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ABSTRACT Voltage and current requirements imposed by direct current loads are highly demanding in
modern applications such as microgrids and electric vehicles. High-performance converters and controllers
are required for these applications. The versatile buck-boost (VBB) converter has shown comparative
advantages such as non-inverting output, wide bandwidth, and smooth transition between operation modes
and current control loops. The control law can enhance these intrinsic advantages. In this work, a passivity-
based current controller is designed and implemented for this converter. The control is based on the
system’s dissipative characteristic to match the desired operating point’s power function. The proposed
controller maintains the simplicity and robustness of a PI control while guaranteeing high performance and
dynamic stability. This control does not depend on the converter’s component values. Theoretical analyses
are complemented with numerical simulations and experimental results on a purpose-built prototype. The
proposed control shows stable and high performance in both buck and boost modes, demonstrating its
effectiveness and reliability in real-world conditions, presenting for the buck and boost modes equal settling
times in transitions ( about to 100µs). These benefitsmake it particularly suitable for demanding applications
requiring robust and efficient power conversion.

INDEX TERMS Current control, noninverting buck-boost converter, passive system, PI passivity based
control, PI digital control.

I. INTRODUCTION
The increasing use of renewable energies and electric vehicles
have created the necessity for dc grids with high efficient
conversion systems [1], [2], [3], [4], [5]. Dc-dc converters
have a fundamental role in these applications to step-up

The associate editor coordinating the review of this manuscript and

approving it for publication was K. Srinivas .

(boost mode) or step-down (buck mode) dc voltages. These
converters must perform both functions and supply a constant
output voltage over an extensive range of input voltages [6],
[7], [8], [9]. Therefore, the buck-boost family is a particularly
interesting topology due to its high flexibility [10], [11],
[12]. In particular, the noninverting buck-boost converter
with coupled inductors and a damping network presented
in the literature as the versatile buck-boost converter (VBB
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converter from here on) offers advantages such as high
efficiency, wide bandwidth, a soft transition between buck
and boost modes [13], [14], [15], [16], [17], [18].

The possibility of controlling either input or output
voltages or currents has been addressed in [13], [14], [15],
and [19]. These previous works demonstrated the VBB
converter may be used in modern grid applications [17].
However, the converter’s performance for different control
techniques (analog and digital) is of great interest to fit in
the best way for all the aforementioned applications. Analog
and digital techniques have been proposed in the scientific
literature. Analog techniques include classic proportional-
integral (PI) controls with analog implementation as pre-
sented in [13]. Besides, analog-average current control was
proposed for both the input and output currents in [14].
A variation of this technique was used in [15] to improve
the transitions between input and output current control
loops. Digital techniques have also been studied to improve
performance and straightforward implementation. The first
proposed digital controller was a PI compensator for the
output voltage [19]. This digital implementation improves
the transition between buck and boost modes, avoiding the
dead zone presented in all the noninverting buck–boost
converters. Predictive control strategies have been also
applied to this converter. A deadbeat control, which is a
constant frequency predictive controller, was implemented
with simple sampled and multi-sampled techniques in [20].
The multisampling technique minimizes the delay in tracking
the control reference. In recent works, a finite control set
model predictive control has been explored [21]. This control
technique has a variable switching frequency, so a PI digital
control with a similar equivalent frequency was also included
to compare its performance.

All the previous methodologies are based on linearization,
despite the nonlinear nature of the converter. A linear
control might be enough for applications where the input
voltage/current is approximately constant, though a wide
range of operating points characterizes modern applications.
This aspect is essential in renewable energy and electric
vehicle applications where the operation point is constantly
changing [22], [23], [24]. However, nonlinear controls are
often complex and prone to instability in interconnected
systems. Therefore, a control technique is required with three
main characteristics: i) it must consider the nonlinear nature
of the converter in order to be applied in a wide range
of operation points, ii) it must be stable for interconnected
applications, and iii) it must be simple to be implemented.

This paper presents a passivity-based PI control that meets
the mentioned above. Passivity-based control has previously
applied to classic dc-dc converters (see for example [25]
and the references therein) but not for the VBB converter.
Despite its attractive stability properties for interconnected
systems, passivity-based control has remained in the control
community. Its application has been limited in the industrial
sector, where traditional approaches like PI controls are
favored. Recently, the concept of passivity-based PI control

has emerged. This control method integrates the robust
theoretical foundations of passivity-based control with the
straightforward implementation of PI controls. This approach
has been applied successfully in other power applications
such as the modular multilevel converter [26], the frequency
control of nonlinear loads [27], [28], and the power control
of energy storage systems [29], [30], [31]. However, to the
best of the authors’ knowledge, passivity-based PI control has
not been proposed before for the VBB converter. The main
contributions of this article are:

• The bilinear structure of the VBB is revealed. This
structure is beneficial as it provides a more precise
representation of the system dynamics. It also enables
accurate adjustment of the PI controller parameters,
enhances stability analysis, improves robustness against
parameter variations and disturbances, and aligns well
with the principles of PBC. This results in improved
energy management and dissipation.

• Passivity-based PI control is proposed for the VBB
converter in both boost and buck modes. This approach
is advantageous because it combines the strong theoret-
ical stability properties of passivity-based control with
the simplicity and practical implementation of PI con-
trollers. This ensures robust and efficient performance
across various operating conditions.

• The performance of the proposed control is analyzed
in practice through simulation and experimental results,
and it is compared to digital PI control. This approach is
advantageous as it offers empirical validation of the con-
trol method, showcasing its effectiveness and reliability
in real-world conditions. Additionally, it highlights any
enhancements or deviations in performance compared to
the commonly used digital PI control.

The rest of the paper is organized as follows: in Section II,
the VBB’s dynamical model of coupled inductors is exposed.
General concepts of passivity and the formation of the passive
PI control is presented in Section III. In Section IV, PI control
is designed to serve as a point of comparison for the proposed
controller. Simulation and experimental results are included
in Section V. Finally, the conclusions of this work are
presented in Section VI.

II. BILINEAR REPRESENTATION
A schematic diagram of the converter’s power circuit with
RC-type damping network and coupled input and output
inductor is shown in Figure 1. Its dynamical model is given
by the following set equations:

V0 + R2i0 + Lm
diLm
dt

− u2vc = 0,

− (ig + iLm )u2 −
vc − vCd
Rd

+ (1 − u1)ig = C
dvc
dt

,

vc − vCd
Rd

= Cd
dvCd
dt

,

Vg − R1ig − L
dig
dt

+ vp − (1 − u1)vc = 0,

− V0 + u2vc − R2i0 = vp, (1)
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where u1 is the duty cycle of the switch Q1 and its
complementary value corresponds with the duty cycle of Q3.
While u2 correspondswith the duty cycle of the switchQ2 and
its complementary value corresponds with the duty cycle of
Q4. In both cases u1, u2 ∈ {0, 1}. The remaining parameters
are evident from Figure 1.

FIGURE 1. Schematic circuit diagram of the VBB converter.

By substituting i0 = ig + iLm in (1), a new set of state
equations is obtained as presented below:

Lm
diLm
dt

= u2vc − V0 − R2ig − R2iLm ,

L
dig
dt

= Vg−(1 − u1−u2)vc−V0−(R1 + R2)ig − R2iLm ,

Cd
dvCd
dt

=
vc − vCd
Rd

,

C
dvc
dt

=
vCd − vc
Rd

+ (1 − u1)ig − (ig + iLm )u2. (2)

Thus, the VBB converter can be described by the following
bilinear system

Mẋ = A0x + (1 − u1)B1x + u2B2x + d0, (3)

where x =
[
iLm , ig, vCd , vc

]T , d0 = [−v0, vg − v0, 0, 0]⊤,

M =


Lm 0 0 0
0 L 0 0
0 0 Cd 0
0 0 0 C

 ,

A0 =


−R2 −R2 0 0
−R2 −(R1 + R2) 0 0

0 0 −
1
Rd

1
Rd

0 0
1
Rd

−
1
Rd

 ,

B1 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , B2 =


0 0 0 1
0 0 0 1
0 0 0 0

−1 −1 0 0

 .

Notice that matrix Ao is Hurwitz (i.e., A0 + A⊤

0 ≺ 0);
B1 and B2 are skew symmetric matrices (i.e., B + B⊤

= 0),
and M is a positive diagonal matrix (i.e., M ≻ 0), which
contains the system components with storage capacity, such
as capacitors and inductors. Notice that both B1 and B2 are
constants. Therefore, these matrices are not affected by the

circuit components or any parameter of the converter. Matrix
A0 depends on the resistance of the circuit, as given in (3).
In buck mode, we have that u1 = 0 and the model is

reduced as given below:

Mẋ = (A0 + B1)x + u2B2x + d0,

whereas in boost mode, we have that u2 = 1 and the model
is represented as follows:

Mẋ = (A0 + B2)x + u1B1x + d0.

Therefore, in any type of operation mode, it is possible to
represent the converter as a bilinear system, namely:

Mẋ = Ax + uBx + d . (4)

Parameters and variables of the model in each case are
given in Table 1

TABLE 1. Parameters and variables of the bilinear representation of the
VBB converter.

III. PASSIVITY-BASED PI CONTROL
A. EQUILIBRIUM POINT
The main objective is to achieve an admissible equilibrium
point x̄, as presented below:

0 = Ax̄ + ūBx + d, (5)

for a suitable input ū. In this study, the control objective is
to manage x̄2 = ig(ref ). From (5), it is strait forward to find
an expression for ū as function of ig(ref ), Vg, and V0 in each
operation mode. For boost operation mode, the following
expression is obtained:

ū1 =
Vo + 2R2x̄2

2R2x̄2

±

√
(Vo + 2R2x̄2)2 + 4R2x̄2

(
Vg − Vo − x̄2(R1 + R2)

)
2R2x̄2

,

(6)

whereas buck operation mode presents the following station-
ary state input:

ū2 =

Vo ±

√
V 2
o + 4R2x̄2

(
Vg − R1x̄2

)
2

(
Vg − R1x̄2

) . (7)

Note that only measures of vg and v0 are required to obtain
control input ū at the equilibrium point.
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B. INCREMENTAL MODEL
The incremental model for a bilinear system is achieved by
combining (3) and (5) [32], as presented below:

M1ẋ = (A+ uB)1x + 1uBx̄, (8)

where1x and1u are defined as1x = x− x̄ and1u = u− ū.
The incremental bilinear model (8) is passive if there exists

a function S : Rn
→ R called storage function such that for

all t > 0 and all input function u [32], the following inequality
holds:

S(1x) ≤ S(1x0) +

t∫
0

1u⊤1ydt, (9)

where 1x0 = 1x(0).
The following energy storage function is defined:

S(1x) =
1
2
1x⊤M1x, (10)

taking the time derivative of S(1x), the following expression
is obtained:

Ṡ(1x) =
1
2
(1ẋ⊤M1x + 1x⊤M1ẋ)

=
1
2

(
1x⊤(A+ uB)⊤ + x̄⊤B⊤1u⊤

)
M−1M1x

+
1
2
1x⊤MM−1 ((A+ uB)1x + 1uBx̄)

=
1
2
1x⊤(A⊤

+ A)1x +
1
2
1x⊤(uB⊤

+ uB)1x

+ 1u1x⊤Bx̄.

Now, taking into account that B is a skew symmetric matrix
(i.e., B+ B⊤

= 0) and defining an output system as

1y = (x̄⊤B⊤)1x, (11)

the time derivative of S(1x) can simplify as follows

Ṡ(1x) =
1
2
1x⊤(A⊤

+ A)1x + 1u⊤1y, (12)

since A+A⊤
≺ 0, we conclude that Ṡ(1x) ≺ 1u⊤1y, which

implies that the incremental bilinear model (8) is passive with
input 1u and output 1y [30].

C. PI CONTROLLER
The bilinear system (4) can fix an admissible equilibrium
point x̄ in closed loop with a control input given by
u = ū+ 1u, with

1u = −Kp1y− Kiz,

ż = 1y, (13)

with Kp > 0 and Ki > 0. For all initial conditions of
state variables x0 and state control z0, the passivity-based
PI controller guarantees that x converges to x̄ as time goes
forward.

A bilinear system (4) in closed-loop with the passivity-
based PI controller (13) is stable by defining the following
the Lyapunov function candidate:

W (1x, z) = S(1x) +
1
2
1z⊤Ki1z. (14)

Note that function candidate W (1x, z) meets the two first
Lyapunov’s conditions (W (1x, z) > 0 ∀ x ̸= x̄ ∧W (0, 0) =

0 ∀ x = x̄), and its rate of shift is given by

Ẇ (1x, z) =
1
2
1x⊤(A⊤

+ A)1x

+ 1u⊤1y+ 1z⊤Ki1ż,

Ẇ (1x, z) < −1y⊤Kp1y < 0. (15)

Therefore, it is concluded that the closed loop control is
stable.

D. CONTROL DESIGN FOR VBB CONVERTER
The state variables are defined as follows:

x =
[
iLm , ig, vCd , vc

]T
= [x1, x2, x3, x4]T . (16)

The proposed control applied to the VBB converter is
obtained by computing the output function 1y from (11),
as presented below for the boost operation mode:

1y1 = (x̄⊤B⊤

1 )1x

1y1 = x4x̄2 − x̄4x2, (17)

whereas the buck operation mode admits the following output
function:

1y2 = (x̄⊤B⊤

2 )1x

1y2 = x4x̄1 − x̄4x1 + x4x̄2 − x̄4x2. (18)

To evaluate the control law in buck mode, it is necessary
to know x1 (inductor current of the magnetization branch),
but this variable can not be obtained by direct measurement.
However, it is known that when the VBB converter operates
in continuous conduction mode away from the boundary
between modes, the currents x1 and x2 are approximately
equal. Considering this approximation, the control law in
buck mode can be rewritten as

1y2 = x4x̄1 + x4x̄2 − 2x̄4x2. (19)

Now, it only needs to define the uncontrolled variables
to fulfill the proposed controller, which can be solved an
admissible equilibrium point (5), as follows for the boost
operation mode:

x̄4 = Vo + R2(1 − ū1)x̄2, (20)

whereas the buck operation mode is presented below:

x̄4 =
1
ū2

(
Vo +

R2x̄2
ū2

)
, (21)

x̄1 =
1 − ū2
ū2

x̄2. (22)
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FIGURE 2. Passivity-based PI control scheme.

The passivity-based PI control scheme is illustrated in
Figure 2. This figure depicts the steps to implement the digital
passivity-based PI control scheme. It defines the admissible
equilibrium point for each operation mode and specifies the
control signals for switching. The signal controls for each
operation mode are as follows:
Boost mode:

u1 = ū1 − Kp(vc īg − v̄cig) − Kiz1,

ż1 = vc īg − v̄cig,

u2 = 1. (23)

Buck mode:

u1 = 0,

u2 = ū2 − Kp(vc īLm + vc īg − 2v̄cig) − Kiz2,

ż2 = vc īLm + vc īg − 2v̄cig. (24)

It is important to mention that the proposed control has
been performed considering the average model of the VBB
converter. This means that the PI-PBC approach will work
under different switching frequencies, provided that the
frequency is sufficiently high to allow the use of the averaging
model in the converter. In other words, the VBB converter
does not enter into discontinuous mode operation.

IV. DIGITAL IMPLEMENTATION OF THE PI
CONVENTIONAL CONTROL
This section presents a digital PI control that will serve to
compare the proposed passive control. The PI controller is a
second-order linear compensator. Initially, the compensator
transfer function in continuous time is obtained using a lag
network with a high-frequency pole as proposed in [33].
The design criteria used are half the switching frequency,
consistent with the recommendations presented in [34]
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FIGURE 3. Experimental configuration for testing the proposed digital
current controllers: (a) The VBB converter, (b) Oscilloscope, (c) Input dc
power supply, (d) Output dc power supply, (e) Emergency stop button, (f)
Acrylic case for testing circuits, (g) Digital signal controller, (h) Auxiliary
power supply for DSC, converter current and voltage sensors and MOSFET
Drivers, (i) Dc electronic load in constant voltage mode.

TABLE 2. Components description of the VBB converter.

TABLE 3. Passive PI control constants.

and [35]. On the other hand, the compensator’s low-frequency
pole is located at the origin to eliminate the steady-state
error [36]. The zero has been located at one-tenth of the
high-frequency pole. Simultaneously, the gain is adjusted
through different simulations in buck and boost modes to
operate with a minimum phase margin of 45o. The second-
order compensator transfer function is designed considering
a switching frequency of 100 kHz.

TABLE 4. Crossover frequency (CF) and phase margin (PM) for different
operation modes.

FIGURE 4. Bode plots of the input current control for the passive and
digital PI controllers of the versatile buck-boost converter in boost mode
(Vg = 12 V and Vo = 24 V) and buck mode (Vg = 24 V and Vo = 12 V).
(a) PI passive,(b) PI digital control.

The mathematical expression for the compensator is given
by (25). The parameters were selected as K = 1800 (sA)−1,
τ1 = 66 µs, τ2 = 3.18 µs. Then, the Tustin transformation
is applied to convert the continuous-time transfer function to
discrete time, resulting in (26).

G(s) = K
τ1s+ 1
s(τ2s+ 1)

, (25)

G(z) =
0.0781z2 + 0.011z− 0.0671
z2 − 0.7775z− 0.2225

. (26)
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FIGURE 5. Simulated (a), (c) and experimental (b), (d) responses of the input current control based
on a passivity control when the reference iref changes from: (a,b) 3 A to 6 A, and (c,d) 6 A to 3 A.
The converter is operating in boost mode (Vg = 12 V and Vo = 24 V). CH1: Vg (14 V/div), CH2: Vo
(14 V/div), CH3: ig (2 A/div), CH4: io (10 A/div) and a time base of 100 µs.

FIGURE 6. Simulated (a), (c) and experimental (b), (d) responses of the input current control based
on a PI control when the reference iref changes from: (a,b) 3 A to 6 A, and (c,d) 6 A to 3 A. The
converter is operating in boost mode (Vg = 12 V and Vo = 24 V). CH1: Vg (14 V/div), CH2: Vo (14
V/div), CH3: ig (2 A/div), CH4: io (10 A/div) and a time base of 200 µs.

V. SIMULATION AND EXPERIMENTAL RESULTS
To validate the proposed controller’s performance to regulate
the converter input current, this section presents the exper-
imental and simulated results for transient responses. The

performance of this control technique is compared with the
results of the classic PI controller. Results include simulation
in PSIM and experimental validation in the experimental
setup shown in Figure 3. The power converter parameters

110400 VOLUME 12, 2024



C. González-Castaño et al.: Passivity-Based Control PI for the VBB Converter

FIGURE 7. Simulated (a), (c) and experimental (b), (d) responses of the input current
control based on a passivity control when the reference iref changes from: (a,b) 3 A to 6 A,
and (c,d) 6 A to 3 A. The converter is operating in buck mode (Vg = 24 V and Vo = 12 V).
CH1: Vg (14 V/div), CH2: Vo (14 V/div), CH3: ig (2 A/div), CH4: io (20 A/div) and a time base
of 100 µs.

FIGURE 8. Simulated (a), (c) and experimental (b), (d) responses of the input current
control based on a PI control when the reference iref changes from: (a,b) 3 A to 6 A, and
(c,d) 6 A to 3 A. The converter is operating in buck mode (Vg = 12 V and Vo = 24 V). CH1:
Vg (14 V/div), CH2: Vo (14 V/div), CH3: ig (2 A/div), CH4: io (10 A/div) and a time base of
200 µs.

are listed in Table 2. Both controls were implemented on
the TMS320F28335 Texas Instruments card at a switching
frequency of 100 kHz.

Passivity-based control has proportional Kp and integral Ki
gains that depend on the converter operation mode (buck and
boost), whichwere adjusted in each case according to Table 3.

Simulated and experimental results of the passive PI
control and classical PI are presented in this section.
The controlled variable is the input current of the power
converter. First, to evaluate the performance of both control
strategies, frequency domain analysis has been conducted.
Bode plots of the input-current control for the passive and

VOLUME 12, 2024 110401
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FIGURE 9. Simulated (a), (c) and experimental (b), (d) responses of converter start-up with an
input current control based on a passivity control. In: (a,b) buck mode iref equal to 3 A, (c,d)
boost mode iref equal to 3 A. CH1: Vg (14 V/div), CH2: Vo (14 V/div), CH3: ig (2 A/div), CH4: io
(20/10 A/div) and a time base of 100 µs.

FIGURE 10. Simulated (a), (c) and experimental (b), (d) responses of converter start-up with an
input current control based on a PI control. In: (a,b) buck mode iref equal to 3 A, (c,d) boost
mode iref equal to 3 A. CH1: Vg (14 V/div), CH2: Vo (14 V/div), CH3: ig (3/2 A/div), CH4: io
(20/10 A/div) and a time base of 1.25 ms in buck mode and 200 µs in boost mode.

digital PI controllers have been generated through PSIM
simulations. Figure 4 illustrates the Bode plots for the
buck and boost operating modes. The crossover frequency
(CF) and phase margin (PM) of the frequency responses
shown in Figure 4 have been measured and are listed
in Table 4 for each operating mode and current control

strategy. It can be observed in Figure 4 that the passive PI
offers a more significant phase margin than the digital PI,
aligning with the stability concept of the proposed passive
PI control.

The second part of the results section discusses time-
domain responses. The results for boost mode are shown in
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FIGURE 11. Comparative analysis of the results for boost mode.

TABLE 5. Comparison results at the start-up condition.

Figures 5 and 6, while the results for buck mode are presented
in Figures 7 and 8, illustrating responses to a reference change
from 3 A to 6 A and from 6 A to 3 A. In all tests, the
simulated results align well with the experimental results.
The transitions resulting from reference changes for passive
PI control are smooth, with minimal overshoot and settling
times below 100 µs in both modes (see Figures 5 and 7). The
response of the PI control varies based on the operationmode.
In boost mode, this control exhibits similar performance to
passive control with slightly higher overshoot and a settling
time of (see Figure 6). (Figure 6). In buckmode, the PI control
response (Figure 8) is damped oscillatory, requiring a longer
time to reach (approximately (about 900 µs).
Simulation and experimental results of the start-up in both

boost and buckmodes are presented in Figures 9 and 10. It can
be seen that the simulated and experimental waveforms are
identical in all cases.

In order to realize a detailed comparison between the
passivity-based control and the digital PI control in the start-
up tests, the following criteria are proposed:

FIGURE 12. Comparative analysis of the results for buck mode.

• Ipeak : ig maximum current at the start-up
• tsu: time elapsed from the control activation until the
current ig reaches the average value of the reference
current

Table 5 summarizes the Ipeak and tsu values obtained from
experimental results. These values were derived from the
start-up conditions depicted in Figures 9 and 10. In passive
control, both buck and boost modes exhibit similar settling
times (Tsu is approximately 0.15 ms). The Ipeak value is
consistent across both modes: 3.8 A for boost mode and 4.1 A
for buck mode. In PI control, the shortest settling time is
observed in boost mode (Tsu is 1.6 ms), but this value is
significantly higher than the settling time in passive control.
In buck mode, the highest Tsu is achieved (6.25 ms) due to
the high peak value of the ig current at start-up. The Ipeak is
8.8 A, which is more than four times the reference current.
In boost mode, Ipeak is 2.8 A, resulting in a shorter time to
reach the reference. Figures 11 and 12 provide a summary of
the results of comparison between PI-PBC and PI strategies,
where Tst is the setting time for the results of transition seen
in Figures 5, 6, 7 and 8. These results enable to conclude
that passive control has a better dynamic response than the
digital PI control. Furthermore, the performance indices show
that the dynamic responses in buck and boost modes are
equivalent (see Figures 11 and 12).

On the other hand, the PI controller has long settling
times and shows varying behaviors in both buck and boost
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modes. The buck mode is particularly critical because high
start-up currents can lead to failures in the power converter.
Although the PI controller has a wider bandwidth, the PBC
controller guarantees greater stability thanks to its enhanced
phase margin (compare Figures 4(a) and 4(b)).

VI. CONCLUSION
This paper presented the design and implementation of a
passive PI current control for the VBB converter with coupled
inductors. The proposed controller maintained the simplicity
and robustness of a PI control while offering additional
advantages. It ensures the stability of the VBB converter
in a closed-loop system according to Lyapunov’s criteria.
The performance of the proposed controller was validated
through simulations and experimental results both buck and
boost modes, considering various operating points, reference
changes, and start-up tests. Furthermore, it was compared
with a digital PI controller. Frequency domain analysis
revealed the proposed controller provides a larger phase mar-
gin compared to the digital PI controller. The experimental
results demonstrated that the passive control exhibits superior
dynamic performance, lower start-up currents, and similar
behavior in both buck and boost modes.
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