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ABSTRACT In the realm of navigation systems, Inertial Measurement Unit (IMU) sensors play a pivotal
role. The advent of Micro-Electro-Mechanical System (MEMS) sensors has introduced a lightweight and
cost-effective alternative for IMUs. However, MEMS IMUs come with the challenge of larger stochastic
errors that accumulate over time, resulting in navigation drifts. To address this issue, the conventional
approach involves fusing IMU with the Global Navigation Satellite System (GNSS) for reliable navigation.
Nevertheless, this fusion setup fails in providing ubiquitous navigation during GNSS outage scenarios due
to persistent IMU errors. In this paper, an efficient methodology is developed to mitigate navigation drifts
by eliminating IMU errors using Light Gradient Boosting Machine (LightGBM) and Categorical Boosting
(CatBoost) Machine Learning (ML) algorithms. In contrast to existing methodologies that employ high-end
and expensive IMUs for training models to denoise low-cost MEMS IMUs, this paper proposes utilizing
Inverse Kinematics (IK). This approach helps to derive clean IMU training data from the Position, Velocity,
Attitude (PVA) values estimated through the Extended Kalman Filter (EKF) when GNSS is available and
reliable. The distinctive advantage of the IK approach lies in its capacity to obtain real-time pseudo error-free
IMU data without the necessity for high-end IMUs to train ML models. The proposed method undergoes
testing in both Loosely coupled and Tightly coupled EKF scenarios using simulation and real dataset under
varying GNSS outage durations. Comparisons are made between the denoised IMU signals and signal
processing techniques such as Moving Average (MA) and Savitzky Golay (SG). Additionally, we present
a comparative analysis of the proposed algorithms against Convolutional Neural Networks (CNN). Results
demonstrate a noteworthy enhancement in position, velocity, and orientation estimation. Furthermore, the
computation time required for model training and prediction across various algorithms is analyzed. The
outcomes prove the superiority of the proposed tree-based algorithms over the conventional filteringmethods
and CNN in denoising IMU and improving the navigation results over 90% in all the states compared to the
PVA values obtained using raw IMU.

INDEX TERMS CatBoost, convolution neural networks, extended Kalman filter, GNSS, IMU, inverse
kinematics, LightGBM.

I. INTRODUCTION
Position, Velocity and Attitude (PVA) states of a vehicle
can be obtained using IMU sensors, which incorporate
gyroscopes and accelerometers, through IMU mechanization
equations [1]. The system using IMU to provide navigation
is called Inertial Navigation System (INS). The INS is
accurate in short term but becomes ineffective when used
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as a stand-alone navigation system due to the accumulation
of IMU errors [2]. The majority of errors suffered by
commercial MEMS IMU used in navigation are due to
bias, scalefactor, and random noises [3]. Conversely, GNSS
measurements offer reliable navigation for more extended
periods but are noisy. This noisy nature of GNSS is
considered as a drawback in applications that require precise
navigation solutions [4]. This raised the necessity for a fusion
mechanism capable of integrating IMU and GNSS values
to deliver an accurate and enduring navigation solution.
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Numerous researchers have devised sensor fusion methods,
with the EKF emerging as one of the most widely utilized,
dominating alternative approaches. The EKF leverages IMU
and GNSS data to mitigate drift by eliminating IMU noises
and correcting PVA values. However, a drawback of the EKF
is the drift in navigation during GNSS outages. When the
GNSS outage occurs, the fusion system relies solely on INS
to obtain the navigation information. The INS depends on
the quality of the IMU signals to provide accurate navigation
for longer periods and this raises the need for denoising of
IMU signals [5]. Most of the researchers focused on using
traditional signal processing denoisingmethods to remove the
IMU errors and with the recent advancements in ML, there
have been several works focusing on using Deep Learning
(DL) techniques like CNN, Recurrent Neural Network
(RNN), Long Short-TermMemory (LSTM), Gated Recurrent
Unit (GRU) for denoising IMU signals. These methods have
shown significant improvements in reducing IMU errors. The
main drawback of these works is the usage of high-precision
navigation grade IMU sensors to gather the training data.
Navigation grade IMU sensors have low error specifications
and provide stable and accurate navigation even during
GNSS outages. This approach of using navigation grade
IMU sensors is expensive and not ideal for low-cost systems.
Also, most of the published works have not discussed the
computation power required for the ML models and their
feasibility in real-time scenarios. So in this paper, we propose
an efficient method to remove the IMU errors and improve the
navigation solution during the GNSS outages mainly in urban
areas where the outage duration is less than 1 minute. The
main contribution of this work is in the utilization of Inverse
Kinematics to facilitate the ML model training.

The rest of the paper is organized into the following
sections: Section II covers the related works. Section III
provides the necessary background details implemented in
this paper. Section IV illustrates the proposed methodology.
Section V covers the experimentation and results. Finally,
Section VI concludes this paper.

II. RELATED WORKS
During the GNSS outages, the output of the fusion mech-
anism starts to drift rapidly. This problem is tackled by
different approaches. Few researchers have focused on
predicting the Kalman Filter estimates to correct the system
states, few works focused on estimating the position errors,
few approaches focused on estimating the GNSS position
increments to reduce the error drift in outage scenarios. Wen
Ye et al. proposed Noisy Input Gaussian Process Regression
(NIGPR) to learn the INS error models when GPS is available
and bridge the GPS outages by predicting the INS observation
measurement to feed to the Kalman Filter [7]. Zhao et al. and
Liu and Guo proposed deep learning algorithms CNN-GRU
and LSTM to estimate the GNSS position increments during
the GNSS outages and provide continuous error updates in
the fusion mechanism [8], [9]. Li et al. have proposed a
LightGBMalgorithm to predict the position difference during

the GNSS outages [10]. In this paper, the focus is on removal
of the noises from IMU and using INS to provide reliable
navigation during GNSS outages.

Conventional signal processing filter methods are the
fundamental approaches for denoising signals. Gonzalez and
Catania proposed a Moving Average (MA) filter to denoise
the IMU signals [11]. The input noisy signal is smoothened
using MA filter by averaging the signal values over a specific
time window. The MA filter is one of the simplest methods
and is often used as an initial approach for removing white
noises in a signal. The output of a MA filter for a signal input
x[n] is

y[n] =
1
N

N−1∑
k=0

x[n− k] (1)

where N is the window size and the only parameter to be
determined. The main disadvantage of MA filter is the lack
of methods to estimate the N value. In this work, the authors
tackled this issue by varying the N value with constant step
size and the resultant IMU signal is compared with high-end
noise-free IMU signal and the optimal N value is obtained.
The MA filter is modified by adapting weights, known as
Auto-Regressive Moving Average (ARMA). Waegli et al.,
Tu and Peng, and Yuan et al. used ARMA for denoising of
IMU signals [12], [13], [14]. The ARMA model assumes
that a current value of a signal at time t can be represented
as the combination of weighted sum of past values and
error terms [15]. Gan et al. and Liu et al. applied the
Empirical Mode Decomposition (EMD) method [16], [17].
EMD decomposes the signal into multiple simple functions
called Intrinsic Mode Functions (IMF), effectively separating
the noise from the original signal. Karaim et al. proposed
Savitzky Golay (SG) filter to denoise IMUs [18], [19]. This
filter is a signal smoothing and noise reduction technique
that focuses on a local subset of data points within a moving
window to fit a polynomial curve. The polynomial p(x) fitted
on the signal y[x] over the window of length 2m+1 where m
is the length of the window, k is the degree of polynomial and
is usually an odd number can be represented as

p(x) =

k∑
i=0

aix i (2)

where ai are the polynomial coefficients. The optimal
polynomial is obtained by using the least squares method on
the cost function given as

e =

m∑
−m

(p(x) − y[x])2 (3)

Kang et al. and Kang et al. performed wavelet transform
method on IMU signals which splits the signals into
multiple wavelet functions with different frequencies and
amplitudes [20], [21]. After the decomposition, the wavelet
functions at higher frequencies are mostly noise components,
and a threshold value is selected to remove the noise, and the
resultant signal is reconstructed.

VOLUME 12, 2024 114359



R. K. R. Damagatla, M. Atia: Improving EKF-Based IMU/GNSS Fusion Using ML

In recent years there have been several advancements in
the field of ML and its applications in real time. This has
prompted increased research into employing data models
and a variety of ML techniques to enhance the quality of
IMU data by reducing unwanted noise. The data-driven
models outperformed the conventional signal processing
techniques, despite the fact that the former are known to
help reduce noise. Gonzalez and Catania proposed Multi
Linear Regression (MLR) algorithm and used navigation
grade IMU to obtain the training data [22]. The Root
Mean Square Error (RMSE) values of the results obtained
are compared with those obtained through MA filter and
MLR algorithm outperformed. Brossard et al. introduced a
Convolutional Neural Network (CNN) with dilation layers
for denoising IMU gyroscope signals [23]. The efficiency
of CNN is proved by comparing the estimated orientation
with that of the ground truth values. However, a limitation
of this work is the necessity for ground truth values during
training. Han et al. also proposed DUET, an online deep
IMU calibration approach using dilated CNN network to
improve the inertial-based odometry [24]. Liu et al. proposed
a learning method called Gyro-Net to estimate the random
errors in gyroscopes and improve the orientation [25]. The
drawback of this work is the emphasis is primarily on noise
removal in gyroscopes and enhancing orientation. Gao et al.
proposed CNN architecture to reduce the IMU errors and
improve inertial navigation [26]. Abolfazli Esfahani et al.
proposed OriNet and AbolDeepIO, LSTM-based learning
architectures to improve the orientation and odometry of
the vehicle respectively [27], [28]. Abolfazli Esfahani et al.
proposed OdoNet, a CNN-based-pseudo-odometer learning
model to improve the accuracy of IMU/GNSS fusion
during GNSS outages [29]. Tang et al. proposed DeepOdo,
combining CNN and GRU networks to estimate velocity of
the vehicle using IMU and barometer values in smartphones
during GNSS outages [30]. Wang et al. proposed IDOL,
an LSTM-based learning model to estimate orientation and
position using smartphones [31]. The IMU signals are treated
as time-series data and various types of RNN algorithms
are utilized. LSTM networks, GRU and all the combinations
of LSTM and GRU are proposed by Sun et al., Zhu et al.,
and Jiang at al. to remove noise in gyroscopes [32], [33],
[34]. The orientation values are calculated after denoising,
and the RMSE values are reported. The drawback of these
works is that the focus is only on gyroscopes and the
experiments were carried out in a stationary environment
where the IMU is not moving. K-Nearest Neighbours (KNN),
a basic ML algorithm is proposed by Engelsman,D to denoise
the accelerometer values [35]. This work uses high-end
IMU data for training the KNN algorithm and the results
obtained are compared to that of RNN, LSTM, GRU,
MA, SG methods and KNN outperformed all the methods
which proves the effectiveness of classical ML algorithms
which require less training resources and less hyperparameter
tuning over DL algorithms. A Machine Learning based
Adaptive Neuro-Fuzzy Inference System (ML-ANFIS) is

introduced by Mahdi et al. [36]. This system is designed to
denoise IMUs, enabling their use as a standalone navigation
system, with subsequent comparisons of Position, Velocity,
and Attitude (PVA) values. Noteworthy drawbacks in these
approaches include a predominant focus on denoising
gyroscopes alone and the reliance on navigation-grade sensor
values for training the model, which is not only expensive but
also suboptimal for the denoising of IMUs. This paper aims to
fill existing research gaps, and the contributions are outlined
as follows: (i). In instances where GNSS is accessible,
an EKF is employed to compute dependable PVA values.
By utilizing Inverse Kinematics (IK), approximate pseudo
noise-free IMU values are obtained, which prove valuable for
training purposes. (ii). The study introduces LightGBM and
CatBoost, both being types of boosting Machine Learning
Algorithms, specifically designed to address and mitigate
noise in IMU data.

This paper is an extension of the work presented at
IEEE Sensors Application Symposium 2023 conference
proceedings [6].

III. BACKGROUND
A. KALMAN FILTER AND EXTENDED KALMAN FILTER
Kalman Filter (KF) can be applied to any linear system to
predict the future states and improve the noisy measurements.
Kalman Gain is a correction gain calculated by KF to
minimize the error in the state estimation. Kalman Filter
assumes that the system is linear and all the noise signals have
zero mean [37]. The two important steps involved in KF are
the prediction step in which the filter estimates the system
states and state covariance matrix followed by the update step
or correction step, which uses the measurement data to update
the states and covariance matrix. The main drawback of KF
is its applicability to non-linear systems. Most of the systems
in real-time are nonlinear and an extended version of KF is
required to apply on non-linear systems. This resulted in the
development of Extended Kalman Filter.

Extended Kalman Filter is utilized when the system model
is non-linear. The initial step is to linearize the system model
using Taylor series approximation. This leads to a linear
system model and KF can be applied. The performance of
the KF depends on the initial values of the parameters. The
following equations explain the steps involved in applying
EKF to a non-linear system. Any non-linear system can be
represented using a system model and measurement model
as shown below

ẋ(t) = f (x(t), u(t)) + w(t) (4)

y(t) = h(x(t)) + v(t) (5)

On applying Taylor series expansion, the linearized system
model and measurement model are represented as

δẋ(t) ≈ F(t)δx(t) + G(t)w(t) (6)

δy(t) ≈ H (t)δx(t) + v(t) (7)
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where F ,G,H are Jacobian matrices. The future state and the
error covariance matrix can be obtained through KF using the
following equations

i) Prediction Step:

x−

k+1 = f (xk , uk ) (8)

P−

k+1 = (I + Fk+1T )Pk (I + Fk+1T )T + Qk+1 (9)

ii) Update Step:

Kk+1 = Pk+1HT
k+1(Hk+1Pk+1HT

k+1 + Rk+1)−1 (10)

x+

k+1 = x−

k+1 + Kk+1[yk+1 − h(x−

k+1)] (11)

P+

k+1 = (I − Kk+1Hk+1)P
−

k+1 (12)

where T is sampling period, K is the Kalman gain, P is the
state error covariance matrix, Q is process noise covariance
matrix and R is measurement covariance matrix.

B. IMU MECHANIZATION EQUATIONS
IMU measurements are transformed into system states using
IMU mechanization equations. Each of the vehicle states can
be obtained from respective system models. The orientation
system model can be obtained using Direction Cosine
Matrix (DCM) or quaternion. In this paper, quaternion based
implementation is considered due to its stability [38]. All the
system models are defined in local frame. The quaternion
system model is defined as

q̇LB = 0.5


a − b − c − d
b a − d c
c d a − b
d − c b a




0
wBLBx
wBLBy
wBLBz

 (13)

where a,b,c,d are quaternion components, wBLB is the
corrected gyroscope measurements in body frame B. The
corrected gyroscope measurements are obtained by removing
gyrosocpe bias (bg), scalefactor (sg) errors and also subtract-
ing earth rate (wLIE ) and transport rate (wLEL). The following
are the equations

wBLB =
ŵBIB − bg
1 + sg

+ CB
Lw

L
IL (14)

wLIL = wLIE + wLEL (15)

wLIE =
[
weCos(φ) 0 −weSin(φ)

]
(16)

wLEL =

[
ve

RN + h
−vn

RM + h
−ve

RN + h
tan(φ)

]
(17)

vL =
[
vn ve vd

]
(18)

where we is earth angular rotation, φ is latitude value, h is the
height of the vehicle,RM andRN are radii of curvature and the
velocity in L frame is given as vL . The velocity is estimated
by projecting the accelerometer measurements from B frame
to L frame and integrating them after compensating for
gravity. Since the L frame is rotating the coriolis effect is also
compensated. The velocity state model is represented by the
equation shown below

v̇L = CL
Ba

B
SF + gL − (wLEL + 2wLIE ) × vL (19)

where aBSF are accelerometer values in frame B and gL is
gravity vector in L frame. The geodetic position values can
be obtained by using the position system model given by

φ̇

λ̇
ḣ

 =


vn

RM + h
ve

(RN + h)Cos(φ)
−vd

 (20)

C. IMU ERRORS
MEMS IMUs encounter various types of errors, broadly
categorized into two groups: deterministic errors and stochas-
tic errors. Deterministic errors, including bias, scale factor,
and axis misalignment errors, can be mitigated through
calibration techniques [39]. On the other hand, stochastic
errors encompass bias instability, scale factor instability, and
random noises, all of which exhibit variations over time.
In contrast, high-end navigation-grade IMU sensors exhibit
minimal stochastic errors, with significantly lower levels of
bias instability, scale factor instability, and random noise.
The notable factors contributing to the majority of navigation
drifts are bias (bg and ba), scale factor (sg and sa) and random
noise (η) [3]. These errors need to be mitigated to reduce
the navigation drifts and hence these errors are modeled
along with the system states using the following error model
equations

ã = (1 + Sa + δSa)a+ Ba + δBa + η (21)

w̃ = (1 + Sg + δSg)w+ Bg + δBg + η (22)

where ã is output of accelerometer, a is actual accelerometer
value, w̃ is output of gyroscope, w is actual gyroscope
measurement, Sa, Sg are accelerometer and gyroscope scale
factors, δSa, δSb are accelerometer and gyroscope scale factor
instability, Ba, Bg is static bias, δBa, δBg is bias instability in
accelerometer and gyroscope respectively and η is random
noise. The ML algorithms treat all the errors and random
noises as combined errors and try to predict clean IMU.
This paper aims to remove these noises and errors using ML
algorithms.

D. IMU GNSS LOOSELY COUPLED FUSION
The external measurements in loosely coupled integration of
IMU andGNSS are the position and velocity values estimated
directly by GNSS [40]. A simple block diagram explaining
IMU GNSS loosely coupled fusion architecture is shown
in Fig. 1.

The state space models for each of the navigation states
can be found in (13),(19) and (20). The input state model also
includes the error model and is given as follows

x(t) =

[
P1×3 V1×3 (qLB)1×4 (bg)1×3
(ba)1×3 (sg)1×3 (sa)1×3

]T
(23)

where P is the position and V is the velocity in L frame,
qLB is the attitude, bg is gyroscope bias, ba is accelerometer
bias, sg is gyroscope scalefactor and sa is accelerometer
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FIGURE 1. Loosely coupled IMU/GNSS sensor fusion architecture.

scalefactor. The measurement model is given by
E
N
U
ve
vn
vu

 =


1 0 0 0 0 0 . 0
0 1 0 0 0 0 . 0
0 0 1 0 0 0 . 0
0 0 0 1 0 0 . 0
0 0 0 0 1 0 . 0
0 0 0 0 0 1 . 0


6× 22

x(t) + η (24)

where η is measurement noise.

E. IMU GNSS TIGHTLY COUPLED FUSION
The psedorange (ρ) and pseudorangerate (ρ̇) are used as
external observations to fuse with IMU [41]. The pseudo-
range and pseudorangerate is the measured distance and
the rate of change of distance between GNSS receiver and
multiple satellites, respectively. The error parameters in the
GNSS measurements include receiver bias and receiver drift.
The receiver bias (br ), known as clock bias, is the time offset
in the receiver’s internal clock. The receiver drift (dr ) is the
rate of change of receiver bias over time. The pseudorange
and pseudorangerate measurement model is given by

ρm =

√
(x − xm)2 + (y− ym)2 + (z− zm)2

+ br + ϵ̃mρ (25)

ρ̇m = 1mx .(vx − vmx ) + 1my .(vy − vmy ) + 1mz .(vz − vmz )

+ dr + ϵmρ̇ (26)

where (x, y, z) is receiver position in ECEF frame,
(xm, ym, zm) is satellite position in ECEF frame, (xx , vy, vz)
is receiver velocity in ECEF frame, (vmx , vmy , vmz ) is satellite
velocity in ECEF frame, 1m is the line of sight unit vector
between receiver and satellite. The receiver bias and receiver
drift need to be included in the input states and the F, Gmatrix
are modified accordingly for this fusion scheme. So the input
states can be modified as

x(t) =



P3×1
V3×1

(qLB)4×1
(bg)3×1
(ba)3×1
(sg)3×1
(sa)3×1
br
dr


(27)

The measurement model for tightly coupled fusion is given
by 

δρ1

.

.

δρm

δρ̇1

.

.

δρ̇m


=



(11IMU )
T 03×1 1 0

. . . .

. . . .

(1mIMU )
T 03×1 1 0

03×1 (11IMU )
T 0 1

. . . .

. . . .

03×1 (1mIMU )
T 0 1



×



δx
δy
δz
δvx
δvy
δvz
δbr
δdr


+



ϵ̃1ρ
.

.

ϵ̃mρ
ϵ1ρ̇
.

.

ϵmρ̇


(28)

where δρm is the pseudorange error of mth satellite, δρ̇m is
pseudorange rate error ofmth satellite, 1mIMU is the line of sight
unit vector between satellite m and user position given by
IMU and ϵ̃mρ and ϵmρ̇ is zero mean random noise. The position
and velocity error states δx, δy, δz, δvx ,δvy and δvz. The block
diagram explaining the architecture of tightly coupled fusion
scheme is shown in Fig. 2.

FIGURE 2. Tightly coupled IMU/GNSS sensor fusion architecture.

IV. METHODOLOGY
A. INVERSE KINEMATICS
Inverse Kinematics (IK) [38] involves the reverse engineering
of the equations, wherein the PVA values are supplied as
input to derive gyroscope and accelerometer values. The
fundamental principle underlying IK is that when precise
PVA values are input into the system, pseudo error-free IMU
measurements can be obtained. This approach is particularly
useful when there is a need to determine accelerometer and
gyroscope values based on a known PVA value. In general,
IMU values are typically measured in the IMU body frame.
The acceleration in the local frame can be derived by taking
the derivative of velocity. Subsequently, the acceleration
values from the L frame can be converted into the B frame
using DCM and adjusted for the Earth rate and transport rate,
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as demonstrated in the following equations

aL (t) =
dV L

dt
(29)

aBSF (t) = CB
L (t)(a

L(t) − gL + (wLEL + 2wLIE ) × V L (30)

where V L is the velocity in L frame, CB
L is the DCM from

L to B, gL is the gravity vector. The rate at which the DCM
changes can be used to obtain gyroscope measurements and
mitigated for earth and transport rate using the below equation

Sg ≈
CB
L (k − 1)CL

B (k) − I
T

(31)

wBLB =
[
Sg(3, 2) Sg(1, 3) Sg(2, 1)

]
(32)

where Sg is the skew matrix and T is the sampling period.
This approach is used in this paper to obtain the target values
for training ML algorithms.

B. GRADIENT BOOSTING
Boosting is a type of ensemble Machine Learning approach
where multiple weakmodels are combined together by focus-
ing on the mistakes made by the previous models. The final
decision of the model is the combined weighted average of
each of the models. Gradient Boosting methods use gradient
descentmethod tominimize the loss function and it is used for
both classification and regression tasks. Frequently decision
trees are employed as weak learners called Gradient Boosting
Decision Trees (GBDT) [42]. GBDT employs a series of
decision trees connected in sequence, with each subsequent
tree trained on the residuals of the preceding one to enhance
the overall model performance. Residuals are computed
through the Mean Squared Error (MSE) loss function in the
context of regression. The most computationally demanding
aspect of GBDT revolves around determining optimal split
points. Depending on the specific algorithm employed for this
purpose, various iterations or versions of GBDT have been
developed. CatBoost and LightGBM are types of Gradient
Boosting Machines (GBM) where the weak learners are
decision trees. The benefits of GBM are the competitive
accuracy and training times compared to complex deep
learning approaches.

Light Gradient Boosting Machine (LightGBM) represents
a variation of GBDT known for its speed and efficiency
relative to other Gradient Boosting Machine (GBM) algo-
rithms [43]. Specifically designed to effectively manage
substantial volumes of high-dimensional data, LightGBM
boasts increased efficiency and reduced training time. Two
key techniques contribute to its performance: Gradient-based
One-Side Sampling (GOSS), which disregards data with
low gradients during information gain computation, and
the Exclusive Feature Bundling (EFB) process, bundling
mutually exclusive features to decrease the overall number
of features.

CatBoost is another variant of GBDT and it is known for its
efficiency in handling categorical features [44]. Even though
CatBoost algorithm is well known for handling use cases

that contain both numerical and categorical data, research
showed the efficiency of the CatBoost algorithm in regression
tasks. It is optimized for both training and inference speed.
It uses techniques such as ordered boosting, a technique
used to reduce prediction shifts and overfitting of data and
symmetric trees [44], to achieve low inference times while
maintaining competitive predictive accuracy. The symmetric
trees are the trees where the same condition is applied to
split the leaves from the previous tree. The feature and
split choice that result in the minimum loss are identified
and subsequently employed for all nodes at that level. This
algorithm is well-suited for tasks where the training and
prediction times are efficient without affecting the accuracy
of the model.

C. TRAINING PHASE
In this paper, the primary focus is on removing IMU noises
and providing accurate navigation during GNSS outages in
urban areas and tunnels where the duration of outages is less
than 1 minute.

The sensor fusion of IMU and GNSS data is carried out
either loosely coupled scheme or tightly coupled based on
the type of GNSS measurements. The resultant reliable PVA
values are obtained. In order to obtain pseudo error-free
IMU values, the calculated PVA values undergo IK module.
The IMU measurements obtained through IK are stored as
target values along with the respective noisy input values in a
buffer. Once a sufficiently large dataset is accumulated, in this
paper depending on the availability of data a minimum of
14000 data points is considered for training. It is important to
address that the performance of theMLmodel depends on the
collected training dataset. This work assumes that the GNSS
is present and provides data at the start to obtain sufficient
training data. To enhance the quality of the training data,
emphasis is placed on collecting IMU values during vehicle
motion, thus exclusively considering dynamic data portions
for training in our experiments.

The proposed ML algorithms take raw accelerometer and
gyroscope data along the three axes as input, producing
error-free IMU values as output. In the case of CatBoost
and LightGBM, six models are trained for each of the
accelerometer and gyroscope as output. The training phase’s
workflow is depicted in Figure 3. One of themajor advantages
of the proposed methodology is the availability of latest and
updated training data. This results in updating the model
frequently, which is ideal in IMUdenoising as the IMUnoises
vary with time.

D. TESTING PHASE
In the absence of GNSS, INS acts as a stand-alone
system to provide the navigation information to the vehicle.
As explained the noisy IMU data when passed through the
mechanization equations results in poor PVA values. The
latest ML model trained in the training phase is used to
clean the IMU data and improve the navigation results. When
the vehicle is navigating through the GNSS challenging
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FIGURE 3. Training phase demonstrating fusion scheme, Inverse
Kinematics and ML algorithm.

environments the ML model predicts the pseudo error-free
IMU data. This process helps in maintaining error drift within
acceptable limits, ensuring reliable navigation. Upon the
restoration of GNSS signals, the training steps are reinstated.
The testing phase is illustrated in Fig. 4.

FIGURE 4. Testing phase showing ML prediction during GNSS outages.

There are several sensor fusion techniques available and
our proposed approach can be expanded to all the approaches.
In this paper, the experiments are carried out in loosely and
tightly coupled fusion scenarios. The performance of the
proposed LightGBM and CatBoost algorithms are compared
with that of CNN. Also, the ML-predicted IMU data is
compared with MA and SG filters.

V. RESULTS
The proposed methodology is tested in a loosely coupled
fusion scheme over a simulation dataset and a real dataset
with different outage durations [45]. The real dataset is
used to test the methodology in tightly coupled fusion
with a different outage period. The ground truth data in
the real dataset is obtained using NovAtel ProPak6 and
the specifications of the IMU involved are provided in
Table 1 and further details about the data collection can
be found in [45]. The IMU data in the simulated dataset
is contaminated with noise parameters to resemble the data
as that of a MEMS sensor. Since the primary focus of this
paper is to compensate IMU and reduce drift during outages
in urban areas the maximum outage duration considered
in the experiment is 70s. It is worth mentioning that the
observability analysis and convergence of the EKF in the case
of IMU/GNSS fusion has been studied in the literature [46].
In our experiments, we apply the inverse kinematics when
the filter converges, and the residuals become sufficiently
small. The device used for carrying out the experiments
has 16 GB RAM and 4 GB RTX 2060 graphics card.

The sensor fusion equations are run in MATLAB and the
ML algorithms are implemented in Python. The MATLAB
code for loosely and tightly coupled fusion can be found
in [47]. The ML algorithms applied in this paper are CNN,
LightGBM and CatBoost. For a fair comparison of training
times between these algorithms, the number of iterations
parameter is limited to 200. The CNN architecture for the
experiment is chosen based on the availability of data and
to avoid overfitting. A simple 2-layered CNN architecture
is chosen for the comparison of ML algorithms. The CNN
architecture used in this paper consists of 2 one-dimensional
convolution layers with 100 and 50 nodes respectively,
separated by a dropout layer and followed by a flattened layer
and the output layer. ReLu activation function is utilized in the
convolution layers. The CatBoost and LightGBM algorithms
have a tendency to overfit on small training data. To overcome
this, both models are tuned with optimal hyperparameters
using Optuna hyperparameter tuning framework [48].

TABLE 1. Specifications of IMU in novatel ProPak6.

A. LOOSELY COUPLED FUSION
The simulation trajectory duration is 480s, of which the
initial 310s data is assumed to have GNSS. In the rest
of the trajectory, the GNSS outages are considered for a
period of 50s and 70s. The trajectory of the simulation
dataset along with the outage durations are illustrated in
Fig. 5. The portions where GNSS is available are shown in
blue and the outages are shown in red. The proposed ML
algorithms learn the combined error and random noise of the
raw IMU measurements. Since it is difficult to distinguish
between true IMU measurements corresponding to true
dynamics and erroneous IMUmeasurements, we evaluate the
performance of the proposed ML algorithms by applying the
mechanization equations on the resulting IMU and compare
the RMSE of the output PVA against the ground truth PVA.
A 50s duration of the trajectory is considered and the ground
truth PVA values are passed through the IK to obtain pseudo
error-free IMU data. The calculated IMU data is passed
through the mechanization equations and PVA values are
obtained. The RMSE value of the ground truth PVA and the
PVA value obtained using IK calculated IMU is tabulated in
Table 2 and the low RMSE values prove the efficiency of IK.

The initial 310s trajectory is assumed to have the optimal
conditions where GNSS is accessible and reliable, the
sensor fusion of IMU and GNSS is carried out by EKF.
Simultaneously, the obtained PVA values are passed through
the IK module to gather pseudo error-free IMU data which
acts as ground truth labels in training ML algorithms. The
IMU data is stored in the buffer along with the corresponding
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FIGURE 5. Simulated data trajectory highlighting training (blue) and
testing (red) portions.

TABLE 2. RMSE analysis on PVA obtained using pseudo error-free IMU.

raw IMU data. The data collected in the buffer until the
GNSS outage occurs. The collected buffer data is passed to
the proposed ML models for training. The dataset is divided
with a split ratio of 80:20 into training and validation data.
The hyperparameters used for this trajectory are shown in
Table 3 and Table 4. A comparison of training time for all
the algorithms is tabulated in Table 5.

TABLE 3. List of optimal hyperparameters for LightGBM.

TABLE 4. List of optimal hyperparameters for CatBoost.

TABLE 5. Comparision of training time for various algorithms.

Once the GNSS outage occurs, the raw IMU data is passed
through the latest trained ML models and the denoised IMU

data are predicted. The predicted IMU data is then passed
through IMU mechanization equations and the PVA values
are calculated for both of the outage durations. The RMSE
values of all ML-predicted IMU are compared to IMU data
obtained post-application of MA and SG filters are shown in
Table 6 and Table 7. Notably, theML algorithms exhibit better
performance over traditional signal processing methods in
acquiring cleaner IMU data.

TABLE 6. RMSE analysis of IMU during the 50s GNSS outage scenario.

TABLE 7. RMSE analysis of IMU during the 70s GNSS outage scenario.

In addition, all PVA values obtained using ML algorithms
are compared with the values obtained using raw IMU are
shown in Table 8 and Table 9. The 2-dimensional position
plot for the 50s outage duration is shown in Fig. 6. The
ML-predicted position plots are overlapped and a zoomed
position plot containing only ML algorithms is shown in
Fig. 7. Similarly, the position plot for 70s outage scenario is
shown in Fig. 8 and plot containing only ML algorithms is
shown in Fig. 9. The results obtained show the satisfactory
performance of ML algorithms to reduce the error drift
during GNSS outages. Among the ML algorithms, though
the performance of CatBoost and LightGBM algorithms are
better than CNN, the training time of LightGBM provides an
edge in real-time applications.

FIGURE 6. Position plot of reference, raw, EKF-calculated IMU, CNN,
CatBoost and LightGBM denoised IMU for 50s GNSS outage in simulated
data. The true and ML predicted position plots seem overlapped from
certain altitude.
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FIGURE 7. Zoomed position plot of reference, CNN, CatBoost and
LightGBM denoised IMU for 50s GNSS outage in simulated data.

TABLE 8. RMSE analysis of PVA during the GNSS for 50s in simulated
data.

FIGURE 8. Position plot of reference, raw, EKF-calculated IMU, CNN,
CatBoost and LightGBM denoised IMU for 70s GNSS outage in simulated
data.

FIGURE 9. Position plot of reference, CNN, CatBoost and LightGBM
denoised IMU for 70s GNSS outage in simulated data.

The loosely coupled scheme is also tested using a dataset
collected in real time. The complete trajectory duration is
200s. The GNSS is not available for a duration of 30s. The
trajectory with the outage portion is shown in Fig. 10.

TABLE 9. RMSE analysis of PVA during the GNSS for 70s in simulated data.

FIGURE 10. Real trajectory with training (blue) and testing (red).

As explained earlier, EKF is used to fuse the IMU GNSS
data when the GNSS is available. The IK is applied to the
obtained PVA values and the resultant pseudo error-free IMU
measurements along with noisy IMU data is stored in the
buffer except for the portion of trajectory with GNSS outages.
The buffer data is then split into training and validation
datasets and all the ML models are trained. The architecture
of CNN is considered to be the same as explained above
and the hyperparameters used for training LightGBM and
CatBoost are provided in Table 10 and Table 11 respectively.

TABLE 10. List of optimal hyperparameters for LightGBM.

TABLE 11. List of optimal hyperparameters for CatBoost.

During the GNSS challenging conditions, the trained ML
models are used to predict the denoised IMU. The PVA values
are obtained by passing the ML-predicted IMU through IMU
mechanization equations. The comparison of PVA values
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between different predicted IMUs against raw IMU is shown
in Table 12. The 2-dimensional position plot of all the
predicted IMU during the GNSS outage is shown in Fig. 11,
followed by the plot showing only ML-predicted IMU
in Fig. 12.

FIGURE 11. Position plot of reference, raw, EKF-calculated, CNN, CatBoost
and LightGBM denoised IMU during GNSS outage in real-time data in
loosely coupled fusion.

FIGURE 12. Zoomed position plot of reference, CNN, CatBoost and
LightGBM denoised IMU during GNSS outage in real-time data in loosely
coupled fusion.

TABLE 12. RMSE analysis of PVA during the GNSS outage in real-time
data in loosely coupled fusion.

The position plots and RMSE table shows the effectiveness
of the proposed methodology to remove the IMU noise
and maintaining the drifts within limits. The LightGBM
algorithm outperformed all the other algorithms and proved
beneficial. It is important to understand that the performance
of ML algorithms improves with the improvement in the
training data. The training data in our work can be improved
by improving the fusion output to obtain better pseudo
error-free IMU data for training purposes. The same real
dataset is used in tightly coupled fusion with longer outage
duration and the results are evaluated.

B. TIGHTLY COUPLED FUSION
The tightly coupled fusion combines IMU GNSS data using
the pseudorange and pseudorangerate as the measurement
model. The real time collected dataset explained previously
is now utilized to test the proposed methodology in tightly
coupled scheme. In the entire trajectory, it is assumed that
the number of visible satellites is zero for a duration of 40s.
The training and testing portions are illustrated in Fig. 13.

FIGURE 13. Real trajectory with training (blue) and testing (red) for
tightly coupled fusion.

During favorable conditions, the number of visible satel-
lites is more than 4 which provides better fusion output in the
tightly coupled fusion. In the dataset used, at least 5 satellites
are available at any given time when GNSS is present. EKF
is used to fuse IMU GNSS data and reliable PVA is obtained.
IK is employed on the obtained PVA values and pseudo
error-free IMU are calculated. These IMU values along with
the noisy raw input are stored in the buffer. The ML models
are trained with the data collected in the buffer excluding the
outage portions. This data is split into training and validation
sets with a ratio of 80:20. The CNN architecture is considered
to be the same as explained for loosely coupled fusion and the
hyperparameters for Catboost and LightGBM are provided in
Table 13 and Table 14.

TABLE 13. List of optimal hyperparameters for LightGBM.

TABLE 14. List of optimal hyperparameters for CatBoost.

When the GNSS outage occurs, since it is assumed that
the number of visible satellites is zero, the fusion mechanism
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fails to provide even partial correction updates which is
one of the advantages of tightly coupled fusion mechanism.
So the system relies on INS during the outage. The raw
IMU data is passed through the ML models and the denoised
IMU measurements are predicted. These ML-predicted IMU
are passed through mechanization equations and the PVA
values are estimated. The RMSE values of PVA calculated
using ML-predicted IMU are compared with those obtained
using raw IMU values in Table. 15. The 2-dimensional
position plot comparing all positions obtained using predicted
IMU is shown in Fig. 14. The ML predicted position plots
are overlapped and zoomed position plot with only ML
algorithms is shown in Fig. 15.

The position plots and the RMSE values prove the
effectiveness of tree-based boosting algorithms to denoise
IMU and reduce navigation drift in tightly coupled fusion

FIGURE 14. Position plot of reference, raw, EKF-calculated, CNN, CatBoost
and LightGBM denoised IMU during GNSS outage in real-time data in
tightly coupled fusion. The ML-predicted plots are overlapped with the
reference.

FIGURE 15. Zoomed position plot of reference, CNN, CatBoost and
LightGBM denoised IMU during GNSS outage in real-time data in Tightly
coupled fusion.

TABLE 15. RMSE analysis of PVA during the GNSS outage in real-time
data in Tightly coupled fusion.

scheme. Though the performance of CatBoost and Light-
GBM is satisfactory, LightGBM is efficient in real-time
implementation due to its lower training time.

VI. CONCLUSION AND FUTURE WORK
The paper introduced an Inverse Kinematics (IK) approach
to acquire ground truth data for training Machine Learning
(ML) algorithms, aiming to address navigation drifts during
GNSS outages. The trained ML models exhibited superior
performance compared to traditional signal processing
methods. Notably, the proposed LightGBM and CatBoost
algorithms effectively handled IMU noise, yielding satisfac-
tory estimations of Position, Velocity, and Attitude (PVA)
values. The key advantage of utilizing Inverse Kinematics
for obtaining training data lies in the real-time availability
of data. This facilitates timely model updates with the latest
information to adapt to new patterns. The future work is
to apply this methodology on larger dataset in real-time to
estimate the optimal buffer size. This approach could also
be complemented with other fusion algorithms like Particle
Filter (PF), Unscented Kalman Filter (UKF). More ML
algorithms could be implemented to provide a comparative
study of efficiency of various algoithms.
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