring and analysis in predicting asthma
exacerbations caused by indoor air quality [58].

Moreover, weather conditions, including temperature,
humidity, and air pollution levels, have been identified as
important determinants of asthma exacerbations [140], [141],
[142]. Fluctuations in these factors can exacerbate airway
inflammation and increase respiratory symptoms among
asthma patients. Models that integrated weather data, particu-
larly through spatio-temporal modeling approaches, captured
the dynamic nature of environmental exposures and their
impact on asthma outcomes, resulting in more accurate pre-
dictions [143], [144].
Case Study 2: A pediatric asthma study included weather

features such as temperature, humidity, and air pollution.
The study compared four machine learning models (deci-
sion trees, logistic regression, random forests, and gradient
boosting machines) and found that weather-related features
significantly improved the prediction of hospitalization needs
for pediatric asthma patients [59].
Case Study 3:A study at Intermountain Healthcare and the

University of Washington Medicine evaluated the generaliz-
ability of a machine learning model that incorporated weather
data to forecast asthma hospital encounters. The model
showed excellent performance and highlighted the impor-
tance of weather conditions in predicting asthma-related
hospital visits [81].

Additionally, geographical location plays a critical role
in asthma exacerbation risk due to variations in environ-
mental exposures, healthcare access, and socio-economic
factors [145]. Models that accounted for spatial variability
in environmental factors and population characteristics better
captured localized asthma exacerbation patterns, leading to
more precise predictions and tailored interventions [146].
Case Study 4: A study compared the performance of

ten machine learning techniques to predict the association
between indoor air quality and asthma symptoms, con-
sidering geographical variations. The study used advanced
imbalanced sampling methods to enhance prediction accu-
racy and demonstrated how geographical factors influence
asthma outcomes [80].
Hence, incorporating environmental and spatial fac-

tors into asthma exacerbation prediction models enhances
their accuracy by accounting for the complex interplay
between environmental exposures and respiratory health
outcomes.
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D. IMPLICATIONS FOR PERSONALIZED ASTHMA
MANAGEMENT STRATEGIES (RQ4)
Personalized asthma management strategies are profoundly
influenced by the insights from predictive models, as
evidenced by the studies analyzed. By leveraging ML
algorithms and incorporating various demographic, environ-
mental, lifestyle, and clinical factors, these models offered
tailored approaches for asthma management that can signif-
icantly improve patient healthcare outcomes [147], [148].
Identifying key predictors of asthma exacerbations, such
as indoor air quality, weather patterns, and demographic
characteristics, allows healthcare providers to develop indi-
vidualized intervention plans to mitigate trigger exposure and
optimize treatment regimens [149], [150], [151]. Addition-
ally, integrating real-time data collection methods, including
IoT devices and mobile health applications, enables con-
tinuous monitoring of asthma symptoms and environmental
exposures, facilitating timely adjustments to treatment plans
based on personalized risk profiles [152].
Furthermore, implementing personalized asthma manage-

ment strategies holds promise for enhancing patient engage-
ment and self-management behaviors [153]. By empowering
individuals with personalized insights into their asthma
triggers and symptom patterns, these strategies promote
proactive health management and adherence to prescribed
therapies [154], [155]. Moreover, integrating telemonitoring
technologies and remote patient monitoring systems enables
efficient communication between patients and healthcare
providers, leading to timely interventions and mitigating
the need for asthma-related hospitalizations and emergency
department visits [156]. Adopting personalized asthma man-
agement strategies informed by predictive models represents
a paradigm shift towards precision medicine, where interven-
tions are tailored to individual patient needs, leading to better
asthma control, lower healthcare utilization, and a higher
quality of life.

The findings from this review on optimization strate-
gies in asthma exacerbation prediction models not only
can improve individualized asthma care but also correspond
with SDGs linked to health, innovation, and sustainability.
By establishing useful predictive models, the review provides
the framework for personalizing interventions to individual
asthma patients, thereby improving their health outcomes
and contributing to SDG 3. Integrating environmental and
spatial factors into prediction models, as recommended by
this review, not only improves asthma care but also adds to
achieving SDG 11 by supporting sustainable urban develop-
ment practices. By addressing individual patients’ needs and
considering environmental concerns, healthcare systems can
improve resilience and sustainability in urban environments,
thus promoting broader SDG objectives.

VI. LIMITATIONS OF STUDIES
In the discussion section, the review’s empirical findingswere
critically analyzed, focusing on the use of ML models and

psychophysiological data to understand patient responses and
disease progression. These findings were situated within the
wider academic discourse, exploring the application of ML
algorithms in predicting asthma exacerbations while con-
sidering demographics, environmental factors, and clinical
indicators. The implications for personalized asthmamanage-
ment strategies were discussed, emphasizing the potential for
proactive and tailored approaches to care.

However, several methodological limitations were identi-
fied within the studies reviewed. A significant challenge was
the issue of class imbalance, which was evident in studies
such as [57] where the minority class, representing patients
with severe asthma exacerbations, constituted less than 10%
of the dataset. This imbalance can lead to biased model
predictions that favor the majority class. For example, in [58],
the authors employed oversampling techniques to address this
issue, which improved sensitivity but at the cost of increased
risk of overfitting.

Different strategies for addressing class imbalance were
observed across the studies. Oversampling, as seen in [59],
increases the representation of the minority class by dupli-
cating samples, which can lead to overfitting as the model
may learn the noise along with the signal. Conversely, under-
sampling, as used in [80], reduces the majority class to
balance the dataset but may result in loss of valuable informa-
tion, potentially degrading the model’s overall performance.
An alternative approach, Synthetic Minority Over-sampling
Technique (SMOTE), was utilized in [81], creating syn-
thetic samples to balance the classes, which showed promise
in mitigating the trade-offs between oversampling and
undersampling.

Data integration challenges were also prevalent, partic-
ularly when combining datasets from different sources,
as noted in [82]. In this study, discrepancies in data formats
and measurement standards posed significant hurdles, lead-
ing to potential biases in the resulting predictive models. The
integration of heterogeneous data remains a complex issue,
underscoring the need for standardized data collection and
reporting practices.

Additionally, biases in sampling, as observed in [83],
and the risk of model overfitting, highlighted in [84],
were recurring issues. These limitations stress the need for
large-scale, multi-center studies with diverse populations
to improve the generalizability and reliability of predictive
models.

Future research directions should focus on interdisci-
plinary collaboration and large-scale validation studies to
address these methodological challenges. By improving data
integration processes and developing more sophisticated
techniques to handle class imbalance, future efforts can
enhance the reliability and accuracy of asthma exacerbation
prediction models, thus promoting more effective asthma
management practices. This approach aligns with Sustain-
able Development Goal (SDG) 3 by advancing health and
well-being, and SDG 9 by fostering innovation in healthcare
technology and methodologies.
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VII. CHALLENGES AND FUTURE DIRECTIONS
Despite the progress in optimizing asthma exacerbation pre-
diction models, several challenges persist. The study in [5]
highlighted the need for additional data sources, such as
environmental triggers and wearable device data, to improve
short-term predictive models. Moreover, [157] emphasized
the importance of real-time big data and predictive model
reliability for developing preventive guidelines, suggesting
that IoT and deep learning methodologies could improve
risk prediction and intervention strategies. Future research
should address data limitations, refine predictive models, and
translate findings into actionable insights to improve asthma
outcomes.

The studies presented in Table 2 showcase advancements in
asthma exacerbation prediction, leveraging various method-
ologies ranging from ML algorithms to environmental and
demographic data analysis. However, several challenges per-
sist, pointing towards future directions for research and
innovation.

One prominent challenge is the integration and standard-
ization of heterogeneous data sources. While some studies
utilized electronic health records or clinical databases, oth-
ers relied on environmental sensor data, patient-reported
outcomes, or social media data. Integrating these diverse
data streams poses technical and methodological challenges,
including data preprocessing, interoperability, and privacy
concerns. Future research efforts could focus on developing
robust frameworks for data integration and harmonization to
maximize the utility of available data for asthma exacerbation
prediction.

Moreover, the generalizability and scalability of prediction
models remain critical areas for improvement. Many selected
studies demonstrated high predictive accuracy within specific
populations or settings. However, when applied to diverse
populations or real-world clinical settings, they may lack
external validity. Enhancing the generalizability of prediction
models requires large-scale validation studies across diverse
patient populations, geographic regions, and healthcare set-
tings. Additionally, deploying prediction models in clinical
practice necessitates user-friendly interfaces, integration with
existing health information systems, and clinician engage-
ment to facilitate adoption and implementation.

Furthermore, addressing the interpretability and explain-
ability of ML models is essential for fostering trust and
acceptance among clinicians and patients. Black-box models
may achieve high predictive performance but offer limited
insights into the underlying mechanisms driving predictions,
hindering their clinical utility. Future research endeavors
could focus on developing interpretableMLmodels and deci-
sion support systems that provide clinicians with actionable
insights and recommendations, while transparently convey-
ing the rationale behind predictions.

The review not only highlights present difficulties but
also recommends future research avenues to address them
in alignment with SDG 3. By focusing on enhancing
model dependability and advancing customized healthcare

understanding, the review establishes a roadmap for future
research endeavors that contribute to reaching SDG 3. For
example, the review advises exploring novel optimization
strategies and combining other data sources to boost forecast
accuracy and clinical value. These activities fit with SDG
9 by stimulating innovation in healthcare technology and
methodology, ultimately supporting the objective of ensuring
healthy lives and promoting well-being for everyone.

In conclusion, addressing these hurdles necessitates inter-
disciplinary teamwork involving clinicians, data scientists,
engineers, and policymakers. This collaboration is vital to
fully harness the capabilities of data-driven methods in pre-
dicting asthma exacerbations. By addressing these challenges
and embracing emerging technologies and methodologies,
future research endeavors hold promise for advancing person-
alized asthma management and improving patient healthcare
outcomes.

VIII. CONCLUSION
In summary, the studies highlighted the significant progress
made in asthma exacerbation prediction through various
approaches, such as ML algorithms, environmental monitor-
ing, and demographic analysis. These studies demonstrated
promising results in predicting asthma exacerbations, with
many achieving high accuracy, sensitivity, and specificity
levels. Additionally, they identified key factors influencing
predictive performance, including demographic characteris-
tics, environmental factors, and clinical indicators in line with
SDGs 3, 11, and 13.

However, several challenges and areas for improvement
have been identified. These include integrating heteroge-
neous data sources, enhancing the generalizability and scala-
bility of prediction models, improving model interpretability
and explainability, addressing class imbalance issues, and
mitigating the risk of bias. By addressing these challenges
and embracing interdisciplinary collaboration, researchers
can improve the effectiveness and reliability of predictive
models, resulting in more proactive and tailored approaches
to asthma care. Future research efforts should focus on devel-
oping robust frameworks for data integration, conducting
large-scale validation studies across diverse populations and
settings, as well as enhancing the transparency and inter-
pretability of predictive models.
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