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ABSTRACT This paper studies the synchronization and tracking issue for the connected and automated
vehicle (CAV) platoonwithmixed-order nonlinear vehicle dynamics. Previous researches have demonstrated
that vehicle platoons can improve traffic efficiency andminimize the incidence of traffic collisions. However,
vehicles within the same platoonmay have different-order dynamics in practical scenarios. The heterogeneity
issue of a vehicle platoon caused by the different-order dynamics is difficult to address by existing platoon
control methods. Therefore, the platoon synchronization and tracking control problem for the heterogeneous
CAV platoon which consists of mixed-order vehicles with a hybrid of second- and third-order dynamics
is formulated in this paper. The proposed novel distributed sliding mode (DSM) control protocols for
vehicles with second- and third-order dynamics aim to guarantee the convergence of vehicle state errors
and the stability of the heterogeneous platoon. The distributed neural network-based adaptive estimation
technique are developed in this paper to approximate the unknown uncertainties and compensate for the
model nonlinearities of the platoon system. The uniform ultimate boundedness of errors and string stability
are substantiated through the Lyapunov theory and infinity-norm technique. The efficacy of the developed
platoon control strategies can be verified by the numerical examples.

INDEX TERMS CAV, mixed-order nonlinear dynamics, string stability, heterogeneous platoon, neural
network.

I. INTRODUCTION
With the growing concerns over traffic congestion, environ-
mental contamination, and car incidents escalating, there has
been a considerable focus on various research directions in
intelligent transportation systems (ITS) [1]. The connected
and automated vehicle (CAV) platoon control, which requires
that vehicles within the platoon follow their adjacent
vehicles with a predetermined desired inter-vehicle spacing
along the same driving path, is acknowledged as a key
research focus within the realm of ITS. The investigation of
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vehicle platoon control has attracted numerous researchers,
and the extensive explorations within the field have been
carried out over the last several decades. Recent years,
the implementation of vehicle platoon control has demon-
strated its feasibility for improving road safety, enhancing
overall traffic flow, and diminishing fuel expenditure [2].
The effectiveness of vehicle platoon control has been
validated through some well-known projects in the real
world, such as KONVOI in Germany, PATH in USA, and
SARTRE in Europe [3], [4], [5]. A great number of key
aspects in this field have been extensively investigated,
including string stability [6], dynamic homogeneity and
heterogeneity [7], platoon communication topology [8], etc.
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Many effective control techniques have been utilized to
deal with the platoon control problem, including feedback
linearization [9], model predictive control [10], sliding mode
control [11], etc.

Recently, there have been a great number of articles focus-
ing on vehicle platoon control, specifically on the powertrain
dynamics modeling [12]. These researches have discussed a
wide range of various vehicle dynamic models [13], [14],
[15]. To simplify the vehicle dynamic model and facilitate
the controller design, some earlier studies have investigated
the homogeneous linear vehicle platoon [14], [15], [16].
Nevertheless, in practical scenarios, vehicle dynamics usually
exhibit nonlinearity and can be influenced by uncertainties
and external disturbances. Therefore, many studies made
investigations on platoons with nonlinear vehicle dynamics
[17], [18], [19], [20], [21].

According to existing literature, the second- and
third-order dynamics for vehicles are commonly utilized in
the existing works of the nonlinear vehicle platoon [20],
[21], [22]. Based on the second-order vehicle dynamics,
the coupled sliding mode control strategy are developed
to achieve the platoon control objective and reduce the
impact of external disturbances in [20]. In [21], a hierarchical
platoon controller design framework based on the feedback
linearization control and decentralized bidirectional control is
established for the vehicle platoon with third-order dynamics.
However, in practical applications, vehicle platoons often
exhibit heterogeneity which reflects the differences among
the vehicle dynamics and can have a substantial influence
on the platoon stability and control effectiveness [7].
Therefore, the heterogeneity within a platoon should be
taken into consideration, and the control protocols should
be designed to effectively handle these differences. Some
existing literature have dedicated to the investigation of
the heterogeneous platoon [23], [24], [25], [26], [27]. The
distributed control framework and the topological reaching
law are developed for a nonlinear heterogeneous vehicle
platoon to regulate vehicles to keep desired inter-vehicle
distances and a uniform velocity in [23]. In [25], a robust
coordinated control strategy is presented for a nonlinear
and heterogeneous platoon to ensure the platoon stability
and realize the control goal. The above-mentioned studies
concerning heterogeneous platoons primarily focus on the
heterogeneity resulting from the differences in vehicle model
parameters. Nevertheless, the heterogeneity problem arising
from differences in the orders of vehicle dynamics have
not been involved. In real traffic scenarios, vehicles within
the same platoon can exhibit heterogeneities and may have
different-order dynamics such as second- or third-order
dynamics, and this heterogeneity problem can be difficult to
address by the existing platoon control approaches. Hence,
it is significant and challenging to explore the control problem
for the mixed-order heterogeneous CAV platoon with the
vehicles containing a hybrid of second-order and third-order
vehicle dynamics.

As the fundamental platoon control objective is that
all following vehicles can reach prescribed inter-vehicle
distances and track the velocity of the leader, a critical
issue of the objective is to ensure the individual vehicle
stability and the string stability. Within the platoon control
systems, string stability is a significant feature that indicates
the characteristic whereby vehicle spacing errors are not
amplified by their propagation in the platoon [28].

Many studies on the issue of string stability have been
introduced in [29], [30], and [31]. In [30], the safety-extended
distributed control method based on the model predictive
control is used in order to fulfill the platoon control
goal and guarantee string stability by exploiting vehicle
communication. In [31], under the platoon communication
topology, the H∞ optimal controller is implemented for
the platoon to realize the vehicle consensus and string
stability.

Unknown uncertainties and model nonlinearities existing
in the vehicle dynamics can have an impact on the whole
platoon, which can also affect the platoon stability and control
performance [32]. The impact of the unknown uncertainties
and nonlinearities on vehicle platoon systems has attracted
considerable attention [33], [34], [35], [36]. In [35], dis-
tributed network-based backstepping control schemes are
designed to solve the issue of unknown model parameters
within the vehicle platoon. For the platoon with uncertain
vehicle dynamics, a robust H -infinity control approach is
presented to enhance vehicle tracking performance and
ensure string stability in [36]. It is noteworthy that almost all
of the previously discussed works necessitate to obtain exact
information on vehicle dynamics. Nevertheless, acquiring
such specific details about vehicle dynamics presents great
difficulties in practical platoon systems. In addition, the
accurate acquisition of unknown uncertainties and model
nonlinearities in real-time can also be hard to achieve. There-
fore, it is imperative and of practical significance to address
the control problem for the mixed-order heterogeneous CAV
platoon with unknown uncertainties and model nonlinearities
in the absence of exact information of vehicle dynamics
parameters.

Following from the aforementioned discussions, this paper
focuses on the synchronization and tracking issue for
the heterogeneous CAV platoon with mixed-order vehicle
dynamics. The platoon investigated in this article is sub-
ject to unknown uncertainties, model nonlinearities, and
external disturbances. To fulfill the control objective and
reach the consensus among vehicles, the novel distributed
sliding mode (DSM) control strategies are proposed in
this paper. The suggested strategies guarantee the vehicle
error convergence in spacing, velocity, and acceleration
and ensure string stability of the platoon. To deal with
unknown uncertainties and model nonlinearities for the pla-
toon system, the distributed neural network-based adaptive
laws are formulated. The primary contributions are outlined
below.
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First, in practice, the actual vehicle platoon systems
are typically heterogeneous and may consist of following
vehicles with different-order dynamics. Compared with the
above-mentioned works that investigate the homogeneous
vehicle platoon [16] or focus on the problem of the
heterogeneity caused by different model parameters [23],
this article analyzes the control problem of the mixed-order
heterogeneous CAV platoon consisting of vehicles with a
hybrid of second- and third-order dynamics.

Second, obtaining the precise knowledge of vehicle
dynamics in the platoon can be hardly achieved in a practical
scenario. Unlike existing studies that make the assumption
that the dynamics for all following vehicles are known within
a platoon [34], [35], [36], in this study, the distributed neural
network-based adaptive updatingmechanism is developed for
the mixed-order heterogeneous CAV platoon to approximate
unknown uncertainties and compensate for model nonlineari-
ties of the platoon system without acquiring exact knowledge
of vehicle dynamics.

Third, in order to ensure the convergence of vehicle
state errors and the string stability, the novel DSM control
protocols based on the platoon communication topology are
designed in this article for the mixed-order heterogeneous
CAV platoon. The Lyapunov technique and infinity-norm
method are used to demonstrate the boundedness of state
errors and the string stability, respectively.

The arrangement of this paper is presented below. The
description of the mixed-order heterogeneous platoon model
and the platoon control problem are established in Section II.
The mechanism of the neural network approximation is
introduced in Section III. The control strategy design for
the mixed-order heterogeneous CAV platoon is explored in
Section IV. The analysis of the convergence of state errors
and string stability is provided in Section V. In Section VI,
the numerical examples of the heterogeneous platoon are
presented. The conclusions and future research are outlined
in Section VII. The abbreviations and notations utilized
throughout this article are shown in Table 1.

TABLE 1. List of abbreviations and notations.

II. DESCRIPTION OF MIXED-ORDER PLATOON MODEL
AND PROBLEM FORMULATION
A. MIXED-ORDER VEHICLE DYNAMICS
This article considers a mixed-order heterogeneous CAV
platoon with N followers and one leader along the horizontal
driveline. Based on the majority of existing literature on
platoon control [22], the followers are modeled by second-
or third-order vehicle dynamics. The following vehicles
with third-order vehicle dynamics are represented by m2 =

{1, 2, . . . , l} and others with second-order vehicle dynamics
are represented as m1 = {l + 1, l + 2, . . . ,N }. All following
vehicles are denoted asM = {1, 2, . . . ,N }, and the leader of
the platoon is labeled as 0. The third-order vehicle dynamic
model is described as [23]

ẋi,1(t) = xi,2(t)
ẋi,2(t) = xi,3(t)
ẋi,3(t) = φi(x̄i) + αi(x̄i, t)ui(t) + ζi

i ∈ m2 = {1, 2, . . . , l} (1)

where xi,1(t), xi,2(t), and xi,3(t) denote the position, velocity,
and acceleration of the ith vehicle, respectively; x̄i =

[xi,1(t), xi,2(t), xi,3(t)]T ; φi(·) and αi(·) denote the nonlinear
unknown uncertainties and are locally Lipschitz; ui(t) is the
control input; ζi represents the unknown external disturbance.
The second-order vehicle dynamic model is described

as [37] {
ẋi,1(t) = xi,2(t)
ẋi,2(t) = φi(x̄i) + αi(x̄i, t)ui(t) + ζi

i ∈ m1 = {l + 1, l + 2, . . . ,N } (2)

where x̄i = [xi,1(t), xi,2(t), 0]T . Without loss of generality,
one can make the assumption that αi(x̄i, t) ≥ αi > 0, where
αi is the minimum value of αi.
Globally, the third-order vehicle dynamics in (1) can be

expressed as
ẋm2
1 (t) = x2(t)
ẋm2
2 (t) = x3(t)
ẋ3(t) = φm2 (x̄m2 ) + αm2um2 (t) + ζm2

(3)

and the second-order vehicle dynamics in (2) can be globally
described as{

ẋm1
1 (t) = x2(t)
ẋm1
2 (t) = φm1 (x̄m1 ) + αm1um1 (t) + ζm1

(4)

where

(·)m1 =

[
0l 0
0 IN−l

]
(·); (·)m2 =

[
Il 0
0 0N−l

]
(·);

x1(t) = [x1,1(t), x2,1(t), . . . , xN ,1(t)]T ;

x2(t) = [x1,2(t), x2,2(t), . . . , xN ,2(t)]T ;

x3(t) = [x1,3(t), . . . , xl,3(t), 01×(N−l)]T ;

u(t) = [u1(t), u2(t), . . . , uN (t)]T ;

φ(x̄) = [φ1(x̄1), φ2(x̄2), . . . , φN (x̄N )]T ;

x̄ = [x̄1, x̄2, . . . , x̄N ]T ;
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α = diag{α1(x̄1, t), . . . , αN (x̄N , t)};

ζ = [ζ1, ζ2, . . . , ζN ]T .

Remark 1: Practically, the characteristics of vehicle
dynamics may be affected by numerous elements, including
frictional resistance, air resistance, road conditions, etc. Some
certain dynamics parameters of vehicles are time-dependent,
and the same parameters can exhibit variations among
different vehicle dynamics within a platoon. Furthermore,
in practice, the platoon may comprises vehicles with different
order dynamics. Thus, the mixed-order vehicle platoon
studied in this paper can be nonlinear, time-varying, and
heterogeneous.

Given that the leader needs to provide state information of
all orders as a reference for the follower vehicles, the leader
is therefore considered to be a third-order system as

ẋ0,1(t) = x0,2(t)
ẋ0,2(t) = x0,3(t)
ẋ0,3(t) = φ0(x̄0, t)

(5)

where x0,1(t), x0,2(t), and x0,3(t) denote the position,
velocity, and acceleration of the leader, respectively; x̄0 =

[x0,1(t), x0,2(t), x0,3(t)]T ; φ0(x̄0, t) denotes the nonlinear
unknown function which is locally Lipschitz.

B. PLATOON COMMUNICATION TOPOLOGY
In a vehicle platoon system, the platoon communication
topology plays a key role as it governs the establishment
of communication links between vehicles. The commonly
adopted platoon communication topologies are mainly
categorized into: predecessor following (PF), predecessor-
leader following (PLF), bidirectional (BD), bidirectional-
leader (BDL), two predecessor following (TPF) and two
predecessor-leader following (TPLF) [23], which are shown
in Fig. 1.

To illustrate the communication among vehicles in the
platoon, the platoon communication topology is described by
G = {V,E}. G represents a directed graph, where V is a
nonempty node set and E ∈ V × V is the edge set. (j, i) ∈ E
signifies the connection of a edge from node j to node i,
which means that node i acquires the information from j.
The connectivity of G is represented by its adjacency matrix
A =

[
aij

]
∈ ℜ

N×N , where aij > 0 if (j, i) ∈ E and otherwise
aij = 0. Ni = {j |(j, i) ∈ E } indicates the neighboring
nodes set of node i, which implies that node i can receive
information from the nodes within Ni, but not vice versa. The
Laplacian matrix can be described as L =

[
lij

]
∈ ℜ

N×N . The
in-degree matrix is described by D = diag {d1, d2, . . . , dN },
where di =

∑N
j=1 aij [38].

A spanning tree is referred to as a subgraph of G that
encompasses every node within the graph [39]. If there
exists a route from the root node to all other nodes in G,
it indicates that G incorporates a spanning tree. Suppose that
the leader can solely send information to followers without
receiving any from them. The directional links between the
leader and followers are often described by the pinning

FIGURE 1. Commonly used platoon communication topologies. (a) PF;
(b) PLF; (c) BD; (d) BDL; (e) TPF; (f) TPLF.

matrix. Then, the pinning matrix can be described as B =

diag {b1, b2, . . . , bN }, where bi > 0 if the edge from the
leader to node i exists, and bi = 0 otherwise.
Assumption 1: We assume that G comprises at least a

single spanning tree, which means that each follower within
the vehicle platoon can directly or indirectly engage in
communication with the leader [23].
Lemma 1: As B is a diagonal matrix with nonnegative

elements, the matrix L + B is positive definite if the platoon
communication topology satisfies Assumption 1 [40].

C. CONTROL PROBLEM FORMULATION FOR
MIXED-ORDER HETEROGENEOUS PLATOON
In order to ensure that each vehicle in the mixed-order
heterogeneous CAV platoon maintains a prescribed spacing
with its predecessor and tracks the trajectory of the leader,
the platoon control objective for this study can be specifically
outlined below.

(1) Design the novel DSM control protocols for all vehicles
to ensure the error convergence within the mixed-order het-
erogeneous CAV platoon incorporating the vehicle spacing
policy and platoon communication topology.

(2) Each following vehicle keeps a desired distance with
its predecessors and synchronizes to all states of the leader.

(3) Design the distributed neural network-based adaptive
laws to approximate unknown uncertainties and compensate
for model nonlinearities of the heterogeneous platoon.

(4) Ensure the individual vehicle stability for each
following vehicle and the string stability for the mixed-order
heterogeneous CAV platoon.

The mixed-order heterogeneous CAV platoon studied in
this article is illustrated in Fig. 2, comprising N followers
and one leader. The spacing policy requires that each vehicle
maintains a constant desired distance with its preceding
vehicle, which is known as the constant spacing policy
(CSP) [41]. Define the desired inter-vehicle spacing between
neighboring followers in CSP as d > 0. Then, the ideal
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FIGURE 2. Mixed-order heterogeneous CAV platoon.

position for vehicle i is defined as

xides(t) = x0,1(t)−i× d (6)

Then, the tracking errors of the ith vehicle are expressed as{
µi,1(t) = xi,1(t) − xides(t)
µi,2(t) = xi,2(t) − x0,2(t)

, i ∈ M

µi,3(t) = xi,3(t) − x0,3(t) i ∈ m2 (7)

where µi,1(t), µi,2(t), and µi,3(t) represent the position,
velocity, and acceleration error, respectively.

Then, the final control objective of this study can be
rephrased as{

lim
t→+∞

∥∥xi,1 − xides
∥∥ = 0

lim
t→+∞

∥∥xi,2 − x0,2
∥∥ = 0

, ∀i ∈ M

lim
t→+∞

∥∥xi,3 − x0,3
∥∥ = 0 ∀i ∈ m2 (8)

That is, the final control objective is that the spacing
tracking error µi,1(t) and velocity tracking error µi,2(t) can
reduce to zero for i ∈ M = {1, 2, . . . ,N }, and the
acceleration tracking error µi,3(t) can converge to zero for
i ∈ m2 = {1, 2, . . . , l}.
The platoon communication topology can directly impact

the vehicle synchronization and string stability [23]. Based
on the CSP and graph theory, define the synchronization
errors of the heterogeneous platoon as

ei,1(t) =

∑
j∈Ni

aij[xj,1(t) − xi,1(t)]

+ bi[xides(t) − xi,1(t)], i ∈ M

ei,2(t) =

∑
j∈Ni

aij[xj,2(t) − xi,2(t)]

+ bi[x0,2(t) − xi,2(t)], i ∈ M

ei,3(t) =

∑
j∈N∗

i

aij[xj,3(t) − xi,3(t)]

+ bi[x0,3(t) − xi,3(t)], i ∈ m2 (9)

where N∗
i denotes the third-order neighbors of the ith vehicle.

Then, the global synchronization errors can be represented as

e1(t) = −(L + B)[x1(t) − xdes(t)] = −(L + B)µ1(t)

e2(t) = −(L + B)[x2(t) − x0,2(t)1N ] = −(L + B)µ2(t)

e3(t) = −(L + B)[xm2
3 (t) − x0,3(t)1

m2
N ] = −(L + B)µ3(t)

(10)

where

e1(t) = [e1,1(t), e2,1(t), . . . , eN ,1(t)]T ;

e2(t) = [e1,2(t), e2,2(t), . . . , eN ,2(t)]T ;

e3(t) = [e1,3(t), . . . , el,3(t), 01×(N−l)]T ;

µ1(t) = [µ1,1(t), µ2,1(t), . . . , µN ,1(t)]T ;

µ2(t) = [µ1,2(t), µ2,2(t), . . . , µN ,2(t)]T ;

µ3(t) = [µ1,3(t), . . . , µl,3(t), 01×(N−l)]T ;

xdes(t) = [x1des(t), x2des(t), . . . , xNdes(t)]T .

To simplify the exposition, we will not detail the time-
dependence t of the parameters within (10). Since x1 =

xm1
1 + xm2

1 , x2 = xm1
2 + xm2

2 , the differential of (10) can be
expressed as

ė1 = −(L + B)(ẋ1 − ẋdes) = −(L + B)(x2 − x0,21N )

ė2 = −(L + B)(ẋ2 − ẋ0,21N )

= −(L + B)(ẋm1
2 + ẋm2

2 − ẋ0,21N )

= −(L + B)(ẋm1
2 − x0,31

m1
N ) + e3

ė3 = −(L + B)(ẋ3 − ẋ0,31
m2
N )

= −(L + B)[φm2 (x̄m2 ) + αm2um2 + ζm2 − φ0(x̄0)1
m2
N ]

(11)

Remark 2: The augmented graph is a graph that incorpo-
rates the leader node, and it can be described as G =

{
V,E

}
,

E ∈ V × V. According to Lemma 1, the main diagonal
elements of the matrix L + B maintain nonnegative values,
and its non-diagonal components keep nonpositive values.
Lemma 2: Assume graph G consists of at least one

spanning tree. Then, according to (10), we have∥∥µj∥∥ ≤
∥∥ej∥∥/

σ (L + B), j = 1, 2, 3 (12)

Proof:According to Lemma 1, L+B is positive definite.
In (10), we have ej = −(L + B)µj, j = 1, 2, 3. Then,

µj = −(L + B)−1ej, j = 1, 2, 3 (13)

Hence, the relationship between µj and ej can be described
as ∥∥µj∥∥ =

∥∥∥(L + B)−1ej
∥∥∥ ≤

∥∥ej∥∥/
σ (L + B), j = 1, 2, 3

(14)

III. NEURAL NETWORK APPROXIMATION
Neural network is commonly employed for the estimation
of unknown parameters and uncertainties in control systems.
Radial basis function (RBF) neural network is a type of
artificial neural network that use the radial basis function
as the activation function, which is known for its simplicity,
strong approximation capability, and efficient training pro-
cess. The primary advantages of the RBF neural network
include its ability to model nonlinear relationships effectively
and its fast convergence during the training phase [42].
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Therefore, the RBF neural network is used in this study to
address the problem of unknown uncertainties and model
nonlinearities. By designing the RBF neural network adaptive
approximation mechanism, this article aims to estimate the
nonlinear unknown uncertainties φi(x̄i) and αi(x̄i, t). Assume
φi(x̄i) and αi(x̄i, t) are smooth and unknown. According to
the neural network approximation method mentioned in [43],
φi(x̄i) and αi(x̄i, t) can be represented as{

φi(x̄i) = W T
φi
ϕφi (x̄i) + εφi

αi(x̄i, t) = W T
αi
ϕαi (x̄i) + εαi

, i ∈ M (15)

where Wφi and Wαi denote the ideal neural network weights;
ϕφi (x̄i) and ϕαi (x̄i) represent the basis functions; x̄i is the input
of the network; εφi and εαi are the approximation errors.
Wφi ,Wαi , ϕφi (x̄i), ϕαi (x̄i) ∈ ℜ

oi , oi is the number of neurons
for node i. The selection of basis functions may include
options such as Gaussians, sigmoids, or hyperbolic tangents.

The basis function of the RBF neural network can be
described as follows.

ϕk (x̄i) = exp

[
−

∥∥x̄Ti − ck
∥∥2

2b2k

]
(16)

where ck denotes the coordinate value of center point; bk
represents the width value; k ∈ {1, 2, . . . , oi}.
Remark 3: According to the Weierstrass approximation

theorem, there exist a sufficiently large positive o∗
i and a

compact set �, such that for any oi > o∗
i , it is always

possible to find ideal Wφi , Wαi and suitable ϕφi (·), ϕαi (·),
which makes (15) meet the requirement that maxx̄i∈�

∣∣εφi ∣∣
and maxx̄i∈�

∣∣εαi ∣∣ are sufficiently small [44].
Define the approximation of φi(x̄i) and αi(x̄i, t) as

φ̂i(x̄i) = Ŵ T
φi
ϕφi (x̄i), α̂i(x̄i, t) = Ŵ T

αi
ϕαi (x̄i) (17)

where φ̂i(x̄i) and α̂i(x̄i, t) are the estimates of φi(x̄i) and
αi(x̄i, t); Ŵφi and Ŵαi are the estimates of weights.
Then, the global φ(x̄) and α can be expressed as

φ(x̄) = W T
φ ϕφ(x̄) + εφ, α = W T

α ϕα(x̄) + εα (18)

where

Wφ = diag{Wφ1 , . . . ,WφN };

ϕφ(x̄) = [ϕTφ1 (x̄1), ϕ
T
φ2
(x̄2), . . . , ϕTφN (x̄N )]

T
;

εφ = [εφ1 , εφ2 , . . . , εφN ]
T
;

Wα = diag{Wα1 , . . . ,WαN };

ϕα(x̄) = diag{ϕTα1 (x̄1), . . . , ϕ
T
αN

(x̄N )}T ;

εα = diag{εα1 , . . . , εαN }.

The global approximation φ̂(x̄) and α̂ can be described by

φ̂(x̄) = Ŵ T
φ ϕφ(x̄), α̂ = Ŵ T

α ϕα(x̄) (19)

where φ̂(x̄) = [φ̂1(x̄1), φ̂2(x̄2), . . . , φ̂N (x̄N )]T ; α̂ =

diag{α̂1(x̄1, t), . . . , α̂N (x̄N , t)}; Ŵφ = diag{Ŵφ1 , . . . , ŴφN };
Ŵα = diag{Ŵα1 , . . . , ŴαN }.

Assumption 2: Define WφiM =
∥∥Wφi

∥∥
F , WαiM =

∥∥Wαi

∥∥
F ,

ϕφiM = maxx̄i∈�
∥∥ϕφi (x̄i)∥∥, ϕαiM = maxx̄i∈�

∥∥ϕαi (x̄i)∥∥.
Then, there exist positive WφM , WαM , ϕφM and ϕαM , such
that

∥∥Wφ

∥∥
F ≤ WφM , ∥Wα∥F ≤ WαM ,

∥∥ϕφ(x̄)∥∥ ≤ ϕφM ,
∥ϕα(x̄)∥F ≤ ϕαM . εφ and εα are bounded by

∥∥εφ∥∥ ≤ εφM
and ∥εα∥F ≤ εαM , where εφM > 0 and εαM > 0 are the
fixed bounds [45].

IV. DESIGN OF DISTRIBUTED CONTROL STRATEGY FOR
MIXED-ORDER HETEROGENEOUS PLATOON
A. DSM CONTROL DESIGN
The design of the DSM control protocols for the mixed-order
heterogeneous CAV platoon is presented in this section.
Before proceeding with the strategy design, it is necessary
to make the subsequent assumptions [46].
Assumption 3: Based on the leader dynamics in (5),

the position, velocity, and acceleration are restricted by∣∣x0,1∣∣ ≤ x0,1M ,
∣∣x0,2∣∣ ≤ x0,2M ,

∣∣x0,3∣∣ ≤ x0,3M , where
x0,1M , x0,2M , x0,3M > 0. The unknown φ0(x̄0, t) is bounded
by |φ0(x̄0, t)| ≤ φM , where φM > 0. The unknown
disturbances ζ is bounded, such that ∥ζ∥ ≤ ζM , where
ζM > 0.
There exist finite αM > 0 and α̂M > 0, which are limited

by ∥α∥ ≤ αM and
∥∥α̂∥∥ ≤ α̂M .

The control input u is constrained by ∥u∥ ≤ uM ,
uM > 0 [47].
Remark 4: Notably, the constraints specified in Assump-

tion 2 and Assumption 3 will not be employed in the
development of proposed control strategies but will be
utilized only for the demonstration of the stability.
The uniform ultimate boundedness [48] will be utilized in

the vehicle platoon system through the subsequent definition.
Definition 1: The tracking error µj(t) (j = 1, 2, 3) is

considered to be cooperatively uniformly ultimately bounded
(CUUB) if there exists a compact set �j ⊂ ℜ

N×N , so that
for ∀µj(t0) ∈ �j there exists a bound Bj > 0 and time
Tj[Bj, µ1(t0), µ2(t0), µ3(t0)] such that

∥∥µj(t)∥∥ ≤ Bj,∀t ≥

t0+Tj [49]. Ifµ1(t),µ2(t),µ3(t) are CUUB and xi,1(t), xi,2(t),
xi,3(t) are bounded, the platoon consensus can be realized
within a limited time.
Define the distributed sliding mode surface for vehicle i

as [50]

si(t) =

{
ξ1,iei,1(t) + ei,2(t), i ∈ m1
ξ2,iei,1(t) + ξ3,iei,2(t) + ei,3(t), i ∈ m2

(20)

where ξ1,i, ξ2,i, ξ3,i > 0 are the design sliding mode
parameters and are selected such that the polynomial γ 2

+

ξ3,iγ + ξ2,i is Hurwitz for ∀i ∈ M = {1, 2, . . . ,N }.
Remark 5: It is imperative to highlight that ξ1,i, ξ2,i, ξ3,i

can be nonidentical for vehicles with mixed-order dynam-
ics. By choosing the parameter ξ1,i, ξ2,i, ξ3,i for different
vehicles, the flexibility in adjusting the performance of the
mixed-order heterogeneous CAV platoon can be enhanced
and the stability of the whole platoon can be guaranteed.
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Globally, the sliding mode surface can be described as

s(t) = sm1 (t) + sm2 (t)

sm1 (t) = 31e
m1
1 (t) + em1

2 (t)

sm2 (t) = 32e
m2
1 (t) +33e

m2
2 (t) + e3(t) (21)

where

31 = diag{01×l, ξ1,l+1, . . . , ξ1,N };

32 = diag{ξ2,1, . . . , ξ2,l, 01×(N−l)};

33 = diag{ξ3,1, . . . , ξ3,l, 01×(N−l)}.

To simplify the exposition, we will not detail the time-
dependence t of the parameters within (21). Differentiat-
ing (21), one can obtain that

ṡ = ṡm1 + ṡm2

ṡm1 = 31ė
m1
1 + ėm1

2

= 31e
m1
2 − (L + B)(ẋm1

2 − x0,31
m1
N )

= 31e
m1
2 − (L + B)[φm1 (x̄m1 ) + αm1um1

+ ζm1 − x0,31
m1
N ]

ṡm2 = 32ė
m2
1 +33ė

m2
2 + ė3

= 32e
m2
2 +33e3

− (L + B)[φm2 (x̄m2 ) + αm2um2 + ζm2 − φ0(x̄0)1
m2
N ]

(22)

Define

E1 =
[
e1 e2

]
E2 = Ė1 =

[
ė1 ė2

]
(23)

Since e1 = em1
1 + em2

1 , e2 = em1
2 + em2

2 , we have

Ėm1
1 =

[
ėm1
1 ėm1

2

]
=

[
em1
2 ėm1

2

]
=

[
em1
1 em1

2

] [
0 IN

−31 −IN

]T
+ [sm1 − (L + B)(ẋm1

2 − x0,31
m1
N )]

[
0
1

]T
Ėm2
1 =

[
ėm2
1 ėm2

2

]
=

[
em2
2 e3

]
=

[
em2
1 em2

2

] [
0 IN

−32 −33

]T
+ sm2

[
0
1

]T
(24)

According to (23), one can obtain that

Em1
2 = Ėm1

1 = Em1
1 θT1 + (sm1 −ϖ )lT

Em2
2 = Ėm2

1 = Em2
1 θT2 + sm2 lT (25)

where θ1 =

[
0 IN

−31 −IN

]
; θ2 =

[
0 IN

−32 −33

]
;

ϖ = (L + B)(ẋm1
2 − x0,31

m1
N ); l =

[
0
1

]
.

Since θ1, θ2 are Hurwitz, given any β1, β2, there exist
positive definite matrixes P1,P2 that satisfy

θTk Pk + Pkθk = −βk I , k = 1, 2 (26)

Remark 6: According to Lemma 2, G comprises at least
one spanning tree, which indicates that there exists a directed
path from the leader to vehicles with both second-order and
third-order dynamics. Thus, it is reasonable to make the
assumption in this paper that G incorporates at least one
spanning tree for both the second- and third-order states
contained within the follower vehicles, respectively.
Lemma 3: According to Lemma 1, L + B is positive

definite. Define

q = [q1, q2, . . . , qN ]T = (L + B)−11N ,

P = diag{pi} = diag{1
/
qi}. (27)

Then, P is positive definite. Define

Q = P(L + B) + (L + B)TP, (28)

Then, Q > 0 [40].
For the platoon system in (3),(4), the DSM control

protocols are designed as

ui(t) =
1
α̂i
[csi(t) − Ŵ T

φi
ϕφi (x̄i)]

+ [ξ1,iei,2(t)]
/
α̂i(di + bi), i ∈ m1

ui(t) =
1
α̂i
[csi(t) − Ŵ T

φi
ϕφi (x̄i)]

+ [ξ2,iei,2(t) + ξ3,iei,3(t)]
/
α̂i(di + bi), i ∈ m2

(29)

where c denotes the control gain. Globally, (29) becomes

α̂m1um1 (t) = csm1 (t) − (Ŵm1
φ )Tϕm1

φ (x̄m1 )

+ (D+ B)−131e
m1
2 (t)

α̂m2um2 (t) = csm2 (t) − (Ŵm2
φ )Tϕm2

φ (x̄m2 )

+ (D+ B)−1[32e
m2
2 (t) +33e3(t)] (30)

The control gain c meets the requirement of

cσ (Q) >
y2

2ηφ
+

λ2

2ηα
+

[σ (Pm) + v]2

β
+ 2h (31)

where y = ϕφMσ (P)σ (A); λ = ϕαMuMσ (P)σ (A); h =
σ (P)σ (A)
σ (D+B) [σ (31) + σ (33)]; v =

σ (P)σ (A)
σ (D+B) [σ (3

2
1) + σ (32) +

σ (33)σ (χ )]; σ (χ ) = σ (diag{32,33}); β = min{β1, β2};
σ (Pm) = max{σ (P1), σ (P2)}; ηφ is defined in (34) and ηα is
determined in (36).

B. DESIGN OF DISTRIBUTED NEURAL NETWORK-BASED
ADAPTIVE LAW
In this section, the distributed neural network-based adaptive
laws and singularity-free updating laws are developed to
approximate unknown uncertainties and compensate for
model nonlinearities of the mixed-order heterogeneous CAV
platoon system.

According to (15) and (17), define the approximation
errors φ̃i(x̄i) and α̃i(x̄i, t) as

φ̃i(x̄i) = φi(x̄i) − φ̂i(x̄i)
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= (W T
φi

− Ŵ T
φi
)ϕφi (x̄i) + εφi

= W̃ T
φi
ϕφi (x̄i) + εφi

α̃i(x̄i, t) = αi(x̄i, t) − α̂i(x̄i, t)

= (W T
αi

− Ŵ T
αi
)ϕαi (x̄i) + εαi

= W̃ T
αi
ϕαi (x̄i) + εαi (32)

Then, (32) can be globally described as

φ̃(x̄) = φ(x̄) − φ̂(x̄) = W̃ T
φ ϕφ(x̄) + εφ

α̃ = α − α̂ = W̃ T
α ϕα(x̄) + εα (33)

where

φ̃(x̄) = [φ̃1(x̄1), φ̃2(x̄2), . . . , φ̃N (x̄N )]T ;

α̃ = diag{α̃1(x̄1, t), . . . , α̃N (x̄N , t)};

W̃φ = diag{W̃φ1 , . . . , W̃φN }; W̃α = diag{W̃α1 , . . . , W̃αN }.

Assumption 4: Assume that εφ and εα are bounded by∥∥εφ∥∥ ≤ εφM and ∥εα∥ ≤ εαM , where εφ, εα are the fixed
bounds and εφ, εα > 0. ε is restricted by ∥ε∥ ≤ εM , where
εM = εφM + εαM [48].
The neural network-based adaptive law for the ith vehicle

is established as
˙̂W φi = −Gφi [ϕφi (x̄i)si(t)pi(di + bi) + ηφŴφi ], i ∈ M

(34)

where Gφi > 0 is the parameter to be designed; ηφ is the
positive gain. Globally,

˙̂Wφ = −Gφ[ϕφ(x̄i)sT (t)P(D+ B) + ηφŴφ] (35)

where Gφ = diag{Gφ1 , . . . ,GφN }.
Design the neural updating law as [44]

˙̂W αi =



−Gαi [ϕαi (x̄i)ui(t)si(t)pi(di + bi) + ηαŴαi ],
ifα̂i > αi

−Gαi [ϕαi (x̄i)ui(t)si(t)pi(di + bi) + ηαŴαi ],
ifα̂i = αiand[ϕαi (x̄i)ui(t)si(t)pi(di + bi)
+ηαŴαi ] < 0

0, ifα̂i = αiand[ϕαi (x̄i)ui(t)si(t)pi(di + bi)
+ηαŴαi ] ≥ 0

(36)

where Gαi , ηα > 0.

V. STABILITY ANALYSIS
A. ANALYSIS OF PLATOON SYNCHRONIZATION AND
ERROR CONVERGENCE
Theorem 1: Consider the mixed-order heterogeneous

CAV platoon system consisting of the following vehicles
described by (3), (4) and the leader described by (5)
under Assumption 1 - Assumption 4. Use the DSM control
protocols (29), neural network-based adaptive laws (34), and
updating laws (36) for the platoon control system. Then, there
exists oi > 0 such that for oi > oi, the synchronization errors
e1(t), e2(t) are ultimately bounded for ∀i ∈ M , e3(t) are

ultimately bounded for ∀i ∈ m2; the state errors µ1(t), µ2(t),
andµ3(t) are CUUB. In addition, for any t ≥ t0, xi,1(t), xi,2(t)
are bounded for ∀i ∈ M , and xi,3(t) is bounded for ∀i ∈ m2.
All followers can track and reach synchronization with the
leader within the finite time.

Proof: To simplify the exposition, the explicit represen-
tation of x̄ and t within the parameters will not be described.
Then, (22) can be described as

ṡm1 = 31e
m1
2 − (L + B)[φm1 + αm1um1

+ (α̂m1um1 − α̂m1um1 )]

− (L + B)[ζm1 − x0,31
m1
N ]

= 31e
m1
2 − (L + B)[φm1 + α̃m1um1 + α̂m1um1 ]

− (L + B)[ζm1 − x0,31
m1
N ]

ṡm2 = 32e
m2
2 +33e3

− (L + B)[φm2 + αm2um2 + (α̂m2um2 − α̂m2um2 )]

− (L + B)[ζm2 − φ01
m2
N ]

= 32e
m2
2 +33e3 − (L + B)[φm2 + α̃m2um2 + α̂m2um2 ]

− (L + B)[ζm2 − φ01
m2
N ] (37)

Using (18), (30) and (33), the above equation (37) can be
written as

ṡm1 = 31e
m1
2 − (L + B)[(Wm1

φ )Tϕm1
φ + ε

m1
φ + α̃m1um1 ]

− (L + B)[csm1 − (Ŵm1
φ )Tϕm1

φ + (D+ B)−131e
m1
2 ]

− (L + B)[ζm1 − x0,31
m1
N ]

=−(L+B)[(W̃m1
φ )Tϕm1

φ +ε
m1
φ +(W̃m1

α )Tϕm1
α um1 + εm1

α ]

− (L + B)[csm1 + ζm1 − x0,31
m1
N ]

+ A(D+ B)−131e
m1
2

ṡm2 =32e
m2
2 +33e3−(L + B)[(Wm2

φ )Tϕm2
φ +ε

m2
φ + α̃m2um2 ]

− (L + B)[csm2 − (Ŵm2
φ )Tϕm2

φ + ζm2 − φ01
m2
N ]

− (L + B)[(D+ B)−1(32e
m2
2 +33e3)]

=−(L + B)[(W̃m2
φ )Tϕm2

φ +ε
m2
φ +(W̃m2

α )Tϕm2
α um2+εm2

α ]

− (L + B)[csm2 + ζm2 − φ01
m2
N ]

+ A(D+ B)−1(32e
m2
2 +33e3) (38)

Define the Lyapunov candidate as

V =
1
2
sTPs+

1
2
tr{W̃ T

φ G
−1
φ W̃φ} +

1
2
tr{W̃ T

α G
−1
α W̃α}

+
1
2
tr{Em1

1 P1(E
m1
1 )T + Em2

1 P2(E
m2
1 )T } (39)

Let Vs =
1
2 s
TPs, Va =

1
2 tr{W̃

T
φ G

−1
φ W̃φ} +

1
2 tr{W̃

T
α G

−1
α W̃α}, Ve =

1
2 tr{E

m1
1 P1(E

m1
1 )T +Em2

1 P2(E
m2
1 )T }.

Then, the differential of Vs can be described as

V̇s = sTPṡ

= (sm1 )TPm1 ṡm1 + (sm2 )TPm2 ṡm2

= −(sm1 )TPm1 (L + B)[(W̃m1
φ )Tϕm1

φ + ε
m1
φ ]

− (sm1 )TPm1 (L + B)[(W̃m1
α )Tϕm1

α um1 + εm1
α ]

− (sm1 )TPm1 (L + B)[csm1 + ζm1 − x0,31
m1
N ]
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− (sm2 )TPm2 (L + B)[(W̃m2
φ )Tϕm2

φ + ε
m2
φ ]

− (sm2 )TPm2 (L + B)[(W̃m2
α )Tϕm2

α um2 + εm2
α ]

− (sm2 )TPm2 [csm2 + ζm2 − φ01
m2
N ]

+ (sm1 )TPm1A(D+ B)−131e
m1
2

+ (sm2 )TPm2A(D+ B)−1(32e
m2
2 +33e3)

= −csTP(L + B)s− sTP(D+ B)W̃ T
φ ϕφ + sTPAW̃ T

φ ϕφ

− sTP(D+ B)W̃ T
α ϕαu+ sTPAW̃ T

α ϕαu

− (sm1 )TPm1 (L + B)[εm1
φ + εm1

α + ζm1 − x0,31
m1
N ]

− (sm2 )TPm2 (L + B)[εm2
φ + εm2

α + ζm2 − φ01
m2
N ]

+ (sm1 )TPm1A(D+ B)−131e
m1
2

+ (sm2 )TPm2A(D+ B)−1(32e
m2
2 +33e3) (40)

As a result of the fact that xT y = tr{yxT }, according to
Lemma 3, one can obtain that

V̇s = −
1
2
csTQs− tr{W̃ T

φ ϕφs
TP(D+ B)}

− tr{W̃ T
α ϕαus

TP(D+ B)}

+ tr{W̃ T
φ ϕφs

TPA} + tr{W̃ T
α ϕαus

TPA}

− (sm1 )TPm1 (L + B)[εm1
φ + εm1

α + ζm1 − x0,31
m1
N ]

− (sm2 )TPm2 (L + B)[εm2
φ + εm2

α + ζm2 − φ01
m2
N ]

+ (sm1 )TPm1A(D+ B)−131e
m1
2

+ (sm2 )TPm2A(D+ B)−1(32e
m2
2 +33e3) (41)

According to (33), differentiating Va yields

V̇a = tr{W̃ T
φ G

−1
φ

˙̃W φ} + tr{W̃ T
α G

−1
α

˙̃W α}

= tr{W̃ T
φ G

−1
φ (Ẇφ −

˙̂W φ)} + tr{W̃ T
α G

−1
α (Ẇα −

˙̂W α)}

= −tr{W̃ T
φ G

−1
φ

˙̂W φ} − tr{W̃ T
α G

−1
α

˙̂W α} (42)

According to (25), the differential of Ve can be expressed
as

V̇e = tr{Em1
2 P1(E

m1
1 )T + Em2

2 P2(E
m2
1 )T }

= tr{[Em1
1 θT1 + (sm1 −ϖ )lT ]P1(E

m1
1 )T }

+ tr{(Em2
1 θT2 + sm2 lT )P2(E

m2
1 )T }

= tr{Em1
1 θT1 P1(E

m1
1 )T + Em2

1 θT2 P2(E
m2
1 )T }

+ tr{sm1 lTP1(E
m1
1 )T + sm2 lTP2(E

m2
1 )T }

− tr{ϖ lTP1(E
m1
1 )T } (43)

Then, combining (41), (42) and (43), V̇ can be described
as

V̇ = −
1
2
csTQs− tr{W̃ T

φ [ϕφs
TP(D+ B) + G−1

φ
˙̂W φ]}

− tr{W̃ T
α [ϕαus

TP(D+ B) + G−1
α

˙̂W α]}

+ tr{W̃ T
φ ϕφs

TPA} + tr{W̃ T
α ϕαus

TPA}

− (sm1 )TPm1 (L + B)[εm1
φ + εm1

α + ζm1 − x0,31
m1
N ]

− (sm2 )TPm2 (L + B)[εm2
φ + εm2

α + ζm2 − φ01
m2
N ]

+ (sm1 )TPm1A(D+ B)−131e
m1
2

+ (sm2 )TPm2A(D+ B)−1(32e
m2
2 +33e3)

+ tr{Em1
1 θT1 P1(E

m1
1 )T + Em2

1 θT2 P2(E
m2
1 )T }

+ tr{sm1 lTP1(E
m1
1 )T + sm2 lTP2(E

m2
1 )T }

− tr{ϖ lTP1(E
m1
1 )T } (44)

Using the adaptive law (34) and updating law (36), (44)
becomes

V̇ = −
1
2
csTQs+ tr{W̃ T

φ ϕφs
TPA} + tr{W̃ T

α ϕαus
TPA}

− (sm1 )TPm1 (L + B)[εm1
φ + εm1

α + ζm1 − x0,31
m1
N ]

− (sm2 )TPm2 (L + B)[εm2
φ + εm2

α + ζm2 − φ01
m2
N ]

+ (sm1 )TPm1A(D+ B)−131e
m1
2

+ (sm2 )TPm2A(D+ B)−1(32e
m2
2 +33e3)

+ tr{Em1
1 θT1 P1(E

m1
1 )T + Em2

1 θT2 P2(E
m2
1 )T }

+ tr{sm1 lTP1(E
m1
1 )T + sm2 lTP2(E

m2
1 )T }

− tr{ϖ lTP1(E
m1
1 )T } + tr{W̃ T

φ ηφŴφ}

+tr{W̃ T
α ηαŴα}, if α̂i > αi

+tr{W̃ T
α ηαŴα}, if α̂i = αi and

[ϕαi (x̄i)ui(t)si(t)pi(di + bi) + ηαŴαi ] < 0
−tr{W̃ T

α ϕαus
TP(D+ B)}, if α̂i = αi and

[ϕαi (x̄i)ui(t)si(t)pi(di + bi) + ηαŴαi ] ≥ 0

(45)

Considering that tr{ηαŴα} ≥ −tr{ϕαusTP(D + B)},
if [ϕαi (x̄i)ui(t)si(t)pi(di + bi) + ηαŴαi ] ≥ 0, one can write

tr{W̃ T
α ηαŴα} ≥ −tr{W̃ T

α ϕαus
TP(D+ B)}, if α̂i = αi and

[ϕαi (x̄i)ui(t)si(t)pi(di + bi) + ηαŴαi ] ≥ 0

(46)

Then, we have

V̇ ≤ −
1
2
csTQs+ tr{W̃ T

φ ϕφs
TPA} + tr{W̃ T

α ϕαus
TPA}

+ ηφ tr{W̃ T
φ (Wφ − W̃φ)} + ηαtr{W̃ T

α (Wα − W̃α)}

− (sm1 )TPm1 (L + B)[εm1
φ + εm1

α + ζm1 − x0,31
m1
N ]

− (sm2 )TPm2 (L + B)[εm2
φ + εm2

α + ζm2 − φ01
m2
N ]

+ (sm1 )TPm1A(D+ B)−131sm1

+ (sm2 )TPm2A(D+ B)−133sm2

− (sm1 )TPm1A(D+ B)−132
1E

m1
1

[
1 0
0 0

]
12

+ (sm2 )TPm2A(D+ B)−1Em2
1

[
0 0
0 32

]
12

− (sm2 )TPm2A(D+ B)−133E
m2
1

[
32 0
0 33

]
12

+ tr{Em1
1 θT1 P1(E

m1
1 )T + Em2

1 θT2 P2(E
m2
1 )T }

+ tr{sm1 lTP1(E
m1
1 )T + sm2 lTP2(E

m2
1 )T }

− tr{ϖ lTP1(E
m1
1 )T } (47)
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According to the boundedness in Assumption 2 - Assump-
tion 4, taking norm on (47), one can obtain

V̇ ≤ −
1
2
cσ (Q)∥s∥2 + ηφWφM

∥∥∥W̃φ

∥∥∥
F

− ηφ

∥∥∥W̃φ

∥∥∥2
F

+ ηαWαM

∥∥∥W̃α

∥∥∥
F

− ηα

∥∥∥W̃α

∥∥∥2
F

+ ϕφMσ (P)σ (A) ∥s∥
∥∥∥W̃φ

∥∥∥
F

+ ϕαMuMσ (P)σ (A) ∥s∥
∥∥∥W̃α

∥∥∥
F

+ σ (P)σ (L + B)FM ∥s∥

+
σ (P)σ (A)
σ (D+ B)

[σ (31) + σ (33)]∥s∥2

+
σ (P)σ (A)
σ (D+ B)

[σ (32
1) + σ (32) + σ (33)σ (χ )] ∥s∥ ∥E1∥F

−
1
2
β ∥E1∥2F + σ (Pm) ∥s∥ ∥E1∥F

+ σ (L + B)σ (Pm)
∥∥φM + αMuM + ζM + x0,3M

∥∥ ∥E1∥F
(48)

where FM = εM + ζM + φ0M + x0,3M ; εM = εφM + εαM .
According to (31), (48) can be described as

V̇ ≤ −rT9r + ϑT r = −Vr (49)

where

9 =


1
2cσ (Q)−h −

1
2y −

1
2λ −

1
2 [σ (Pm) + v]

−
1
2y ηφ 0 0

−
1
2λ 0 ηα 0

−
1
2 [σ (Pm) + v] 0 0

β

2

 ;

r =

[
∥s∥

∥∥∥W̃φ

∥∥∥
F

∥∥∥W̃α

∥∥∥
F

∥E1∥F
]T

;

ϑ =
[
σ (P)σ (L + B)FM ηφWφM ηαWαM ψ

]T
;

ψ = σ (L + B)σ (Pm)
∥∥φM + αMuM + ζM + x0,3M

∥∥ .
Then, Vr is positive definite when the subsequent condi-

tions are satisfied.
(1) 9 is positive definite; (2) ∥r∥ > ∥ϑ∥

σ (9) .
According to Sylvester’s theorem in [48], if 9 is positive

definite, the following inequations should be satisfied.

•
1
2
cσ (Q)−h > 0

• ηφ[
1
2
cσ (Q) − h] −

1
4
y2 > 0

• ηφηα[
1
2
cσ (Q) − h] −

1
4
ηφλ

2
−

1
4
ηαy2 > 0

•
1
2
βηφηα[

1
2
cσ (Q) − h] −

1
8
βηαy2 −

1
8
βηφλ

2

−
1
4
ηφηα[σ (Pm) + v]2 > 0 (50)

Solve the above inequations, we can get condition (31),
which indicates that c does exist and the proper control gain
can ensure the individual vehicle stability and the stability of
the overall platoon.

Define Zd as

Zd =
∥ϑ∥1

σ (9)
=
FMσ (P)σ (L + B) + ηφWφM + ηαWαM + ψ

σ (9)
(51)

Then, if ∥r∥ > ∥ϑ∥1
σ (9) >

∥ϑ∥

σ (9) holds, under condition (31),
one can obtain that

V̇ ≤ −Vr , ∀ ∥r∥ ≥ Zd (52)

where Vr is positive definite.
According to the Lyapunov candidate (39) and Refer-

ence [49], we have

σ (2)∥r∥2 ≤ V ≤ σ (0)∥r∥2 (53)

where

2 = diag
{
σ (P)

/
2, 1

/
2σ (Gφ), 1

/
2σ (Gα), σ (Pm)

/
2
}

0 = diag
{
σ (P)

/
2, 1

/
2σ (Gφ), 1

/
2σ (Gα), σ (Pm)

/
2
}
(54)

Based on Theorem 4.18 in [51], it follows that for any r(t0)
there exists a T0 such that

∥r(t)∥ ≤

√
σ (0)
σ (2)

Zd , ∀t ≥ t0 + T0 (55)

Define δ = min∥r∥>ZdVr . Then, we can obtain

T0 =
V (t0) − σ (0)Z2

d

δ
(56)

Therefore, (55) implies that the synchronization errors
e1(t), e2(t), e3(t) and approximation errors W̃φ , W̃α are
ultimately bounded. Meanwhile, according to Lemma 2,
µ1(t), µ2(t), µ3(t) are CUUB, which indicates that the
platoon synchronization and the leader tracking for all
vehicles is realized in the finite time.

Next, the boundedness of xi,1(t), xi,2(t), and xi,3(t) for
∀t ≥ t0 can be proved as follows. From (39), one can write

V̇ ≤ −σ (9)∥r∥2 + ∥ϑ∥ ∥r∥ (57)

According to (53) and (57), it follows that

d(
√
V )

dt
≤ −

σ (9)
√
V

2σ (0)
+

∥ϑ∥

2
√
σ (2)

(58)

Then, under Corollary 1.1 in [52], V (t) is bounded for
∀t ≥ t0. By (39), we have ∥s∥2 ≤ 2V (t)

/
σ (P), which denotes

that s(t) is bounded. Meanwhile, x0,1(t), x0,2(t), and x0,3(t)
are bounded by x0,1M , x0,2M , and x0,3M in Assumption 3,
respectively. Then, xi,1, xi,2 for i ∈ M and xi,3 for i ∈ m2
are bounded ∀t ≥ t0. The proof of Theorem 1 is done.
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B. STRING STABILITY ANALYSIS
In this section, the string stability of the mixed-order
heterogeneous CAV platoon is proved by employing the
approach presented in [53]. Before string stability analysis,
the necessary definition and lemma are presented as follows.
Lemma 4 (Barbalat Lemma): If f (t): ℜ → ℜ is a

uniformly continuous function for t ≥ 0 and lim
t→∞

∫ t
0 f (τ )

dτ < ∞, then lim
t→∞

f (t) = 0 [54].
Definition 2: The platoon system in (1),(2) is string stable

if given any ε > 0, there exists a ι > 0 such that [29]∥∥µi,1(0)∥∥∞
< ε ⇒ supi

∥∥µi,1(·)∥∥∞
< ι (59)

Theorem 2: Consider the mixed-order heterogeneous
CAV platoon consisting of the following vehicles with
third-order dynamics in (1) and second-order dynamics in (2).
Under the proposed control protocol (29), the heterogeneous
platoon is string stable in accordance with Definition 2.

Proof: According to (7),

µi,1(t) = xi,1(t) − xides(t) = xi,1(t) − x0,1(t) + i · d (60)

Then, we can obtain

µ̈i,1(t) = ẍi,1(t) − ẍides(t) = xi,3(t) − x0,3(t), ∀i ∈ m2
(61)

Given the fact that xi,3(t) and x0,3(t) are bounded, it implies
that µ̈i,1(t) ∈ L∞ for ∀i ∈ m2. And, we can also obtain that

µ̈i,1(t) = ẍi,1(t) − ẍides(t) = ẋi,2(t) − ẋ0,2(t), ∀i ∈ m1

(62)

Given the fact that xi,2(t) and x0,2(t) are bounded, it follows
that the derivations of xi,2(t) and x0,2(t) are bounded, which
indicates that µ̈i,1(t) ∈ L∞ for ∀i ∈ m1. Therefore, µ̇i,1(t) is
uniformly continuous for ∀i ∈ M .
Furthermore,∫

∞

0

∣∣µ̇i,1(t)∣∣dt =
∣∣µi,1(∞)

∣∣ −
∣∣µi,1(0)∣∣ < ∞ (63)

According to (63), one can obtain that µ̇i,1(t) ∈ L2.
Therefore, it has lim

t→∞
µ̇i,1(t) = 0 according to Lemma 4.

Thus, it has µ̇i,1(t) ∈ L∞. Likewise, since µi,1(0) = 0, one
can obtain thatµi,1(t) ∈ L2. Therefore, one can further obtain
lim
t→∞

µi,1(t) = 0 according to Lemma 4.

If ι > 0, then
∥∥µi,1(0)∥∥∞

= supi
∣∣µi,1(0)∣∣ = 0 < ι.

In addition, consider that lim
t→∞

µi,1(t) = 0, µi,1(0) = 0, and

µi,1(t) ∈ L2. Therefore, ∃Y , κ > 0, s.t. supi
t∈[0,∞)

∣∣µi,1(t)∣∣ =

Y < κ for t ∈ [0,∞). Consequently, string stability of the
mixed-order heterogeneous CAV platoon with the developed
control protocol (29) can be guaranteed according to (59).
The demonstration for Theorem 2 is completed.

TABLE 2. Parameters of the mixed-order heterogeneous CAV platoon.

VI. NUMERICAL EXAMPLE
The numerical examples are utilized to validate the cor-
rectness and efficacy of the developed control strategies in
this section. We consider a mixed-order heterogeneous CAV
platoon including one leading vehicle and five following
vehicles (M = 5), where followers 1, 3, 5 have third-order
dynamics and followers 2, 4 have second-order dynamics.
The vehicle dynamics of the leader contains full state
information. All followers are required to track the position
and velocity of the leader, and the third-order followers
should additionally track the acceleration of the leader. It is
clear that the existing cooperative platoon control methods
can hardly address the control issue of this vehicle platoon.
The dynamics of the second-order followers are described as{

ẋi,1 = xi,2
ẋi,2 = φsp2(x̄i) + αsp2(x̄i)ui + ζ2,i

i ∈ 2, 4

and the dynamics of the third-order followers are
ẋi,1 = xi,2
ẋi,2 = xi,3
ẋi,3 = φsp3(x̄i) + αsp3(x̄i)ui + ζ3,i

i ∈ 1, 3, 5

where φsp2(x̄i), φsp3(x̄i), αsp2(x̄i), αsp3(x̄i), ζ2,i, and ζ3,i are
given by

φsp2(x̄i) =
Kdi
Mi

x2i,2

φsp3(x̄i) = −
2Kdi
Mi

xi,2xi,3 −
Kdi
τiMi

x2i,2 −
1
τi
xi,3

αsp2(x̄i) =
ςi

MiRi
, αsp3(x̄i) =

1
τiMi

ζ2,i = f · g, ζ3,i = −
dmi
τiMi

where τi, Mi, Kdi, ςi, dmi, Ri, f , and g are the engine time
lag, vehicle mass, aerodynamic drag coefficient, mechanical
efficiency of the driveline, mechanical drag, radius of wheel,
coefficient of rolling resistance, and acceleration due to
gravity of the ith vehicle, respectively [23], [55]. Table 2
lists the model parameters of the heterogeneous CAV platoon
with mixed-order dynamics. It is worth mentioning that all
parameters for the mixed-order vehicles are considered to be
unknown.

Fig. 3 shows the PLF platoon communication topology
for the mixed-order heterogeneous CAV platoon. There is no
doubt that the communication topology meets the conditions
outlined in Assumption 1.
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FIGURE 3. Communication topology for mixed-order heterogeneous CAV
platoon.

The desired spacing d is 3.5m. The initial positions of
the leader and followers are determined to x0,1(0) = 30m,
xi,1(0) = (30−i·d)m, i ∈ M , respectively. The initial weights
of the neural network are randomly selected within the range
of 0 and 0.1 [11].
Example 1: In this example, the leader of the platoon

maintains a constant velocity and follows the trajectory
outlined below.

x0,2(t) = 2m/s, 0s ≤ t ≤ 80s

The initial state of followers are respectively denoted as
xi,1(0) = (30−i · d)m, xi,2(0) = 3m/s, xi,3(0) = 0m/s2,
i ∈ M [56].
Example 2: In this example, the acceleration of the leader

is considered to be variable, and its trajectory is defined as
follows.

x0,3(t) =



0 m/s2, 0s ≤ t < 10s
0.2t m/s2, 10s ≤ t < 20s
−0.2t m/s2, 20s ≤ t < 30s
0 m/s2, 30s ≤ t < 40s
−0.1t m/s2, 40s ≤ t < 50s
0.1t m/s2, 50s ≤ t < 60s
0 m/s2, otherwise.

The initial state of followers are respectively defined as
xi,1(0) = (30−i · d)m, xi,2(0) = 0m/s, xi,3(0) = 0m/s2,
i ∈ M [56].

The DSM control protocols (29), distributed neural
network-based adaptive laws (34), and neural updating
laws (36) are implemented in both of the two examples.
The parameters in the distributedmixed-order platoon control
strategies are c = 560, Gφi = 10000, ηφ = 0.0001,
Gαi = 0.0001, ηα = 30. Then, the control results of the
mixed-order heterogeneous CAV platoon are represented in
Figs. 4-13.

For Example 1, as shown in Fig. 4 - Fig. 8, each vehicle
within the platoon is able to keep a predefined spacing d
with its adjacent vehicles and eventually achieve velocity
synchronization with the leader. It is presented in Fig. 4
that the trajectories of all vehicles exhibit no intersections or
overlaps, which indicates that there are no vehicle collisions
occurring under both transient conditions and steady-state
conditions. It is shown in Fig. 5 that the velocities eventually
converge to that of the leader within 15s. For the third-order
vehicles 1, 3, and 5, the accelerations of these vehicles can
be measurable. In Fig. 6, given the difference in velocity
between the followers 1, 3, 5 and the leader, there are

FIGURE 4. Position tracking of the platoon vehicles for Example 1.

FIGURE 5. Velocity tracking of the platoon vehicles for Example 1.

FIGURE 6. Acceleration tracking of the platoon vehicles for Example 1.

significant accelerations in the initial stage for the third-
order followers, and the initial accelerations rapidly decrease
and converge to zero. Fig. 7 and Fig. 8 show the spacing
and velocity errors of the followers, respectively. It can be
noticed that the state errors in both spacing and velocity
are capable of rapidly converging to zero within a finite
time. Furthermore, Fig. 7 illustrates that the amplitude of the
spacing errors µi,1(t) gradually decreases, which indicates
that the mixed-order heterogeneous CAV platoon can achieve
string stability.

For Example 2, as shown in Fig. 9 and Fig. 13, the
trajectory of the leader can be segmented into periods of
acceleration and deceleration. Although the acceleration of
the leader is variable, the developed control strategies can still
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FIGURE 7. Spacing errors for Example 1.

FIGURE 8. Velocity errors for Example 1.

FIGURE 9. Position tracking of the platoon vehicles for Example 2.

FIGURE 10. Velocity tracking of the platoon vehicles for Example 2.

realize the consensus of the mixed-order heterogeneous CAV
platoon. It is shown in Fig. 9 and Fig. 10 that all following

FIGURE 11. Acceleration tracking of the platoon vehicles for Example 2.

FIGURE 12. Spacing errors for Example 2.

FIGURE 13. Velocity errors for Example 2.

vehicles are capable of effectively tracking the leading
vehicle and keeping a desired spacing with neighboring
vehicles in both the acceleration and deceleration phases.
From Fig. 10 and Fig. 11, it is revealed that the velocity and
acceleration of the third-order followers can rapidly converge
to the corresponding states of the leading vehicle. The spacing
errors and velocity errors of the followers are illustrated in
Fig. 12 and Fig. 13. It is shown that for each vehicle in the
platoon, the amplitudes of both the spacing and velocity error
gradually decrease and are able to converge to the vicinity of
zero in a short period of time. It is obvious in Fig. 12 that
the mixed-order heterogeneous CAV platoon is string stable
in Example 2.

To summarize, the novel DSM control protocols (29),
the neural network-based adaptive laws (34), and the
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neural updating laws (36) can enable all followers within
the mixed-order heterogeneous CAV platoon to track the
trajectory of the leader and maintain the desired spacing. The
proposed control strategies can realize the control objective
and guarantee the error convergence and string stability.

VII. CONCLUSION
This study has resolved the synchronization and tracking
problem of the mixed-order heterogeneous CAV platoon con-
sisting of vehicles with second-order and third-order dynam-
ics, whereas existing literature cannot resolve this problem.
Compared to the existing studies, the novel distributed control
methods have been developed for the heterogeneous CAV
platoon comprising vehicles with mixed-order nonlinear
dynamics, unknown uncertainties and external disturbances.
To guarantee the error convergence in spacing, velocity,
and acceleration of vehicles and string stability, the novel
DSM control strategies based on the platoon communication
topology are developed in this paper. The proposed control
strategies do not need to acquire precise information of
vehicle dynamics. In addition, the new distributed neural
network-based adaptive updating mechanism is proposed
to approximate unknown uncertainties and compensate for
the model nonlinearities. The ultimate boundedness of
state errors are proved by the Lyapunov approach. The
infinity-norm method is utilized to demonstrate string stabil-
ity of the heterogeneous platoon. To validate the effectiveness
of the developed platoon control strategies, the numerical
examples are presented in this paper. In future research, the
influence of the switching communication topologies and the
problems of fault-tolerant control for mixed-order platoon
will be further investigated.
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