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ABSTRACT Two main challenges faced by deep learning systems are related to the amount of data and the
complexity of the model concerning the number and type of layers and the number of training parameters.
In this paper, we propose an end-to-end Arabic lip-reading system that can be trained on a limited dataset,
which combines a visual model consisting of Convolutional Neural Networks (CNNs) and a temporal model
consisting of Gated Recurrent Units (GRUs ) layers, taking into account the balance between the size of
the dataset and the number of model parameters. For this purpose, we created a limited Arabic dataset that
involved 20 words uttered by 40 native Arabic speakers; then, we exploited the redundant frames found in
video sequences to train the Arabic visemes classifier separately. This classifier was later used as a visual
model, as a pre-trained model, in our end-to-end system to extract the spatial features from videos, while
the temporal model was used to process the context. Our proposed method is evaluated on 1) our dataset,
we obtained an accuracy equal to 83.02%; 2) the Dweik et al. dataset, we obtained an improvement rate of
≈ 3% on the result recorded by their work. In addition, we employed the visemes classifier model for person
identification using the viseme shape and obtained a high result.

INDEX TERMS Arabic lip reading, deep learning, limited dataset.

I. INTRODUCTION
Lip reading can be defined as the ability to comprehend
speech using only visual signal information; this process is
a brilliant skill. It has many applications in speech transcrip-
tion for conditions where audio signals do not exist, such
as archival silent movies or off-mike conversations between
politicians and personalities [1]. It is also used for persons
with hearing damage, to comprehend patients with laryngeal
cancer, persons who have spoken cord paralysis, and to help
recognize speech in noisy environments [2].

Lip reading is a difficult process for individuals, espe-
cially when the context is unknown. Specialists need special
qualities to follow their lip movements, tongue articulations,
and teeth. Automatic lip-reading is also a challenging task
because it requires the extraction of spatiotemporal features
from a silent video, which means that both positions and
motions are essential. Advances in image processing and
deep learning methods have made it possible to decode this
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process by extracting spatiotemporal features end-to-end [2],
[3].

Visual and audio-visual speech recognition methods can
be classified (i) as models based on words and (ii) as those
based on visemes i.e. visual units that match groups of
visually indistinguishable phonemes. The earlier approach
was considered more applicable to isolated word recog-
nition, classification, and detection tasks. By contrast, the
latter approach is more appropriate for sentence-level clas-
sification and continuous speech recognition with a large
vocabulary [4].
According to Arabic lip-reading systems based on Deep

Neural Networks (DNNs), fewmethods have been introduced
compared with methods that use DNNs for other languages;
for example, the English language. The main reason for this
is the unavailability of large-scale datasets, and the acquisi-
tion of a new large-scale dataset is challenging because it is
error-prone and time-consuming. A common alternative for
automatic Arabic lip-reading to avoid having to train DNN
from scratch is to use pre-trained models designed for other
computer vision applications such as VGG-19, which was
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used by Alsulami et al. [5], and ResNet18, which was used
by Aljohani and Jaha [6].

The problemwewant to solve here is how to design a DNN
for Arabic Lip reading from scratch with a limited dataset size
and avoid overfitting without using any pre-trained model.
To this end, we consider a method to exploit the videos’
repeated viseme frames to obtain sufficient data for training
a deep model.

In this study, we proposed an architecture incorporating
CNNs and GRUs layers, which are trained separately without
requiring a large-scale Arabic dataset. Themain contributions
of this study are as follows.

1) Preparing a new Arabic dataset for isolated words
involving the 20 words most commonly used daily.

2) Building a viseme classifier (visual model) consisting
of a multilayer CNN trained on visemes extracted from
words in our dataset.

3) Create an end-to-end system for Arabic word recogni-
tion where the visual model is used as the frontend and
GRUs are used as the backend.

4) The same end-to-end model was applied to another
Arabic dataset prepared by Dweik et al. [7] without
retraining the visual model.

5) Train the same CNN architecture for person identi-
fication based on the shape of lips while speaking
(visemes).

We believe that creating an Arabic lip-reading systemwithout
relying on large-scale labeled data is an important addition for
artificial intelligence applications used to help persons utter-
ing the Arabic language who have hearing impairment, where
this language does not have a large-scale dataset for a lip-
reading system. Another significant benefit of this system is
that learning deepmodels on limited data opens the domain to
coverage of new dialects and languages that do not have large
datasets for training deep models and achieving competitive
performance. It can also be used as a password verification
system using lip images of spoken passwords without the
need for an audio signal.

The remainder of this paper is organized as follows:
Section II introduces related works, Section III explains the
dataset collection process, and Section IV explains the archi-
tecture of the proposed method. The experimental results are
discussed in Section V. Finally, a discussion and conclusions
are presented in Sections VI and VII, respectively.

II. RELATED WORKS
There are various methods for automatic lip-reading systems.
These methods can be divided into word-level and sentence-
level lip-reading. In the word-level group, lip-reading is
considered a classification problem, whereas in the sentence-
level group, lip-reading is considered a sequence-prediction
problem. The general structure of any automatic lip-reading
system consists of the following steps:

1) The pre-processing step involves sampling the input
video of a speaking person to image frames and extract-
ing the Region of Interest (ROI).

2) Frontend involves extracting relevant visual features
using either a handcrafted features model or a deep
learning model.

3) Backend: This may be a classification model if the
problem is word level or a sequence prediction model
if the problem is sentence level.

In this section, we focus on recent papers on lip-reading prob-
lems for English, Arabic, and other languages based on deep
learning techniques to solve this problem. We found a few
lip-reading methods for the Arabic language using DNNs,
mainly because of the unavailability of large-scale datasets
for this language. The most important factor in the success
of any DNN is the availability of a massive amount of data
that is used to train a DNN. Regarding research papers that
address the lip-reading problemwithout usingDNNmethods,
interested people can review the references [8], [9], and [10].
We display some recent pieces of literature for automatic
lip-reading methods using deep learning, where in section A,
we focus onword–levelmethods, while in section B, we focus
on sentence-level methods.

A. WORD-LEVEL METHODS
Saitoh et al. [11] produced a new method called the Con-
catenated Frame Image (CFI) used for sequence image
representation. CFI holds spatial-temporal information of the
frame sequence of an entire video. In addition, they proposed
two strategies for CFI augmentation: the first strategy was
applied to the spatial domain by gamma correction for bright-
ness changes, while the second strategy was applied to the
temporal domain by applying a temporal shift to control the
differences in utterance speed among speakers. To implement
phrase classification, they used three well-known CNNs net-
works (GoogLeNet [12], NIN [13], and AlexNet [14]), which
were trained in other datasets unrelated to lip-reading systems
and were fine-tuned for OuluVS2. The highest accuracy was
85.60% with GoogLeNet for frontal-view tests.

Chung and Zisserman [1] made two contributions: first,
they built a pipeline for collecting large-scale datasets auto-
matically from TV broadcasts, which involves more than a
million-word instance uttered by over a thousand people;
second, they developed CNN architectures that can recognize
hundreds of word instances from their proposed large-scale
dataset. They created four models based on the pre-trained
VGG-M model in [15] because it performs well and is fast in
classification compared to a deeper model, such as VGG-16
[16]. These Four architectures vary in how the T input frames
are ingested; for intervals of one second T = 25. In addition,
the architectures are divided based on multiple towers and
early fusion, and between 2D and 3D convolutions. In the
test, the set consisted of 333 words, and the top-1 accuracy
was 65.4%, while the top-10 accuracy was 92.3%.

Petridis et al. [17] produced an end-to-end model for visual
speech recognition, where an encoding layer consisting of
three sigmoid hidden layers was joinedwith Long Short-Term
Memory (LSTM) and Bidirectional LSTM (Bi-LSTM). The
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encoding layer was pretrained using Restricted Boltzmann
Machines (RBM). This model involves two streams: the first
extracts features from the raw mouth ROI images and the
second extracts features from the diff mouth ROI images.
In the two streams above each encoding layer, an LSTM layer
was added to model the temporal dynamics of the features.
The outputs of the LSTM in each stream were concatenated
and used as inputs to the Bi-LSTM layer. Thus, we can say
that the model is initialized with the pre-trained encoder,
while the Bi-LSTMs are trained, and the encoder parameters
are fine-tuned. This model was evaluated on two datasets,
OuluVS2 [18] and CUAVE [19]; the recorded accuracies
were 84.5% and 78.6% respectively.

Petridis et al. [20] developed the model in [17] for appli-
cation to three views of speaking persons: frontal, profile,
and 45◦ for each view, and one stream was used to extract
the features directly from the raw ROI image. The encoder
layer was the same as that used in a previous study [17],
where each encoder layer was followed by a Bi-LSTM to
model the temporal dynamics. The output of Bi-LSTM at the
three streams is concatenated in another Bi-LSTM that fuses
the information output from the three streams and assigns a
label for each input video frame. Their experiments were per-
formed on the OuluVS2 dataset, where the absolute average
improvement over the frontal view was 3% when two views
(frontal and profile) were combined and 3.8% when three
views (frontal, profile, 45◦) were combined; the maximum
accuracy was 96.9%.

Martines et al. [21] addressed the limitations of their model
in [22], which is an end-to-end audiovisual system based
on residual networks and Bi-GRUs. The processing was
performed by replacing the Bi-GRU layers with Temporal
Convolutional Networks (TCNs) and simplifying the training
procedure by adopting a cosine scheduler [23] to execute
the model training with a single stage and reduce the train-
ing time. To generalize the model to variations in sequence
length, the authors proposed a variable-length augmentation
method by removing random frame numbers from the video
sequence and the number of removed frames from 0-5 frames.
The overall model was evaluated on two datasets, LRW [1]
and LRW1000 [24], for English and Mandarin, and achieved
an accuracy of 85.3% and 41.4%, respectively. At the same
time, the accuracy of their work [22] on the LRW dataset
was 83.4%.

Mesbah et al. [2] produced a Hahn(H) CNN as a new
architecture based on Hahn moments, which was used as
the first layer in the CNN architecture. The reason for
using discrete orthogonal Hahn moments as the first layer
is to compute the moments of the input video images and
hold a matrix of moments; thus, they minimize the dimen-
sionality of the video frames and reduce the training time.
In addition, to handle spatiotemporal issues in the video, they
used the CFI method proposed by Saitoh et al. [11]. They
evaluated their proposed model on three datasets: OuluVS2
[18], AV-Letters [25], and BBC LRW [1], with Top-1

accuracy of 59.23% for the AV-Lterrs dataset, 93.72% for the
OuluVS2 dataset with five data augmentation transformation
methods and speaker-independent experiments, and 58.02%
for BBC LRW with one data augmentation method (flip
transformation).

Fernandez-Lopez and Sukno [26] proposed a solution to
train the deep model with a small data network by sep-
arating the training phase into modules, which are visual
modules built using the CNN network based on the VGGM
model [15], while temporal modules built using the LSTM
network also introduced a method to generate weak labels
per frame automatically, which are called visual units. These
weak visual units guide the CNN to extract significant visual
features that are combined with the context features prepared
by the temporal module. The two-fold features are adequately
informative for training a lip-reading system in a short time
without the need for manual labeling. This system was eval-
uated on the OuluVS2 [18] dataset and achieved an accuracy
of 91.38%.

Wang et al. [27] introduced a lip-readingmethod that incor-
porates 3D Convolution and a vision Transformer named
(3DCvT). The 3DCvT is operated for spatiotemporal fea-
ture extraction of continuous images; thus, it collects local
and global features in the continued images. The extracted
features were sent to Bi-GRU for sequence modeling. The
experiments of this method were applied to two datasets,
LRW and LRW-1000 [24], and achieved 88.5% and 57.5%
accuracy, respectively.

Alsulami et al. [5] introduced a lip-reading model for
the Arabic language by implementing transfer learning of
deep learning algorithms. They collected a new Arabic visual
dataset that involved 2400 recording videos of Arabic dig-
its and 960 video recordings of Arabic phrases uttered by
24 native Arabic speakers. The method starts with a keyframe
extraction process and then uses the CFI method proposed by
Saitoh et al. [11] to concatenate the keyframes of each utter-
ance sequence in a single image. For visual feature extraction,
they used a pre-trained model VGG-19 [16]. They tested
different keyframe numbers: 10, 15, and 20, and compared
two tactics in their proposed model: the first is the VGG-19
model alone, and the second is the VGG-19 model with
the addition of a batch normalization layer. They performed
their experiments on their proposed dataset, where greater
accuracy was recorded with the second tactic, achieving an
accuracy of 97% for phrase recognition, 94% for digit recog-
nition, and 93% for combined digits and phrases.

Dweik et al. [7] introduced a lip-reading system for
the recognition of ten Arabic words based on the image
sequence equivalent of mouth movements only. They col-
lected a dataset for these ten Arabic words from 73 native
Arabic speakers who uttered those ten words once some
persons uttered some of these words more than once, so the
dataset obtained an overall data containing 1051 records.
Three DNN models were proposed to achieve lip reading.
The first model was based on CNN only, the second model
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was based on a combination of Time Distributed (TD)-CNN
and LSTM, and the third was based on TD-CNN and
Bi-LSTM. They experimented with these three models using
RGB and grey image sequences. Higher results were recorded
with the RGB group, where the accuracies of the CNN,
TD-CNN-LSTM, and TD-CNN-Bi-LSTM were 79.2%,
70.1%, and 74.1%, respectively. In addition, the authors pro-
posed a votingmodel that executes six predictionmodels, two
cases of each DNN model, the grayscale group dataset, and
the RGB group dataset. The votingmodel selected the highest
accuracy among the six models for each word in the dataset.
After applying the voting model, the overall accuracy of the
lip-reading system is 82.84%.

Aljohani and Jaha [6] collected a dataset called Al-Qaida
Al-Noorania Dataset (AQAND) for Arabic, comprising 10
Quranic words, 14 Quranic letters, and 29 Arabic alphabets.
The AQAND was collected based on the book Al-Qaida
Al-Noorania and comprised videos for 22 Arabic speakers,
which were recorded from three viewpoints (0◦, 30◦, and
90◦) for each instance in the dataset uttered three times by
speakers. AQAND was used to train and test a lip-reading
system based on a pretrained model (transfer learning tech-
nique). The lip-reading model in this work is based on
a modified method in [28], which consists of a residual
network (ResNet-18), while its backend consists of three
layers of Bi-GRU followed by average pooling and fully
connected layers. The authors in [28] modified the first layer
in ResNet-18 from a 2D convolutional layer to a 3D convo-
lutional layer, and the size of the kernel was 5 × 7×7. After
applying pre-processing and two augmentation methods, hor-
izontal flip and affine transformation techniques, on AQAND
videos, these videos were fed into the lip-reading model. The
overall accuracies of Quranic words, disjoined letters, and
single letters were 83.33%, 80.47%, and 77.5%, respectively.

B. SENTENCE-LEVEL METHODS
Assael et al. [3] proposed an end-to-end model called LipNet
that maps a variable-length sequence of video frames to
comprehensible text. LipNet was the first model based on
the end-to-end sentence level for the English language in
the GRID [29] corpus. This model concurrently learns visual
features using a spatiotemporal CNN (STCNN) and sequence
modeling using Bi-GRUs. LipNet was trained with Connec-
tion Temporal Classification (CTC) loss [30] and recorded a
recognition accuracy of 95.2% at the sentence level.

Chung et al. [31] proposed a method called Watch, Attend,
and Spell (WAS) based on an encoder-decoder with an atten-
tion architecture [32], which was developed for machine
translation and speech recognition. In addition, they col-
lected a real-world dataset named LRS2, consisting of more
than 100,000 sentences based on BBC television broadcasts.
The performance of the WAS model on LRS2 for visual
cues alone was 76.5% Word Error Rate (WER). When the
WAS model was fine-tuned for other datasets, LRW [1]
and GRID [29], the model yielded 23.8% and 3.0% WER,
respectively.

Fenghour et al. [33] introduced a lexicon-free system that
uses only visual cues (visemes) for sentence recognition.
In addition, they proposed a perplexity analysis to convert
recognized visemes into words. The spatial-temporal fron-
tend was based on a model network in [4], where this network
applied 3D convolution followed by a 2D Res-Net on the
input image sequence. For viseme classification, they used
the transformer model with an encoder-decoder structure
in [34], where the encoder consisted of six self-attention
layers, and the decoder consisted of three fully connected
layers. Their proposed system was verified on the LRS2
dataset [31] and improved the accuracy of word classification,
with a WER of 35.4%.

Sarhan et al. [35] introduced a Hybrid Lip-Reading
(HLR-Net) system based on a deep convolutional neural
network for lip reading from video sequences. The structure
of this model was an encoder-decoder architecture, where the
encoder model was built using three inception, gradient, and
two Bi-GRU layers. The decoder model was built using an
attention layer and a fully connected layer, and the decoder
was trained using the CTC loss method [30]. On the GRID
dataset [29], the HLR-Net system achieved improvements
with a WER of 9.7% and CER of 4.9% in the test of unseen
speakers, and a WER of 3.3% and CER of 1.4% in the test of
overlapped speakers.

Peymanfard et al. [36] introduced a method that uses exter-
nal text data to map visemes and characters. The authors
believe that using an external model trained with textual
data can improve the recognition rate for any lip-reading
method. In sequence-to-sequence methods, after determining
the mouth region using facial landmarks for extracting the
ROIs of the image sequence, this sequence is modeled using
a 3D-CNN followed by a temporal processing model where
the output is a vector of probabilities for each character.
However, the authors added another network model trained
with independent text data. This additional model consisted
of two GRU layers with an attention mechanism [37]. For
the first time, an additional model was trained using textual
data from the LRS2 corpus [31]. The second time, to improve
accuracy, the authors used the OpenSubtitles corpus [38] to
train an additional model for viseme-to-character modeling.
After performing this method on the LRS2 [31] dataset, the
WER improved by 4% compared to the normal sequence-to-
sequence method in [31].
Fernandez-Lopez and Sukno [39] introduced a method

for training an end-to-end lip-reading system using small-
scale data. For this purpose, they assumed that the training
of the visual front-end model should be performed in a
self-supervised setting to make this model target its visemes
(visual units). In addition, they presented a data augmentation
method to obtain an extra temporal context by combining
character-like subsequences from existing videos. The visual
front-end model is based on the VGG-M [15], whereas
the temporal module consists of a stack of LSTM layers.
They tested their lip reading method on two scale datasets:
1) the VLRF dataset [40] for Spanish, which achieved aWER
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of 72.90%; 2) the TCD-TIMIT dataset [41] for the English
language, which achieved a WER of 56.29%.

Kim et al. [42] introduced a speaker-adaptive lip-reading
method, called user-dependent padding. The goal of this
method is to treat the performance degradation problem
with more lip-reading models in the case of unseen speak-
ers. User-dependent padding is a speaker-specific input that
can aid in the visual feature extraction of a pre-trained lip-
reading system without adding new layers or modifying the
learned weights. The authors added user-dependent padding
as another input to the padding region in the CNN (fron-
tend of the pretrained lip-reading system). User-dependent
padding can be associated with convolution filters instead
of traditional padding (e.g., reflect padding, zero padding,
and constant padding). Thus, movement information and lip
appearance are considered during visual feature encoding.
In addition, to lessen the insufficiency of speaker information
in the LRW dataset, the authors labeled the speakers in the
LRW dataset and created a scenario for an unseen-speaker lip
reading called LRW-ID based on a similar pipeline in [43].
According to the pre-trained lip-reading models, on the
sentence level, the authors utilized a per-trained model of
Lip-Net [3] that was applied to the GRID dataset [29] and
achieved 7.2 WER; on the word level, they employed a
obtained model in [21] on the LRW-ID dataset and achieved
a recognition accuracy of 87.51.

El-Bialy et al. [44] introduced a system that attempts to
improve lip-reading system performance using phonemes as
a classification schema at the lip-reading sentence level. They
investigated two classification schemas: viseme-based and
character-based schemas. In this system, a spatial-temporal
(3D) convolution followed by a 2D ResNet is used as a visual
front-end model. A transformer with multi-headed attention
was used for the phoneme recognition model. The backend
model consisted of a Recurrent Neural Network (RNN),
which was used as the language model. The evaluation of this
system was conducted on the LRS2 dataset [31], where 70%
of the phoneme recognition accuracy was achieved and 60%
of the word accuracy.

As highlighted in the related works discussed in subsec-
tions A and B, the most favorable DNN architecture that
has achieved the highest classification result for lip-reading
systems is the combination of CNNs and RNNs (which may
be LSTMs or GRUs) networks for example the works [3],
[21], [26], [27], and [42]. These CNN-RNN architectures
have been confirmed to be especially data-thirsty to provide
good recognition accuracy because of the nature of DNN,
which requires a large amount of data to train properly. In this
study, we focused on constructing an end-to-end system that
can perform lip-reading for the Arabic language at the word
level without requiring a large-scale dataset.

Regarding previous Arabic lip-reading works, we found
works [7], [5], and [6] that deal with Arabic lip reading using
DNNs, where the authors in [5] and [6] depended on transfer
learning from the pre-trained models for different computer
vision tasks (e.g. VGG19, ResNet-18 respectively); in other

words, they did not create a deep model from scratch. The
authors in [7] created three-deep models from scratch and
a voting algorithm but did not depend on viseme extraction.
Regarding our contributions to the field of Arabic lip reading,
we created from scratch two models: the first Arabic viseme
classifier using deep learning, and the second is an end-to-
end system for Arabic word recognition, where we used the
viseme classifier model as the visual model in our end-to-end
system. We also created a new Arabic dataset that involved
all visemes classified by [45] and matched the 28 phonemes
in the Arabic language.

Table 1 summarizes the studies on automatic lip-reading
problems discussed in subsections A and B. For further read-
ing about the lip-reading problem using DNN, refer to the
surveys in [46] and [47].

III. DATASET COLLECTION
Arabic is a Hamito-Semitic language that is present in many
forms. There are (1) Classical Arabic is special to the lan-
guage of the Coran, (2) the Arabic dialect which differs
among countries or even among regions in one country
(3) Modern Classical Arabic (MCA) which is the language
of education, literature, technology, science, administration
and the press [45].

The problem we want to solve in this work is how to train a
deep model for Arabic lip reading with the MCA form with-
out requiring a large-scale dataset. Therefore, we propose the
first step to solve this problem by creating a new small-scale
dataset for isolated words.We consider the words that involve
all visemes for MCA that map 28 Arabic phonemes, where
this mapping was created by P. Damien [45], as shown in
Table 2 displays this mapping. Our dataset consists of 20 iso-
lated Arabic words collected from college students age range
( 18-25) years, all of whom were native Arabic speakers from
Iraq. The laboratory environment was chosen for recording.
The participant was asked to sit on a chair in front of the
camera, approximately 50 cm away from the camera, where
the participant’s face view was frontal. Participants were
asked to speak normally, as they usually speak, and leave a
silence between utterances. There were 40 persons 8 Males
and 32 Females. The format of the acquired data videos was
mp4 recorded using a camera-type Canon with a resolution
full HD (1920 × 1080 pixels) with a frame rate of 25 frames
per second (fps). Each participant uttered 20 words involving
Arabic digits from 1 to 10 weekdays and three other words
widely used in daily life.

The selected words were uttered once by each participant,
and videos of the participants were recorded in one place. The
recording place was illuminated indoors, and a camera was
held by a holder to reduce vibrations. The recorded videos
were continuous for all datasets, which means that each par-
ticipant uttered 20 words in one video during the recording
process, which required additional post-processing, which is
the segmentation of these recorded videos into separate sub-
videos, eachmapping oneword in our dataset. The FreeVideo
Cutter software is used for cutting large videos to sub-videos
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with one second time length per word. Figure 1 shows the
participants’ images in the dataset. Table 3 shows the Arabic
isolated words used in preparing our dataset and their utter-
ances and meanings in English. The dataset is available upon
request.

FIGURE 1. Images of the participants in our dataset.

IV. THE PROPOSED METHOD
Our proposed method for building an Arabic lip-reading
system using deep learning consists of four main stages:
A) Pre-processing, B) Collecting visemes images, C) Cre-
ating an Arabic viseme classifier, and D) Creating an
end-to-end model for word recognition. The four stages are
explained in the following subsections. Figure 2 shows the
general structure of the proposed method.

FIGURE 2. The general structure of the proposed method.

A. PRE-PROCESSING
After we collected a small-scale dataset with 20 Arabic iso-
lated words, each video in the dataset was sampled into image
frames using the OpenCV library. To extract the ROI, the
frame images are processed to determine the mouth region
using the facial landmark predictor from the dlip library. The
facial landmark predictor attempts to determine 68 interest
points that represent the face contour, eyes, nose, and mouth.
Therefore, to yield the ROI that matches the talking person’s
lips, we used landmarks between 49 and 68 and took five
rows above and below the region to capture the most uttering
area, which helps to decrease the complexity and cost of
computational processing when training deep models. Now,
ROIs represent the visemes of each word in the dataset in
the red green blue (RGB) format, as shown in Figure 3.
In addition, the ROI images were resized to 112 × 112 and
then rescaled (normalization of the pixel value between 0 and
1 by dividing each pixel by 255).

B. COLLECT THE VISEMES’ IMAGES
To obtain a sufficient number of Arabic viseme images to
train a deep CNN model (viseme classifier), we suggested

FIGURE 3. The visemes in the uttered word ‘‘ ’’.

exploiting the repeated visemes (similar visemes) in the ROIs
of each video in our dataset by collecting all ROIs that
have similar lip movement shapes to group by helping the
keyframes search algorithm [5], a keyframe is a frame where
a change occurs in the timeline, we took into account only five
keyframes have the most variation (including the first frame
because it is a reference frame in any video so we consider it
the first keyframe).

Subsequently, we manually collected similar visemes
located between every two consecutive keyframes and saved
them in a specific group. Each group was matched to one
of the 10 classes of Arabic visemes created by Damien et al.
[45]. The goal of this idea is to provide a reasonable number
of visemes images to be used to train the visemes classifier.
We got 9906 visemes images from 800 videos (20 words ×

40 persons) in our dataset, where the silence regions in
the videos were neglected. These images belong to the 10
Arabic viseme classes, which are named V1, V2,. . . , V10.
Figure 4 shows the number of images extracted from the
video sequences in our dataset. Afterward, we divided the
collected viseme images into training and validation groups
with a rate (of 80:20) which was collected from video words
for 35 persons from our dataset, while testing was performed
on unseen viseme data taken from the remaining videos for
five persons in the dataset. Table 4 shows the distribution of
the collected visemes in the training, validation, and testing
groups.

Figures 5 and 6 show the keyframes that have themost vari-
ation on two different words (‘‘ ‘‘ and ‘‘ ’’ respectively)
and the redundant similar frames between each consecutive
keyframes.

FIGURE 4. Number of extracted visemes from our dataset.

C. CREATE AN ARABIC VISEMES CLASSIFIER
When we build an Arabic visemes classifier using CNN
architecture, this model will be used later as a frontend in
end-to-end architecture, which we call the visual model. The
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TABLE 1. Summary of some recent automatic lip-reading methods.

viseme classifier consists of four convolution layers, each
followed by max-polling and batch-normalization layers, and
then we add flattening and two Fully Connected layers. This
model captures the spatial features of ROI images that have
been resized to 112 × 112 in RGB format, the goal of using
RGB format is to capture more details from the ROI image
because of the difference in colors for the tongue and teeth;
thus, the CNN architecture enables the extraction of mouth
movement features. Table 5 presents the details of the model
used for Arabic viseme classification.

D. CREATE AN END-TO-END MODEL
We created an end-to-end model consisting of two sub-
models: a visual model to extract the spatial visual features
from each video in the dataset, and a temporal model to
process the temporal features of those videos and sequence
modeling.

The small size of any dataset restricts the learning power
of any DNN model when it has a high number of param-
eters [48]. Thus if we fully trained the end-to-end system
with our dataset, which is a small-scale dataset, we soon
realized the shortage of the dataset. Therefore, we should
find a balance between the number of parameters in the
end-to-end model and the amount of available training
data. Therefore, we used the method for splitting the train-
ing by models proposed by [26], where our visual model
involves 616,298 parameters while the temporal model
involves 4,357,140 parameters, and each model is trained
separately on our dataset with 800 sequences of uttering. The
idea of splitting the training is beneficial to our problem,
because each model has a specific aim that can be performed
individually.

We proposed to employ the Arabic visemes classifier itself,
which we previously trained and frozen its weights, as a
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visual model by removing the classification layer (Soft-max
layer). Each recorded video in our dataset was passed through
a pre-processing step for ROI extraction and then passed to
the visual model to extract the bottleneck features (a com-
pressed representation of the input information), which were
saved as NumPy arrays.

According to the temporal model, which treats the context,
we built it from a GRU layer followed by batch normalization
andBidirectional GRU layer followed by a softmax layerwith
20 neurons to match several classes (words) in our dataset.
The temporal model was trained separately (from scratch)
on bottleneck features extracted by the visual model. The
purpose of training each model separately is to balance the
number of training parameters in each model with the size of
the training data, reduce training time, and avoid overfitting
issues. We were inspired by the idea of separating model
training from Fernandez-Lopez et al. [26], but with a different
architecture.

TABLE 2. Phoneme-viseme mapping for MCA language.

V. EXPERIMENTAL RESULTS
We discuss the results of each model separately because they
were trained separately, whereas we first discuss the viseme
classifier model results and then the end-to-end model results
in the following subsections.

TABLE 3. Arabic words in the proposed dataset.

TABLE 4. Distribution of the collected visemes.

FIGURE 5. Highlighted five keyframes have the most variation in the
word ‘‘ ’’.

A. VISEMES CLASSIFIER RESULTS
The proposed visemes classifier model was trained using the
Adam optimizer for 100 epochs with a learning rate starting
with 0.0003 and decreasing factor Sqrt (0.1) with an average
patience of 5 epochs and a batch size equal to 16. The image-
data-generation class was used to artificially augment the size
of our training data, thereby supplying many more images
to the model for training. We performed image augmenta-
tion forms involving horizontal flip, rotation with 5 degree,
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FIGURE 6. Highlighted five keyframes that have the most variation in the
word‘‘ ’’.

TABLE 5. Details of the visemes classifier.

horizontal and vertical shifting, change the brightness in
range (1-2), and shear the image in the range 0.2. The visemes
classifier model yielded classification accuracies of 91.14,
86.22, and 86.87% in the training, validation, and testing
groups, respectively. Figure 7 shows the confusion matrix for
the test group.

In addition, we made the same proposed CNNs model for
the Arabic visemes classifier to have the ability to perform
person identification task by uttering visemes with good
results. This task is performed with some simple changes:
learning rate= 0.0001 and decreases factor equal to Sqrt (0.1)
with an average patience of 5 epochs, number of epochs =

50, patch size = 16, and number of classes in the out-
put layer = 40, which match the number of persons in
our dataset. CNNs model training was performed using the
Adam optimizer. The numbers of visemes images used in
the training, validation, and testing groups were 6658, 816,
and 870, respectively. We obtained an accuracy of 99.77%
in person identification, as shown in the confusion matrix in
Figure 8. Thus, we conclude that the viseme image can be
used as a biometric measure for person identification, where
the selection of viseme images that are used in training and
testing does not belong to the same letter in Arabic but from

different letters (arbitrary selection for viseme images). To the
best of our knowledge, this Arabic viseme classifier is the
first in-field classification for Arabic visemes using a DNN.
Table 6 shows the classification report for the testing group.
The accuracy and loss curves during the training phase are
shown in Figure 9.
As shown in Figure 9, the training vs. validation accuracy

curves for the visemes classifier model began to improve at
epoch 45 and reached a peak at epoch 100, where model
training was stopped, and the training accuracy was close
to 91.14% for the training group and 86.22% for the val-
idation group. In contrast, the training and validation loss
curves decreased to a point of stability and did not have
a large gap between them at epoch 45 and were close to
zero at epoch 100, where the model training and valida-
tion processes were stopped to avoid overfitting. This means
that the difference between the predicted visemes and actual
visemes is low, and as a result, we obtained better model
performance.

If we look closely at the confusion matrix in Figure 7 and
the classification report in Table 6, we notice that the high
recognition accuracy recorded for V1 = 0.97, V4 = 0.94,
V5 = 0.90, V6 = 0.97, and V10 = 0.95, the reason for the
high accuracy of these visemes is the distinct shapes that do
not overlap with other shapes, so that the model can recognize
them well. Where V1 results from the pursed lips, V4 results
from the appearance of the tongue outside the mouth, V5
results in the proximity of the teeth of the upper and lower
jaws and the flattening of the upper and lower lips, V6 results
from the teeth of the upper jaw appearing aligned between
the upper and lower lips with the lips protruding upward, and
V10 results from pursed lips with a dark hole between the
lips (see phoneme-viseme mapping in Table 2). V7 and V8
have lower accuracy (0.66 and 0.51, respectively) because
their shapes overlap by uttering the words, andwe can see that
clearly in the confusion matrix, 12 of 77 images of V7 were
incorrectly classified as V8, and there were 10 of 53 images
of V8 incorrectly classified as V7. Moderate accuracy was
recorded for V2, V3, and V9, with rates of 0.67, 074, and
0.88, respectively.

From the confusion matrix of the person identification
model in Figure 8, we do not notice any overlap among person
recognition predictions because each person has a distinct lip
shape, which can be used as a biometric measure for person
identification, where we obtained an accuracy rate of 99.77%.
At the same time, this distinct shape makes the problem of lip
reading more difficult because each person utters the same
word with different lips shapes and speeds.

B. END-TO-END MODEL RESULTS
After we completed training the Arabic viseme classifier
(visual model) and obtained an acceptable result in the viseme
classification task, we froze its weights and saved this model.
The last layer in this model (Soft-max layer) was removed,
and this model was used as a pre-trained model that can be
used as a frontend in our end-to-end model. The visual model
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FIGURE 7. Confusion matrix for viseme classifier model.

FIGURE 8. Confusion matrix for person identification model.

FIGURE 9. The accuracy and loss curves during the training of the
visemes classifier model.

extracts bottleneck features for each video in the dataset and
saves them as NumPy arrays.

To obtain more training data for the temporal model,
we applied augmentation mechanisms: rotation, sigmoid,
flip, and linear transformation for each video in the dataset,
and then extracted their bottleneck features using the visual
model. The total number of videos used in training equals the
number of persons in the training group (32) × number of
words uttered (20) = 640 videos. After applying augmenta-
tion (rotation, sigmoid, flip, and linear), we got 3200 videos.

TABLE 6. Classification report for arabic visemes classifier model.

Some persons uttered the same word more than once, which
means that we obtained extra data, so the overall summation
of the training video is that 3289 videos will be entered into
visual models. The validation group comprised 20% of the
training group, with 658 videos; thus, the remaining number
for training was 2631. The number of videos in the testing
group (unseen data) was 8 persons ×20 words uttered =160
videos (one video was neglected because it was damaged,
so the total number of videos in the testing group was 159),
all of which were entered into the visual model to extract
the bottleneck features. The temporal model consisted of one
GRU layer with 512 neurons with a time step of 25, followed
by a batch normalization layer and one Bi-GRU layer with
1024 neurons. This model was trained on bottleneck features
using the Adam optimizer for 70 epochs with a batch size of
16 and a learning rate of 0.0003 to classify feature arrays into
one of 20 classes at the softmax layer. The recorded accuracy
result was 83.02.

Also, we applied our proposed models to another Arabic
dataset created by W. Dweik et al. [7] which involved 10
Arabic words (‘‘ ,’’ ‘‘ ’’,‘‘ ’’, ‘‘ ’’, ‘‘ ’’, ‘‘ ’’,
‘‘ ’’, ‘‘ ’’, ‘‘ ’’, ’’ ‘‘) these words are used fre-
quently in the day and are uttered by 73 native Arabic
speakers in mp4 format with rat 30 fps, we also applied
the same augmentation methods that applied on our dataset.
Here, we did not need to retrain the visual model again;
instead, we used it as a pertained model on Arabic visemes
that can extract visual features directly from a new dataset.
Subsequently, in the temporal model, we only changed the
time step to 30 and the softmax layer to 10 classes to
match the number of classes in this dataset, after which
we trained the temporal model on bottleneck features using
the Adam optimizer for 70 epochs with a batch size of 16.
We obtained a good accuracy of 85.81 as shown in Table 7,
where the recorded results indicate that our proposed method
gave recognition results that exceeded the results recorded
by Dweik et al. [7] with an improvement rate equal to
approximately 3%. Figures 10 and 11 show the train vs. val-
idation accuracy and loss curves by the proposed end-to-end
model for our dataset and the W. Dweik dataset, respectively,
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whereas Figures 12 and 13 show confusion matrices for
testing groups on the two datasets. -

As shown in Figures 10 and 11, the training vs. validation
accuracy curves for the end-to-end model began to improve
at epoch 40 and peaked at epoch 70, where model training
was stopped and the training accuracy was close to 100 in
our dataset experiment. On the Dweik dataset, the model
accuracy improved at epoch 20 and peaked at epoch 70, where
model training was stopped and the training accuracy was
close to 100. We believe that the improvement in accuracy
began from epoch 20 because the number of classes in the W.
Dweik dataset was less than the classes on our dataset with a
rate of half. The training and validation loss curves decreased
to a point of stability and did not have a large gap between
them at epoch 20 on our dataset and epoch 10 in the Dweik
dataset, and close to zero at epoch 70 in both datasets, where
the model training and validation processes were stopped
to avoid overfitting. This means that the difference between
predicted and actual words is low.

If we look closely at the confusion matrixes in Figure 12
and the classification report in Table 8 we will find
that the highest recognition rate of 100% recorded on
words (‘‘Khamsah, Setah’’, ‘‘Asef’’, ‘‘Ashraah’’, ‘‘Mataa’’),
another high recognition rate is 80-90% recorded in words
(‘‘Thamanyah,’’ ‘‘Arabah,’’ ‘‘Jumaa,’’ ‘‘Kayfa,’’ ‘‘Tesaah,’’
‘‘Wahed,’’ ‘‘Sabaah,’’ ‘‘Ahad,’’ ‘‘Khamees,’’ ‘‘Arbeaa’’),
moderate rate 60-70% recorded on the words (‘‘Sabt,’’ ‘‘Thu-
lathaa’’), low recognition rate< 60% recorded on words
(‘‘Thalathah,’’ ‘‘Ethnan,’’ ‘‘Ethnain’’) because the word
‘‘Thalathah’’ overlap with the words ‘‘Thulathaa’’ with rate
25% in confusion matrix because those words very simalar
in uttering (they have more similar phonemes see Table3), the
word ‘‘Ethnan’’ overlap with the words ‘‘Ethnain’’ with a rate
of 12.5% because those words very simalar in uttering (they
have very similar phonemes) andwith rate of 12.5% forwords
(‘‘Thamanyah,’’ ‘‘Thalathah’’) because those words begin
with phonems ‘‘Tha’’ (‘‘ ’’) wich is the more stress in those
three words (‘‘Thamanyah,’’ ‘‘Thalathah,’’ ‘‘Ethnan’’), so the
model confused on recognition among those three words. The
word ‘‘Ethnain ‘‘overlaps with the words ‘‘Ethnan’’ with a
rate of 25% in the confusion matrix because those words are
very similar in uttering (they have more similar phonemes)
and with a rate of 12.5%with the word ‘‘Thalathah ‘‘ because
those words have the phonemes ‘‘Tha’’ (‘‘ ’’) which is the
more stress in those two words (‘‘Thalathah,’’ ‘‘Ethnain’’).

If we look closely at the confusion matrixes in Figure 13
and the classification report in Table 9 we will find that
the highest recognition rate recorded on words (‘‘Masaa’’,
‘‘Alyawm’’, ‘‘Salam’’, and ‘‘Shukrun’’) with rates ( 91%,
92%, 93%, and 93%) respectively. The moderate accuracy
range was recorded on the words (‘‘Jameel’’, ‘‘Sabah’’,
Aasef, and ‘‘Marhaba’’,) (84%, 85%, 86%, and 88%)
respectively. The lowest result was recorded on the words
(‘‘Ghadan,’’ and ‘‘Khair’’) with rates (of 74%, and 75%)
because these two words begin with the same visemes but
different phonemes (‘‘ ,’’ ‘‘ ’’ = V8 see Table 2) and the

stress done on these two phonemes through uttering them so
the confusion got in the recognition where the word ‘‘Khair’’
overlapped with the word ‘‘Ghadan’’ with a rate 20.6%, while
the word ‘‘Ghadan’’ overlapped with the word ‘‘Khair’’ with
a rate 10% as it is clear from confusion matrix in Figure 13.
Note that we find the overlap rates by dividing the number of
misclassified words in a specific class by the total number of
samples from this word.

If we notice the words in the Dweik dataset we don’t
find two words that have more identical phonemes on
the contrary, our dataset has 4 pairs of words that have
more identical phonemes (as a result they have similar
visemes) which makes the recognition task difficult, these
pairs (‘‘Ethnan’’, ‘‘Ethnain’’), (‘‘Thalathah‘‘, ‘‘Thulathaa’’,),
(‘‘Arabah’’, ‘‘Arbeaa’’), and (‘‘Khamsah’’, ‘‘Khamees’’).
Also, the W. Dweik dataset didn’t involve all visemes
in the Arabic language, for example, V4 matches three
phonemes ‘‘ ’’, ’’ ’’, and ‘‘ ’’ unfound in this dataset
while our dataset comprises all visemes classified by
P. Damien [45].

Let us compare the results of our proposed method with
those of the traditional method proposed by Damien [49]
based on feature engineering for Arabic viseme images.
We found that our method has the best result, with approx-
imately 2% for word recognition and 3% for viseme recogni-
tion. The method in [49] is the only work based on visemes
for Arabic word recognition before our work, which uses
the geometrical features of predefined visemes and the Hid-
den Markov Model (HMM) as a classifier. Training and
testing were performed on a custom dataset with an MCA
form prepared by the author involving 20 words uttered
by four persons that were recorded in a controlled envi-
ronment. The accuracy of viseme recognition was 83.92%
for 852 Arabic visemes with 10 classes, as classified by
Damien et al. [45], while the accuracy of word recogni-
tion was 81.67% for overall 240 words, where the author
did not indicate the number of words used in training and
testing.

Based on these experimental results, we proved that the
visual model can be used as a pre-trained model to extract
features from different datasets and provide good accuracy
without the need to train it from scratch. To the best of our
knowledge, this is the first study to use the DNNs in Arabic
visemes classification. The test experiments were performed
by independent persons (the visemes and words uttered by
unseen persons on training data) in both the visemes classifier
and the end-to-end models. We executed these models on a
computer with an Intel(R) Core(TM) i7-10750H processor
(2.60 GHz), 32 GB RAM, and a single NVIDIA GeForce
RTX 3060 graphic processing unit. The proposed models
were implemented using the Keras framework with Tensor-
Flow backend.

VI. DISCUSSION
For automatic lip reading at the word level using DNNs,
researchers have presented many methods that mostly rely
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TABLE 7. The accuracy results of the proposed end-to-end model.

FIGURE 10. The accuracy and loss curves of the end-to-end model on our
dataset.

FIGURE 11. The accuracy and loss curves of the end-to-end model on the
Dweik dataset.

on large-scale datasets, such as those in [1], [21], [22], and
[27]. However, if we want to retrain these methods for any

FIGURE 12. Confusion matrixes of the testing group on our dataset.

FIGURE 13. Confusion matrixes of the testing group on the W. Dweik
dataset.

limited datasets, we notice a large decrease in recognition
accuracy rates because of a shortage of data and an imbalance
between the number of parameters of the model and the size
of available training data, which we noticed when we tried
to apply a DNN architecture similar to the work in [1] on
our proposed dataset. Therefore, we must find an alternative

111622 VOLUME 12, 2024



Z. Jabr et al.: Arabic Lip Reading With Limited Data Using Deep Learning

strategy for training the DNN on our limited dataset. How-
ever, the limited size of our dataset and the large number of
DNN model parameters are two challenges; how we solve
and find a balance between them. To this end, we attempted
to find a way to construct a new visual model specialized in
the problem of Arabic lip-reading with fewer parameters to
fit our limited dataset. This new model can be used as a fron-
tend in our end-to-end model, which is constructed for word
recognition, where the two models are trained separately.

Dataset availability is an important limitation of Arabic
lipreading systems. Moreover, acquiring a new large-scale
dataset is challenging, particularly because of the need for
suitable labeling, which is time-consuming and error-prone.
A common alternative to avoid training theDNN from scratch
is to use pre-trained models designed for other computer
vision applications, such as VGG-19, which was used by
Alsulami et al. [5], and ResNet18, which was used by
Aljohani and. Jaha [6]. Thus, we propose the creation of an
end-to-end system from scratch trained on a limited dataset
for the Arabic language with MCA form, then exploiting
the repeated visemes available in recorded video sequences.
These visemes are used for training the deep CNN model
(viseme classifier), which will be later used as frontend in
our end-to-end model.

To avoid the overfitting problem, we took several counter-
measures. First, we exploited the repeated visemes in each
word in the dataset to collect a reasonable number of visemes
images (see Figure 4), which were used to train the visemes
classifier model. Second, we used four types of augmentation
(flip, rotate, linear, and sigmoid) on each video in the train-
ing and validation groups of the dataset. Third, L2 weight
regularization (0.05 is used in the visual model and 0.03 in
the temporal model) to encourage parameter sparsity and
penalize negative or highly positive weights. The fourth batch
normalization was performed after each convolutional layer
in the visual model, and only after the GRU layer in the
temporal model.

Because the problem in this study is a classification, three
metrics Precision, Recall, and F1-score were adopted to eval-
uate the model’s performance of prediction for each class
in the visemes dataset and each word in two datasets (our
and the Dweik et al. datasets) as shown in Tables 6, 8,
and 9 where Precision calculates how often the proposed
model correctly predicts positive cases, Recall represents
how well the model can identify actual positive cases, and
F1-score is the weighted mean of Precision and Recall. The
three metrics are shown in equations 1-3, where TP, FP,
and FN represent True Positive, False Positive, and False
Negative respectively. If we show values of the F1-score in
three Tables 6,8, and 9 we notice most of these values are
high, which means a well-balanced performance for both the
visemes classifier and the end-to-end models. In Table 6 the
higher F1-score recorded equals 0.97 for both visemesV1 and
V6. In Table 8 the higher F1-score recorded equals 1.00 for
the words ‘‘Khamsah’’, ‘‘Setah’’, ‘‘Asef’’, ‘‘Ashraah’’, and
’’Mata’’. In Table 9 the higher F1-score recorded equals

0.93 for both words ‘‘Salam’’ and ‘‘Shukrun’’.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 − score = 2 ×
(Precision × Recall)
(Precision + Recall)

(3)

VII. CONCLUSION AND FUTURE WORK
Our proposed end-to-end system consists of two models: a
visual model (viseme classifier) and a temporal model, which
are trained separately because each model has a specific aim
that can be reached individually. The visual model aims to
determine the visual information that is observable at a given
instant. Simultaneously, the temporal module maps the visual
features into speech units while joining temporal constraints.
Based on the experimental results, we conclude the following:

a. The better the performance of the visual model, the
better the results in the temporal model.

b. The proposed visual model can be used to extract
bottleneck features from any Arabic dataset indepen-
dent of the speaker or type of word without needing
to train the visual model from scratch. We only need
to retrain the temporal model and change its softmax
layer to fit the new classes of the required dataset.
We proved that when we applied our proposed method
to the dataset created by Dweik et al. [7], we noticed
an increase in the recognition rate by approximately
3% (see classification report in Table 9). We did not
need to retrain the visual model from scratch, we used
it as a pre-trained model to extract the visual features
for each video. These features train the temporal model
to learn to recognize an entire word. This procedure
reduces training time and simplifies the work on the
overall system.

c. We can avoid the overfitting issue that arises in
lip-reading systems using DNNs when the size of the
dataset is limited by exploiting the repeated viseme
frames and using them to train a visual model.

d. The proposed end-to-endmodel succeeded in recogniz-
ing very similar articulation words in our dataset with
an acceptable result such as the words ( (‘‘Ethnan,’’
‘‘Ethnain’’), (‘‘Thalathah,’’ ‘‘Thulathaa,’’), (‘‘Arabah,’’
‘‘Arbeaa’’), and (‘‘Khamsah,’’ ‘‘Khamees’’) as seen in
Table 8 that displays the classification report for this
model on our prepared dataset.

e. Regarding computational complexity (time, space, and
number of training parameters), we noticed a reduction
in model training time, where the total training time
for the overall end-to-end model was approximately
3.57 hours (≈ 2.7 hours for the visual module), without
requiring any pre-trained model (model designed for
other computer vision applications) or external training
data. According to space, we needed to execute our
proposed models on 32 GBRAM and a single NVIDIA
GeForce RTX 3060 graphic processing unit to speed
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TABLE 8. Classification report on our dataset.

up the execution. If we noticed the training parameters,
the visual model had 616,298 parameters while the
temporal model involved 4,357,140 parameters, where
the number of parameters in the visual and temporal
model was much less than pre-trained models such as
VGG16 or ResNET18; therefore, we obtained a type
of balance between the size of the dataset and the
number of training parameters and enabled us to avoid
overfitting problems.

f. We succeeded in using the visual model to perform
another task, person identification based on viseme
shape, and achieved high accuracy.

TABLE 9. Classification report on the W. Dweik dataset.

g. In future work, we will first collect a new dataset for
sentences in Arabic. Second, we attempted to develop
the proposed method for sentence-level prediction.
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