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ABSTRACT Recent threats to deep learning-based biometric authentication systems stem from adversarial
attacks exploiting vulnerabilities in deep learning models. While existing studies extensively analyze the risk
of such attacks, they primarily focus on isolated modules (e.g., liveness detectors or identity matchers) or
specific adversarial attack types (e.g., evasion and poisoning attacks). In this paper, we introduce a novel
approach that comprehensively assesses the risk of adversarial attacks by simulating multiple scenarios
within biometric authentication systems. We identify the surfaces susceptible to adversarial attacks within
these systems and devise scenarios that reflect the dependencies between modules. Moreover, we establish
evaluation metrics to comprehensively assess the risk involved. Through a case study conducted on a
real-world face recognition system, we successfully demonstrate the effectiveness of our approach. Our
approach facilitates the systematic evaluation of the security of target biometric authentication systems
against adversarial attacks. Ultimately, it enables the establishment of robust and proactive defense
mechanisms.

INDEX TERMS Adversarial attack, adversarial attack scenarios, biometric authentication system,
comprehensive risk analysis, deep learning.

I. INTRODUCTION
Recent biometric authentication systems employ deep
learning-based authentication mechanisms to achieve high
authentication accuracy [1], [2]. However, the security of
these systems is threatened by adversarial attacks that exploit
vulnerabilities in deep learning models [3]. Adversarial
attacks lead to misclassification by subtly modifying data
and deep learning algorithms or extract critical information
by injecting malicious data into deep learning models. These
attacks pose security threats to deep learning-based biometric
authentication systems, including false authentication, access
denial, and personal information theft.

To address these threats, a number of studies have
analyzed the risks posed by adversarial attacks on biometric
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authentication systems [4]. Existing studies primarily focus
on adversarial attacks targeting specific modules of biometric
authentication systems [3], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17]. However, biometric
authentication systems are composed of multiple modules
(e.g., liveness detector and identity matcher) that interact with
each other [18], [19]. The liveness detector determines the
authenticity of the input biometric trait, while the identity
matcher verifies its correspondence with registered users. For
example, in a typical biometric authentication system, input
data traverses through the liveness detector before reaching
the identity matcher. In such cases, adversarial attacks
targeting the identity matcher face constraints, as their manip-
ulated input data must successfully pass through the liveness
detector without being detected. Although the constraints of
attack scenarios can vary depending on the dependencies
between modules, existing studies often focus solely on
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specific modules, neglecting the dependencies among them.
This oversight may result in invalid vulnerability analyses
of biometric authentication systems. Furthermore, existing
studies primarily concentrate on particular types of adver-
sarial attacks (e.g., evasion attacks, poisoning attacks, and
exploratory attacks) [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [20]. However, this narrow focus
may lead to biased analyses, overlooking other types of risks
and making it challenging to quantitatively evaluate the risks
associated with different attacks. Therefore, a comprehensive
method is required, which systematically evaluates the risks
of multiple types of adversarial attacks while considering the
dependencies between modules in biometric authentication
systems.

In this paper, we define adversarial attack scenarios in
biometric authentication systems and introduce a system-
atic method for assessing the risk of adversarial attacks
based on these scenarios. Our approach defines adversarial
attack scenarios by considering the dependencies between
modules in biometric authentication systems and enables
a comprehensive evaluation of the risks from multiple
perspectives through scenario-based adversarial attack sim-
ulations. Specifically, we identified seven adversarial attack
surfaces within biometric authentication systems through a
comprehensive analysis of existing systems and adversarial
attacks. Furthermore, we defined a total of 12 adversarial
attack scenarios for each attack surface, considering the
dependencies between the system modules. Finally, to eval-
uate the risk of target systems based on those scenarios
from multiple perspectives, we defined three evaluation
metrics: attack vulnerability, attack execution difficulty, and
attack defense availability. To validate the applicability of
our approach, we conducted a case study using a face
recognition system implemented with FaceNet [21] and
CASIA-Webface [22].
Our approach facilitates the systematic assessment of

biometric authentication system security against adversarial
attacks, considering multiple potential attack scenarios and
evaluating risks from various perspectives. This ultimately
enables a comprehensive risk analysis of target biometric
authentication systems and the establishment of proactive
defense mechanisms against adversarial attacks. The contri-
butions of this study are as follows: (1) Introducing a novel
systematicmethod for assessing the risk of adversarial attacks
on biometric authentication systems; (2) Defining various
adversarial attack scenarios considering the dependencies
between modules of biometric authentication systems; (3)
Defining evaluation metrics to assess the risk of adversarial
attacks from multiple perspectives; (4) Conducting a case
study using real-world datasets on a face recognition
system.

This paper is organized as follows: Section II presents
related work, Section III describes the main approach,
Section IV presents a case study, followed by a discus-
sion in Section V, and finally, Section VI presents the
conclusion.

II. RELATED WORK
A. CLASSIFICATION OF ADVERSARIAL ATTACKS
Adversarial attacks pose security threats by exploiting
vulnerabilities in deep learning models, resulting in mis-
classification of input data or the leakage of critical
information [23]. In biometric authentication systems, these
attacks can be categorized based on criteria such as goal, type,
and capability [4], [5], [24].

The goals of adversarial attacks on biometric authen-
tication systems can be classified into three categories:
integrity violation, availability violation, and privacy viola-
tion. Integrity violation aims to mimic a specific registered
user within the target system. Availability violation disrupts
users from accessing the target system. Privacy violation
entails maliciously accessing the target system to extract data.

The types of adversarial attacks on biometric authen-
tication systems can be categorized into evasion attacks,
poisoning attacks, and exploratory attacks. Evasion attacks
result in misclassification by injecting adversarial examples
with subtle perturbations into deep learning models. Poi-
soning attacks disrupt the logic of deep learning models by
manipulating the training process. Exploratory attacks extract
critical information from deep learning models by analyzing
the model’s output for the attacker’s input.

The capabilities of adversarial attacks on biometric authen-
tication systems encompass both the training and testing
phases. During the training phase, attacks manipulate the
training dataset or algorithm of the deep learning model.
These attack vectors are categorized into data modification
and injection, which targets the data, and logic corruption,
which targets the algorithm. Data modification and injection
involve altering specific parts of the training dataset or inject-
ing adversarial data into it. Logic corruption maliciously
manipulates the training or inference algorithms of deep
learning models. Conversely, during the testing phase, the
attack vectors can be classified as either white-box or black-
box.White-box attacks involve inputting adversarial data into
the target model with knowledge of the model’s information,
such as algorithm, structure, and training parameters. Black-
box attacks, on the other hand, input adversarial data into
the target model without prior knowledge of the model’s
information. Generally, black-box attacks have lower success
rates compared to white-box attacks.

To ensure robust protection for a target deep learning-based
biometric authentication system against adversarial attacks,
it’s essential to implement a systematic risk assessment
method that comprehensively addresses the diverse range of
these attacks.

B. ADVERSARIAL ATTACK METHODS ON BIOMETRIC
AUTHENTICATION SYSTEMS
In deep learning-based biometric authentication systems,
vulnerabilities to adversarial attacks have been extensively
reported [3], [25]. Fei et al. [3] introduced an adversar-
ial attack method that enhances robustness to image
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FIGURE 1. Overview of the proposed approach for comprehensive risk evaluation of adversarial attacks in deep learning-based biometric
authentication systems.

transformations, such as flips and rotations, in fingerprint
liveness detection. Their approach adds slight Gaussian
noise and applies small-angle random rotations during each
iteration. Yin et al. [26] proposed a makeup-based adversar-
ial attack method aimed at the identity matcher of face
recognition systems, incorporating eye shadow synthesis with
perturbations onto facial images. Xue et al. [27] developed
the Linear Offset based Poisoning Attack method (LOPA),
exploiting the data update process of adaptive fingerprint
authentication systems lacking a liveness detector. LOPA
subtly infects the enrolled user’s fingerprints in the system
by introducing poisoning fingerprints resembling those of a
specific user. Zhang et al. [28] proposed a generative model
inversion attack, reconstructing the training dataset of deep
learning models using a Generative Adversarial Network
(GAN). They successfully exploited the identity matcher
of face recognition systems. Given the variety of adver-
sarial attack methods proposed for biometric authentication
systems, an effective defense against these attacks requires
a comprehensive risk assessment method that considers
both the vulnerabilities of individual modules and their
dependencies.

III. MAIN APPROACH
In this paper, we introduce a novel approach to assessing
the risk of adversarial attacks on biometric authentication
systems, based on potential attack scenarios, as shown in
Fig. 1. We systematically identify various attack surfaces
and define specific adversarial attack scenarios. Furthermore,
we introduce three distinct evaluation metrics designed
to comprehensively assess the risk of adversarial attacks
inherent in biometric authentication systems from multiple

perspectives. Based on these, our approach facilitates a
comprehensive evaluation of the risks to the target system
through scenario-based adversarial attack simulations and
subsequent risk assessments.

A. BACKGROUND
Our approach is based on the typical structure of deep
learning-based biometric authentication systems, with careful
consideration of its practical applicability. Fig. 2 provides
a depiction of a typical deep learning-based biometric
authentication system [5], [18], [29], with the details of each
module shown in Table 1. In this system, users’ biometric
traits are captured via sensors such as cameras and fin-
gerprint scanners. Subsequently, the captured traits undergo
sequential verification via two key modules: the liveness
detector and the identity matcher. These modules commonly
rely on deep learning models, which autonomously extract
features from the input data and undergo training to generate
predictive outputs.

This system primarily operates through two key processes:
enrollment and authentication. Enrollment involves users
registering their biometric traits in the system, following this
sequence: (E1) Users input their biometric traits into the
system via the sensor for a predefined number of times; (E2)
The system digitizes the biometric traits z captured by the
sensor and adds them to the training database for the identity
matcher; (E3) The liveness detector undergoes training using
a dataset comprising both real and fake biometric traits from
the training database; (E4) The identity matcher undergoes
training using a dataset containing biometric traits from
registered users in the training database for the identity
matcher, including the biometric traits z added in (E2).
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FIGURE 2. Diagram of a typical deep learning-based biometric authentication system, showing the enrollment sequence (E#) and authentication
sequence (A#).

TABLE 1. Modules in typical deep learning-based biometric authentication system.

On the other hand, authentication involves verifying a
user’s biometric input traits, following this sequence: (A1)
Users input their biometric traits into the system via the
sensor; (A2) The system digitizes the biometric trait z
captured by the sensor and feeds it into the liveness detector
to determine its authenticity; (A3) The liveness detector
extracts the liveness feature of the input z and computes the
liveness score sL(z); (A4) If sL(z) falls below the liveness
threshold tL set by the liveness decision maker, z is flagged as
fake, resulting in access denial. Conversely, if sL(z) exceeds
tL , indicating authenticity, the process continues; (A5) The

biometric trait z, having passed the liveness detector, is then
forwarded to the identity matcher to verify its matching
identity; (A6) The identity matcher extracts the identity
feature of the input z and computes the identity score
[sI (z)]nk=1 for n identities trained by the identitymatcher; (A7)
If the highest score among the identity scores, denoted as
max([sI (z)]nk=1), falls below the identity threshold tI set by
the identity decision maker, z is identified as an impostor,
leading to access denial. Conversely, if max([sI (z)]nk=1)
surpasses tI , indicating authenticity, access is granted with
the corresponding identity registered in the system.
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FIGURE 3. Adversarial attack surfaces where adversarial attacks can occur within typical deep learning-based biometric authentication systems.

For example, we assume a situation where attacker A
attempts to impersonate user B by inputting a deepfake
video—synthesizing B’s face onto A’s facial area—into the
face recognition system. If the liveness detector detects the
input video as manipulation, attacker A is denied access to
the system. However, if the liveness detector does not identify
the input video as manipulation, the deepfake video passes
through the liveness detector and is forwarded to the identity
matcher. Subsequently, the identity matcher checks whether
the identity of the input video matches any identity registered
in the system. If the identity matcher determines that none of
the registered identities match the identity of the input video,
attacker A is denied access to the system. Nevertheless, if the
identity matcher matches the identity of the input video to
user B, attacker A successfully impersonates user B and gains
access to the system.

B. ADVERSARIAL ATTACK SURFACE
As depicted in Fig. 3, we identified seven adversarial
attack surfaces within typical deep learning-based biometric
authentication systems. Adversarial attack surfaces represent
the points where adversarial attacks can occur within the
target system, with each point potentially involving various
attack scenarios. For instance, if an attacker gains access to
the training database for the liveness detector, they could
inject malicious data into the database (=data injection) or
maliciously modify the existing data within the database
(=data modification).

To identify the adversarial attack surfaces, we systemat-
ically analyzed existing research related to attack surfaces
and adversarial attacks on biometric authentication systems.
For this analysis, we conducted a keyword-based literature

search for attack surfaces and adversarial attacks, focusing on
papers published after 2015. We utilized search engines such
as IEEE Explore, ACM Digital Library, Springer Link, and
Google Scholar. Specifically, to analyze the attack surfaces
in biometric authentication systems, we employed eight
search queries by combining keywords related to the attack
surface (e.g., attack surface and attack point) with those
related to biometric authentication systems (e.g., biometric
system, biometric authentication system, biometric process,
and biometric authentication process). Similarly, to analyze
adversarial attacks on biometric authentication systems,
we utilized four search queries by combining ‘adversarial
attack’ with keywords related to biometrics (e.g., biometric
authentication, liveness, face, and fingerprint). Our search
yielded a total of 253 papers related to attack surfaces in
biometric authentication systems and 115 papers related to
adversarial attacks within the same systems. The authors
meticulously reviewed these papers, excluding those deemed
less relevant to our study or the biometric authentication
system. Ultimately, we curated a selection of 39 papers [5],
[7], [9], [10], [11], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61], [62], [63] on attack surfaces
and 59 papers [3], [6], [7], [8], [20], [30], [64], [65], [66],
[67], [68], [69], [70], [71], [72], [73], [74], [75], [76],
[77], [78], [79], [80], [81], [82], [83], [84], [85], [86],
[87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97],
[98], [99], [100], [101], [102], [103], [104], [105], [106],
[107], [108], [109], [110], [111], [112], [113], [114], [115],
[116] on adversarial attacks on biometric authentication
systems.
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TABLE 2. Adversarial attack scenarios within biometric authentication systems, based on the adversarial attack surfaces and the three criteria for
categorizing adversarial attacks (i.e., goal, type, and capability).

We selected the adversarial attack surfaces by analyzing
these papers and matched each with the modules within typ-
ical deep learning-based biometric authentication systems.
Specifically, first, we composed an attack surface set by
collecting attack surfaces from the selected papers. Then,
we analyzed research related to adversarial attacks on biomet-
ric authentication systems and identified the attack surfaces
involved in each attack. Through this process, we identified
the following attack surfaces: deep learning model, decision
maker, biometric database, and sensor-recognition model.
Each attack surface was matched with the corresponding
module within a typical deep learning-based biometric
authentication system, as described in Section III-A. Since
the deep learning model, decision maker, and database each
consists of two elements (i.e., liveness detection and identity
matcher), we matched them as follows: (1) deep learning
model ↔ liveness detector and identity matcher, (2) decision
maker ↔ liveness decision maker and identity decision
maker, and (3) biometric database ↔ training database
for liveness detector and training database for identity
matcher. Additionally, as the recognition model corresponds
to the identity matcher in this system, we matched sensor-
recognition model ↔ sensor-identity matcher. As a result,
we identified a total of seven adversarial attack surfaces:
liveness detector, training database for liveness detector,
liveness decision maker, sensor-identity matcher, identity
matcher, training database for identity matcher, and identity
decision maker.

C. ADVERSARIAL ATTACK SCENARIO
To evaluate the risk of adversarial attacks that may occur
during the system’s operation, we delineated 12 adversarial
attack scenarios, considering the dependencies between
modules within the biometric authentication system,

as shown in iTable 2. These scenarios are based on the
adversarial attack surfaces outlined in Section III-B, along
with the three criteria for categorizing adversarial attacks
(i.e., goal, type, and capability). Each attack scenario was
formulated under the assumption of a successful attack
without any intervention from the system. The details of each
attack scenario are elaborated as follows:

(1) Scenario#1: In this scenario, the attacker’s goal is an
availability violation. Since the attacker can intervene in
the training phase of the liveness detector, the adversarial
attack surface is the liveness detector, and the attack type
is a poisoning attack. Specifically, the attacker intervenes
in the training phase of the liveness detector and performs
logic corruption that modifies part of the training algorithm
to consistently detect the user’s input as fake. Consequently,
the liveness detector consistently identifies all user-input
biometric traits as fake, resulting in continuous denial of
access to the system for the user.

(2) Scenario#2: In this scenario, the attacker’s goal is an
availability violation. Since the attacker can intervene in the
training phase of the liveness detector, the adversarial attack
surface is the training database for the liveness detector, and
the attack type is a poisoning attack. Specifically, the attacker
intervenes in the training phase of the liveness detector and
performs data modification and injection, injecting malicious
data into the training database for the liveness detector or
directly modifying its data to consistently detect the user’s
input as fake. Consequently, the liveness detector consistently
identifies all user-input biometric traits as fake, leading to
continuous denial of access to the system for the user.

(3) Scenario#3: In this scenario, the attacker’s goal is an
availability violation. Since the attacker can intervene in the
training phase of the liveness detector, the adversarial attack
surface is the liveness decision maker, and the attack type
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is a poisoning attack. Specifically, the attacker intervenes in
the training phase of the liveness detector and performs logic
corruption to modify the pre-defined liveness threshold of the
liveness decision maker. The attacker adjusts the threshold to
consistently detect the user’s input as fake. Consequently, the
liveness decision maker consistently identifies all user-input
biometric traits as fake, leading to continuous denial of access
to the system for the user.

(4) Scenario#4: In this scenario, the attacker’s goal is an
integrity violation. Since the attacker cannot intervene in the
training phase of the biometric authentication system and
can only input data through the sensor during the testing
phase, the adversarial attack surface is the sensor-identity
matcher, and the attack type is an evasion attack. Specif-
ically, the attacker executes a white-box attack, inputting
an adversarial biometric trait designed to consistently be
recognized as a specific identity, utilizing information about
the identity matcher of the biometric authentication system.
Consequently, the adversarial biometric trait input by the
attacker is detected as real by the liveness detector and then
forwarded to the identity matcher. Subsequently, the identity
matcher matches the adversarial biometric trait to a specific
user, enabling the attacker to gain access to the system by
impersonating that user.

(5) Scenario#5: In this scenario, the attacker’s goal is an
integrity violation. Since the attacker cannot intervene in the
training phase of the biometric authentication system and can
only input data through the sensor during the testing phase,
the adversarial attack surface is the sensor-identity matcher,
and the attack type is an evasion attack. Specifically, the
attacker executes a black-box attack, inputting an adversarial
biometric trait designed to consistently be recognized as
a specific identity, without possessing information about
the identity matcher of the biometric authentication system.
Consequently, the adversarial biometric trait input by the
attacker is detected as real by the liveness detector and then
forwarded to the identity matcher. Subsequently, the identity
matcher matches the adversarial biometric trait to a specific
user, enabling the attacker to gain access to the system by
impersonating that user.

(6) Scenario#6: In this scenario, the attacker’s goal is a
privacy violation. Since the attacker cannot intervene in the
training phase of the biometric authentication system and can
only input data through the sensor during the testing phase,
the adversarial attack surface is the sensor-identity matcher,
and the attack type is an exploratory attack. Specifically,
the attacker executes a white-box attack, repeatedly inputting
arbitrary biometric traits to analyze the output results, with
information about the identity matcher of the biometric
authentication system. Consequently, the biometric trait input
by the attacker is detected as real by the liveness detector
and then forwarded to the identity matcher. By analyzing
the output of the identity matcher for the biometric trait,
the attacker extracts the data trained by the identity matcher,
resulting in a privacy violation in the system.

(7) Scenario#7: In this scenario, the attacker’s goal is a
privacy violation. Since the attacker cannot intervene in the
training phase of the biometric authentication system and can
only input data through the sensor during the testing phase,
the adversarial attack surface is the sensor-identity matcher,
and the attack type is an exploratory attack. Specifically,
the attacker executes a black-box attack, repeatedly inputting
arbitrary biometric traits to analyze the output results,
without possessing information about the identity matcher
of the biometric authentication system. Consequently, the
biometric trait input by the attacker is detected as real by
the liveness detector and then forwarded to the identity
matcher. By analyzing the output of the identity matcher for
the biometric trait, the attacker extracts the data trained by
the identity matcher, resulting in a privacy violation in the
system.

(8) Scenario#8: In this scenario, the attacker’s goal is an
integrity violation. Since the attacker can intervene in the
training phase of the identity matcher, the adversarial attack
surface is the identity matcher, and the attack type is a
poisoning attack. Specifically, the attacker intervenes in the
training phase of the identity matcher and performs logic
corruption that modifies part of the training algorithm to
detect the attacker’s input as a specific identity consistently.
Consequently, the attacker-input biometric trait is detected as
real by the liveness detector and forwarded to the identity
matcher. Subsequently, the identity matcher consistently
matches the adversarial biometric trait to a specific user,
enabling the attacker to gain access to the system by
impersonating that user.

(9) Scenario#9: In this scenario, the attacker’s goal is an
availability violation. Since the attacker can intervene in
the training phase of the identity matcher, the adversarial
attack surface is the identity matcher, and the attack type
is a poisoning attack. Specifically, the attacker intervenes
in the training phase of the identity matcher and performs
logic corruption that modifies part of the training algorithm
to misclassify the user’s input consistently. Consequently, the
user-input biometric trait is detected as real by the liveness
detector and forwarded to the identity matcher. The identity
matcher fails to match the user-input biometric trait with the
authenticated user, leading to continuous denial of access to
the system for the user.

(10) Scenario#10: In this scenario, the attacker’s goal is an
availability violation. Since the attacker can intervene in the
training phase of the identity matcher, the adversarial attack
surface is the training database for the identity matcher, and
the attack type is a poisoning attack. Specifically, the attacker
intervenes in the training phase of the identity matcher and
performs data modification and injection, injecting malicious
data into the training database for the identity matcher or
directly modifying its data to consistently misclassify the
user’s input. Consequently, the user-input biometric trait is
detected as real by the liveness detector and forwarded to
the identity matcher. The identity matcher fails to match the
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TABLE 3. Types of information required for executing the adversarial
attack.

user-input biometric trait with the authenticated user, leading
to continuous denial of access to the system for the user.

(11) Scenario#11: In this scenario, the attacker’s goal is
an integrity violation. Since the attacker can intervene in the
training phase of the identity matcher, the adversarial attack
surface is the training database for the identity matcher, and
the attack type is a poisoning attack. Specifically, the attacker
intervenes in the training phase of the identity matcher and
performs data modification and injection, injecting malicious
data into the training database for the identity matcher or
directlymodifying its data to consistently detect the attacker’s
input as a specific identity. Consequently, the attacker-input
biometric trait is detected as real by the liveness detector
and forwarded to the identity matcher. Subsequently, the
identity matcher matches the biometric trait to a specific
user, enabling the attacker to gain access to the system by
impersonating that user.

(12) Scenario#12: In this scenario, the attacker’s goal is an
availability violation. Since the attacker can intervene in the
training phase of the identity matcher, the adversarial attack
surface is the identity decision maker, and the attack type
is a poisoning attack. Specifically, the attacker intervenes in
the training phase of the identity matcher and performs logic
corruption that modifies the pre-defined identity threshold of
the identity decision maker. The attacker adjusts the threshold
to consistently detect the user’s input as an imposter.
Consequently, the user-input biometric trait is detected as
real by the liveness detector and forwarded to the identity
matcher. Subsequently, the identity decision maker identifies
the user-input biometric trait as an impostor, leading to
continuous denial of access to the system for the user.

D. RISK EVALUATION METRIC
We defined evaluation metrics to assess the risk of adversarial
attacks on biometric authentication systems from various
perspectives. Adversarial attacks on these systems differ in
the required information and defense strategies based on the
goal, type, and capability of each attack. To comprehensively
evaluate the risk of adversarial attacks, we established
three metrics: (1) attack vulnerability, (2) attack execution
difficulty, and (3) attack defense availability. The detailed
descriptions are as follows.

1) ATTACK VULNERABILITY
Attack vulnerability is a metric used to quantitatively assess
the susceptibility of the biometric authentication system to
each adversarial attack scenario. This metric relies on the
attack success rate, considered one of the representative
metrics for evaluating the risk of adversarial attacks [3], [8],
[10], [11], [16]. It is determined by the number of successful
attacks on the testing dataset used for attack simulation in
each scenario. The formula is as follows:

(Attack vulnerability)

=
(The number of data with successful attack)

(The total number of testing data)
× 100 (1)

High attack vulnerability suggests that the attack scenario
used in the test has a high success rate, making the system
highly vulnerable to that particular scenario. Conversely,
low attack vulnerability implies a low success rate for
the evaluated attack scenario, indicating that the system is
relatively less vulnerable to that scenario.

2) ATTACK EXECUTION DIFFICULTY
Attack execution difficulty is a metric used to quantitatively
assess the challenge of attacking a biometric authentication
system. The amount and types of information needed for
executing adversarial attacks can vary depending on the
attack method. For instance, black-box attacks do not require
information about the target system’s structure or training
parameters, unlike white-box attacks.

This metric is based on the types of information required
for executing the attack. It measures whether each type of
information is necessary (xi ∈ {0, 1}) and the difficulty
of collecting it (wi). The difficulty of collecting each
type of information can be configured based on the user
environment, such as the environment in which the target
system is deployed and the access control status of each
type of information (

∑6
i=1 wi = 100%). Through systematic

analysis of existing studies [4], [5], [24], [117], we identified
six types of information required for attack execution: model
architecture, parameters, training data, output result, target
label, and training algorithm (see Table 3). The formula is
as follows:

(Attack execution difficulty) =

6∑
i=1

wixi (2)
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TABLE 4. Description of defense strategies against adversarial attacks.

High attack execution difficulty suggests that the attack
scenario used in the test requires more information, making it
challenging to execute the attack and subsequently rendering
the system relatively less vulnerable to the scenario. Con-
versely, low attack execution difficulty implies less required
information for the evaluated attack scenario, indicating that
the attack is easier to execute and the system is relativelymore
vulnerable to that scenario.

3) ATTACK DEFENSE AVAILABILITY
Attack defense availability is a metric used to quantitatively
assess the extent to which a biometric authentication system
can be defended against adversarial attacks. The effectiveness
of defense strategies can vary depending on the attack
method [4], [120], [121]. For instance, black-box attacks,
which are executed without information about the target
system, may render certain defense strategies ineffective
(e.g., protecting the model’s gradient).

This metric is determined by the number of defense strate-
gies available for each type of adversarial attack.We analyzed
and classified defense strategies based on existing research on
defending against adversarial attacks. We collected relevant
papers using the keyword-based literature search process
described in Section III-B. Specifically, we gathered a total
of 127 papers related to defense strategies against adversarial
attacks using search queries that combined ‘adversarial
attack’ with keywords related to defense (i.e., defense and
protection). The authors reviewed these papers to exclude
those that were less relevant or unsuitable for our objectives.

Ultimately, we selected 30 papers [4], [13], [14], [15],
[24], [117], [118], [119], [121], [122], [123], [124], [125],
[126], [127], [128], [129], [130], [131], [132], [133], [134],
[135], [136], [137], [138], [139], [140], [141], [142] focused
on defense strategies against adversarial attacks. Through
systematic analysis, we identified ten popular defense
strategies: adversarial training, defensive distillation, gradient
regularization, gradient masking, auxiliary detection model,
image reconstruction, image denoising, random noising,
ensemble learning, and feature squeezing (see Table 4). The
formula for attack defense availability is as follows:

(Attack defense availability)

=
(The number of available defense strategies)
(The total number of defense strategies)

× 100

(3)

High attack defense availability suggests that the system
is relatively less vulnerable to the evaluated attack scenario
because more defense strategies are available. Conversely,
low attack defense availability indicates vulnerability to the
evaluated attack scenario due to the scarcity of available
defense strategies.

IV. CASE STUDY
To verify the applicability of our proposed approach,
we conducted a case study evaluating the risk of adversarial
attacks on a face recognition system through scenario-based
adversarial attack simulations.
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TABLE 5. The structure of training datasets (FaceForensics++ and
CASIA-Webface) for a case study.

A. EXPERIMENTAL SETTING
1) TARGET SYSTEM
We selected the FaceNet architecture, one of the represen-
tative biometric authentication systems, as the foundation
for the target face recognition system [21], [143]. The
datasets utilized for training the target system comprise
FaceForensics++ (FF++) [144] and CASIA-Webface [22],
detailed in Table 5.

The liveness detector in the target system was trained
using the FF++ dataset, which comprises 1,000 real videos
and 4,000 fake videos generated through four methods
(i.e., Deepfakes, Face2Face, FaceSwap, and NeuralTextures).
To train the liveness detector, we sliced the videos into
50 frames [149], [150], [151], [152], [153]. Meanwhile,
the identity matcher in the target system was trained
using the CASIA-Webface dataset, which contains 494,414
face images representing 10,575 real identities. Due to
the uneven distribution of data per identity in CASIA-
Webface, we randomly selected 1,000 identities with a
minimum of 44 images each for training the identity matcher.
Subsequently, we randomly selected 44 images per identity
and split these images into training and testing datasets
(training: 40 and testing: 4), as CASIA-Webface is also
employed as the testing dataset (further details about the
testing dataset can be found in Section IV-A3).
The hyperparameters used for training the target system

were set as follows: liveness detector (optimizer: Adam,
epoch: 6, batch size: 32, and learning rate: 0.001) and
identity matcher (optimizer: Adam, epoch: 30, batch size:
32, and learning rate: 0.001). The optimizer, batch size, and
learning rate were set to the default values of FaceNet, while
the epochs were optimized according to the size of each
training dataset. All experiments were conducted on one
GPU (NVIDIAGeForce RTX 3090), using Python 3.8.10 and
PyTorch 2.0.0+cu117.

2) ADVERSARIAL ATTACK BASED ON ATTACK SCENARIOS
We selected suitable adversarial attack methods for each sce-
nario, as shown in Table 6, based on the following criteria: (1)
the method demonstrated state-of-the-art attack performance,
and (2) themethod’s codewas publicly available and operated
without errors. Consequently, we selected VNI-FGSM [145],
Square [146], Witches’ Brew [147], GMI [28], and BREP-
MI [148]. The simulations were performed using the default
settings provided by the authors of each method.

For scenarios involving training phase-logic corruption
(i.e., #1, #3, #8, #9, and #12), we modified parts of the
target system’s algorithm to conduct adversarial attacks. For
scenarios targeting the liveness detector and identity matcher
(i.e., #1, #8, and #9), we adjusted the training loss in the
training algorithm. For scenarios targeting the decisionmaker
(i.e., #3 and #12), we modified the threshold in the inference
algorithm.

3) TESTING DATASET
We constructed three testing datasets based on the goals of
the attack scenarios, as shown in Table 7. This is because the
individual inputting the biometric trait into the system varies
depending on the scenario’s goal. For example, in scenarios
targeting integrity violation, where the attacker maliciously
accesses the target system, the attacker inputs the biometric
trait. Conversely, in scenarios targeting availability violation,
where the user’s access to the target system is denied, the
benign user-inputs the biometric trait.

Testing dataset#1 is used to evaluate attack scenarios
with the goal of integrity violation (i.e., #4, #5, #8, and
#11). These scenarios represent situations where the attacker
impersonates a specific user to access the target system.
To construct testing dataset#1, we randomly selected ten
identities from CASIA-Webface to serve as attackers. The
images in testing dataset#1 were taken from the 4 images
per identity that were not used in the training dataset.
Additionally, since these scenarios require impersonation
targets, we randomly selected ten other identities and paired
each with one of the attacker identities. Therefore, testing
dataset#1 consists of 40 images, with four images for each of
the ten attackers. In the adversarial attack simulations using
testing dataset#1, an attack is considered successful if the
attacker’s identity is recognized as the impersonation target.

Testing dataset#2 is used to evaluate attack scenarios with
the goal of availability violation (i.e., #1, #2, #3, #9, #10,
and #12). These scenarios represent situations where the
user is unable to access the target system. To construct
testing dataset#2, we randomly selected 1,000 identities from
CASIA-Webface to serve as users. The images in testing
dataset#2 were taken from the 4 images per identity that were
not used in the training dataset. Note that, testing dataset#2
consists only of real images. Therefore, testing dataset#2
contains 4,000 images, with four images for each of the 1,000
user identities. In the adversarial attack simulations using
testing dataset#2, an attack is considered successful if the
user’s identity fails to authenticate with the target system.

Testing dataset#3 is used to evaluate attack scenarios with
the goal of privacy violation (i.e., #6 and #7). These scenarios
represent situations where the target system’s training data
is extracted based on the attacker’s inputs and the system’s
outputs. To construct testing dataset#3, we utilized images
extracted through adversarial attacks. Therefore, testing
dataset#3 contains 1,000 images, each corresponding to a
unique user identity extracted through adversarial attacks.
In the adversarial attack simulations using testing dataset#3,
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TABLE 6. Adversarial attack methods for various scenario-based adversarial attack simulations.

TABLE 7. The structure of testing datasets by the goals of the attack scenario for a case study.

TABLE 8. The results of the risk evaluation of adversarial attacks for
scenarios with the goal of integrity violation.

an attack is considered successful if the extracted image
matches the corresponding identity.

B. EXPERIMENTAL RESULTS
We assessed the risk of adversarial attacks for each attack
scenario in the target system using three evaluation metrics:
attack vulnerability, attack execution difficulty, and attack
defense availability. Note that, for attack execution difficulty,
we assumed that the attacker has access to all information
in the target system, knowing the location and form of each
piece of information, and applied the same difficulty of
collecting each type of information (i.e., 16.67%).

1) EVALUATION OF INTEGRITY VIOLATION SCENARIOS
The results of evaluating the risk of adversarial attacks for
scenarios with the goal of integrity violation using testing
dataset#1 are presented in Table 8. The scenarios include

Scenario#4, Scenario#5, Scenario#8, and Scenario#11
(details of each scenario can be found in Section III-C).

For attack vulnerability, Scenario#4 exhibited the highest
vulnerability level compared to other scenarios: Scenario#4
(90.00%, 36/40), Scenario#5 (82.50%, 33/40), Scenario#8
(60.00%, 24/40), and Scenario#11 (0.00%, 0/40). Therefore,
the target system is most vulnerable to Scenario#4 in terms
of attack vulnerability.

For attack execution difficulty, Scenario#5 demonstrated
the lowest difficulty level compared to other scenarios: Sce-
nario#4 (50.01%, 3/6), Scenario#5 (16.67%, 1/6), Scenario#8
(33.34%, 2/6), and Scenario#11 (50.01%, 3/6). Therefore, the
target system is most vulnerable to Scenario#5 in terms of
attack execution difficulty.

For attack defense availability, Scenario#8 showed the low-
est availability level compared to other scenarios: Scenario#4
(100.00%, 10/10), Scenario#5 (90.00%, 9/10), Scenario#8
(0.00%, 0/10), and Scenario#11 (100.00%, 10/10). Therefore,
the target system is most vulnerable to Scenario#8 in terms of
attack defense availability.

Scenario#4 showed higher attack vulnerability compared
to Scenario#5. However, Scenario#5 exhibited lower attack
execution difficulty and attack defense availability than
Scenario#4. Both scenarios entail situations where the
attacker inputs an adversarial biometric trait crafted to be
recognized as a specific identity. The distinction between
the two lies in the information available about the identity
matcher (Scenario#4: white-box attack and Scenario#5:
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TABLE 9. The results of the risk evaluation of adversarial attacks for
scenarios with the goal of availability violation.

TABLE 10. The results of the risk evaluation of adversarial attacks for
scenarios with the goal of privacy violation.

black-box attack). Since the white-box attack is executed
with the attacker possessing information about the target
model, it typically outperforms the black-box attack, where
this information is unknown [154]. However, Scenario#4
requires three pieces of information (model architecture,
parameters, and target label) for attack execution, while
Scenario#5 requires only one (target label). Additionally, ten
defense strategies are available against Scenario#4, while
nine strategies excluding gradient masking are available
against Scenario#5. Despite Scenario#5 having lower attack
vulnerability than Scenario#4, it poses a higher risk in
terms of attack execution difficulty and attack defense
availability. Consequently, the target system is considered
more vulnerable to Scenario#5 than to Scenario#4.

Scenario#8 exhibited significantly lower attack defense
availability than other scenarios. It depicts a situation where
the attacker performs logic corruption by intervening in the
training phase of the identity matcher and modifying part of
the training algorithm to recognize the attacker’s input as a
specific identity. To the best of our knowledge, no defense
strategy has been proposed for logic corruption at this time.
Therefore, the attack defense availability for Scenario#8 is
0.00%.

2) EVALUATION OF AVAILABILITY VIOLATION SCENARIOS
The results of evaluating the risk of adversarial attacks
for scenarios with the goal of availability violation using
testing dataset#2 are presented in Table 9. The scenarios
include Scenario#1, Scenario#2, Scenario#3, Scenario#9,
Scenario#10, and Scenario#12 (details of each scenario can
be found in Section III-C).
For attack vulnerability, Scenario#3 exhibited the highest

vulnerability level compared to other scenarios: Scenario#1
(82.95%, 3,318/4,000), Scenario#2 (12.68%, 507/4,000),
Scenario#3 (100.00%, 4,000/4,000), Scenario#9 (95.43%,

TABLE 11. Five risk grades for categorizing the evaluation results from
each metric for comprehensive risk analysis of adversarial attacks.

3,817/4,000), Scenario#10 (13.98%, 559/4,000), and Sce-
nario#12 (95.43%, 3,817/4,000). Therefore, the target system
is most vulnerable to Scenario#3 in terms of attack vulnera-
bility.

For attack execution difficulty, Scenarios#1, #3, #9,
and #12 demonstrated the lowest difficulty level com-
pared to other scenarios: Scenario#1 (16.67%, 1/6), Sce-
nario#2 (33.34%, 2/6), Scenario#3 (16.67%, 1/6), Scenario#9
(16.67%, 1/6), Scenario#10 (33.34%, 2/6), and Scenario#12
(16.67%, 1/6). Therefore, the target system ismost vulnerable
to Scenario#1, #3, #9, and #12 in terms of attack execution
difficulty.

For attack defense availability, Scenarios#1, #3, #9, and
#12 showed the lowest availability level compared to other
scenarios: Scenario#1 (0.00%, 0/10), Scenario#2 (100.00%,
10/10), Scenario#3 (0.00%, 0/10), Scenario#9 (0.00%, 0/10),
Scenario#10 (100.00%, 10/10), and Scenario#12 (0.00%,
0/10). Therefore, the target system is most vulnerable to
Scenario#1, #3, #9, and #12 in terms of attack defense
availability.

Scenarios#1, #3, #9, and #12 exhibited significantly lower
attack defense availability than other scenarios. It depicts
a situation where the attacker performs logic corruption by
intervening in the training phase of the liveness detector (or
identitymatcher) andmodifying part of the training algorithm
to prevent users from accessing the system. To the best of
our knowledge, no defense strategy has been proposed for
logic corruption at this time. Therefore, the attack defense
availability for Scenarios#1, #3, #9, and #12 is 0.00%.

3) EVALUATION OF PRIVACY VIOLATION SCENARIOS
The results of evaluating the risk of adversarial attacks for
scenarios with the goal of privacy violation using testing
dataset#3 are presented in Table 10. The scenarios include
Scenario#6 and Scenario#7 (details of each scenario can be
found in Section III-C).

For attack vulnerability, Scenario#7 exhibited the highest
vulnerability level compared to Scenario#6: Scenario#6
(16.00%, 160/1,000) and Scenario#7 (21.70%, 217/1,000).
Therefore, the target system is most vulnerable to Scenario#7
in terms of attack vulnerability.

For attack execution difficulty, Scenario#7 demonstrated
the lowest difficulty level compared to Scenario#6:

116704 VOLUME 12, 2024



S. H. Park et al.: Comprehensive Risk Analysis Method

TABLE 12. Comprehensive risk analysis results for a case study, presenting the risk grades of each metric and average risk grades for each scenario.

Scenario#6 (50.01%, 3/6) and Scenario#7 (16.67%, 1/6).
Therefore, the target system is most vulnerable to Scenario#7
in terms of attack execution difficulty.

For attack defense availability, Scenario#7 showed the
lowest availability level compared to Scenario#6: Scenario#6
(30.00%, 3/10) and Scenario#7 (20.00%, 2/10). Therefore,
the target system is most vulnerable to Scenario#7 in terms
of attack defense availability.

Scenario#7 with the black-box attack exhibited higher
attack vulnerability than Scenario#6 with the white-box
attack. Since the white-box attack is executed with the
attacker possessing information about the target model,
it typically outperforms the black-box attack, where this
information is unknown [154]. However, the BREP-MI used
in Scenario#7 outperforms the GMI used in Scenario#6
in terms of attack, resulting in an attack vulnerability
contrary to the typical one [148]. Moreover, both attack
execution difficulty and attack defense availability are lower
in Scenario#7 than in Scenario#6. Specifically, Scenario#6
requires three pieces of information (model architecture,
parameters, and target label) for attack execution, while Sce-
nario#7 requires only one (target label). Additionally, three
defense strategies are available against Scenario#6, while two
strategies are available against Scenario#7. Consequently, the
target system is considered more vulnerable to Scenario#7
than to Scenario#6.

4) COMPREHENSIVE ANALYSIS
To comprehensively analyze the risk of adversarial attacks
for each scenario, we categorized the evaluation results from
each metric into five risk grades, as shown in Table 11 [155],
[156]. Table 12 presents the final results of the risk analysis
on the target system, showing the average risk grades of each
metric for each scenario.

Attack scenarios with an average risk grade of 4 or
higher share a common characteristic: the capability for
training phase-logic corruption (#1, #3, #8, #9, and #12).
These scenarios tend to exhibit relatively higher risk grades
across the three metrics for the following reasons. First, the
system’s logic can be compromised simply by accessing
its algorithm, leading to higher risk grades in attack
vulnerability and attack execution difficulty. Additionally,
no effective defense strategy proposed so far, and identifying
the modified parts in the system code is challenging,
resulting in a higher risk grade in attack defense avail-
ability. To protect the target system from such attacks,
it is crucial to manage access to the system to prevent
unauthorized entry by attackers [157] and to systematically
conduct configuration management to detect changes in
files [158].
Attack scenarios with an average risk grade of 2 or lower

share a common characteristic: the capability for training
phase-data modification and injection (#2, #10, and #11).
These scenarios tend to exhibit relatively lower average risk
grades for the following reasons. First, detailed information
about the target system is required, such as training data, the
number of labels, and parameters, while the attack success
rate is relatively low, leading to a lower risk grade in attack
vulnerability and a medium risk grade in attack execution
difficulty. Additionally, various effective defense strategies
have been proposed (e.g., preprocessing the training dataset,
detecting adversarial examples in the dataset, and protecting
parameters of the target model) [4], [120], [121], resulting in
a lower risk grade in attack defense availability. To protect
the target system from such attacks, it is required to validate
the training dataset to prevent data pollution and to employ
robust training methods, making poisoning attacks hard to
succeed [121].
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V. DISCUSSION
In this paper, we defined adversarial attack scenarios based on
three criteria: goal, type, and capability. For the goal criterion,
various categorizations have been proposed, including:
(1) confidence reduction, misclassification, targeted mis-
classification, and source/target misclassification [4]; and
(2) targeted and untargeted attacks [159]. Focusing on
existing research on adversarial attacks on biometric authen-
tication systems, we categorized the goals as integrity
violation, availability violation, and privacy violation [5].
Among the metrics for assessing the risk of adversarial

attacks, attack execution difficulty is defined based on
the required information for executing attacks, including
model architecture, parameters, training data, output result,
target label, and training algorithm. Additionally, attack
defense availability depends on the number of available
defense strategies against adversarial attacks, such as adver-
sarial training, defensive distillation, gradient regularization,
gradient masking, auxiliary detection model, image recon-
struction, and image denoising. Our proposed approach can
be expanded by incorporating additional required informa-
tion and defense strategies not previously included. This
expansion can be applied when new types of biometric
authentication systems are introduced or when new defense
strategies emerge.

VI. CONCLUSION
In this paper, we proposed a novel approach for assessing
the risk of adversarial attacks on deep learning-based bio-
metric authentication systems. We defined adversarial attack
scenarios considering the dependencies between modules of
the biometric authentication systems. Our proposed approach
evaluates the risk of adversarial attacks from multiple
perspectives through adversarial attack simulations based
on the defined scenarios. We conducted a case study that
assesses the risk of adversarial attacks on a face recognition
system implemented with FaceNet. As a result, we confirmed
that the attack scenarios with logic corruption exhibit the
highest risk of adversarial attacks in terms of vulnerability,
execution, and defense.

Our proposed approach enables a systematic security
assessment for the target biometric authentication system
by evaluating the risk of adversarial attacks based on
attack scenarios and evaluation metrics defined in this
paper. The results analyzed through our approach enable the
establishment of an efficient defense mechanism by identi-
fying the vulnerabilities of adversarial attacks on the target
biometric authentication system. Therefore, our approach
ultimately enhances the robustness against adversarial
attacks.

In our future work, we plan to expand our approach by
incorporating additional factors that could influence the risk
of adversarial attacks, such as attack execution time and
the potential for attack propagation. Furthermore, we aim to
develop an automated framework to implement our approach.
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