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ABSTRACT Solar photovoltaic (PV) power generation is gradually increasing, but its intermittent nature
poses challenges to grid stability. To address this, advanced forecasting methods, such as deep learning
(DL) algorithms, can be employed to ensure a more stable and reliable energy supply. Accurate short-term
forecasts are essential for electricity grids to effectively mitigate the impact of solar intermittency and
enhance grid performance. This research contributes by developing a hybrid DL model that combines a
1-dimensional convolutional neural network (1D CNN) with a gated recurrent unit (GRU), referred to as
‘‘1D CNN-GRU’’. The 1D CNN module extracts essential features from time series data, such as solar PV
power generation, while the GRU component provides high-precision short-term forecasts. Additionally,
data preparation techniques, including feature selection using SHapley Additive exPlanations (SHAP), data
smoothing with an exponential moving average (EMA), and data augmentation with Gaussian noise, are
employed to enhance the performance of the proposed 1DCNN-GRUmodel. To evaluate the effectiveness of
the proposed model, it was compared with other DL models, including CNN, GRU, long short-term memory
(LSTM), and CNN-GRU. The forecasting was performed using the Hydro-Floating Solar Plant dataset,
obtained from the 45 MW hydro-floating solar installation located at Sirindhorn Dam in Ubon Ratchathani
province, Thailand. The proposed 1D CNN-GRU model was tested using data from three different seasons:
winter, summer, and the rainy season. The model achieved the lowest root mean square error (RMSE) across
all seasons, with values of 0.025 (winter), 0.050 (summer), and 0.094 (rainy), and demonstrated the shortest
training time. The forecasting results indicated that the proposed model outperformed all other models in
terms of both accuracy and training time.

INDEX TERMS Deep learning, energy forecasting, hydro-floating solar plant, solar photovoltaic.

I. INTRODUCTION
A significant transition towards renewable energy sources,
i.e., wind energy, biomass, hydroelectricity, and solar energy,
in the electricity sector has been observed globally [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Gayadhar Panda .

From 2011 to 2023, the installed capacity for solar energy
generation has seen an exponential increase, exceeding
1,400 GW. This remarkable growth can be primarily
attributed to the advancements and cost reductions in solar
photovoltaic (PV) technology [2]. The increasing deployment
of solar energy aligns with global efforts to reduce carbon
emissions and combat climate change. As countries strive
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to meet their commitments under international climate
agreements, such as the Paris Agreement, the transition
towards solar power becomes even more critical [3].
In the context of Thailand, the move towards renewable

energy sources is a significant part of the country’s energy
strategy, particularly in solar PV power generation. The
aim is to reduce dependence on fossil fuels and promote
environmental preservation. The Thai government has laid
out a comprehensive plan to increase renewable energy
sources in the electricity sector, specifically focusing on solar
PV power generation. The goal is to reach a 10 GW capacity
by 2037. The plan includes a variety of approaches, such
as expanding large-scale solar farms with battery energy
storage systems, promoting smaller-scale installations like
solar rooftops on residential and commercial buildings, and
investing in hydro-floating solar systems at large-scale dams.
This multi-faceted strategy positions Thailand as an active
participant in global renewable energy and climate change
mitigation efforts [4]. Solar PV power generation is growing
rapidly, but it presents a challenge to the stability of electricity
grids due to the intermittent nature of solar energy. The
National Control Center (NCC), responsible for the efficient
management of power plant dispatch, electricity generation,
and nationwide transmission [5], will face this challenge
because solar PV power generation heavily depends on
environmental conditions like weather, sunlight availability,
and cloud coverage. Many solar PV installations connected
to the grid make managing power distribution difficult [6].
To address these challenges, advanced forecasting methods,
such as deep learning (DL) algorithms, a subset of artificial
intelligence (AI), can enhance the forecasting capability for
solar PV power generation. DL can analyze data using neural
networks, consider various factors like weather patterns, and
more efficiently forecast the supply and demand balance in
the electricity grid. This approach mitigates the impact of
solar intermittency, ensuring amore stable and reliable energy
supply [7], [8], [9].

Over the years, a variety of research studies have utilized
DL models, such as long short-term memory (LSTM)
[10], [11], [12] and gated recurrent unit (GRU) [13], [14],
to forecast solar PV power generation. LSTM models excel
in capturing complex temporal patterns in solar PV power
generation data, enabling accurate predictions. On the other
hand, GRU models have a more straightforward structure
that enables faster training, making them highly desirable
in applications where training time is a crucial factor.
To enhance the accuracy of short-term forecasting, various
convolutional neural network (CNN) architectures have been
investigated [15]. Moreover, CNNs also contribute to fault
diagnosis in solar panels with thermal images, thereby
enhancing overall solar PV forecasting performance [16].
Furthermore, a hybrid CNN-GRU model is commonly used
to enhance forecasting performance [17], [18], [19], [20].
Recently, a novel hybrid 1D CNN-GRU model has been
introduced for solar PV power generation forecasting. With
this model, it is possible to predict solar PV power output up

to four days in advance with a high resolution of 5 minutes,
which outperforms other state-of-the-art models [21]. The
existing research often lacks a focus on diverse geographic
and climatic conditions. There is a significant gap in the
literature regarding the application of DL models to specific
regions like Thailand, which presents unique environmental
challenges for solar PV forecasting due to its tropical climate
and variable weather patterns.

This paper introduces a novel approach tailored to
the specific requirements of short-term solar PV power
generation forecasting in Thailand with the requirements of
the NCC to address the research gaps. Firstly, unlike previous
studies that target longer forecasting horizons, this research
emphasizes very short-term forecasting (three hours). This
precision is vital for the NCC’s operations, allowing for more
responsive and accurate adjustments to energy distribution
in the face of fluctuating solar output. Secondly, a hybrid
DL model combining 1D CNN with GRU architectures
is developed. This approach leverages the spatial feature
extraction capabilities of CNN and the temporal sequence
processing strengths of GRU, resulting in a robust model that
excels in capturing complex patterns in solar PV generation
data. To enhance the model’s performance, advanced data
preparation techniques, including feature selection with
SHapley Additive exPlanations (SHAP), data smoothing
with an exponential moving average (EMA), and data
augmentation are employed. SHAP ensures that the most
relevant features are included in the model, improving its
predictive power, while EMA helps reduce noise in the
data, leading to more stable and reliable forecasts. Data
augmentation techniques expand the dataset, providing the
model with more diverse examples to learn from, which
improves its generalization ability. The proposed model is
validated using real-world data from the Hydro-Floating
Solar Plant dataset, derived from a 45 MW installation at
Sirindhorn Dam in Thailand. This real-world application
demonstrates the model’s practical utility and relevance to
the specific climatic and operational conditions of the region.
Finally, a comparative analysis of the proposed hybrid model
against other established DL models (CNN, GRU, LSTM,
and a hybrid CNN-GRU) is conducted. The evaluation
uses performance metrics such as root mean square error
(RMSE), mean absolute error (MAE), and the coefficient of
determination (R2) score to assess the precision and reliability
of the forecasts.

The structure for the remaining sections of the paper is
as follows: Section II outlines the methodology used in this
research. Section III includes the presentation of experiments,
results, and discussion. Finally, Section IV concludes the
paper and suggests possible future work.

II. METHODOLOGY
The methodology section of this research is structured
into three primary components of significance: (i) data
preparation, (ii) system model approach for DL forecasting,
and (iii) evaluation matrices.
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A. DATA PREPARATION
Data preparation is a critical stage in research, where raw data
is transformed into a format conducive to accurate modeling.
In this study, min-max normalization was employed to
scale the data within a predefined range. This normalization
technique is essential to ensure that all input variables are
given equal consideration during analysis. By rescaling the
data to a typical range, typically between 0 and 1, the risk of
features with larger scales dominating the modeling process
is mitigated. This prevents potential biases and ensures that
the underlying patterns in the data are effectively captured by
the model.

Additionally, SHAP-based feature selection using a ran-
dom forest (RF) or RF-SHAP was utilized to identify the
most relevant features within the dataset. By calculating
the importance scores of features, it was determined which
features had the most significant impact on solar PV power
generation. This step refines the model by focusing on the
most influential factors, thereby enhancing its resilience and
interpretability. Subsequently, data smoothing with EMAwas
applied to capture the underlying trends by filtering out noise
and stabilizing the data. Furthermore, data augmentation with
Gaussian noise was used to increase the dataset’s diversity
and help prevent overfitting by introducing slight variations.
Overall, these data preparation techniques contribute to
developing amore precise and dependable forecastingmodel,
which is essential for accurate predictions in solar PV power
generation scenarios.

1) MIN-MAX NORMALIZATION
Min-max normalization ensures that all the data points
are adjusted or converted to fit into a particular range,
typically between 0 and 1. It helps maintain consistency
across datasets, which is particularly useful when comparing
measurements with different units or scales [22]. In the
context of this study, min-max normalization was applied
to standardize the dataset, ensuring that all values are
proportionately scaled down to a range between 0 and 1. The
normalized value (x ′) is computed as

x ′
=

x − xmin

xmax − xmin
, (1)

where x is actual value, xmin and xmax are the minimum and
maximum values, respectively.

2) RF-SHAP
A robust method integrates the strengths of RF and SHAP
values to identify the most essential features in a dataset.
RF is an ensemble learning method that constructs multiple
decision trees (DT) and combines their outputs to make
more accurate predictions. This approach makes RF more
robust to noise and less sensitive to outliers. Additionally,
the aggregation process inherent in RF, known as bootstrap
aggregating (Bagging), helps prevent overfitting, a common
issue in machine learning (ML) models. Furthermore, the
bagging method leads to faster computation compared to

boosting methods because it allows for parallelization [23].
Derived from game theory, SHAP values provide a way to
elucidate the contribution of each feature to the model’s
predictions [24]. The process of feature selection follows
these steps:

1) Train an RF Model: An RF model is constructed
and trained using the dataset. This model consists of
numerous DTs, each providing predictions based on
subsets of the data.

2) Calculate SHAP Values: SHAP values for each feature
i are computed using the trained RF model. These
values quantify the contribution of each feature to a
specific prediction. The SHAP value φi for a feature
is calculated by

φi =

∑
S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |!

[f (S ∪ {i}) − f (S)],

(2)

where N is the set of all features, S is a subset of
features not including i, | · | denotes the cardinality,
∪ represents the union operation, and f (S) is the
prediction of the model using the features in subset S.

3) Aggregate SHAP Values: The SHAP values for each
feature are summed across all data points to obtain
an overall importance score. This score indicates
how much each feature contributes to the model’s
predictions on average.

4) Rank Features: The features are meticulously ranked
based on their aggregated SHAP values. Features
with higher SHAP values, indicating more significant
influence on the model’s predictions, are considered
more important.

5) Select Features: The top 10 ranked features were
selected as input for model training in this research by
focusing on the most important score of features.

3) DATA SMOOTHING WITH EMA
An EMA is a method used to smooth out data fluctuations on
a chart to reveal trends better. In comparison to a basicmoving
average, which equally considers all data points within a
set window, EMA assigns greater importance to recent data,
resulting in increased responsiveness to new information. The
EMA is calculated using a smoothing factor, also known as
the smoothing constant, which influences the rate at which
older data points are discounted [25]. The formula for EMA
at any given time t is:

EMAt = αXt + (1 − α)EMAt−1, (3)

where Xt is the current data point at time t , EMAt−1 is
the EMA of the previous period, and α is smoothing factor
calculated by

α =
2

N + 1
, (4)

with N being the number of periods. The smoothing factor is
pivotal in determining the weight assigned to the most recent
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data point. A higher value drives the EMA to react more
rapidly to changes, while a lower value yields a smoother line,
causing the EMA to react more slowly.

4) DATA AUGMENTATION WITH GAUSSIAN NOISE
Data augmentation using Gaussian noise is a method
employed to expand the scope and diversity of a dataset,
ultimately enhancing the effectiveness and resilience of
ML models. This approach entails introducing random
Gaussian noise to the initial data points, thereby generating
slightly modified versions that maintain the fundamental
characteristics of the original data [26]. The process of adding
Gaussian noise can be described as

X ′
= X +N (µ, σ 2), (5)

where X ′ is the new augmented data point, X is the original
data point, and N (µ, σ 2) is the Gaussian noise with mean µ

and variance σ 2.

B. SYSTEM MODEL APPROACH FOR DL FORECASTING
This paper investigates the performance of various DL
models such as CNN, LSTM, GRU, CNN-GRU, and the
proposed 1D CNN-GRU model. This comparison aims to
identify the limitations of conventional models in predicting
solar PV power generation and showcase the strengths and
efficiencies of tailored 1D CNN-GRU architecture.

1) CONVOLUTIONAL NEURAL NETWORK (CNN)
The CNN is a powerful DL model that takes inspiration from
the complex visual systems found in living organisms. The
structure of CNN is shown in Fig. 1. This advanced model
replicates how biological vision processes and interprets
visual data, enabling machines to accurately perform tasks
like object identification, recognition, and classification.
CNNs use a structured hierarchy of layers to extract features
and patterns to understand complicated visual scenes [27].
There are the four following types of layers in a CNN:

• Convolution Layer: This layer forms the foundation
of CNNs and applies various filters to the input data to
extract essential features such as edges and textures.

• Pooling Layer: The pooling layer reduces the spatial
dimensions of the input volume for the following
convolution layer, resulting in a decreased number of
parameters and computations in the network.

• Activation Function: This function introduces
non-linearity to the network, which allows it to learn
complex patterns.

• Fully Connected Layer: This layer is connected to
every neuron in the previous layer and produces the
CNN’s final output.

2) LONG SHORT-TERM MEMORY (LSTM)
The LSTM network, a subtype of the recurrent neural
network (RNN), specifically addresses the challenges of
vanishing and exploding gradients that occur during the

FIGURE 1. CNN structure.

training of traditional RNNs [28]. The LSTM is designed
to regulate the flow of information, allowing it to discard
or retain data in its memory over long sequences, thereby
facilitating the learning of long-term dependencies. LSTMs
achieve the ability to learn long-term dependencies through a
sophisticated architecture consisting of three main gates [29]:
the forget gate (ft ), the input gate (it ), and the output gate
(ot ), along with the cell state (ct ) maintained in its memory
over long sequences. The corresponding equations for these
components are given by

ft = σ (Wf xt +Wf ht−1 + bf ), (6)

it = σ (Wixt +Wiht−1 + bi), (7)

ot = σ (Woxt +Woht−1 + bo), (8)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt +Wcht−1 + bc), (9)

where xt is input data, ct−1 is the previous cell state, σ (·) is
a sigmoid activation function, tanh(·) is a hyperbolic tangent
activation function, ⊙ is an element-wise multiplication, W
is weight, b is bias, and ht−1 is the previous hidden state ht ,
which is expressed as

ht = ot ⊙ tanh(ct ), (10)

3) GATED RECURRENT UNIT (GRU)
The GRU is a variant of the RNN, like LSTM, but simplifies
the architecture [30]. GRU has two gates: the update gate (rt )
and the reset gate (zt ), as demonstrated in Fig. 2. These gates
enable the GRU to manage information flow for relatively
short sequences efficiently. The update gate decides the
extent to which the unit retains old information, while the
reset gate determines how much past information to forget.
The equations for these gates illustrate the mathematical
foundation behind their functionality, showcasing the GRU’s
ability to learn dependencies in data over shorter periods. The
corresponding equations are given by

rt = σ (Wrxt +Wrht−1 + br ), (11)

zt = σ (Wzxt +Wzht−1 + bz), (12)

ht = zt ⊙ ht−1 + (1 − zt )

⊙ tanh(Whxt +Wh(rt ⊙ ht−1) + bh), (13)

where xt is input data, and ht−1 is the previous hidden state ht .

4) CNN-GRU
The CNN-GRU is a hybrid DL model that combines
2-dimensional CNN (2D CNN) with GRU, as demonstrated
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FIGURE 2. Block diagram of GRU unit.

in Fig. 3. The 2D CNN part of the model processes
input data in two dimensions (such as images or spatially
distributed data), utilizing convolutional layers to identify
and extract spatial patterns and relationships within the data.
This is particularly effective for tasks that involve complex
visual contexts or spatially distributed datasets. After the 2D
CNN layers extract spatial features, the GRU component
processes the temporal or sequential aspects of the data.
This hybrid model is particularly beneficial for applications
that require understanding spatial and temporal dynamics
[17], [18], [19], [20].

FIGURE 3. CNN-GRU structure.

5) PROPOSED MODEL (1D CNN-GRU)
The proposed model, 1D CNN-GRU, stands out with its
unique hybrid approach that combines 1D CNN and GRU.
Unlike the traditional CNNs that are mainly designed for
processing 2D data like images, the introduction of 1D CNN
addresses the need to handle 1D data such as time series or
sequential data. In 1DCNNs, the architecture includes convo-
lutional layers, pooling layers, activation functions, and fully
connected layers are employed, similar to the layers found in
traditional 2D CNNs. These layers work together to process
the input data. The convolutional layers apply filters to the
input data to detect local patterns, while pooling layers reduce
the dimensionality of the data, retaining the most important
information. Activation functions introduce non-linearity into
the model, enabling it to learn complex patterns, and fully
connected layers consolidate the features extracted by the
convolutional layers [31]. According to the proposed model,
the 1D CNN in this architecture meticulously analyzes the
input data, identifying and extracting essential features that
encapsulate the underlying patterns over time [32]. These

features are then fed into the GRU network, which is known
for its efficient handling of sequential data. GRU utilizes
these features to understand the temporal dynamics and
dependencies within the data, making it particularly adept
at forecasting future outputs based on past and present
data, even over shorter periods. This adaptability of the 1D
CNN-GRU hybrid approach ensures its effectiveness across
a wide range of data types and scenarios. The proposedmodel
structure shown in Fig. 4.

C. EVALUATION METRICS
This research employs three key metrics to evaluate the
accuracy of the forecasting models: root mean square error
(RMSE), mean absolute error (MAE), and coefficient of
determination (R2) score. RMSE measures the magnitude
of forecasting error, providing insight into the accuracy of
predictions as

RMSE =

√∑n
t=1(yt − ŷt )2

n
, (14)

MAE offers a straightforward measure of forecasting
accuracy as

MAE =
1
n

n∑
t=1

|yt − ŷt |, (15)

R2 score assesses the model’s suitability for the observed
data, indicating how well the model fits the data as

R2 = 1 −

∑
(yt − ŷt )2∑
(yt − ȳ)2

, (16)

where yt is the actual value at a time t , ŷt is the predicted
value at a time t , ȳ is the mean of the actual value, and n is the
number of samples. Lower RMSE andMAE values are better
for prediction, while a higher R2 score indicates better model
fit.

III. EXPERIMENTAL RESULTS, DISCUSSION, AND
COMPARISON
A. DATASET AND SYSTEM FLOW
This paper introduced a DL approach combining 1D CNN
with GRU to forecast solar PV power generation three
hours in advance. The research utilized an extensive dataset
from the hydro-floating solar installation at Sirindhorn Dam,
in Ubon Ratchathani province, Thailand. This hydro-floating
solar boasts a capacity of 45 MW and comprises seven
distinct solar array islands, with 144,420 solar PV panels
floating on the water’s surface. These floating islands harness
solar energy by converting sunlight into electricity through
the photovoltaic effect, where solar cells absorb photons
and generate an electric current. The buoyant platforms on
which these panels are mounted are specially designed to
be both environmentally friendly and resilient against the
aquatic conditions of the reservoir, ensuring stability and
efficiency [33].
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FIGURE 4. Proposed model 1D CNN-GRU structure.

The data collection spanned from October 1, 2022,
to April 31, 2024, with the dataset recorded at minute
intervals. The dataset utilized encompasses a comprehensive
collection of 101 features meticulously gathered from sensors
deployed across all seven PV islands. These features are
methodically grouped for each island, covering a wide
array of data points, including timestamps, solar PV power
generation, direct radiation, obliquity radiation, ambient
temperature, panel temperature, humidity, wind speed, wind
direction, and plant outage events. This dataset offers the
impacting factors of solar PV power generation, includ-
ing environmental and operational conditions. Group of
input features in dataset for DL models are summarized
in Table 1.

Upon collecting the dataset, the data was normalized to
a range between 0 and 1, and the missing values were
addressed by replacing them with those found immediately
below the missing record. To identify features with a strong
correlation to solar PV power generation, RF-SHAP was
utilized to select the top 10 features with the highest SHAP
values, including island6.Direct radiation, island3.Obliquity
radiation, island2.Direct radiation, island6.Obliquity radia-
tion, island2.Obliquity radiation, island7.Obliquity radiation,
Outage plant event, island7.Direct radiation, island6.Panel
temperature1, and island3.Panel temperature2 features. The
description of the top 10 features is shown in Table 2. This
method utilizes the robustness of RF and the interpretability
of SHAP values to provide a clear and effective approach
for feature selection, helping to improve model accuracy
and understanding. Fig. 5 presents the SHAP analysis of the
top 10 features. Fig. 5(a) shows the SHAP importance plot for
the top 10 features, highlighting their respective contributions
to the RF model’s predictions. Fig. 5(b) shows the SHAP
summary plot, illustrating the distribution and impact of each
feature.

Subsequently, these 10 chosen features and the label
were selected, reducing the fluctuations of the data was

required. Since the data was collected every minute, the
graph patterns were very erratic, making it difficult for the
model to identify underlying patterns. This could lead to
model overfitting, low accuracy, and long training times.
To address this, data smoothing with EMA was applied
to mitigate fluctuations before training the model. EMA
smoothing helps capture underlying trends by filtering out
high-frequency noise from the data. Additionally, it enhances
the model’s ability to generalize by making patterns more
discernible and stable. Following data smoothing, Gaussian
augmentation was employed due to the limited data available
when segmented by Thai seasons: summer, rainy, and winter.
Data augmentation was essential to increase the dataset
size, providing sufficient training data for the model by
generating synthetic data for the three Thai seasons. Gaussian
augmentation increases the diversity of the dataset, helping
the model to better generalize to unseen data. It also mitigates
the risk of overfitting by providing a more varied training set.
This research augmented data for 3 months, corresponding
to Thai seasons (1 month for the summer season, 1 month
for the rainy season, and 1 month for the winter season).
The training set included data from October 1, 2022, to
September 30, 2023, along with the augmented data, while
the testing set used data from three different seasons: the rainy
season from October 1, 2023, to October 31, 2023, the winter
season from January 1, 2024, to January 31, 2024, and the
summer season from April 1, 2024, to April 30, 2024.

Once the dataset is split into a train set and a test set, it will
be prepared for input before being utilized by DL models.
The sliding window technique will be used, where the input
data consists of 3 days (4,320 minutes) and the output data
consists of 3 hours (180 minutes). The forecasting model will
then be evaluated using various metrics, including RMSE ,
MAE , and R2 score, all of which will be calculated on the
train set and test set. The research’s flowchart is illustrated
in Fig. 6. In Fig. 6, the performance of the proposed ‘‘1D
CNN-GRU’’ model is examined alongside CNN, LSTM,
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TABLE 1. Summarized group of features in the dataset of hydro-floating solar installation at Sirindhorn Dam.

FIGURE 5. The top 10 features with the highest SHAP values (a) SHAP importance plot for the top 10 features, (b) SHAP summary plot for
the top 10 features.

TABLE 2. Description of the top 10 features with the highest SHAP values.

GRU, and CNN-GRU models in forecasting solar PV power
generation.

B. EXPERIMENTAL SETUP
To achieve precise solar PV power generation forecasting,
the architecture of the proposed model combines four layers
of 1D CNN and three layers of GRU. Positioned at the

forefront of this proposed model are the 1D CNN layers,
designed explicitly with four convolution layers followed by
four max-pooling layers, all activated by the rectified linear
unit (ReLU) function [34]. ReLU activation is favored for
its ability to introduce nonlinearity, enabling the model to
learn complex patterns by setting negative values to zero
and maintaining positive values [35]. ReLU is suited for
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FIGURE 6. The flowchart of this research.

1D CNN layers since it accelerates the training process
while preserving the ability to capture nonlinearities in time
series data, resulting in more efficient and effective feature
extraction. This setup is essential for efficiently extracting
pivotal features from the dataset. Subsequently, the model
incorporates three GRU layers, each activated by the tanh
function [36] responsible for forecasting solar PV power
generation. The tanh activation function, chosen for its
ability to map input values to a range between −1 and 1,
is instrumental in processing the extracted features from
the 1D CNN, facilitating accurate generation forecasts [35].
This layered approach, combining feature extraction and
sequential data processing, forms the core of the proposed
model for forecasting solar PV power with high precision.
The architecture of the proposed model is illustrated in Fig. 7.
The model training and testing were conducted on a Mac-

Book Pro M2 with 10 CPU cores and a 3.4 GHz processor
(6 performance and 4 efficiency cores), alongside a GPU of
16 cores, using Keras based on the TensorFlow framework

in Python 3.8. The model’s hyperparameters underwent fine-
tuning. Expressly, the number of epochs was set to 30.
The root mean square propagation (RMSprop) optimizer
was employed to optimize the neural network training. This
algorithm adapts the learning rate during training to resolve
the vanishing or exploding gradient problems. The RMSprop
optimizer achieves this by maintaining a moving average
of the squares of gradients for optimization purposes [37].
The details of the parameter setting are available in Table 3.
The array of filters in CNN, CNN-GRU, and 1D CNN-GRU
models, as well as the array of filter or hidden nodes in LSTM,
GRU, CNN-GRU, and 1D CNN-GRU, represent the filters or
nodes from the first to the last layers, arranged from left to
right.

C. RESULTS AND PERFORMANCE COMPARISON
As mentioned above, this research proposes the 1D
CNN-GRU model against other established DL models,
including CNN, GRU, LSTM, and a hybrid CNN-GRU.
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FIGURE 7. Architecture of the proposed 1D CNN-GRU model.

TABLE 3. The model parameters.

Fig. 8 shows the three-hour-ahead forecasting results,
presenting a 1-day horizon of solar PV power generation
forecasted, spanning 1,440minutes. The results show the pro-
posedmodel’s outstanding performance over its counterparts.
Especially in the winter season, Fig. 8(a) shows the result of
solar PV generation forecasted in the winter season closely
aligning with actual data points.

Moreover, the summer season, shown in Fig. 8(b), and the
rainy season, shown in Fig. 8(c), present the forecasted results
of the proposed model closely aligning with actual data, even

when the actual data has fluctuations and irregular patterns.
This demonstrates that the proposed model effectively
captures the patterns of fluctuations in actual data and follows
these patterns. This not only highlights the proposed model’s
outstanding performance but also underscores the unique
benefits of integrating 1D CNN with GRU. The 1D CNN
component excels in extracting spatial features from the
solar PV power generation data, while the GRU layers are
adept at understanding the temporal sequences. This strategic
combination enables the model to produce forecasts that
closely align with actual data points.

The proposed model has significantly outperformed other
models in terms of accuracy, as evidenced by its remarkably
low RMSE andMAE across all seasons (winter, summer, and
rainy), with these results illustrated in Table 4, particularly in
the winter season. The RMSE of the proposed model for all
seasons is 0.025, 0.050, and 0.094, respectively. Similarly, the
MAE of the proposed model for all seasons is 0.014, 0.031,
and 0.048, respectively. When compared to other models
such as CNN, LSTM, GRU, and CNN-GRU, the proposed
1D CNN-GRU model demonstrates excellent performance.
Specifically, the proposed model achieves lower RMSE and
MAE values across all seasons. These comparative metrics
highlight the proposed model’s exceptional capability to
forecast solar PV power generation three hours ahead with
greater precision and reliability.

The outstanding accuracy of the proposed model is further
highlighted by its R2 score across all seasons of 0.994,
0.956, and 0.891, as illustrated in Table 4. The proposed
model’s R2 score is higher than those of the other models.
This R2 score signifies the model’s exceptional precision in
forecasting, closely mirroring actual data. The closeness of
the model’s forecasts to actual observations underscores its
effectiveness, showcasing its ability to provide almost perfect
predictions in the context of solar PV power generation
forecasting.

The proposed model not only showcased exceptional
forecasting accuracy but also demonstrated remarkable
computational efficiency, as highlighted in Fig. 9. It sig-
nificantly outperformed other models in terms of training
time, completing its tasks in 1,038.6 seconds. In contrast, the
training times for the CNN, LSTM, GRU, and CNN-GRU
models performed at 8,354.1 seconds, 3,622.9 seconds,
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FIGURE 8. 1-day horizon of solar PV power generation forecasted at minute intervals. (a) The result of solar PV generation forecasted in the winter
season, (b) The result of solar PV generation forecasted in the summer season, (c) The result of solar PV generation forecasted in the rainy season.
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FIGURE 9. Training times comparison of the proposed model with
another model.

3,163.3 seconds, and 8,530.5 seconds, respectively. The
proposed model’s training time was significantly shorter,
with reductions of 87.57%, 71.33%, 67.17%, and 87.82%
compared to the CNN, LSTM, GRU, and CNN-GRUmodels,
respectively. The proposed model demonstrates outstanding
operational efficiency compared to other models due to its
structure, which combines feature extraction and sequence
modelling with exceptional effectiveness. The utilization of
ReLU and tanh activation functions during training hastens
the convergence process, enabling the model to achieve an
optimal solution expeditiously while consuming less training
time. This efficiency in processing underscores the model’s
capability to deliver not only accurate but also swift forecasts,
essential for practical implementation of solar PV power
generation forecasting, where timely and precise forecasting
plays a vital role.

As summarized, the proposed model performs better and
faster than all other models based on a comprehensive
evaluation of various metrics and training times. The
proposed model excels because it integrates the spatial
feature extraction capabilities of 1D CNN with the sequence
forecast strengths of GRUs, enabling it to capture both
temporal and spatial dependencies in the data effectively.
This synergy allows for a more nuanced understanding of
complex patterns, which is essential for accurate short-term
forecasting in solar PV power generation. Furthermore,
the proposed model is optimized to reduce computational
load, allowing for faster training times without sacrificing
the quality of the analysis, making it highly efficient for
operational use.

This combination positions the proposed model as a pow-
erful model for energy management and strategic planning
in the renewable energy sector. Its efficiency and reliability
enable swift, informed decision-making, which is essential
for optimizing solar PV systems. This capability is precious in
dynamic environments requiring rapid adjustments to energy
production strategies, enhancing operational efficiency and
reliability.

D. COMPARISON WITH EXISTING RELATED WORKS
In this subsection, the performance of the proposed 1D
CNN-GRUmodel is compared with existing related works in

TABLE 4. Performance comparison of the proposed model with another
model across all seasons.

the field of short-term solar PV power generation forecasting.
The comparison is focused on RMSE metrics to provide
insights into the advancements achieved by the model. The
comparison models include LSTM [11], GRU [13], CNN and
CNN-LSTM [15], CNN-GRU [20], and 1D CNN-GRU [21].
Table 5 summarizes the RMSE metrics of the proposed model
compared with existing works.

According to the results in Table 5, the proposed 1D
CNN-GRU model performs exceptionally well, achieving an
RMSE of 0.025 for the winter season, which outperforms
other models referenced in previous studies. Moreover,
when comparing the RMSE for the summer season with
that reported by Suresh et al. [15], the proposed model
demonstrates a lower RMSE than their model for the summer
period.

However, it should be noted that the GRUmodel discussed
in the study byWang et al. [13] exhibits exceptional accuracy
with an average RMSE of 0.036, making it the most accurate
model among those compared, with a lower average RMSE
than the proposed model for the summer and rainy seasons.
Wang et al. [13] emphasize a clustering algorithm to group
the dataset, resulting in increased complexity and training
time compared to the proposed model, which simplifies the
process and provides seasonal accuracy.

Furthermore, Wang et al. [13] rely on a 1-hour data fre-
quency, potentially overlooking temporary fluctuations and
rapid shifts in conditions that proposed model, utilizing data
collected at 1-minute intervals, can capture. This limitation
could impact its practicality in scenarios requiring prompt
decision-making. In contrast, the proposed 1D CNN-GRU
model integrates four Conv-1D layers with varying filter sizes
and three GRU layers, tailored to handle high-frequency data.
This design is particularly suitable for large-scale commercial
solar projects.

The study by Sabri and El Hassouni [20] introduced a
CNN-GRU model for solar PV power generation forecasting
with a focus on 5-minute intervals, reporting an RMSE of
0.103. Although their model demonstrates robust perfor-
mance, The proposed 1D CNN-GRU model achieves lower
RMSE across all seasons, showcasing its superior accuracy.
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TABLE 5. Summarized RMSE metrics of the proposed model and existing works.

Similarly, Babalhavaeji et al. [21] proposed a 1D
CNN-GRU model for solar PV power generation forecasting
with a longer forecasting horizon of 4 days and 5-minute
intervals, achieving an RMSE of 0.230. Compared to
the proposed model, their approach aims at longer-term
forecasting but with a higher RMSE . The proposed proposed
model, with its focus on high-frequency data and shorter
forecasting horizons, provides more accurate predictions
suitable for operational decision-making.

Overall, the superior performance of the proposed 1D
CNN-GRU model across different seasons underscores its
effectiveness in forecasting solar PV power generation.
By leveraging DL techniques and high-frequency data,
the model surpasses existing approaches, providing more
accurate and timely predictions essential for operational
decision-making.

IV. CONCLUSION AND POSSIBLE FUTURE WORKS
In this paper, a hybrid DL model named ‘‘1D CNN-GRU’’ is
proposed, combining 1D CNN and GRU models to improve
computation time and reduce resource usage in short-term
solar PV power generation forecasting, specifically for
three hours in advance. The aim is to enhance short-term
forecasting for the efficient operation of NCC, refine energy
distribution, enhance grid stability, and effectively integrate
renewable sources. The proposedmodel employs various data
preparation techniques consisting of SHAP-based feature
selection, data smoothing with EMA, and data augmentation
with Gaussian noise to enhance its performance, mitigate
fluctuations in the data and increase the dataset size.
Essential features are extracted from time series data, like
solar PV power generation, by the 1D CNN module,
while the GRU component delivers high-precision short-
term forecasts using the Hydro-Floating Solar Plant dataset
from the hydro-floating solar installation at Sirindhorn Dam
in Ubon Ratchathani province, Thailand. The accuracy of
the forecasting models was evaluated using metrics, i.e.,
RMSE , MAE , and R2 score, and the training time was also
evaluated with all seasons in Thailand. According to the
results, all other models were outperformed by the proposed

model in both accuracy and training time. The proposed
model achieved the lowest RMSE of 0.025 (winter), 0.050
(summer), and 0.094 (rainy), and the lowest MAE of 0.025
(winter), 0.050 (summer), and 0.094 (rainy), with a training
time of 1,038.60 seconds. The proposed model excels by
integrating feature extraction and sequencemodeling, leading
to superior operational efficiency. This efficiency highlights
the model’s capability for precise, swift forecasts. It is an
essential tool for energy management and strategic planning
in the renewable energy sector, where rapid adjustments are
crucial.

The potential direction is to extend the forecasting horizon
beyond three hours to include day-ahead predictions. Enhanc-
ing the model with granular weather data (e.g., cloud cover,
atmospheric pressure) and advanced ML techniques (e.g.,
ensemble learning, reinforcement learning) could further
improve accuracy and capture complex interactions between
weather and solar PV power generation. Furthermore,
investigating the model’s scalability to larger datasets and its
adaptability to various geographical and climatic conditions
is crucial. This includes evaluating performance under
extreme weather conditions and assessing sensitivity to data
quality and quantity, particularly in areas with limited data
infrastructure, to ensure real-world applicability.

In summary, by extending the forecasting horizon, incorpo-
rating more granular weather data, assessing scalability and
adaptability, and integrating emerging ML techniques, future
research can build upon the foundation laid by this study
and further advance the field of solar PV power generation
forecasting.
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