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ABSTRACT Abnormal gait patterns are a common feature of Cerebral Palsy, a neurodevelopmental disease
for which early identification is essential for treatment. In the proposed research, a novel methodology is
provided for classifying abnormal gait patterns in children with Cerebral Palsy, using gait analysis as a
diagnostic tool. To improve gait classification accuracy and efficiency, a hybrid model of Convolutional
Long Short-Term Memory (ConvLSTM) model and Generative Adversarial Network (GAN) is used in
the suggested technique. The proposed study concentrated on temporal signal data, using hypothetical
planes with minimal regard for anatomical indicators. The reduction technique enables a more efficient
and successful gait analysis. Heatmap images were created from the selected temporal data. GAN generated
images were added to the dataset in order to overcome the problems caused by class imbalance and guarantee
a thorough depiction of abnormal gait patterns. In the proposedwork, a ConvLSTM-basedmodel with a batch
size of 32, training as well as validation datasets were evaluated over a period of 50 epochs. The effectiveness
of the suggested model was compared to other models such as Gated Recurrent Unit, Convolutional Neural
Network, and Long Short-Term Memory model that were trained using the same input data. Our suggested
ConvLSTM model produced an impressive accuracy of 91.8% and a loss of 0.42. The Convolutional Long
Short Term Memory model performed better than the other models when compared based on a number of
criteria, including accuracy, precision, recall, and F1-score. The performance measures demonstrate how
well our method works to classify the abnormal gait in kids with Cerebral Palsy.

INDEX TERMS Cerebral Palsy, convolutional neural network, gait analysis, gated recurrent unit, long
short-term memory model.

I. INTRODUCTION
Children with Cerebral Palsy (CP) suffer from a neurological
condition that has a significant influence on their motor abil-
ities, coordination, and muscle tone. CP is a complicated and
diverse disorder, presenting different difficulties and symp-
toms for every kid. Children with this disorder face a variety
of difficulties that limit their mobility, communication, and
day-to-day functioning. Childhood is a period of constant
development and discovery. For those with CP, a neuro-
logical disorder that profoundly affects development of the
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child. As a common form of motor disability in childhood,
CP affects roughly 1 in 323 children [1]. These numbers
highlight how crucial it is for diagnostic efforts to focus
on early detection and accuracy. The typical age at which
a child with CP is diagnosed is two to three years old [2].
CP has a diverse etiology that can result in this disease. Low
birth weight, prenatal infections, oxygen deprivation are the
causes that contribute to CP. According to the study stated
by Morgan [3], there is a strong correlation between preterm
birth and an increased risk of CP. The most prevalent cause
of CP is injury to the motor cortex, the area of the brain
in charge of controlling voluntary movement. People with
CP have motor deficits in their legs when damage occurs
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FIGURE 1. Types of Cerebral Palsy and corresponding abnormal gait.

to the area of the motor cortex that controls leg movement.
An orthopedic evaluation is essential because hip dislocation,
equinus abnormalities, and contractures are caused bymuscle
imbalance and spasticity [4].

Safety of children with CP while movement is very impor-
tant. Children with CP benefit greatly from the widespread
usage of ankle-foot orthoses as their primary form of gait
assistance. Updating these assistive devices should always
be prioritized in accordance with user feedback. ‘Comfort
while wearing’ the assistive device is the most crucial fea-
ture acknowledged by both specialists and customers [5]
which involves preventing skin pressure, friction, or abra-
sions. There may be a possibility of Intellectual Disabil-
ity in children with CP [6]. Figure 1 illustrates different
parts of the brain affected and their impact on gait and
movement.

The muscles of children with spastic CP will be tight and
stiff. This spastic CP affects 70% of patients with CP. There
are three categories in spastic CP, as depicted in figure 1. One
arm and one leg are affected in spastic hemiplegia. In spastic
diplegia, both lower limbs aremore affected than upper limbs.

All four limbs are affected in spastic quadriplegia. Among
three types of spastic CP, spastic quadriplegia is the most
severe, requiring the patient to rely on assistive devices for
support. Athetoid CP, also referred to as dyskinetic CP, is a
less common form that affects only ten to twenty percent of
CP patients. There will be jerky movements during the gait
cycle as a result of this CP. In mixed CP, combinations of gait
deformities from spastic, dyskinetic and ataxic are seen.

Despite the fact that CP is not a progressive disorder,
indicates that adults with CP has higher chance of developing
chronic illnesses. CP has significant societal and economic
costs in addition to personal ones. A person with CP may
require lifetime care that exceeds $1.5 million to include
medical costs, assistive technology, and educational support.
These figures highlight the social and economic factors that
necessitate all-encompassing methods of providing care and
integrating them into society. By the time children with CP
reached adulthood, the majority of CP patients had fall often
and had decrease in the level of their mobility [7]. Early
intervention can improve the child’s quality of life and lessen
the condition’s long-term effects by identifying these gait
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FIGURE 2. Classification of Cerebral Palsy based on affected limbs.

abnormalities. Gait is important in identifying CP during
early stages of development.

The prevalence of CP linked to birth problems has dra-
matically decreased as a result of improvements in medical
treatment and interventions. Understanding the complex
mechanisms of the brain is essential to recognize the ways
in which injury to one region of the brain can impact limbs
and other bodily functions. Different limbs of the body
gets affected based on the damage to the part of the brain,
as depicted in figure 2. In CP, monoplegia refers to the
paralysis or severe weakening in one arm or leg. Paralysis or
weakness, usually more noticeable in the lower extremities
than the upper extremities, is a characteristic of diplegia.
Domagalska-Szopa and Szopa [8] demonstrated that lower
limb kinematic abnormalities in the sagittal plane were not
the only cause of gait abnormalities in children with bilateral
CP. Hemiplegia refers to paralysis or weakness affecting the
arm and leg on the affected side of the body. Piitulainen et al.
[9] stated that gait stability in kids with hemiplegia and
diplegia ismore complicated than gait in TypicallyDeveloped
(TD) children and that gait stability may be assessed with
the help of the IMU-RCME, or Inertial Measurement Unit-
Refined Compound-Multiscale Entropy.

In comparison to hemiplegic patients, the effects were
more noticeable in diplegic patients. In CP, triplegia refers
to the paralysis or weakening of three limbs, either one
arm and one leg or both legs and one arm. When a per-
son has quadriplegic, meaning they are paralyzed or weak
in both arms and legs. In the preceding figure 2, affected
limbs are highlighted in blue and unaffected limbs are in
grey color. Individual’s gait patterns can be characterized
by spatiotemporal factors, which enables evaluation of their
health condition and identification of clinically significant
alterations in their gait. Asif et al. [10] used the concepts
of static and dynamic equilibrium to examine the spatiotem-
poral parameters of gait. The examination concentrated on

how the knee angles and positions changed as the subject
moved, especially in dynamic states, and it showed that these
changes were constant and related to changes in the body’s
condition and speed. Researchers have predicted leg flexion
or extension during various activities by utilising positional
data and angular movement. Even though it can be difficult
to define speed and body state from positional and knee joint
angle data, spatiotemporal parameter analysis of this research
allows for precise predictions of walking speeds and body
states. Carcreff et al. [11] stated that, while collecting the
gait data for any classification algorithm, group of children
with CP walked fast in the lab than they did when they
were walking naturally and the author of the research made a
comparison between every parameter recorded in the lab and
every parametermeasuredwhile walking on a daily basis. The
majority of gait traits varied between the two settings.

Kanko et al. [12] measured and compared nine spa-
tiotemporal gait metrics. Mean differences, Pearson corre-
lation coefficients, intra class correlation coefficients, and
Bland-Altman methods were used to compare the mea-
surements. These results suggest that spatiotemporal gait
parameters can be accurately measured over ground and
treadmill locomotion using marker less motion capture.
Hussein et al. [13] results indicates that proprioceptive train-
ing combined with visual feedback during gait training is
more successful than traditional gait training for improv-
ing the spatial and temporal gait features of children with
diplegic CP. Steffensen et al. [14] concurrently gathered both
marker-based and markerless data. Time-series waveforms of
3D ankle, knee, hip, and trunk angles were stride adjusted and
compared when assessing gait kinematics in individuals with
CP. This demonstrates how Theia3D tracking for markerless
motion capture produces results that are in good agreement
with marker-based techniques. Lorentzen et al. [15] proposed
that children with CP may have better gait during push off in
late stance, which can be improved with rigorous treadmill
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training. Exercise promotes the central drive to the ankle
plantar flexors and lessens asymmetry in gait. In addition
to offering a quantitative and objective evaluation of gait
impairments, gait analysis is helpful in assessing the effec-
tiveness of treatment. Gait analysis can improve, broaden,
and maximize patients’ therapy regimens [16]. Ma et al. [17]
proposed Kinect is a useful clinical gait analysis tool for kids
with CP because it is potential for the gait analysis system to
enhance its lower limb kinematics measurement capabilities.
The findings indicate that sagittal angles at the hip and knee
were more precise, and the LSTM method had the benefit
of increasing the accuracy of the ankle tracking. Ouden-
hoven et al. [18] adopted multilevel analysis to evaluate the
effects of training at different walking velocities. Children’s
self-selected comfortable walking speed increased to 0.85 ±

0.25 m/s from 0.71 ± 0.25 m/s.
One of the main characteristics of CP is spasticity,

which is characterized by rigidity and elevated muscu-
lar tone. Walking-related issues include hyperactive and
stretch-resistant muscles that makes difficult to initiate and
control movements. In CP, prolonged stiffness and muscular
imbalance can result in joint contractures. Wesseling et al.
[19] proposed EMG-restricted optimization, the EMG (Elec-
tromyography) of eight muscles was employed as the muscu-
lar excitation signal, limiting the muscle activation patterns
and enabling the determination of muscle forces.

Metabolic power in children with CP is usually two times
higher than in their contemporaries with typical development.
Gill et al. [20] employed Bayesian additive regression trees to
evaluate the causal consequences of CP gait and the findings
imply that interventions aimed at enhancing gait pattern may
be more advantageous. Based on the walking pattern, gait
in CP are classified into four types, jump gait, true equinus,
apparent equinus and crouch gait as illustrated in figure 3.

A fixed downward-pointing or plantarflexed ankle joint is
often the result of calf muscular spasticity which is used to
classify true equinus. Persistent toe walking brought on by
an inadequate dorsiflexion of the foot in plantarflexed ankle
joint type of gait. Children with equinus gait demonstrated
improved gait following repeated therapy with Botulinum
Toxin type A (BTX-A) injections, according to author’s
study [21]. The greater bending of the knee and ankle during
the swing phase is the primary characteristic that distin-
guishes jump gait from other gaits. In this gait, a discernible
upward motion, almost like a leap, particularly in the swing
stage can be seen. The appearance of particular foot positions,
such as equinus, that may look fixed throughout walking,
is used to classify apparent gait. In this gait, compensatory
motions can be noticed in other joints, which provide the
impression of immobile foot postures. Excessive bending
at the hips, knees, and ankles during walking is the basis
for classifying crouch gait. Pronounced hunching over or
squatting while moving can be seen in this gait. In order to
extract the features from the croach gait, Shideler et al. [22]
developed a graphical user interface to digitally alter the stim-
ulation parameters, timing, and intensity during walking and

author suggested precise application of electrical stimulation
to the quadriceps is a potential treatment for the crouch gait.
Ries et al. [23] proposed that both ground reaction ankle-foot
orthosis (GRAFO) and the solid ankle-foot orthosis (SAFO)
designs are equally effective at correcting crouch gait and
at reversing it in individuals with CP. Snodgrass et al. [24]
created a wearable, cable-driven robotic system that gives
children with CP controlled disruption to their knee joints as
they walk over ground which improves the gait in better way.
Liu et al. [25] suggested a technique known as Deep Rehabil-
itation Gait Learning (DRGL) which makes use of LSTM to
demonstrate the gait feature’s inherent spatial-temporal asso-
ciations. Instead of requiring intricate kinematic and dynamic
models for the human body and exoskeleton, DRGL allows
unusual knee joint trajectories to be anticipated and rectified
based on the wearer’s other joints.

The aim of proposed work is to significantly advance the
field of pediatric neurology by classifying abnormal gait in
childrenwith CP. For the classification of abnormal gait in CP,
a novel Convolutional Long Short Term Memory (ConvL-
STM) model is presented by using gait data of children with
CP and advanced DL techniques which enhances the quality
of life for kids with early detection and classification. Firstly,
the time series gait signal data is converted to images and
produced a rich set of heatmap images. Interestingly, we build
upon this breakthrough by using Generative Adversarial Net-
work (GANs) to produce more images in order to overcome
class imbalance problem. The original data along with GAN
generated data is utilized in a Convolutional Long Short-Term
Memory (ConvLSTM) model to improve the categorization
of children with CP based on their gait patterns. The innova-
tive approach not only builds on previous developments but
also pioneers the merging of GANs and ConvLSTM in the
field of gait analysis. The proposed study aims to maximize
the gait analysis procedure through a deliberate reduction in
the quantity of anatomical markers used (where the markers
are placed on ankle, hip, and knee, avoiding markers on the
trunk and pelvis).

The manuscript is organized as follows: section I speaks
about introduction. Section II offers a thorough review of
the literature, highlighting recent findings and developments
that are relevant to the research topic. Section III consists
of three sub sections which illustrates dataset details, pre-
processing steps and proposed methodology. The results and
performance metrics of the proposed ConvLSTM model are
presented in Section IV. Section V offers an overview of the
major findings and conclusions derived from the research.
Finally, section VI speaks about Limitations and Future
Scope.

II. LITERATURE SURVEY
Recent advances in technology, notably the incorporation of
Machine Learning (ML) andDeep Learning (DL) techniques,
have brought about significant changes in the field of gait
analysis. The popularity of ML as well as DL approaches
in the gait domain is because they can quickly, reliably,
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FIGURE 3. Gait patterns in Cerebral Palsy.

and accurately classify data by extracting basic features
from highly temporal and nonlinear biomechanical data [26].
Kolaghassi et al. [27] proposed four deep learning mod-
els which are trained on typically developed children’s gait
where he suggested that Fully Connected Network (FCN)
and Transformer algorithms performed well because of their
low errors. Joint moments of CP patients were estimated
by the author [28] with normalized Root Mean Square
Error (nRMSE) ranging from 18.02% to 13.58% by train-
ing specific CNN model. Based on the meta analysis done
by the author [29], CNN achieved exceptional results in
the diagnosing CP and multiple sclerosis. Lempereur et al.
[30] introduced a long short term memory recurrent neu-
ral network with the special application DeepEvent. The
automatic detection of gait events was implemented using
three bidirectional LSTM layers, each with eight hundred
hidden units. These discoveries have greatly expanded under-
standing of gait patterns and created new opportunities for
the creation of more effective treatments for conditions
like CP. Al-Sowi et al. [31] assessed the children with
CP using five well-known machine learning classification
techniques. The MLP classifier properly classified CP-type
cases with an accuracy rate of 84%. Zhang and Ma [32]
classified the gait of children with CP who had spastic diple-
gia where the classification of gait was done based on the
kinematic features of their lower limbs. The performance

of the algorithms was assessed using a conventional 10-
fold cross-validation technique. According to the results,
the ANN has the lowest resubstitution error (5.8%) and the
best prediction accuracy (93.5%). Patil et al. [33] examined
and evaluated the performance of four machine learning
techniques (KNN, SVM, ELM, and MLP) for multi-class
gait classification. Out of four techniques, ELM performed
well in classification of gait patterns. The author employed
a data-driven methodology [34] to estimate the frequency
of foot-off and foot-contact events in children with nor-
mal and pathological gait based on kinematic and marker
time series. More precise real-time forecasts of foot-off and
foot-contact events are made possible by the LSTM architec-
ture. Potluri et al. [35] presented a wearable sensor system
that combines inertial measurement units (IMUs) and plantar
pressure measurement units which is combined with stacked
LSTM for identifying gait defects. The simulated patholog-
ical and normal gaits showed a marked difference in gait
characteristics, which was detected by the proposed stacked
LSTM recurrent neural network. McCay et al. [36] extracted
the normalized pose-based feature data, Joint Orientation
2D Histograms and Joint Displacement 2D Histograms, for
use in new deep learning architectures. Experimental results
showed that the proposed fully connected neural network
(FCNet) functioned wonderfully across a range of feature
sets.
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The application of CNN and LSTMnetworks in the context
of gait analysis has been studied in the literature survey [28],
[29], [30], [34], [35]. Previous research has demonstrated
impressive progress in employing sophisticated neural net-
work architectures and training them with diverse forms of
gait data, such as kinematic, kinetic, and spatiotemporal data,
where this study takes a novel approach to classify abnormal
gaits in children with CP. CNNs have proven to be efficient
at extracting spatial characteristics from gait data in the
literature, and LSTMs have proven to be expert at manag-
ing sequential dependencies in temporal data. The proposed
research expands on earlier research by putting forth a novel
hybrid model that combines the best features of both CNNs
and LSTMs for identifying abnormal gaits in kids with CP,
we hope to fill a large vacuum in the literature. Through
the transformation of temporal data into heatmap images
and the utilization of GAN-generated images in conjunction
with the original data, classification system’s resilience and
interpretability are improved. Our objective is to create and
evaluate a hybrid CNN-LSTM model that can effectively
categorize childrenwith CP according to their abnormal gaits,
while simultaneously addressing the issue of class imbalance
by utilizing GAN-generated data in a strategic manner. This
specific goal directs our approach and offers a strong basis for
expanding the body of knowledge in the field of gait analysis
and enhancing the clinical results for children with CP.

III. MATERIALS AND METHODS
Figure 4 displays the overview of our approach. The time
series data of angles formed by movements of the hip, ankle,
and knee with respect to the sagittal and coronal planes
are examined in the CSV dataset. Preprocessing steps of
cleaning, normalizing, and segmenting the time series data
are done in the process. Time series features for the hip,
ankle, and knee are taken from this data and transformed into
images. Each time series feature is displayed as a heatmap
image in this step, which involves a transition from the time
domain to the spatial domain. The procedure is creating
heatmap images with Python, which offer a clear depiction
of temporal trends. The following stage involves producing
more images using GAN. The original time series image’s
distribution is learned by the GAN, which then creates new
images that depict similar patterns. For the classification
problem, ConvLSTM model is put forward. ConvLSTM is
a neural network architecture designed for processing spa-
tiotemporal data, including image sequences. Using both the
original and GAN-generated images as input, the ConvLSTM
model learns to categorize gait data into abnormal gait A, B,
C, and D categories. Using the labeled dataset, where each
image is linked to a certain gait type, model is trained and
tested in 80:20 ratio. The 20% of converted images are man-
ually selected which belongs to seven extracted features from
the dataset, strictly excluding GAN generated images. For an
accurate assessment of the model’s performance on actual
data, segregating test set with original images alone was
essential. Training was conducted using the remaining 80%

FIGURE 4. Proposed work flow.

of the dataset consists of both original and GAN-generated
images to improve the model’s robustness and learning capa-
bilities. In the sections that follow, each and every step of this
suggested work flow is covered in detail.

A. DATASET DESCRIPTION
Initial data exploration gives valuable insights into data distri-
bution and forms the basis for subsequent analysis. The rich
dataset is used in the proposed work which is present in pub-
licly accessible CSVfile [37] includes 744 feature parameters
and 1719 samples from 357 participants. This publicly avail-
able data was collected from gait analysis sessions involving
children aged three to eighteen who had unilateral or bilateral
spastic CP at University Hospital Pellenberg’s clinical motion
analysis lab. Youngsters exhibiting symptoms of dystonia or
ataxia are eliminated from the mentioned dataset.

117726 VOLUME 12, 2024



Y. Kavya, S. S. Reka: Abnormal Gait Classification in Children With CP

TABLE 1. Extracted features from the dataset.

Vicon Motion Systems was used to conduct a standardized
3DGA (3D Gait Analysis) examination and gather the data.
Clinical professionals applied reflective markers in line with
the Plug-In-Gait marker configuration to the child’s lower leg
anatomical landmarks. Using the Nexus software, the joint
angles and their derivatives were determined.

Feature parameters of hip, ankle and knee with respect to
multiple planes like sagittal and coronal are selected for the
data analysis. Table 1 displays the selected features details.

The time-series data of joint angles measured at var-
ious instances of gait cycle are included in the dataset.
The data spans from the 0th instance, which indicates
the start of the gait cycle, to the 1000th instance,
which is end of the cycle representing 100% of the
cycle. For the proposed work, time series feature data
‘aSagH_pct_GC’ is considered from ‘aSagH_pct_GC_0’
to ‘aSagH_pct_GC_1000’. Similarly, time series data of
remaining six features avSagH_pct_GC, aCorH_pct_GC,
aSagK_pct_GC, avSagK_pct_GC, aSagA_pct_GC, avSagA_
pct_GC also included in the analysis. Total 350 columns time
series data of seven features with 1719 samples from the
dataset [37] are considered for the proposed work. Table 1
lists the seven extracted features, which include the angles
and average joint angles of the hip, ankle, and knee with
respect to the sagittal and coronal planes. Angles at every
instance of the gait cycle is measured for these features. Joint
angles measured at various points during the gait cycle are
used to categorize gait patterns in people with CP. These
measurements are essential for distinguishing abnormalities
and comprehending the various phases of the gait in CP. The
graphs of three different CP gait pattern samples are displayed
in Figure 5, which illustrates the analysis on distinct gait
phases in abnormal gaits.

B. DATA PREPROCESSING
In the preprocessing pipeline, firstly all relevant feature
columns are manually selected. The data is imported from
a CSV file, and the scikit-learn library’s LabelEncoder was
used to convert category columns into numerical labels. This
stage made it easier to convert categorical data that isn’t
quantitative into a format that can be analysed. To avoid
ordinality assumptions, one-hot encoding was then used to
further process the category characteristics by turning them
into binary vectors. Zeros were used to impute any missing
values in order to preserve the integrity of the data. After that,
every piece of data was converted into a numeric format to
maintain consistency throughout the dataset. After a part of
preprocessing is completed, signal time series data at discrete
time instances of gait cycle t0, t1, t2 . . . tn for one sample is
represented in (1).

Smn = {Sm0, Sm1, Sm2, . . . .Smn} (1)

Here ‘m’ represents number of samples present in the dataset
and ‘n’ represents the number of time instances of gait cycle.
‘Smn’ represents signal value at ‘t ′n for ‘mth

′

sample in the
dataset.

From the dataset, all 1719 samples are considered
for a feature and represented in matrix format displayed
in (2)

X =


S00 S01 · · · S0n
S10 S11 . . . S1n
...

...
. . .

...

Sm0 Sm1 · · · Smn

 (2)

Here ‘Smn’ represents signal value at ‘mth’ sample for ‘nth’
time instant.

Min-Max scaling was performed on ‘X ’ to rescale all
numerical attributes to a range between 0 and 1, reducing the
impact of different scales and ranges among features.

S ′
mn =

Smn − Min (X)

Max (X) −Min (X)
(3)

In (3),Max (X) andMin (X) are represented as maximum and
minimum values of the matrix X .

Regardless of the feature’s initial scale, normalization pro-
cess made sure that each data contributed proportionately to
the analysis by normalizing the signal values to the range
[0, 1] using Min Max scaling.
The preprocessed data will now be converted into heatmap

images. Heatmap images were created from signal data which
is already encoded using one hot and label encoding and
normalized using Min-Max scaling. The data representation
was improved by this change, giving complete information
of the training participants. Once thorough preprocessing
is completed, will go through data conversion process. The
code extracts the data corresponding to the chosen feature
columns by looping through each row of the preprocessed
data frame. From the retrieved data, a heatmap is created
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FIGURE 5. Joint angles made with respect to different planes in Cerebral Palsy gait.

using Seaborn’s heatmap function. Numerous factors, includ-
ing the colormap selection, can be customized with this
function. Each heatmap image is uniquely identified by its
corresponding row index number. The heatmap is saved as an

image file into the appropriate folders based on the row index
and feature after it has been created. With this all-inclusive
method, the raw signal data is converted into visually appeal-
ing heatmap images that reveal the temporal evolution of gait
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characteristics.

H (Xm) = sns.heatmap{S ′mn, viridis, xticklabels,

yticklabels, cbar_kws} (4)

where, ‘viridis’ is the colormap used, ‘xticklabels’ is time
instances during gait cycle, ‘yticklabels’ are values of
joint angles made, ‘cbar_kws’ is the color bar properties
dictionary.

According to the method described in this data preprocess-
ing, 1719 samples in the dataset converted to heatmaps. All
seven features underwent the same comprehensive conver-
sion from csv data to heatmap images. The data preprocessing
is followed by implementing the algorithm on processed
data. Coser et al. [38] stated that certain AI algorithms are
particularly well-suited for taking on particular tasks.

C. PROPOSED METHODOLOGY
1) GAN IMPLEMENTATION
The proposed research utilized GANs to add synthetic data
to the original dataset, increasing its diversity and scalability
for further analysis as the gait dataset exhibits a class imbal-
ance. Consequently, GAN was used to enhance the samples
in particular classes b, c, and d. GAN required adversarial
training of a discriminator network and a generator. Here, arti-
ficial images that mimic genuine photos are produced using
GANs. By adding GAN generated images to the dataset,
this may enhance the performance of models that have been
trained on it. The original image’s pixel values are normalized
from [0, 255] to the range of [0, 1] in the preprocessing
step, and they are downsized from 1024 × 1024 pixels to
64 × 64 pixels. We will obtain the created images from the
generator after the original images are prepared. A proba-
bility score function is assigned by the discriminator which
indicates the similarity of generated image to the original
image. Discriminator computes the binary cross entropy, and
modifies the discriminator’s weights in order to minimize the
loss. Additionally, we will be able to compute the generator’s
loss based on the discriminator’s output. To optimize the
generator’s capacity to produce images that the discriminator
recognizes as authentic, its weights are modified. Gradient
ascent is used to update the generator weights. This process
is carried out throughout several epochs. The ConvLSTM
algorithm is trained using both the original and generated
images. In figure 7, a thorough description of the generator
and discriminator models that were employed is presented.

The generator model that was discussed is a sequential
model made up of two layers: Conv2DTranspose Layer 1 and
Conv2DTranspose Layer 2, as well as a dense layer and a
reshape layer. The output of the dense layer is reshaped by
the reshape layer into a 3D tensor with dimensions (8, 8, 128).
Conv2DTranspose Layer 1 upsamples the tensor by applying
the transposed convolution process through 64 filters with
ReLU activation function. It expands the dimensions of space.
Additionally, 64 filters with the ReLU activation function
make up Conv2DTranspose Layer2, which further upsamples

the tensor. The output images from this layer have three
channels, with 0 to 1 values for each pixel. Conv2D Layer1,
Conv2D Layer2, flatten layer, and dense layer make up this
discriminator. Conv2D layer 1 processes the input image by
applying 64 filters in order to identify features. This layer
uses operations, just like the previous Conv2D layer, to find
features in a deeper layer.

The output tensor is flattened by the flatten layer, turning
it from a 3D tensor to a 1D tensor. The likelihood that the
input image is real is represented by a single value between
0 and 1, which is produced by the output dense layer of
the discriminator. Here, 64 filters are used by Conv2D layer
1 to scan the input image and detect various features. Feature
extraction and learning the hierarchical representation of the
input photos are done using Conv2D layer 2. The 3D tensor
(128×128×3) is transformed into a 1D tensor using the flat-
ten layer. Every slice in the input tensor is taken and arranged
into a single row. When switching from convolutional layers,
which work with spatial parameters, to dense layers, which
require a 1D output, this process is required. The images are
resized to 50×148×3 tomake it compatible with ConvLSTM
and original set of images. Figure 6 displays the GAN model
used for synthetic data generation. Reliability of GAN gener-
ated images are increased by means of transparent reporting
and rigorous validation procedures, which include biolog-
ical realism and statistical distribution comparisons of the
generated samples. This justifies the dataset’s appropriate-
ness for driving biomedical research and supporting clinical
decision-making.

2) CONVLSTM MODEL
The abnormal gait patterns linked to CP were sequence clas-
sified using convolutional long short-termmemory networks.
In order to comprehend sequential visual input, figure 7
displays the ConvLSTMmodel architecture which makes use
of the unique abilities of LSTM layers to capture long-range
correlations. The model combines layers of Long Short-Term
Memory (LSTM) and Convolutional Neural Network (CNN)
to offer a comprehensive approach to temporal modeling
and feature extraction. The ConvLSTM model is designed
to extract both spatial and temporal features from sequential
image data. Because the model includes convolutional filters
and LSTM layers, it can capture both spatial patterns and tem-
poral dependencies. Here, the height, width, and RGB color
channels are indicated by the numbers 50, 148, and 3, respec-
tively, for both the original and GAN-generated images. The
Conv2D layer 1 applies filters to the input images to extract
features. The first Conv2D layer with 32 filters uses a 3 ×

3 kernel to identify basic features in the input pictures. Using
successively bigger filter sizes, subsequent Conv2D layer 2
(64 and 128) captures more complex and abstract elements.
The spatial dimensions of the feature maps are decreased
by MaxPooling2D layers selecting the largest value in each
local location. Pooling helps to preserve important traits
when the spatial resolution is reduced. The TimeDistributed
wrapper makes it easier for the LSTM layers to process data
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FIGURE 6. GAN model.

sequences. LSTM layers can be used with time-series or
video data because they are designed to capture temporal
dependencies in sequences. The first TimeDistributed LSTM
layer is responsible for processing the series of feature maps
that are obtained by the convolutional layers. The TimeDis-
tributed Flatten layer converts the output from the LSTM
layer into a flat vector for each time step. It prepares the data
for the LSTM layer that comes next. The second LSTM layer
is still capturing the temporal dependencies in the sequence.

hh,t,, c h, t = LSTM
(
Xh,t,hh,t − 1, c h, t − 1

)
(5)

ha,t ,Ca, t = LSTM
(
Xa,t , ha, t − 1, ca,t − 1

)
(6)

hk,t , c k, t = LSTM
(
Xk,t, hk,t − l, c k, t − l

)
(7)

The above equations (5), (6) and (7) states that the LSTM
layer processes the hip, ankle and knee angle sequence
Xh,Xa,Xk at each time step t , will update the hidden state and
cell state hh,t t, ch, t, ha,t , ca, t, hk,t , ck, t based on the input
Xh,t ,Xa,t ,Xk,t and previous states hk , t − l, c h, t − 1, ha,
t − l, ca, t − 1, h k, t − 1, c k, t − 1.

The output from the second LSTM layer is used by the
Flatten layer to construct a one-dimensional vector.

Flatten (Xh) = reshape (Xh, (32 , hip_time_steps,−1 ))

(8)

Flatten (Xa) = reshape
(
Xa, , (32 , ankle_time_steps,−1 ))

(9)

Flatten (Xk) = reshape (Xk , (32 , knee_time_steps,−1 ))

(10)

The above equations (8), equation (9), equation (10) reshapes
the output sequence of hip, ankle and knee data from the
LSTM layer. Then we will concatenate the temporal infor-
mation of flattened sequences.

Concatenate(Flatten (Xh) ,Flatten (Xa) ,Flatten (Xk))

(11)

The above equation (11) shows the concatenation of flattened
sequences.

Dense layers are fully connected layers that give the
network additional non-linearity. In the first Dense layer,
100 neurons have ReLU activation.

Ydensel = σ (Wdensel · Concatenated_Inputs+ bdensel)

(12)

The above equation (12) shows the application of fully con-
nected layer with ReLU activation to concatenated sequence
that is equation (11).

The second Dense layer (output layer) uses softmax activa-
tion to create class probabilities for multi-class classification.
The Adam optimizer is used in the training setup, with a
custom learning rate of 0.001.

Youtput = softmax
(
Woutput · Ydensel + boutput

)
(13)

The output layer which is represented by (13) applies soft-
max activation function to give abnormal gait probabilities.
Vital hyperparameters are used by the ConvLSTM model
described in this research to influence the model’s training
and classification procedures. The Adam optimizer is used
for optimization, and its learning rate is set to 0.001. During
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FIGURE 7. ConvLSTM model.

training, this optimizer choice allows for efficient gradient-
based updates. The categorical crossentropy loss function,
which evaluates the difference between expected and actual
class probabilities, is used to assess the model’s performance
during training. Each iteration of the training process involves
processing data batches of size 32 over a period of 50 epochs.
Additionally, 20% of the dataset is set aside for validation
in order to track the model’s capacity for generalization.
Image preprocessing is converting pixel values to a range of
0 to 1, which promotesmore stable convergence and increases
training efficiency. Together, these carefully selected hyper-
parameters support the ConvLSTM model’s efficiency in
image sequence classification task of abnormal gait classi-
fication in children with CP. The proposed model achieved
an accuracy of 91.8% and loss 0.42. Figure 8 displays the
confusion matrix.

IV. RESULTS AND ANALYSIS
The total accuracy of roughly 91.8% and loss function
0.41 indicates that the ConvLSTM model is doing a good
job of classifying abnormal gait in people with CP, especially
when combined with the usage of Generative Adversarial
Networks (GANs) to generate extra images. It is impressive
how well the model performs with a small dataset and can
generalize. The model can capture both temporal and spatial
correlations in gait data because of the use of ConvLSTM,
whichmakes it appropriate for applications like abnormal gait
classification.

FIGURE 8. Confusion matrix for ConvLSTM.

Here the individual class accuracies for class A, B, C and D
are 82.9%, 96.3%, 98.6% and 52.5% respectively. A confu-
sion matrix is created based on the model’s predictions for
classes A, B, C, and D, as depicted in figure 10. The other per-
formance metrics values are also calculated based on the true
positives, true negatives, false positives and false negatives
from the confusion matrix. The other performance metrics
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FIGURE 9. ConvLSTM performance graph.

FIGURE 10. Long short term memory model.

values for this model are 82.9%, 100%, 100%, 89.4%, 17%
and 0% for Sensitivity, Specificity, Precision, F1 score, False
Rejection Rate(FRR), False Positive Rate(FPR) respectively.

A. COMPARISION WITH OTHER MODELS
1) LONG SHORT TERM MEMORY MODEL
Preparation in LSTM model entails transforming the labels
lists and data into arrays, is a prerequisite before moving
further with this paradigm. Testing and training sets of data
were created. To fall between [0, 1], the image’s pixel val-
ues are changed and the class labels’ one-hot encoding was
changed. This stage is critical in categorical classification
situations where a model has to predict one of the supplied
classes. The data is transformed into a three-dimensional
array, where the third dimension represents the flattened pixel
values of the original images. A sequential model was devel-
oped with Keras. Now that the LSTM layer has 50 neurons,
it is prepared to take in image sequences as input.

The number of neurons in the LSTM layer represents the
dimensionality of the output space. The output of the LSTM
is input into a dense layer that has been triggered using
softmax to provide the final classification as illustrated in the
figure 10.

The model is trained on the training set for 50 epochs
with a batch size of 32. The performance of the LSTM
model is assessed using test data, and graphs of accuracy and
loss function are created over a 50-epoch period. The graph
that follows in figure 11 illustrates how the LSTM model
performed during training, achieving a validation accuracy of
77.03% and a corresponding loss of 0.47.

2) CONVOLUTIONAL NEURAL NETWORK MODEL
In CNN model, images from different classes, both original
and produced by GANs, are loaded and labeled. After being
transformed into NumPy arrays, the data is divided into train-
ing and testing sets. Pixel values in an image are normalized
to fall between [0, 1]. The preprocessed data is now fed into
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FIGURE 11. The long short term memory performance graph.

FIGURE 12. Convolutional neural network performance graph.

from the CNNdesign, which has two convolutional layers and
a max-pooling layer for each.

The data for the dense layer is ready because of the
flattened layer. The final classification into categories for
abnormal gait is done by the dense layer using the softmax
activation function. The Adam optimizer is used to compile
the model. According to the observations made from CNN
performance graph of figure 12, the CNN model did reason-
ably well during training, achieving a validation accuracy of
79% and a corresponding loss of 0.52.

3) GATED RECURRENT UNIT MODEL
In the initial step of Gated Recurrent Unit (GRU) model,
each class, labels and images are loaded. The labels list
contains the corresponding labels. The lists of labels and data
are transformed into NumPy arrays. There are training and
testing sets of the data. The photos’ pixel values are adjusted

to fall between [0, 1]. We convert categorical labels to one-
hot encoding. To satisfy the GRU model’s requirements, the
input data is rearranged. The temporal dimension is retained
even when the images are flattened along their height and
breadth dimensions. Keras is used to generate a sequential
model. To the model, a 50-unit GRU layer is introduced. The
reshaped data is used to specify the input shape.

To classify the data into the designated number of classes,
a dense layer with softmax activation is implemented. The
Adam optimizer and categorical cross entropy loss func-
tion are used to train the GRU model. Iterating over the
dataset many times, the training is carried out for 50 epochs.
On the validation dataset, the accuracy of the GRU model
was 85.6%. The difference between the actual and anticipated
class probabilities is 0.45 as depicted in theGRUperformance
figure 13. Table 2 shows the performance metrics of proposed
method compared with all other models CNN, LSTM and
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FIGURE 13. Gated recurrent unit performance graph.

TABLE 2. Comparision of performance metrics of convlstm with other models.

GRU where the proposed model achieved impressive metric
values.

V. CONCLUSION
The proposed methodology aims to improve the qual-
ity of gait analysis in children with CP by integrating
state-of-the-art methods in generative modeling, image trans-
formation, and time series analysis seamlessly. This will
provide a reliable and interpretive framework for under-
standing and categorizing gait abnormalities. By combining
ConvLSTM, temporal signal data conversion to images,
and GAN-based data augmentation, the state-of-the-art in
abnormal gait analysis-based early-stage CP identification is
being advanced. The ConvLSTM model has demonstrated

a remarkable accuracy rate of 91.8%, outperforming other
well-established models such as CNN, LSTM, and GRU.
This remarkable precision highlights how well our suggested
approach captures complex patterns in gait data. In addition,
the extremely low loss function of 0.41 indicates how well it
minimizes prediction errors.

VI. LIMITATIONS AND FUTURE SCOPE
Notably, the accuracy for Class D abnormal gait category
is lower compared with other classes. Numerous reasons
could be the cause of this decreased accuracy. The model’s
capacity for successful generalization have been hampered
by the scant data available for Class D. Even when GAN
images are used for data augmentation, there may still be a
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constraint in producing enough diverse data for a particular
class with fewer cases overall. Furthermore, the intrinsic
diversity Class D may make it more challenging to identify
representative patterns, especially the data that is currently
available does not accurately reflect the whole range of
anomalies that fall into this category.

Future work should concentrate on enlarging the dataset
with more abnormal gait data samples from Class D in order
to effectively address this limitation.We can improve the con-
sistency and precision of the suggested ConvLSTMmodel by
adding a wider range of abnormal gaits related to class D.
In addition to that, other marker trajectories at trunk and
pelvis can be analyzed for the classification of abnormal gait
patterns. Angles made by marker trajectories with respect
to transverse imaginary plane can also be considered for
classification of abnormal gait types in CP.
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