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ABSTRACT This study investigates the impact of Zlib compression on gas consumption within blockchain
systems, focusing particularly on Ethereum transactions. By employing the Ethereum simulator Ganache,
we simulate 100 realistic home delivery system datasets to evaluate the performance of compressed versus
uncompressed data. The methodology encompasses rigorous statistical analysis to ensure robust results. Our
findings reveal that using the Zlib algorithm to compress textual data exceeding 141 bytes before submitting
transactions on the Ethereum network reduces the gasUsed while maintaining the system time unchanged.
This demonstrates the effectiveness of data compression in optimizing transaction costs without affecting
operational efficiency. Additionally, our research extends to analyzing real gasPrice trends on the Ethereum
network. We propose a non-linear regression model that accurately predicts hourly gasPrice variations based
on the day of the week and the specific time. This provides a valuable tool for users to plan transactions
strategically. These insights enhance the understanding of blockchain dynamics and offer practical solutions

for improving economic and system efficiency in blockchain operations.

INDEX TERMS Text compression algorithm, transaction fees, blockchain, logistics, home delivery.

I. INTRODUCTION

As a subset of logistics, home delivery services streamline
the process from order placement to recipient pickup [1].
Smart logistics leverages technology for optimized deliv-
ery, enhancing resource utilization, cost-effectiveness, and
security [2], [3]. Blockchain adoption addresses security and
privacy concerns, ensuring enhanced security, transparency,
and sustainability in supply chain logistics [4].

Blockchain technology, introduced through Bitcoin [5]
and later enhanced by Ethereum [6], is a decentralized and
tamper-resistant framework crucial for ensuring integrity
and security in Industry 4.0 logistics. Its adoption mitigates
risks, counters fraud, and introduces transparency and trust,
essential in fostering sustainable and resilient supply chain
practices [7]. Blockchain technology enhances logistics by
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providing traceability [8], transparency [9], reliability [10],
and end-to-end oversight. Tailored systems and intelligent
contracts amplify efficiency, and decentralized features
bolster security [11]. Despite its potential to streamline
operations and fortify security, implementing blockchain in
logistics faces challenges such as a lack of shared trust
among stakeholders, complexity in integration, and barriers
in reverse logistics [12] including high costs and stakeholder
resistance [13]. Addressing confidentiality, privacy [14],
data integrity, and scalability is crucial to navigating the
complexities of blockchain implementation and carefully
evaluating its benefits and costs in the logistics industry [15].

Various strategies have been proposed to mitigate transac-
tion fees within the Ethereum network, including optimizing
fees by establishing the minimum price users should pay
for timely transaction processing [16]. Another strategy
involves shifting a substantial portion of contract execution
off-chain, significantly decreasing gas usage [17]. Adopting
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an optimistic rollup (ORU) technique facilitates computation
delegation from the main Ethereum blockchain to an
untrusted remote system, resulting in a 20 times reduction in
transaction fees [18]. Additionally, a max-min fairness-based
algorithm has been devised to equitably distribute Ether,
further reducing transaction costs and averting the exhaustion
of the block gas limit.

Home delivery service customers face variable fees
influenced by the product’s value and blockchain technology.
In addition to the delivery fees, users bear Transaction fees,
increasing the overall service cost. Sustainable adoption
strategies target mitigating blockchain-related service fees or
reducing transaction costs [19].

The Ethereum Improvement Proposals 1559 (EIP-1559)
upgrade uses a constant learning rate algorithm to calculate
the base fees, addressing congestion issues. Transaction
fees in Ethereum and similar blockchain systems are
user-determined and comprise base fees and an optional tip
[20]. Blockchain systems aim to optimize fees for timely
transactions while minimizing user costs [16].

Notably, compression techniques play a crucial role in
mitigating transaction fees in blockchain systems. Sym-
meProof integrates vector compression and inner-product
range proof methods, resulting in efficient, non-interactive
zero-knowledge range proofs and reduced communication
costs [21]. Another method focuses on removing transaction
data with a high ratio of spent transaction outputs and com-
pressing fixed-length fields, achieving a notable compression
ratio of 96.90% and substantial storage space savings for
Bitcoin full nodes [22]. These methods underscore the use of
compression techniques to effectively minimize transaction
fees in blockchain systems.

In contrast, blockchain in-home delivery is discouraged
due to high transaction fees, extended response times
from processing large data sizes [19], and the limitations
of decentralized approaches, which often lack trust and
may necessitate reliance on third parties [23]. Additionally,
deploying blockchain in-home delivery may require private
chains, limiting global availability and scalability [24].
Although home security improvements are uplifting, it is
essential to recognize that blockchain technology is not
invincible to security breaches. Despite their much-lauded
security measures, smart home devices are susceptible to
viruses and hackers [25].

This research proposes a method to address challenges in
employing blockchain for home delivery, focusing on min-
imizing gas costs using data length reduction. Specifically,
the suggested approach involves compressing data before
entering the blockchain network. However, this approach
introduces an overhead in execution time. Therefore, we must
demonstrate that our approach is relatively low on execution
time. Moreover, the research recommends optimizing costs
further by identifying optimal transaction fees and refin-
ing transaction responsiveness. Ultimately, these strategies
aim to enhance blockchain technology’s efficiency and
cost-effectiveness in home delivery.
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Il. BACKGROUNDS AND RELATED WORKS

A. BLOCKCHAIN TECHNOLOGY

Various information methodologies have emerged in
response to prevalent challenges, with blockchain as
a prominent solution. Nakamoto introduced blockchain
technology to establish an electronic monetary system devoid
of intermediaries [5]. This approach entails encrypting
transactions within blocks, interconnecting them, and sys-
tematically appending new blocks. Employing a distributed
consensus algorithm to encrypt block data ensures data
security.

Blockchain operates as a peer-to-peer network utilizing
the TCP protocol and featuring a randomized topology,
where each node autonomously peers with others [26].
Decentralized transactions are facilitated through blockchain
technology, which boasts a sophisticated technological
infrastructure. Upon a client or application publishing a trans-
action to the blockchain network, miners validate it while
nodes authenticate transactions. Each miner node scrutinizes
the transaction’s legitimacy, ensuring the sender possesses
adequate funds to cover processing fees or, in the case of cash
transfers, sufficient funds. Additionally, it verifies recipient
details. Subsequently, the miner node constructs a block
comprising validated transactions. However, the blockchain
network selects only one miner’s block through a consensus
mechanism. The block is disseminated to all nodes upon
election, rewarding the blockchain network and transaction
verification fees. The block is anchored to the network via a
link or chain maintained by the block’s hash function. Any
alterations to the block result in hash value modification,
revealing transaction inconsistencies.

B. ETHEREUM

Ethereum represents a distributed computing platform com-
prising a decentralized, automated, and democratic network
of computers, gaining widespread acceptance across various
domains [6]. At the core of Ethereum lies the smart
contract, a groundbreaking concept in blockchain technology.
Leveraging Ethereum’s self-executing and event-triggered
features, smart contracts enable online actions to transpire
sans reliance on trusted intermediaries. With a robust com-
munity and information exchange platform, Ethereum thrives
as an innovation hub. Smart contracts encapsulate rules
and obligations, comprising addresses, states, and functions.
These contracts are identified by unique addresses within
the Ethereum Blockchain Network. Ethereum facilitates
the execution of smart contracts and the deployment of
distributed applications, whereas Solidity smart contract acts
as the backend, complemented by a web application frontend.

C. TRANSACTION FEES
The transaction fee is the cost of executing a transaction on
the Ethereum blockchain platform, calculated based on (1).

TransactionFree = gasUsed x gasPrice, @))
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FIGURE 1. The sequence diagram illustrates the process of home delivery
using blockchain technology. [19].

when gasUsed refers to the number of gas units required to
execute the transaction, while gasPrice refers to the amount
the transaction issuer is willing to pay for each gas unit.

In Ethereum, miners process transactions and receive
mining rewards directly from these transaction fees. It is
important to note that a higher gas price does not necessarily
imply a higher transaction priority. Blockchain-powered
application developers face challenges in setting optimal
gasPrice due to the cyclic dependency between gasUsed and
gasPrice. The actual gas usage of a transaction can only be
known after it is processed.

The gasUsed in the Ethereum network has multifaceted
impacts. Miners prioritize transactions based on gasPrice
rather than transaction fees, leading to no guarantee of
higher priority with a higher fee. This challenges developers
as the exact gas usage of contract transactions is known
only after processing. Gas optimization techniques offer
potential solutions, like deploying fee-less smart contracts
using Solidity. The gasUsed of Ethereum is affected by
gas costs for Ethereum virtual machine (EVM) operations,
gas-expensive smart contract patterns, and alignment with
computational costs.

D. BLOCKCHAIN-BASED HOME DELIVERY SYSTEM
The home delivery system incorporates a carefully designed
data structure and smart contract for data integrity and
security assurance. We previously proposed blockchain
technology’s application in enhancing security and trans-
parency for home delivery logistics [19]. It aims to address
non-repudiation issues and improve overall security. A robust
security policy framework is introduced to govern blockchain
usage, fostering trust and accountability. Through blockchain
implementation, we proposed specific mechanisms to pre-
vent nonrepudiation issues for home delivery systems and
demonstrated this system in the Ethereum network. We com-
prehensively analyze transaction costs and response times to
evaluate the system’s performance. However, the transaction
fees and the response time are too high, more than acceptable
for the business to invest.

In Figure 1, the interactions between the home deliv-
ery platform and the smart contract encompass functions
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with varying transaction fee characteristics. Expressly, the
addOrder() function incurs a higher transaction fee con-
tingent upon data length, while other functions primarily
involve updating the order’s status and incur lower fees.
Consequently, this research analyzes transaction fees and
response times about the addOrder() function within this
context.
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— Dictionary-based «[
LZString — Optimized for compressing short strings
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822 Uses Burrows-Wheeler
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FIGURE 2. Taxonomy of text compression algorithms.

E. TEXT COMPRESSION ALGORITHMS

Text compression algorithms are techniques employed to
reduce text data size while maintaining original content.
These algorithms fall into two categories: lossless, which
aims to minimize data size without losing information, and
lossy, which sacrifices information for higher compression
ratios [27]. However, this paper solely focuses on lossless
text compression techniques. The significance of data
compression and the need for effective data management
in the contemporary data-intensive era is of utmost impor-
tance, as compression enhances storage and transmission
capabilities, resulting in faster data transfer and reduced
storage space requirements while also enabling efficient
search within compressed files, potentially improving search
speed compared to uncompressed text [28].

Figure 2 shows the taxonomy of the text compression
algorithm. A text compression algorithm that integrates
dictionary-based approaches, DEFLATE-based methods,
advanced techniques, high compression ratios, and fast
compression/decompression capabilities aims to efficiently
reduce the size of textual data while maintaining a balance
between compression effectiveness and processing speed.
Dictionary-based algorithms like LZ77 and LZ78 replace
repetitive patterns concerning dictionary entries, while
DEFLATE combines LZ77 with Huffman coding for efficient
compression.

Advanced techniques such as the Burrows-Wheeler Trans-
form further enhance compression efficiency. Achieving
a high compression ratio minimizes redundancy, while
fast compression/decompression algorithms prioritize speed
without compromising compression effectiveness. Together,
these components enable the algorithm to significantly
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reduce the size of compressed text while ensuring rapid
processing, which is crucial for various applications, from
data storage to real-time data processing.

Optimizing gas usage in FEthereum involves various
techniques and tools to reduce the cost of smart contract
development and transactions. GaSaver automates the detec-
tion of gas-expensive patterns in Solidity code [29]. Super-
optimization explores all possible instruction sequences to
find the most efficient translation [30]. Static profiling
identifies gas-expensive fragments and optimizes gas con-
sumption [31]. MadMax utilizes static program analysis to
detect gas-focused vulnerabilities in smart contracts [32].
Lastly, the ATOM smart contract architecture supports fast
contract updates and efficient execution to minimize gas
usage, update latency, and ledger size [33]. Zamani et al.
proposes an algorithm that reduces gas consumption in
blockchain networks by compressing data through DNA-to-
ASCII conversion, delta computation, and LZW compres-
sion [34]. This approach lowers gas usage, reduces fees,
improves scalability, and enhances data security through
blockchain-based immutability.

Ill. MATERIALS AND METHODS

A. RESEARCH FRAMEWORKS

In this study, we have developed and outlined a methodology
to minimize transaction fees within a blockchain-based home
delivery system by employing data compression and gas price
reduction techniques. Implementing these techniques may
improve the overall service’s response time.

The proposed system, as depicted in Figure 3, consists of
several distinct components, including data generation, a text
compression algorithm, gas price balancing, and transaction
fee minimization. We generated a dataset comprising 10,000
orders in JSON format. The dataset contained customer
information with varying text lengths in fields such as
name, address, telephone number, and item quantity. Firstly,
we identified an optimized text compression algorithm
tailored to our objectives, which included reducing gas usage
and system times during compression and decompression
processes. Secondly, we examined the influence of fluctuat-
ing gas prices on transaction fees and their consequent impact
on the system time of the Ethereum network to enhance
transaction cost efficiency. Finally, we proposed an algorithm
integrating the selected compression method with strategic
gas pricing strategies. This approach aims to minimize
transaction fees while ensuring acceptable response times on
the Ethereum network. Our research contributes significantly
to blockchain technology and decentralized applications by
addressing the efficient management of transaction costs and
response times.

B. SIMULATING TEXT COMPRESSION ALGORITHM

This section aims to identify an optimal data compression
algorithm by evaluating various factors, including data
reduction efficiency, compression and decompression times,
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and blockchain resource utilization. Key considerations
include balancing processing time and compression ratio.
Additionally, it is important to assess the impact of gasUsed
on blockchain transaction efficiency and resource costs.
These factors are guiding principles for selecting the
most suitable algorithm, ensuring optimal performance and
resource utilization within the blockchain ecosystem.

[ Random data set (JSON) j

Text Compression
Alogrithm

Gas Price Balancing

To reduce |
text length

' To balance gas
1 price & system time

v v

Our Algorithm
System Time

Transaction Fee Minimization

FIGURE 3. Architecture of our proposed method.

1) DATASET

This experiment simulated the ordering process of items
from a restaurant by generating data representing the
restaurant, customer, and items ordered. Subsequently, the
data was randomly matched to create a dataset comprising
100 transactions in JSON format. A transaction includes
information such as the ordered items (name, quantity, price),
details about the restaurant (name, telephone number), and
customer information (name, location, telephone number).
The transaction’s data length in the data set varies between
117 and 1,254 bytes (mean = 746.42, s.d. = 334.69),
as illustrated in Figure 4.

Figure 4 illustrates a representative transaction sample
containing details of two distinct items, including the
customer’s precise address and telephone contact, as well
as the appellation and contact number of the restaurant.
Notably, the textual content of this example totals 333 bytes,
a size typical of data parcels encountered in food delivery
transactions.

2) PERFORMANCE METRICS

This experiment aimed to evaluate the gasUsed, system time
(ST), and compression ratio (CR) for a transaction. The
performance metrics were as follows:

o gasUsed is a fundamental Ethereum metric that mea-
sures the computational costs incurred during smart
contract execution. Users pay for gas, which serves as
a reward for miners. Gas costs can vary depending on
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FIGURE 4. The 100 orders (transactions) of data set.

coding style and data length, and accurate metrics are
obtained from the Web3 Library for precise assessment.

o Compression Ratio (CR) is a measure of the effective-
ness of the compression process. It is calculated by
comparing the original data’s size to the compressed
data’s size. The compression ratio can be expressed
using the following formula:

CR = Cpost

Cpre

@

where ¢y represent the volume after compression and
Cpre represent the volume before compression.

o System Time (ST) refers to the duration starting from
the initiation of a transaction. This begins with the
commitment to the API that invokes the smart contract.
It ends when the caller receives a notification indicating
the successful completion of the process. The system
time consists of three components: compression time
(tc), waiting time (t,,), block time (#,) and execution
time (z,) in the blockchain, decompression time (#7),
and € denotes other latency time in the transaction.
The empirical evaluation is conducted within an isolated
system, excluding the influence of network latency:

ST =te+ty+tp+te+tg+€ 3)
3) TESTBED AND SCENARIOS

To conduct a comprehensive comparison involving the
metrics of gasUsed, system time (ST), and compression
ratio (CR) across nine distinct text compression algorithms
(LZW, LZString, GZip, Brotli, BZ2, LZ4, LZMA, Zlib, and
Zstd), a dataset comprising 100 transactions are subjected
to compression with each algorithm before submission
onto the Ethereum network. Subsequently, the compressed
transactions are transmitted onto the Ethereum network for
execution, following which the resulting transactions are
retrieved and decompressed. All performance metrics are
evaluated and analyzed using statistical methods. These
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“Menu": |
{
"'menuName"
"menuPrice":
"oty 3

"Special fish cake",
“70",

"menuName"
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"ty 2

"Chicken curry"
e

"Customer":
"Name": "Chanankorn Jandaeng"

“Location": "Sukhumwit miS R, 10260
"Phonenumber": '"0849999999"

"Restaurant":
"Rest_name"
"Rest_phone"

"ABC Restaurant",
''0876322222"

(b) The example of dataset represented in the JSON format (333 bytes).

methods compare the mean values and model regression
functions based on hypothesis tests.

Ganache Ethereum blockchain has been selected as the
designated platform for executing transactions to mitigate
potential network delays. The smart contract is developed
using the Solidity programming language, ensuring seam-
less integration with the Ethereum network via Web3.py.
Furthermore, the installation and invocation of the web API
are performed on the networked computer. The invocation
procedures utilize the Python programming language within
the Flask framework to ensure efficient interaction with the
Ethereum network.

4) RESULTS: GAS USED

The study investigates different data compression algorithms
by analyzing gasUsed metrics. Figure 5 compares the average
gasUsed between text compression algorithms and the data
variance. This arrangement facilitates the comparison of
variability and central tendency across algorithms. The algo-
rithm demonstrating the most efficient gasUsed performance,
characterized by the lowest average gas usage, is positioned
at the leftmost side of the graph.

This analysis is crucial in algorithm selection across
various scenarios, considering gasUsed requirements and
compression efficiency. Four algorithms exhibiting the lowest
average gas usage were selected for normal distribution
analysis. However, the utilization of Shapiro-Wilk statistical
tests indicated that these four algorithms significantly deviate
from a normal distribution (p < 0.05), thus requiring
further examination. The gasUsed of Brotli, Zlib, GZip,
and Zstd algorithms does not follow a normal distribution
(K = 10.0167,p = 0.0184). Consequently, all pair
comparisons were conducted using pairwise Mann-Whitney
U tests. The statistical analysis uncovers notable performance
discrepancies between Brotli, Gzip, and Zstd. At the same
time, no substantial difference is observed between Brotli and
Zlib before the p adjustment. Considering gas consumption,
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FIGURE 5. The comparison of gasUsed between text compression algorithm and the original data.

Brotli and Zlib emerge as suitable candidates for the specific
application under scrutiny.

We analyzed the trend lines of gasUsed across the four
algorithms relative to data length to assess and validate
the performance of both algorithms accurately. Figure 5
demonstrates that the gasUsed of all algorithms exhibits
growth following logarithmic functions, with R” values
exceeding 0.9000. Let Hg, H,, H,,, H; represent the gasUsed
of Brotli, Zlib, Gzip, and Zstd, respectively, as a function of
data length x in bytes. The regression functions are expressed
as follows:

Hg(x) =70, 497.05log(x) — 190, 836.88, R? =0.9141,
H, (x) =775,774.6910g(x) — 222, 939.40, R? = 0.9096,
H,(x) =78,794.05log(x) — 232,715.02, R? =0.9101,
H¢(x) = 85,776.14log(x) — 275, 889.24, R? = 0.9207
“

This study examines the gas usage efficiency of Brotli,
Zlib, Gzip, and Zstd over the Ethereum network, utiliz-
ing statistical analysis to evaluate their performance. The
Shapiro-Wilk test revealed that the gas usage data for
distinct algorithms does not conform to a normal distribution,
indicating unusual patterns. The Kruskal-Wallis H test
identified significant differences in mean gas usage among
various algorithms. Further pairwise comparisons via the
Mann-Whitney U test showed significant differences between
Brotli, Gzip, and Zstd. However, no significant difference was
observed between Brotli and Zlib. An intersection analysis
between Brotli and Zlib determined that both algorithms
exhibit equivalent gas usage at a data length of approximately
439 bytes, quantified at approximately 237,980 gas.

5) RESULTS: COMPRESSION RATIO

This study compared the efficiency of different data com-
pression algorithms to determine the most effective one
for this research. Figure 6 presents the results, showing
the distribution of compression ratio (CR) values for each
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algorithm using a boxplot method and arranging the average
CR in ascending order. The findings indicate that the Brotli
and Zlib algorithms have similar and lower distribution
spreads than others, with closely matched CR values.

Figure 6 utilizes boxplot graphs to illustrate the varying
compression rates across multiple algorithms, emphasizing
differences in efficiency. The algorithms are ranked based
on average compression ratios, highlighting their ability to
reduce data. The main observation is that the algorithm
with the lowest average compression ratio performs most
efficiently. The size of the boxplots and whisker lengths indi-
cate the diverse data handling capabilities of the algorithms,
with outliers suggesting potential significant deviations in
compression performance under specific conditions. This
analysis is crucial for selecting the most suitable algorithm
for an application, considering the need for high compression
performance and versatility in processing various data types.
This comparison assists in choosing the most effective
algorithm to meet specific compression requirements and
data handling expectations.

This analysis investigates the relationship between data
size and compression ratio within the framework of the Zlib
algorithm, utilizing a mathematical model to elucidate this
relationship as depicted in Figure 6b. The study indicates that
the model achieved the highest R?, indicating robust adapt-
ability. Notably, the logarithmic model emerged as the best
fit for the data, with an R> = 0.9449. This high coefficient
of determination underscores the model’s effectiveness in
capturing significant variation in compression rate relative to
data size.

Further insights were obtained through additional analysis,
where a horizontal line was drawn at y = 1 on the graph
to demarcate the point where the compression ratio equaled
the original data size, indicating negligible compression.
These findings carry significant implications for compression
algorithms in long-length data management. They provide
a nuanced understanding of algorithmic performance across
different data sizes. Consequently, this elucidation enables
informed algorithm selection tailored to the specific data
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FIGURE 6. The comparison of compression ratio between text compression algorithm and the original data.

characteristics. The study compares Zlib and Brotli algo-
rithms for text compression, finding Zlib comparable but
faster. It highlights a threshold for effective compression,
below which overhead increases. Emphasizing the impor-
tance of model selection aids in optimizing compression
strategies. These insights enable informed decision-making
and adopting efficient data management practices in technical
contexts.

The study compares the Zlib and Brotli algorithms for
text compression, noting that Zlib is comparable to Brotli
but operates faster. It identifies a critical threshold for
effective compression, below which overhead increases.
Model selection is emphasized when optimizing compression
strategies. These insights facilitate informed decision-making
and the adoption of efficient data management practices in
technical contexts.

6) RESULTS: SYSTEM TIME

From the perspective of system time, the investigation exam-
ines the compression and decompression times of various
algorithms quantified in milliseconds, as shown in Figure 7.
The findings reveal discernible discrepancies in processing
duration among the algorithms. Some algorithms, such as
Zstd, Zlib, and Gzip, exhibit distributions characterized by
minimal variance and low median values, indicative of
superior compression and decompression speeds. Conversely,
other algorithms, such as Brotli, Bz2, and Lzma, display
notable outliers and elevated data variance, suggesting
varying responsiveness contingent upon the nature of the
compressed data. This comprehensive examination provides
insights into the performance and stability of each algorithm,
facilitating informed algorithm selection for diverse compres-
sion scenarios.

Two algorithms (Brotli and Zlib) demonstrate the least
gasUsed values and are singled out for further consider-
ation. Therefore, examining boxplot graphs depicting the
performance of the Brotli and Zlib compression algorithms,
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organized by averages, underscores a notable contrast in
performance and execution time stability. The averages and
medians of work times serve as indicators of overall speed
and productivity, with algorithms boasting lower values
being preferable for applications necessitating heightened
performance and swift response times. Analysis of the dis-
tribution of work time, including outlier detection, provides
insights into the stability and reliability of each algorithm
across diverse application scenarios. These findings should
be considered pivotal when selecting a data compression
algorithm tailored to the application’s specific needs and
performance requirements.
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FIGURE 7. System Times of Brotli and Zlib are not normal distributions
(p < 0.05). Moreover, the system time of Zlib is significantly less than
Brotli (p < 0.05).

C. BALANCING GAS PRICE AND SYSTEM TIME

Transaction fees are determined by gasPrice and gasUsed.
Our research aims to reduce gasUsed through text compres-
sion. The gasPrice is predetermined for each transaction.
Because of the correlation between gasPrice and system
time, this experiment investigates their relationship and
recommends adjusting gasPrice to decrease transaction fees.
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FIGURE 8. The queuing model of the Ethereum platform and its system time. In addition, the compression time and decompression time are added

to the system time when evaluating the performance of our approach.

TABLE 1. Initial parameter of the experiment II.

Parameters Initial data

dataset 100 transactions

data length 117 to 1,254 bytes

GasPrice [20, 21, 22, 23, ..., 30] GWei
block time 12s

Gas Limit 2,5000,000

wallet 100 addresses

1) TESTBED AND SCENARIOS

The outcomes of this investigation are pivotal in elucidating
the influence of gasPrice settings on the efficiency of
blockchain transactions. This research is crucial for optimiz-
ing transaction fees in blockchain application development.
Furthermore, it underscores the value of utilizing a testnet
like Ganache for risk-free experimentation and development,
providing valuable insights into the performance and scala-
bility of blockchain-based applications. Table 1 outlines the
parameters pertinent to this study.

Table 1 elucidates the dataset, detailing 100 transactions
alongside their respective data lengths. To experiment, the
average gas price sourced from EtherScan is set at 25 GWei.
Thus, this study systematically varies this parameter within
a range of + 10 percent of the average value. Moreover,
relying on EtherScan data (https://etherscan.io), the block
time is 12 seconds. The experiment initiates the gas limit at
2,500,000 to accommodate rapid block creation.

2) PERFORMANCE METRIC: SYSTEM TIME

Our study investigates the relationship between gasPrice
and transaction system time within the Ethereum platform
and found that Quan-Lin Li modeled the blockchain queue
system based on a single queue and two stages of batch
services [35]. On the other hand, this paper models
Ethereum’s transaction scheduling system and employs two
distinct queue models, as Figure 8 illustrates. The first model
utilizes a multilevel queue system, akin to scheduling arrival
transactions based on a Poisson distribution. Within this
model, the multilevel queue is segmented based on gasPrice,

109204

with transactions featuring the highest gasPrice prioritized
for processing. In instances where transactions possess
identical gasPrice, a first-come-first-serve (FCFS) approach
is employed. In contrast, the second queue model adopts a
fixed-length queue structure contingent upon reaching either
block time or gas limit thresholds.

Ethereum’s scheduler comprises two queueing systems.
When transactions share the same gasPrice value, the
scheduling mechanism follows an FCFS approach. This
entails ensuring that the sum of all gasUsed within a block
does not surpass the gasLimit. Ethereum initiates a new block
if this limit is exceeded and processes the preceding block.
Similarly, if the gasUsed amount is insufficient, Ethereum
generates a new block and processes the preceding block
upon reaching the block time threshold. Although such
scenarios are rare due to varying gasPrice values among
transactions, a multilevel queuing mechanism addresses this.
Within multilevel scheduler implementations, transactions
with higher gasPrice values are prioritized. If the sum of
gasUsed exceeds the gasLimit, Ethereum creates a new
block. In cases where the highest queue level exhausts
its transactions, the scheduler selects transactions from
the next highest queue level. While awaiting the creation
of a new block, if a transaction with a higher gasPrice
emerges, the scheduler elevates the priority of subsequent
transactions, resulting in prolonged waiting times for lower-
priority transactions.

In this context, system time represents the duration elapsed
from transaction initiation to completion and subsequent
inclusion within a block. The timestamps documenting these
intervals are sourced from two distinct origins: start time
is logged through code execution, while termination time
is recorded via the inherent data structure of the Web3.py
library.

3) RESULTS: SYSTEM TIME

This research investigates the relationship between gasPrice,
denoted in Gwei, and the system time required for logging
data into a smart contract. A notable inverse correlation
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between gasPrice and system time is elucidated through
linear trend line analysis, as depicted in Figure 9. This
suggests that transactions with higher gasPrice values are
processed more expeditiously and are promptly incorporated
into blocks. This analysis’s derived R* = 0.9600 underscores
a robust correlation, providing further evidence that gasPrice
significantly influences transaction execution speed within
the network.

This experiment highlights a linear correlation between
system time and the variable gasPrice. As gasPrice increases,
system time accelerates correspondingly, as evidenced by an
approximate increment of 9 milliseconds from the baseline
observation.

D. FINDINGS

This study delves into the correlation between data volume
and the efficacy of the Zlib algorithm’s compression,
employing a combination of simulation and mathematical
analysis to elucidate this relationship. The aim is to provide
insights into predicting the interplay between these factors.
Leveraging a logarithmic model, the research achieves an
R? = 0.9449, indicating the robust adaptability of the model
in elucidating variations in compression rates relative to
data size. The analytical process incorporates introducing a
horizontal line at y = 1 on the graph in Figure 6, delineating
the threshold beyond which compression efficacy diminishes,
thereby facilitating a clearer comprehension of the algo-
rithm’s performance across different data magnitudes.

The findings underscore the logarithmic model’s effi-
cacy in accurately capturing the relationship between data
size and the compression efficiency of the Zlib algo-
rithm. Consequently, this research furnishes significant
insights into selecting optimal compression strategies within
blockchain scheduler management. The study contributes to
the broader discourse on applying compression algorithms
by highlighting the importance of algorithmic efficiency
in handling expansive datasets. It emphasizes the necessity
of tailored algorithm selection based on specific data
characteristics.
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Furthermore, this research advocates for gasPrice as the
primary determinant for transaction processing. The method-
ology involves gathering daily average gasPrice data and
estimating system time, encompassing compression, waiting,
blocking, execution, and decompression time within the
blockchain network. Minimizing system time for transactions
necessitates a strategic approach, wherein the gasPrice
associated with a transaction is adjusted to secure placement
in the higher priority queue.

a

| = length(Tx:.data)
Ixi. compress = False

it

Txl data = compress(Txi. data)
Txi.compress = True

Return Tx;

il

FIGURE 10. Flowchart of transaction fees minimization.

IV. TRANSACTION FEES MINIMIZATION

This section introduces an algorithm to minimize the
Ethereum transaction fees by integrating a data compres-
sion mechanism before transmitting transactions to the
Ethereum network. The experimentation conducted herein
predominantly evaluates performance metrics. The gasUsed
is quantified to indirectly assess the fees, while potential
time increments resulting from implementing the proposed
algorithm are estimated.

A. PROPOSED ALGORITHM

Utilizing the linear regression function depicted in Figure 6,
we ascertain a threshold for determining whether textual
data requires compression before transaction submission
to the blockchain network. The compression ratio (CR)
of the Zlib algorithm is expressed by the equation y =
—0.3383 log(x) +2.6753, with a coefficient of determination
(R?) of 0.9449. When the compression ratio equals 1.0,
the corresponding data length x is calculated as exp[(1.0 +
0.3383)/2.6753] ~ 141 bytes. Consequently, data exceeding
141 bytes undergo compression, while data below this
threshold remains uncompressed. The flow chart of our
algorithm is shown in Figure 10.

B. TESTBED AND SCENARIOS

The dataset utilized in this experiment is structured in JSON
format, mirroring the setup of the previous experiment.
It encompasses 100 orders with data lengths ranging
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FIGURE 11. Average gasUsed between the Zlib algorithm and the original
data. The gasUsed of are not normal distribution (p < 0.05), and paired
comparisons with pairwise Mann-Whitney U tests (U = 6,894.0, p < 0.05).

from 115 to 1,278 bytes. To mitigate the influence of external
network latency, the smart contract is deployed on Ganache,
facilitating the isolation of variables impacting transaction
speeds and reliability.

In the experiment, these 100 orders are the control variable
submitted to the blockchain network. Subsequently, the same
dataset undergoes processing via flowchart in Figure 10 to
assess and potentially compress text based on length. The
subsequent section will meticulously collect and analyze
performance metrics resulting from these operations, such as
gasUsed and system time.

Although the primary objective of this paper revolves
around minimizing transaction fees, it is imperative to note
that gasUsed directly corresponds to these fees, as articulated
in (1). For this experiment, the gasPrice is held constant
at 25 GWei, aligning with the average gasPrice. The
performance metrics under this study are gasUsed and system
time, with further elaboration on their significance provided
in Section III-B2 of the manuscript.

C. RESULTS: GAS USED

The experimental investigation compared gas consumption
with and without data compression, showing a notable
decrease in gas usage when the compression algorithm
was employed. This reduction is visually demonstrated,
as compression results in shorter data length and lower gas
consumption than uncompressed data. Figure 11 highlights a
clear difference between the original text and the algorithm’s
results. Further statistical analysis confirms a significant
difference between the approaches, including a normal distri-
bution test and a pairwise Mann-Whitney U test conducted on
the mean gasUsed (n = 100). Specifically, the Mann-Whitney
U test, with a sample size of 100, indicates a substantial
disparity in the average gasUsed (p < 0.05), validating the
effectiveness of the compression algorithm in reducing gas
consumption.

This experiment concludes that text compression tech-
niques can effectively decrease gasUsed in transactions.
Additionally, if the length of the text is below 141 bytes, the
algorithm will bypass text compression due to a compression
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ratio exceeding 1.0, potentially leading to an increase in
gasUsed.

D. RESULTS: SYSTEM TIME

The comparison of average system time between the original
baseline and data processed through our algorithm yields a
statistically insignificant result (p > 0.05). This indicates
that incorporating our algorithm, which compresses textual
data before transaction submission to the Ethereum network,
has no discernible impact on overall processing time.
Furthermore, a similar lack of significance is observed when
comparing system time with overall time, as depicted in
Figure 12.

V. DISCUSSIONS

A. TEXT COMPRESSION ALGORITHMS

This paper endeavors to reduce transaction fees within the
home delivery system, a topic explored in our previous
research. The first factor of transaction fees is gasUsed
for each transaction. The data length causes an increase or
decrease in gas usage. Our dataset comprises textual data
in JSON format stored in our smart contract. We inspect
to identify the most suitable text compression algorithm
for our dataset. Among the top-performing algorithms for
minimizing gasUsed in our dataset are the DEFLATE-based
algorithms (Zlib and Gzip) and advanced techniques (Brotli
and Zstd algorithms).

In theory, Brotli offers a higher compression ratio, but
its compression process tends to be slower than DEFLATE-
based algorithms. The Zstd strikes a balance between
compression ratio and speed. Conversely, Zlib and Gzip
algorithms prioritize speed while adjusting compression
ratios. The Zlib is typically utilized for library compression,
while Gzip is favored for file compression.

Our study’s empirical findings indicate that both Brotli and
Zlib algorithms exhibit the lowest average gas usage, with
no significant difference. Due to its designed fast processing,
the Zlib algorithm boasts a shorter system time compared
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to Brotli. Considering the trade-off between gasUsed and
system time, the Zlib algorithm emerges as the optimal
solution for our work based on this dataset.

B. TRANSACTION FEES MINIMIZATION

The second determinant of transaction fees lies in gasPrice.
Our paper illustrates the correlation between gasPrice and
system time, revealing that system time indirectly increases
with gasPrice. Transactions with higher gasPrice are pri-
oritized over those with lower gasPrice, ensuring timely
processing. To expedite transaction processing, a transaction
can set its gasPrice higher than the average gasPrice at the
time of submission.

In our analysis, we examined gasPrice trends on the
useweb3.xyz website between April 20, 2024, and May 12,
2024. We propose the non-linear regression model between
the day of the week and hours to predict gasPrice with
Random Forest Regression (RMSE = 4.67). Figure 13
illustrates the periodic growth of gasPrice, with a noticeable
24-hour cycle. GasPrice tends to start near its peak during
midday and gradually decrease until reaching its lowest point
around 10 AM. Subsequently, gasPrice ascends to its peak in
the evening, particularly from 8 PM to 12 AM. Additionally,
gasPrice remains elevated during weekdays, reflecting higher
network activity.

As depicted in Figure 9, our linear regression model
indicates that for every 1 GWei reduction in gasPrice. System
time is expected to increase by approximately 18.38 %
relative to the baseline and decrease when gasPrice rises.
This insight enables us to estimate system time and balance
response time and fees incurred by the customer.

The distinction between public and private blockchain
networks presents an intriguing issue. While it is true that
transaction fees in private blockchains are non-existent, this
benefit is offset by increased hardware costs, the requirement
for specialized knowledge to maintain the blockchain server,
and the need for redundancy to prevent server failures. These
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factors create a competitive landscape between cloud-based
and server-based systems. Our research explores the feasi-
bility of cloud-based solutions, acknowledging the necessity
of transaction fees. Thus, we aim to investigate methods to
reduce these transaction fees effectively.

C. LIMITATIONS

Using text compression techniques, we proposed, demon-
strated, and evaluated transaction fee minimization for
Ethereum blockchain technology. We simulated 100 realistic
datasets and experimented with research for our framework
on the local blockchain network. The effects of network
speed and hardware resources were not evaluated. Thus, the
experimental results regarding system time cannot be used as
a reference in real-life applications.

The limitation of our experiment is that we execute all test
cases on the blockchain simulation named Ganache. Testing
on a real blockchain network can only evaluate the gas used.
We cannot estimate the system time because the network
bandwidth affects the experiment more than the response time
of operation in the blockchain network.

VI. CONCLUSION

This study meticulously examines the efficacy and impli-
cations of data compression within blockchain systems,
specifically focusing on gas consumption and comparing
Zlib-compressed data to its original counterpart. We sys-
tematically evaluate our approach and draw meaningful
conclusions by simulating 100 realistic datasets on the
Ethereum simulator Ganache and employing rigorous statis-
tical methodology. Our findings suggest that employing the
Zlib algorithm for compressing textual data sets exceeding
141 bytes before transaction submission to the Ethereum
network results in lower gasUsed than the baseline while
system time remains relatively unchanged. Additionally, our
analysis includes an investigation into the real gasPrice trends
of the Ethereum network, culminating in the proposal of
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a non-linear regression model that predicts gasPrice for
each hour based on the day of the week and time of

day.

This research delves into the efficacy of Zlib data com-
pression within blockchain systems, specifically focusing
on Ethereum transactions. Utilizing the Ganache simulator
to analyze 100 realistic datasets, we demonstrate that
compressing textual data exceeding 141 bytes significantly
reduces gas consumption without impacting system time.
This study also introduces a non-linear regression model
that predicts hourly gas prices based on weekly time cycles,
providing a strategic tool for optimizing transaction costs.
Our findings highlight the benefits of data compression
in improving economic efficiency and system performance
in blockchain operations, offering valuable insights and
methodologies for both practical applications and further
academic exploration.
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