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ABSTRACT In the era of 6G, given the emergence of heterogenous devices, diverse network scenarios,
along with future deployment of cutting-edge applications that require high computation ability, how
to establish trust in such complex network environment has become a demanding task. Current trust
establishment process mostly relies on certificates issued by certificate authority (CA) or reputation derived
from interaction and behavior history. However, these approaches may not be applicable to 6G scenarios due
to several reasons, including but not limited to insufficient adaptability, lack of openness and transparency,
and limited scalability. Hence, this article mainly proposes a novel approach, which is based on a claim-
attestation-evidence framework and leverages both blockchain and artificial intelligence (AI) to build trust
in highly open and dynamic future networks. Meanwhile, we also provide an overview on current trust
establishment models, discuss about the advantages of our proposed model and suggest certain parts of our
current design for improvements that can be considered by future research.

INDEX TERMS 6G, privacy, security, trust, trustworthiness, claim-based trust models.

I. INTRODUCTION
With the increasingly growing demand for ubiquitous
connectivity and the need for highly-efficient and low-
latency communication, there has been a significant
surge in network complexity and device heterogeneity
over the past decade. In 2015, ITU issued International
Mobile Telecommunications-2020 (IMT-2020) [1], where
the requirements of 5G, such as latency, data rate,
mobility etc., were specified for different usage scenarios
(enhanced mobile broadband (eMBB), ultra-reliable low
latency communication (URLLC) and massive machine
type communication (mMTC)). To meet the requirements
of IMT-2020, service-based architecture (SBA) has been
deployed as a key to network flexibility and openness
of 5G core network [2]. By leveraging network function
virtualization (NFV), software defined network (SDN),
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open APIs and network slicing, 5G network is able to
facilitate a secure access to network capabilities and services
for communication service providers (CSPs) as well as
customers.

However, a highly open and flexible network is expected
to face higher risk and more susceptible to network attacks,
mainly due to the introduction of numerous interfaces which
are lack of sufficient protection, inherent vulnerability of data
transmission between entities, and excessive use of users’
data and personal information. Whereas 6G, as the successor
of 5G, will embrace even more openness [3]. Compared
to 5G, 6G is envisioned to have wider coverage, lower
latency and higher connectivity. As the original network
architecture of 5G will no longer meet 6G’s requirements,
a novel architecture design is essentially needed, where
intelligence and privacy preservation are two indispensable
factors that need to be considered. Artificial intelligence
(AI) will be pervasively deployed for more efficient network
management and more effective attack detection, while
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TABLE 1. Certificate-based vs. reputation-based vs. claim-based trust models.

privacy-preserving mechanisms, such as differential privacy,
homomorphic encryption and federated learning are expected
to be widely applied. To build trustworthy 6G networks,
one should first consider how to establish trust among
heterogeneous involved entities, including human, devices,
applications and services. In the view of Gartner, continuous
adaptive risk and trust assessment (CARTA) is critical to trust
establishment [4]. Furthermore, Gartner suggests that robust
attack protection is necessary to ‘‘keep bad stuff out’’, and a
reliable access control is required to ‘‘let good stuff in’’.

Most of the research work related to 5G/6G trust can be
roughly divided into 2 types: the first type of research is
focused on the calculation of trust value, including definition
of trust metrics and utilization of ML/DL techniques for
autonomous evaluation [5], [6], [7]. Alternatively, the second
type mainly discusses about enabling technologies, such
as blockchain [6], trusted platform module (TPM) [8],
decentralized public key infrastructure (DPKI) [9], and
gives recommendations on building a trustworthy network
architecture, especially stressing on the importance of decen-
tralization, privacy preservation and automation [10], [11].
Nevertheless, little attention has been paid on the trust models
that illustrate trust establishment process, known as trust
establishment models.

Current trust establishment models mainly comprise
certificate-based models and reputation-based models, which
have already been applied in the fields of authentica-
tion and identity management, as well as formation of
trust relationship in social networks. In 6G networks,
it is envisioned that trust establishment models will be
essentially required in diverse scenarios such as device-to-
device (D2D) communication [12], cross-domain mutual
authentication [13], ubiquitous edge computing [14], and
distributed machine learning [15] for heterogenous network.
However, existing models are facing the challenges to meet
the requirements of emerging scenarios, which demand
for unprecedented openness, dynamicity, flexibility and
scalability. In the next section, we will give a thorough

overview of current trust establishment models, explain the
deficiencies inherent in each model and discuss the rationale
for adopting claim-based trust models.

The main contribution of this paper is as follows:
• We provided formalizations for key concepts related
to the trust establishment models, addressing gaps in
existing literature.

• We proposed a novel claim-based trust establishment
model targeted at future networks that enhances security
by enabling decentralized attestation of self-provided
proofs while utilizing the power of artificial intelligence
and blockchain technology.

• We designed a comprehensive architecture for the pro-
posed claim-based trust model, outlining its components
and interactions.

II. OVERVIEW OF VARIOUS TRUST MODELS
In the context of networks, ranging from the internet to
mobile networks, a number of trust models have been
proposed so far as the tools to show how trust is established
among different entities. Based on trust establishment pro-
cess, we have categorized these trust models into 3 categories,
namely, certificate-based, reputation-based, and claim-based
trust models, each of whichwill be discussed in the following.
To offer a more straightforward explanation for the models’
concepts, an easy-to-understand example is presented in
Figure 1.

A. CERTIFICATE-BASED TRUST MODELS
Certificate-based trust models establish trust through certifi-
cate verification between two entities, which is mainly facil-
itated by current public key infrastructure (PKI), achieving
considerable implementability. The trust model has already
been applied in a number of real-world scenarios of 5G:
specified in 3GPP TS 33.310, one of the implementations
is the application of a certificate-based trust model used to
enable certificate enrollment of base stations. Another exam-
ple would be Extensible Authentication Protocol-Transport
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FIGURE 1. Overview of three types of trust models.

Layer Security (EAP-TLS), which provides mutual authenti-
cation by relying on PKI certificates.

In a certificate-based trust model, if entity A would like
to communicate with B or get access to B’s resources,
a trust relationship needs to be established beforehand.
In such case, A will present certificate, which is signed
by a certificate authority (CA), as an evidence to justify
its identity and trustworthiness [16]. After receiving A’s
certificate, entity B is required to verify the validity of the
certificate with CA’s public key. Trust will only be established
if the certificate is authenticated. In our example (Figure 1A),
Alan establishes trust with the audience by displaying his
piano grade 10 certificate verified by trusted authority. The
verified certificate alone is sufficient to prove Alan’s piano
proficiency.

Certificate-based trust model usually has a relatively
high level of security, given that CAs are trustworthy
and authoritative most of the time. Since no numerical
computation is involved in the certification process, the trust
value is not continuous, but binary, switching between 1
(trusted, when a certificate is verified) and 0 (distrusted, when
a certificate cannot be verified or is revoked). Certificate-
based trust models can be divided into a few subcategories,
including single-CA, hierarchical, bridge, as well as mesh
trust models [17].

Single-CA trust model, as its name suggests, only involves
one CA which signs certificates for all entities [17]. The
topology of single-CAmodel is simple but highly centralized,
which is extremely prone to single-point failure. Thus, this
type of trust model is not commonly to be seen in real-world
scenarios.

As having a single and universal CA is not practical,
a hierarchical trust model is built by several CAs structured
in a hierarchical manner. The trust establishment process

commences from the root CA (RCA), which is the upmost
CA with greatest authority and power. The established trust
relationship is unidirectional, from RCA to leaf CAs, which
means that only superior CAs are allowed to issue certificates
to their subordinate CAs. Although the hierarchical model
involves more CAs to increase its scalability, the risk of
single-point failure still exists, due to over reliance on the
RCA. If RCA is compromised bymalicious parties, the whole
PKI will be endangered.

Compared to hierarchical trust model, mesh model, which
is also called cross-certification model, has a much flatter
architecture. Instead of trusting a single superior CA, CAs
within the same mesh rely on each other to establish
bidirectional and peer-to-peer trust relationships. In other
words, a CA of mesh model is able to build trust relationship
with several CAs, where each relationship generates a pair of
certificates. Obviously, such mechanism solves the issue of
single-point failure, but the cost of certificate management
and model complexity is expected to increase at the same
time [17].

Bridge trust model is designed to enable peer to peer
certification process across organizations, such that different
organizations may possess their distinctive trust models.
For example, if organization A applies hierarchical trust
model, while organization B has chosen mesh trust model,
to establish a trust relationship between the two organiza-
tions, a bridge CA will be connected to both the RCA of
organization A and a randomly-chosen CA of organization B.
Unlike RCA or CA of mesh models, bridge CA is not
responsible for direct certificate issuance. Thus, how to dis-
tribute certificates effectively across organizations becomes
an unavoidable challenge to bridge model. Meanwhile, the
bridge certification authority (BCA) is susceptible to single
point failure. Once it is compromised by malicious attack, the
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trust relationship among the connected CAs will be entirely
damaged [17]. Thus, it is obvious that bridge trust models
do not meet the need of highly complex, large-scale and
heterogeneous future networks.

B. REPUTATION-BASED TRUST MODELS
There have already been a number of researches on
reputation-based trust models in various scenarios, including
internet of things (IoT), e-commerce, cloud services etc. [18]
A node’s reputation, as the indicator of its trustworthiness
in a reputation-based trust model, is mainly calculated
based on the goodness of the node’s past behaviors and
interaction records. An example of trust establishment
process based on reputation is illustrated in figure 1B.
It can be inferred from the statistics of Alan’s YouTube
profile and the comments on Alan’s piano skills that he
is indeed popular for his outstanding piano performance,
and it is approved by a remarkable number of people.
Consequently, the trust relationship from the audience to
Alan is established based on Alan’s good reputation. In IoT,
reputation of a node will be aggregated and calculated from
opinions of nodes that have interaction history with the node
itself [19]. If the node’s reputation value is higher than a
threshold value, the trust relationship between two nodes will
be established. Compared to certificate-based trust model,
reputation-based trust model is more flexible, scalable, and
therefore able to better capture the dynamicity of trust [19].
However, the model is susceptible to collusion attacks, such
as bad-mouthing attacks and ballot stuffing attacks. These
malicious attacks will impair the trustworthiness of a node’s
reputation, whichmeans that amalicious nodemay have good
reputation in a ballot stuffing attack, while a benign node
receives bad reputation in a bad-mouthing attack [20]. Thus,
even though there have been quite a number of researches on
reputation-based trust models, the implementations in reality
are quite limited, most of which are used for e-commerce and
social networking services (SNS) [18].

C. CLAIM-BASED TRUST MODELS
Since claim-based trust model is a novel type of trust model,
there is a paucity of research on the definition of relative
concepts and the design of model architecture [21], which
is one of the main motives for this paper. With reference
to the claim-based identity management system of cloud
computing [22], we defined a claim as a statement made by
a subject, which can be judged as true or false. It usually
consists of three components: a subject, an object, and
the relationship between them. Meanwhile, to determine
whether a claim is valid, evidences related to the claim
are necessary. In our proposed claim-based model, trust
relationship is established by performing attestation on
evidences provided by the claim subject. As illustrated in
Figure 1C, when Alan makes the claim that he is ‘‘adept at
playing piano’’, he uses his published videos as self-evident
proofs. After watching these videos, the audience will be

convinced that Alan’s claim is valid. The most significant
distinction between a claim-based trust establishment model
and others is that it both embodies decentralization and
enables attestation with self-proofs. Compared to certificate-
based model, a claim-based model does not rely on a third
party, and therefore is more extensible, dynamic and open,
avoiding the limitations of closed domains [23]. Thomas
and Meinel [23] proposed a model that assesses trust
on an individual claim basis, in which trust in a claim
is determined by its perceived correctness and integrity,
dependent on the issuer. Following [23], Grüner et al. [21]
introduced a blockchain-empowered with larger flexibility
and finer granularity for trust assessment. Instead of assessing
trust on a claim-level, the authors of [21] evaluated the trust
score of each attestation, and then calculated the final trust
score of a claim based on the aggregated attestations. The
immutability and the decentralized nature of blockchain
technologymake the model more anti-tampering and be more
robust to malicious attacks. However, the aforementioned
models are both limited to internet applications and lack of
a more automated trust score evaluation process. Compared
to [21] and [23], our proposed model obtains attestations
directly by analyzing the existing raw data stored on public
blockchains, which are generated by entities’ activities. Our
solution provides greater flexibility by eliminating the need
for attestations from a trusted third party. The comparison
of existing claim-based trust models is further elaborated in
table 2.

In regard to our proposed resolution, the attestation will
be performed by AI algorithms, and the obtained trust
value would be continuous rather than discrete. To ensure
the security of model, all involved data will be stored on
blockchains so as to protect data from malicious tampering.
Given that claim-based trust models are still under research
and discussions, its implementability cannot be simply
concluded, but it is undeniable that a real implementation will
face many challenges. The most challenging part that affects
the implementability of claim-based trust models is how to
design the attestation process in a way that self-claims can
be trusted by other nodes in the absence of a trusted third
party. In the following section, a claim-based trust framework
and a claim-based attestation process are proposed as our
attempts to address the challenging issue. This model is
particularly well-suited for future networks due to its inherent
flexibility, scalability, and decentralized nature. As 6G aims
to provide ubiquitous connectivity and support a wide range
of applications and services, a claim-based trust model aligns
well with these goals. It facilitates seamless and secure
interactions among diverse and dynamic entities without the
need for centralized authorities, thereby enhancing the overall
efficiency and robustness of the network.

III. CLAIM-BASED TRUST ESTABLISHMENT MODEL
In this section, we will first outline the model’s main
structure, as well as relevant technologies that will be applied.
Then, the full attestation process will be discussed, which will
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TABLE 2. Comparison of claim-based trust models.

FIGURE 2. An illustration of Claim-Attestation-Evidence (CAE) framework.

illustrate how an entity’s self-claims can be verified by data
generated by the entity in an autonomous manner.

A. PRELIMINARIES
1) BLOCKCHAIN
Blockchain is a decentralized, distributed ledger system that
is designed to ensure the integrity, transparency, and security
of data transactions being posted on chains. Each chain is
organized as a chain of blocks, with new blocks added only
after verification through a consensus mechanism. Due to
its unidirectional structure, operations on the blockchain are
irreversible, and the recorded data cannot be modified. There
are three types of blockchains, namely, public blockchain,
private blockchain, and consortium blockchain. Different
from a public blockchain, where anyone is allowed to
participate by reading or writing data, a private chain only
has a single participant, in which access is rigorously
controlled. A consortium blockchain is often regarded as a
balanced type when compared to both private and public
blockchains [7]. It is controlled by a group of enterprises
or organizations, each organization of which is in control of
several nodes. The existing research works of ‘blockchain for
6G’ primarily focus on two aspects: more secure services
and smart and reliable IoT applications [24]. The nature
of decentralization, traceability, distribution, and tamper
resistance makes blockchain an ideal technology for future
networks.

2) ARTIFICIAL INTELLIGENCE
AI is an advancing technology that aims to emulate human
intelligence through the use of machines. The concept of
AI can be further narrowed down to machine learning
(ML) and deep learning (DL). The main difference between

ML and DL is that the latter one applies deep neural
networks, which simulate human brains. It is believed that
AI technology is of much importance for dynamic and highly
complex future networks [24]. Given that massive volumes
of data will be produced along with enhanced capabilities of
future networks (low data latency, high security, reliability,
etc.), AI is expected to converge both computing and
communication networks, enablingmore automated, efficient
and intelligent networks. The integration of AI and 6G have
attracted significant attention from researchers, resulting
in a substantial body of published research, the main
focuses of which include channel estimation [25], channel
decoding [26], resource optimization [27], etc.

B. MAIN STRUCTURE
As shown in Figure 2, the proposed model is comprised of
three components: claim, attestation and evidence. Claim,
as defined previously, represents a verifiable statement made
by an entity. In order to achieve interoperability, claims
made by different entities for various purposes should
be constructed according to certain commonly accepted
standards. In other words, the syntactics of a valid claim
should be pre-defined by trustworthy authorities. Instead of
being merely syntactic, a claim should also be semantically
meaningful. Inspired by the representation of knowledge
graph, each claim will be converted into the form of a triple:
(S, R, O), where S stands for subject, O means object, and R
represents the relationship between the subject and the object.
In most of cases, S can be ignored by default, since the subject
of the triple is usually the same as the entity who generated
the claim. The relationship R is extracted from the entity’s
original claim, and the extraction process can be facilitated
by making use of natural language processing (NLP) tools.

Prior to introducing the attestation process, evidence,
as an indispensable resource to support attestation, should
be discussed first. Evidence is mainly originated from raw
data generated and also published by the claim’s subject,
which may include the subject’s attributes, past behaviors,
or interaction history. However, as 6G networks are expected
to include many more open interfaces, data generated by
each identity become more susceptible to be compromised
by malicious parties. Traditional approach of data storage
heavily relies on trusted third parties, while this kind of over
reliance can lead to problems caused by centralization: First,
users are forced to renounce their control over data, and how
the data will be used in the future cannot be guaranteed.
Furthermore, if the trusted third party has been compromised,
all data stored in it will be endangered. To preserve data’s
integrity, blockchain is a promising technology that can
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empower secure, transparent and trustworthy data storage.
It is by nature decentralized, which means that there does not
exist a central authority that manages all the data. In addition,
the blockchain is also immutable, realized by the well-known
consensusmechanism and cryptographic hashes.With the use
of blockchain, the users are able to take control of their own
data, which means that it is up to the user to decide what
can be shared and how it should be used. Moreover, since
everything published on a public chain is visible to every node
within the blockchain, the authenticity of evidences belonged
to one node can be verified by other nodes. This will ensure
that if a malicious entity deliberately uploads fake data in
order to validate its claim, which is supposed to be invalid,
the dishonest behavior will be detected and the entity will be
marked as anomaly.

Attestation is the process that verifies an entity’s claims
based on provided evidences of the entity. The key to a
reliable attestation process is trustworthy algorithms, which
will decide how to match a claim with evidences relevant
to a claim and how to determine if the claim is valid.
Having regard to the pervasive use of AI in 6G, it is
unavoidable to leverage ML/DL models to enable system
autonomy. In traditional programming, the program logic
is mainly rule-based, consisting of a number of predefined
rules. However, in the highly open and dynamic future
networks, this paradigm will face numerous problems, due
to its lack of flexibility and heavy reliance on human
intelligence. Given the massive amount of data produced
by heterogeneous entities, as well as challenges posed by
various usage scenarios and demands, it is impossible to
define a set of universal rules for attestation process to make
adaptations reactively according to current situation. On the
contrary, AI models can be trained to accommodate for
different claims and evidences provided by diverse entities
both proactively, and they usually have better capability of
processing large scale of data in a relatively short time.
Thus, in order to achieve higher degree of flexibility and
openness, AI algorithms are taken as one of the core elements
of attestation process, and AI trustworthiness should also be
viewed as the essential cornerstone.

From our point of view, trustworthy AI algorithms should
embody several indispensable attributes, including but not
limited to security, transparency, explainability, openness,
impartiality. First and foremost, AI security, as the most
important element, represents several aspects, such as privacy
preservation, data integrity and confidentiality. Besides, the
algorithms also need to be robust against adversarial attacks
like data/model poisoning, evasion attacks etc. To achieve
transparency, an AI model is required to have its parameters,
algorithms and model structure accessible to external parties.
This attribute is commonly related to explainability, which
measures the extent to which the model’s decisions can be
explained, and openness, which requires an AI model to be
open-source and publicly available. Impartiality stresses the
importance of AI fairness, representing that the model does

not have a particular preference for or discriminate against
certain sensitive attributes of an entity’s evidences.

C. CLAIM-BASED TRUST ATTESTATION PROCESS
In this section, we introduce the complete attestation
process of a claim-based trust establishment model. The
process mainly involves 5 steps: claim triple generation,
rule extraction, evidence collection, claim attestation and
knowledge graph (KG) updates, which are discussed in the
following (Figure 3).

1) CLAIM TRIPLE GENERATION
At the initial stage, before an entity makes a claim, a claim
template should be chosen for the purpose of standardization.
The claim template, which is obtained from a consortium
blockchain, defines the format and required elements of a
valid claim. Given the distinctive features of aforementioned
blockchains, consortium blockchain would be the optimal
choice for storing claim templates, as it retains both partial
openness and access control mechanism. The word ‘‘partial’’
means that the blockchain is open in a way that external
entities are able to read the data, while write operation is only
allowed for several authorized entities. The access control
mechanism is achieved by involving pre-selected nodes in
charge of the consensus protocol. To put it in 6G context, the
consortium blockchain is expected to include main mobile
network operators as well as telecommunication infrastruc-
ture companies. In our proposed process, a standardized
claim template will only be produced after the majority of
involved enterprises have reached a consensus.

Afterwards, the entity will submit a claim based on
the chosen claim template, and the claim will be passed
to semantic-processing algorithms. Embedding semantic
aspects in 6G has become a future trend, envisioned to
enable 6G networks to accommodate for higher data rate,
boarder spectrum and wider bandwidth [28]. The semantic-
processing algorithms empowered by NLP models will parse
and encode a claim into triples, by recognizing and extracting
three main components of the claim: the object of the claim,
the subject of the claim, and relationship between the two
entities. In [29], the authors divided the triple generation task
into two sub-tasks: entity tagging, aimed at identifying main
entities (e.g., the object and the subject), and entity relation
classification, combining BERT model with a convolutional
layer which is used to obtain higher-level features. The
extracted claim triple not only provides keywords as crucial
information, but also compresses and condenses claims of
different qualities in order to achieve higher transmission
efficiency as well as strive for fairness and uniformity among
heterogeneous entities.

2) RULE EXTRACTION
Knowledge Graph (KG) is gaining increasingly growing
attention and popularity in the studies of diverse fields
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FIGURE 3. An overview of our claim-based approach to establish trust.

recently, since it can represent massive human knowledge
as an extensible structured graph, which facilitates the
application of DL algorithms on knowledge representation
and reasoning, such as graph neural networks (GNN),
attention mechanisms, recurrent neural networks (RNN) and
reinforcement learning (RL).

Rule mining is one of the sub-tasks belonging to the
knowledge acquisition task of KG. A rule is defined as
body→head, where body stands for body predicates which
may include several atoms, while head only consists of a
single atom. For instance, as described in Fig. 1, to verify
whether Alan’s claim is true, one possible mined rule could
be performance (X, piano concert) and hasVideo (X, piano
concert) → play (X, piano). Rule mining algorithms usually
contains two stages: the first stage is to generate all possible
rules, and the second stage is to filter out low-quality rules
by calculating confidence score of each generated rule.
Considering that it will be time-consuming to generate rules
based on a large-scale KG in the first step, Chen et al. [30]
proposed a RL-based framework to reduce the cost of rule
generation and rule evaluation. It has suggested that RL
is quite effective in shortening the time needed for rule
extraction, by providing a trained value function as a guidance
for the agent to make wise decisions.

Besides KG, the rapid development of large language
models (LLM) further facilitates the automation of rule
mining process, given that LLM has demonstrated impressive
capabilities on various tasks, including text comprehension
as well as logical reasoning [31]. LLM consist of a series
of large-sized pretrained language models (PLM), which
contain billions of parameters and have been pretrained
on massive amount of text corpus. It has been discovered
that increasing the size of the PLM and training datasets

eventually led to significant improvements on the model’s
performance on downstream tasks [32]. Given the remarkable
performance of LLM on a variety of reasoning tasks, [33]
proposed a framework for building a rule library with
LLM by utilizing the deductive reasoning and inductive
reasoning methods. The framework has proved the feasibility
of mining as well as verifying rules with LLM. Sharma and
Yegneswaran [34] developed a framework named PROSPER
to understand request for comments (RFC) documents
and extract protocol finite state machine (FSM) state and
transition. It showed the high potential of utilizing LLM
to automate the process of understanding protocol RFC
documents.

In our proposed framework, the document parser model
(which can be LLM or KG) extracts the rules from standard
documents provided. It can be further fine-tuned by the latest
standard documents to ensure that the knowledge learned by
the parser model aligns with up-to-date information. Given
the keywords provided by a claim triple, the document parser
model will produce a set of rules that are closely related to the
claim. The generated rules are also named as metrics, which
will be used in the following procedure tomeasure the claim’s
veracity and trustworthiness.

To further ensure the trustworthiness of our generated
metrics, a metric evaluation module is therefore needed to
filter out insignificant metrics or misleading ones. In [35], the
authors proposed an effective pipeline to remove generated
questions and answers of bad quality using a quality
filter, which can assess data points on multiple dimensions,
to guarantee that the final question and answer pairs obtained
at the end of the pipeline will be reliable and of high
quality. Inspired by it, the metric evaluation module also
needs to be designed to enable multi-dimensional assessment
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(e.g., format quality, significance, relevance) of the extracted
rules.

3) EVIDENCE COLLECTION
The evidence collection process is triggered by the creation of
a claim triple, which implies the need for evidences to attest
the proposed claim. Nevertheless, the collection of evidences
can be quite risky and may pose formidable threats to an
entity’s data integrity. Asmentioned previously, blockchain is
a promising technology that can be deployed as an underlying
infrastructure to defend against data integrity attacks that
mainly involve unauthorized data modification, injection and
deletion [36]. If the integrity of raw data is compromised, the
evidences generated from the compromisedwill subsequently
become untrustworthy, which may even imperil the entire
attestation process.

As 6G is envisioned to include heterogeneous mobile
devices as well as diverse scenarios, an entity’s data can
be classified into different categories, and sometimes need
to be stored on different public blockchains [37]. For
example, Polkadot is a sharded multi-chain and seeks to
establish connections among multiple previously-isolated
blockchains [38]. Each shard, also named as a parachain,
might belong to different types, including private, consor-
tium, and public blockchain. The data generated by an
entity can be dispersed among parachains, due to various
data provenances. All parachains are coalesced by a relay
chain, which bears the responsibility for offering cross-
chain interoperability, resolving disputes and providing the
network’s shared security.

After the claim triple is generated, the identity information
of the object will be passed to the multi-chain system for
retrieving publicly accessible data, that are relevant to the
object, stored on different parachains. The retrieved data will
then be processed by an evidence selection module, which is
responsible for parsing, filtering, and reorganizing the data
and finally transforming it to valid evidence sentences. The
evidence selection module. One way of generating evidences
in the form of structured and machine-readable data is to
use knowledge embedding algorithms. However, the derived
embeddings need to be aligned with previously generated
metrics before the evidence can be verified. To tackle this
issue, using LLM becomes an ideal approach, since a single
LLMcan support multiple functions, including sentence pars-
ing, information extraction, filtering, and text reorganization.
The generated evidence sentences will eventually be passed
to attestation engine and assessed by formerly extracted
evaluation metrics.

4) CLAIM ATTESTATION
At claim attestation stage, the attestation engine applies
evaluation metrics generated by rule-mining algorithms of
former stages to verify the validity of a claim. As stated
in previous sections, both evidence and metrics will be

transformed into sets of embeddings for the purpose of
quantitative comparison.

In the context of using KG as rule extraction tool, since
evidence embeddings have already been aligned with the
established KG, when calculating cosine similarity between
an evidence embedding and a metric embedding, highly
correlated pair should receive a high attestation score,
which means that the evidence has effectively supported
the corresponding claim. Zhong et al. [39] have proposed
a graph-based fact checking approach to check the validity
of a given claim based on provided evidences: the embed-
dings of evidences are first aggregated into claim-centric
representations with the use of graph attention mechanism,
and the representations will be aligned with original claim
embeddings in order to measure the similarity as the degree
of coherence between the claim and evidence.

If it is an LLM which has been applied to extract rules
from standard documents, it will provide human-readable
rules instead of embeddings. In this scenario, LLM can
be directly used as the attestation engine with tailored
prompts containing task requirements. Different from the
former approach, using LLM provides a fast, efficient
and more generalizable way of validating the provided
claims [40]. Meanwhile, it avoids costly training procedure
while retaining high generalizability across various domains.

In our proposed procedure, the attestation results of claims
will be uploaded to a public chain, where everyone is able
to check published results, which cannot be deleted or
tampered.

5) KNOWLEDGE UPDATES
If the claim passes the attestation process, the evidences that
support the claim will be used to update the document parser
model. If the model is a KG, the update can be done by adding
new entities and defining new relations based on knowledge
extracted from raw data of the claim owner. However, most
of the current research are only applicable to static KG,
which means that KG representation is deterministic, and
will not evolve over time. As a result, in a conventional way
of constructing KG, the addition of new triples unavoidably
alters the embeddings of original KG, which will require
a costly re-training process including all existing triples
afterwards and cause a waste of computational resource.
To better reflect dynamicity and reduce computational cost
at the same time, a novel approach proposed by [41] applies
anchors-based incremental embedding (ABIE) to address the
issues brought by the growth of dynamic KG. The ABIE
model is built based on the assumption that every KG
has nodes of great importance, which are also known as
the ‘‘backbone’’ of KG or the ‘‘embedding anchors’’. The
embeddings of anchor nodes are affected by inclusion of new
triples, and thus can be leveraged as the baseline for deriving
embeddings of added knowledge.

Motivated by the method of [41], in our proposed process,
only after each successful attestation, the evidences (in the
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form of KG) used by the claim will be aligned to current
fundamental KG based on anchors that represent the core
knowledge elements. The aligned embeddings of evidences
will then be incorporated into the fundamental KG as an
incremental KG (IKG). The proactive updating mechanism
ensures our fundamental KG is continuously evolving tomeet
real-time and varying demands.

Nevertheless, when the document parser model is an
LLM, fine-tuning the LLM requires considerable amount
of computing resources. Considering the recent findings
and application of prompt engineering, instead of directly
fine-tuning the model, the latest knowledge can be stored
in a library and will be injected into the reasoning process
by including it in the input prompts, which is similar to
what has been done in the deduction stage of [33]. Another
advantage of using prompt engineering is that the input
knowledge can be filtered based on the relevance to the
current claim. This approach narrows down the range of
knowledge learned from standard documents, and thus is
envisioned to enhance the capability of the document parser
model.

D. DISCUSSION
In our design of a claim-based trust model, AI, especially
LLM, and blockchain are two core technologies that have
been applied for three elemental components of trust
establishment framework: identity, algorithm as well as
data. User identities of claim-based models are mainly
encapsulated in triples generated by AI. Meanwhile, the
full attestation process, including rule mining and evidence
generation, is powered by AI algorithms that facilitate
automation. The trustworthiness of the third component, user
data, is guaranteed by blockchain given its transparency,
decentralization and immutability.

To ensure that the model conforms to 6G’s openness,
the attestation process should be accessible and auditable
to external parties. Moreover, despite that data integrity has
been guaranteed by the use of blockchain, user privacy is
still an important factor to be considered. Data that contain
confidential information should never be disclosed to other
entities without user’s acknowledgement or authorization.

IV. CONCLUSION
This article mainly provides a claim-based trust model,
which is mainly enabled by AI models and blockchains,
as a novel approach to establish trust in the context of
future 6G networks. The claim-based model embodies
several essential characteristics of trust establishment, includ-
ing openness, transparency, automation and data security.
Besides, an overview of three trust establishment models is
also discussed and compared with one and another in the
early section. We hope that our approach would provide
inspirations or offer feasible suggestions to future research
on the trust establishment approaches, facing a highly open,
dynamic and heterogeneous network environment of 6G.
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