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ABSTRACT In recent years, deep learning methodologies have been increasingly applied to the intricate
challenges of visual-inertial odometry (VIO), especially in scenarios with rapid movements and scenes
lacking clear structure. This paper introduces a novel hybrid approach that leverages the inherent strengths
of traditional VIO techniques, while harnessing the potential of advanced machine learning technologies.
By seamlessly integrating an iterated extended Kalman filter with deep learning techniques, our approach
systematically takes into account uncertainties, thereby enhancing the overall reliability and robustness
of the system. The proposed algorithm has been rigorously evaluated on the KITTI and EuroC datasets,
outperforming other deep learning VIO methods. It achieved a translation error of 2.28% and a rotation
error of 0.226 degrees per 100 meters on the KITTI odometry dataset.

INDEX TERMS Monocular camera, visual inertial odometry, iterated extended Kalman filter, deep learning.

I. INTRODUCTION
Estimating a robot’s position, velocity, and orientation,
referred to as odometry, poses significant challenges, espe-
cially in complex and dynamic environments. Visual-inertial
odometry (VIO) is a commonly used approach that combines
data from cameras and inertial measurement units (IMUs) to
calculate the actual changes in position between consecutive
camera frames [1], [2], [3], [4]. Nevertheless, VIO encounters
difficulties like motion blur, changing lighting conditions,
and drifting. Recent advancements in computer vision and
machine learning have led to the emergence of innovative
VIO techniques that integrate visual and inertial measure-
ments formore precise and dependable positioning. However,
traditional VIO methods still have shortcomings, such as the
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need formeticulous calibration and susceptibility to noise and
errors.

To address these limitations, researchers have proposed
employing deep learning methods to enhance the accuracy
and efficiency of ego-motion estimation [5], [6], [7]. These
techniques utilize Convolutional Neural Networks (CNNs) to
extract image features and fully connected neural networks to
process inertial data. The amalgamation of this information
is then employed to compute relative ego-motion using
a recurrent or attention-based regressor. These approaches
have displayed promising outcomes in improving positioning
accuracy and resilience in various environments, including
those with challenging lighting conditions. Nonetheless, the
estimated ego-motion remains vulnerable to abrupt changes
in scene settings, such as velocity alterations. Furthermore,
since IMU data is low-dimensional and adheres to a
well-understood physics model, employing a deep network
for processing IMU data may not always be necessary.
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Previous research on hybrid deep learning-based VIO
approaches has explored integrating a deep learning model
with an Extended Kalman Filter (EKF) [8], [9]. These
approaches employ the deep model to process image data,
which is then fused with IMU data using the EKF. This
approach has been shown to be effective with sufficient
data quality. However, these methods typically focus on the
EKF model and use relatively simple deep learning models.
We argue that both components of a hybrid VIO system must
be strong independently in order for the overall model to
achieve high accuracy and minimize uncertainty.

Motivated by the limitations of existing hybrid deep
learning-based VIO approaches, we introduce the Deep
Iterated EKF VIO model (DI-EKF-VIO), a hybrid system
that combines the strengths of classical and learning-based
VIO systems. Our proposed method employs an Iterated
Extended Kalman Filter (IEKF) to integrate ego-motion
measurements derived from an optical flow network into
a state estimator that is keenly aware of uncertainty. The
state is propagated between camera frames by incorporating
IMU measurements. In an extension of prior research, our
predictions are imbued with a deep-learned heteroscedastic
uncertainty model, enabling a systematic fusion of measure-
ments within the filter. This innovative approach combines
the robustness of classical VIO methods with the accuracy
enhancements of learning-based systems, resulting in a
more precise and dependable positioning system suitable for
diverse environments. The architectural representation of our
proposed method is illustrated in Figure 1.

The subsequent sections of this paper are organized
as follows: Section II provides a concise overview of
previous VIO methods, encompassing both conventional and
learning-based approaches. Section III elaborates on our
methodology, which integrates the Iterated Extended Kalman
Filter and Deep Learning into VIO. Section IV assesses the
performance of our approach using the KITTI and EuroC
datasets. Finally, in Section V, we draw conclusions from our
work.

II. RELATED WORK
A. CLASSICAL APPROACH
Traditional visual odometry methods used in Simultaneous
Localization and Mapping (SLAM) algorithms follow a
multi-step process. First, distinctive features are extracted
from two consecutive images. These features are then
described and matched in subsequent frames. The algorithm
then associates the matched features with their corresponding
positions in the map and updates the map accordingly. The
feature extraction module is crucial in this process, as it is
responsible for identifying unique features in the images.

These algorithms can be divided into two categories based
on the number of feature points they use: sparse and dense.
Sparse methods use a small number of feature points from
an image, while dense methods use most or all of the
feature points in an image. Dense methods require more
computational resources than sparse methods, but they are

more robust and accurate in situations with limited structural
information (fewer feature points). In sparse methods, it is
important to select the optimal subset of feature points in an
image. These points should have distinctive characteristics
and be easy to match in consecutive frames.

Loosely-coupled visual-inertial odometry methods, such
as Multi-Sensor Fusion (MSF) [10], accept pose estimates
from inertial sensors (such as IMUs) and combine them
with pose estimates from visual odometry using an Extended
Kalman Filter. MSF estimates pose, velocities, and biases,
as well as a scaling factor to account for the scaling
drift that can occur in monocular VO. Tightly-coupled
VIO methods, such as Multi-State Constraint Kalman Filter
(MSCKF) [1], OKVIS [4], and VINS-Mono [11], extract,
track, and triangulate features from images and fuse them
with IMU-propagated poses. MSCKF uses a least-squares
optimization technique to triangulate features, while OKVIS
and VINS-Mono use iterative non-linear least-squares opti-
mizations to achieve fusion. Optimization methods are more
computationally demanding than filter-based methods, but
they tend to be more accurate.

While traditional VIO techniques offer a valuable tool for
odometry, they encounter limitations in specific scenarios.
Challenging lighting conditions, rapid camera motion, and
occlusions can significantly hinder feature extraction and
tracking, leading to inaccurate pose estimation. Modern
SLAM methods often leverage Global optimization tech-
niques, like bundle adjustment or least-squares minimization,
which can be computationally expensive. This can be a
significant disadvantage for real-time applications or those
with limited resources. Processing large amounts of data and
complex calculations can slow down the SLAM process.
Moreover, As the size and complexity of the map grows,
global optimization becomes even more computationally
demanding. This can limit the scalability of SLAM systems
for very large or dynamic environments. Additionally,
depending on the initial conditions and the chosen opti-
mization algorithm, there’s a possibility of not reaching the
optimal solution or getting stuck in local minima. This can
lead to a sub-optimal map that doesn’t accurately represent
the environment.

There’s a growing interest in deep learning-based SLAM.
Deep learning eliminates the need for hand-crafted features.
Convolutional Neural Networks can automatically learn
robust features directly from image data, adapting to various
lighting conditions, scales, and viewpoints. Additionally,
deep learning models can be more robust to challenging envi-
ronments with limited unique features or heavy occlusions.
They can also be trained to handle dynamic scenes with
motion blur or fast movements.

B. LEARNING-BASED APPROACH
Deep learning has made significant progress in solving
classification problems in computer vision and are becoming
a major area of research. It has played a vital role in
addressing these challenges, and is now the primary focus
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of research in this field. Deep learning techniques have been
integrated into various aspects of conventional odometry
methods, such as feature extraction, feature matching and
pose estimation. The use of Convolutional Neural Networks
has been instrumental in improving the performance of these
deep learning approaches in addressing these challenges.
CNNs are well-suited for learning to extract diverse features
and fusing them to describe either the entire input image or
specific regions. This ability to learn meaningful represen-
tations for perceptual understanding by combining abstract
featuresmakes the resulting descriptions resilient to noise and
well-equipped to handle specific challenges. These sophisti-
cated feature representations, robustly acquired through deep
CNNs, have been used to address a wide range of computer
vision problems.

Aside from earlier explorations of learning-based visual
odometry models [12], [13], there has been a growing empha-
sis on enhancing the accuracy and robustness of end-to-end
learning-based VO models. To enhance their capabilities,
end-to-end VO models often incorporate auxiliary outputs
related to camera movements, including depth and optical
flow. These models predict depth by maintaining depth
consistency between consecutive images, which provides
supervisory signals for training the model [7], [14]. A similar
temporal matching effect can be achieved by simultaneously
predicting optical flow [15], [16], which encompasses joint
predictions of depth, optical flow, and camera motion.

While deep learning offers significant potential, it also
comes with challenges of Computational Demands: Training
and running deep learning models can be computationally
expensive, potentially limiting their application on resource-
constrained platforms. Another concern is that Deep learning
models can be complex ‘‘black boxes,’’ making it difficult
to understand how they arrive at their results. This can be a
concern for safety-critical applications where understanding
errors or biases is crucial.

The future of SLAM likely lies in hybrid approaches
that combine the strengths of traditional methods with deep
learning. Previous studies on hybrid deep learning-based VIO
approaches have integrated a deep learning model with an
Extended Kalman Filter [8], [9]. These approaches use the
deep model to process image data, which is then fused with
IMU data using the EKF. This method has been shown
to be effective with sufficient high-quality data. However,
it primarily focuses on the EKF model and uses relatively
simple deep learning models. We argue that both components
of a hybrid VIO system must excel independently in order
for the overall model to achieve robust performance and
accuracy. Our goal is to improve both the EKF model
and the deep network within the existing framework while
maintaining the overall structure.

C. OTHER APPROACH
Alternative methodologies for Odometry incorporate LiDAR
input rather than IMU, yielding notable outcomes as demon-
strated by [17], [18], [19]. LiDAR input offers the benefit of

precise depth information in contrast to both visual and IMU
data, thereby harboring the potential to surpass visual-inertial
techniques. Nevertheless, we have chosen not to explore
LiDAR-based approaches for a multitude of reasons. First,
LiDAR sensors are typically more expensive and bulkier than
visual and inertial sensors, which can limit their accessibility,
especially in scenarios with budgetary and size constraints.
We opted to focus on visual and inertial sensors to ensure
our system remains cost-effective and accessible, particularly
for researchers and practitioners operating within resource-
limited environments. Moreover, although LiDAR sensors
provide precise depth information, modern deep learning
algorithms can approximate similar results. In our proposed
method, depth information is estimated and extracted from
temporal visual data, potentially making LiDAR information
redundant if the deep learning algorithm performs adequately.
And lastly, by concentrating exclusively on visual and inertial
sensor fusion, we were able to dedicate our efforts to refining
deep learning algorithms tailored specifically to these sensor
modalities. This focused approach allowed us to explore
the potential of deep learning techniques within the context
of visual-inertial odometry without introducing the added
complexity of integrating LiDAR data.

Aside from sensor fusion method that bring more than 1
input to the problem, there are also approach that utilize
only 1 input, notably Visual data only [6], [20], [21],
Inertial only [22], [23], LiDAR data only [24], [25], [26].
While single-sensor methods have been explored in prior
research, we have chosen not to pursue them for several
compelling reasons. In general, single sensor methods are
often susceptible to environmental conditions and sensor-
specific limitations. For example, camera-only methods
might struggle in low-light conditions or with featureless
environments, while IMU-only methods can suffer from drift
over time. Every sensor has its own advantage and limitation.
Camera-only methods might not capture depth information
accurately at long distances, while LiDAR-only methods
might struggle with occlusions or reflective surfaces. Most
of the single-sensor method tries to exploit the advantage of
the utilized sensor while trying to cover its incompletion.
Sensor fusion methods, on the other hand, leverage the
complementary strengths of multiple sensors to improve
overall performance. By integrating data from multiple
sources, these methods can provide more robust and accurate
odometry estimates compared to single sensor methods.

III. DI-EKF-VIO: DEEP ITERATED EXTENDED KALMAN
FILTER
In our hybrid approach to Visual-Inertial Odometry,
we enhance the ego-motion estimation system by incorporat-
ing a robocentric Iterated Extended Kalman Filter backend.
This section provides an overview of our architecture,
as described in Section III-A, then an introduction to the
notation used in this work in Section III-B. Subsequently,
we dig further into the formulation of the robocentric IEKF in
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FIGURE 1. Overall proposed method architecture.

Section III-C. The fusion of our approach with deep learning
is discussed in Section III-D.

A. OVERALL ARCHITECTURE
Depicted in figure 1, the proposed system takes advantage
of both image data from a camera and IMU data to estimate
the robot’s pose over time. The input to the system consists
of these two data sources. The image data is first processed
by a deep learning model, which is tasked with extracting
informative features and estimating the relative pose changes
between consecutive images. This relative pose information
describes the robot’s movement in terms of 6 DoF.

The deep learning model’s predictions for relative pose are
then fed into an iterative Extended Kalman Filter alongside
the IMU data. The IEKF acts as a fusion module, combining
the strengths of both data sources. By incorporating both
sources, the IEKF refines the pose estimations and generates
a more robust and accurate representation of the robot’s
absolute pose in the environment. This absolute pose
information is represented as a 4 × 4 transformation matrix,
which can be directly used for various robotic tasks such as
navigation and manipulation.

In essence, the system leverages the deep learning model’s
ability to extract meaningful features from images for precise
relative pose estimation, while the EKF incorporates the
continuous and complementary information from the IMU
to achieve a robust and accurate estimation of the robot’s
absolute pose over time.

B. NOTATION
Our work employs three distinct frames: The inertial frame,
denoted as F

−→
i. The reference frame at time k is denoted as

F
−→

rk , where k and k+1 correspond to points in time when an
image is received. The vehicle frame at time τ is denoted as
F
−→

vτ , where τ and τ + 1 correspond to points in time when
an IMU measurement is received between time k and k + 1.

We use the symbol δ to represent a perturbation to sub-
sequent quantities. Subscripts and superscripts are employed
to track the coordinate frames of physical quantities. For
instance, vbca represents the velocity of F

−→
b relative to F

−→
c

expressed in F
−→

a.
A rigid transformation from frame F

−→
b to frame F

−→
a is

denoted as Tab ∈ SE(3), which consists of two components:
the translation rab ∈ R3 and the rotation Cab ∈ SO(3).
The gravity expressed in F

−→
a is denoted as ga ∈ R3.

The velocity of F
−→

a with respect to F
−→

b expressed in F
−→

c is
represented as vabc ∈ R3.
The gyroscope and accelerometer measurements at time τ

are denoted as bωτ and baτ , both belonging to R3.
We use ¯(·) to indicate noisy quantities, ˇ(·) for quantities

propagated throughout the Extended Kalman Filter predic-
tion step, and ˆ(·) for quantities corrected after the EKF update
step.

C. ROBOCENTRIC IEKF
We based our IEKF formulation on the approach of [8]
and [9]. The states at the latest IMU measurement time
step, τ , is comprise of 2 elements: the inertial state xrk i and
the vehicle state xrkvτ which is formulated by the following
component:

xτ =
[
xrk i | xrkvτ

]
=

[
Crk i r

irk
rk grk |

Crkvτ rvτ rkrk vvτ ivτ bωτ baτ

]
(1)

The error states is then defined as:

δxτ =

[
δφ⊤

rk i δrirk⊤rk δg⊤
rk |

δφ⊤
rkvτ δrvτ rk⊤rk δvvτ i⊤vτ δb⊤

ωτ
δb⊤

aτ

]⊤

(2)
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The error states are defined within the vector space R3,
representing perturbations to the states defined in equation 1.
These perturbations are handled using simple addition,
except for the rotational quantities, which are defined within
the space so(3). Specifically, the formulation for error in
rotational quantities is as presented in equation 3, where
C ∈ SO(3) and φ ∈ R3, with (·)∧ denoting the skew-
symmetric operator.

C = C exp
(
φ∧

)
(3)

Next, we calculate the time derivatives of the states and
their constituent elements.

Ċrkvτ = Crkvτ

[
ωvτ i
vτ

]∧

ṙvτ rkrk = Crkvτ v
vτ i
vτ

v̇vτ ivτ = avτ ivτ −

[
ωvτ i
vτ

]∧

vvτ ivτ

ḃωτ = nbω

ḃaτ = nba (4)

Subsequently, we formulate the measurement model for
the IMU states and apply perturbations to these states.
Through conjunction with equation 4, this procedural step
culminates in the derivation of equation 5 in a matrix
representation. This equation encompasses the linearized
system matrix denoted as F, the linearized error matrix
symbolized by G, and the noise term n.

δẋτ = Fδxτ + Gn (5)

where n =
[
n⊤

ω n⊤
bω

n⊤
a n⊤

ba

]⊤
The process model for the IMU states is employed during

the prediction phase to advance the state estimate, denoted
as x̂k , relative to the most recent robocentric frame F

−→
rk . This

advancement occurs from time step k to time step τ utilizing
the IMU measurements. The outcome of this operation is the
predicted IMU state, represented as x̌rkvτ . Subsequently, this
predicted state undergoes further processing using Euler’s
method, resulting in the outcomes denoted in equation 6:

Črkvτ+1 ≈ Črkvτ exp
((

ωm − b̌ωτ

)∧

δt
)

řvτ+1rk
rk ≈ řvτ rkrk + v̌vτ irk δt +

1
2
Črkvτ

(
am − b̌aτ

)
δt2

v̌vτ+1i
rk ≈ v̌vτ irk + Črkvτ

(
am − b̌aτ

)
δt (6)

To advance the state covariance forward in time, we need
the transition matrix for the error state between IMU time
steps. This matrix can be efficiently approximated using a
first-order approximation method, as indicated by equation 7,
where 1 represents the identity matrix and δt = tτ+1 − tτ .

8τ+1,τ = exp
(∫ tτ+1

tτ
F(s)ds

)
≈ 1 + Fδt (7)

The predicted state uncertainty can then be expressed as:

Q = diag
(
σ 2

ω1, σ
2
a 1, σ

2
bω
1, σ 2

ba1
)

,

P̌τ+1 = 8τ+1,τ P̌τ8
⊤

τ+1,τ + GQG⊤δt (8)

The measurement model in our IEKF, which is the deep
learning network, outputs relative pose measurements z̃k ,

which is composed of
[
φ̃

⊤

rkvk+1
r̃vk+1rk⊤
rk

]⊤

with corre-

sponding covariances Rk (which will be discussed further
in Section III-D). We can begin to use the relative pose
measurement z̃k for linearizing measurement model, and use
covariance Rk in the updating step.
The measurement residual ϵk+1 =

[
ϵ⊤
θ ϵ⊤

r
]⊤ can be

approximated as the subtraction of two rotational vector using
the first-order Baker-Campbell-Hausdorff formula as shown
in equation 9

ϵθ = ln
(
exp

(
φ̃

∧

rkvk+1

)
exp

(
φ∧
rkvk+1

)⊤
)∨

≈ φ̃rkvk+1
− φrkvk+1

(9)

Subsequently, we differentiate relative pose measurement
equation with respect to the error states to derive the
measurement Jacobian Hk+1 =

∂ϵk+1
∂δxk+1

. The derivations are
presented as follows:

ϵθ ≈ φ̃rkvk+1
− φ̂rkvk+1︸ ︷︷ ︸
ϵ̄θ

−Jr
(
φrkvk+1

)−1
δφrkvk+1

ϵr = r̃vk+1rk
rk − r̂vk+1rk

rk︸ ︷︷ ︸
ϵ̄r

−δrvk+1rk
rk (10)

The final expression for Hk+1 is given in equation 11,
where J represents the right Jacobian of SO(3).

Hk+1 =

[
09×3 −J

(
−φ̌rkvk+1

)−1
0 09×3

09×3 0 −I 09×3

]
(11)

To perform the Extended Kalman Filter (EKF) iteratively,
we initiate by updating Hk+1,l+1, where l denotes the
iteration. Upon updating Hk+1,l+1, we subsequently update
Kk+1,l+1 and xk+1,l+1.

Hk+1,l+1 =
∂h

(
xk+1,l

)
∂δxk+1,l

(12)

Kk+1,l+1 = P̌k+1HT
k+1,l

(
Hk+1,l P̌k+1HT

k+1,l + Rk+1

)−1

δx̂k+1,l+1 = Kk+1,l+1ϵk+1 (13)

At the end of the iteration, Pk+1 undergoes an update.
Following this, δx̂k+1 is introduced into the predicted
nominal states in accordance with their defined perturbations
as outlined in Section III-A. This operation results in x̂k+1.
Importantly, it should be noted that, up to this point, the
estimates for rotation and position in the reference frame,
namely Crkvτ and rvτ rkrk , have not changed.

P̂k+1 = (I − Kk+1Hk+1) P̌k+1 (14)
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Finally, all states’ reference frames are shifted from F
−→

k

to F
−→

k+1 to obtain x̂k+1,rk+1. For the next EKF iteration,
the local vehicle pose is reset after being combined with the
inertial pose. It’s important to note that the velocity and biases
remain unchanged since they are already represented in the
F
−→

rk+1 frame.

Ĉrk+1i = ĈT
rkvk+1

Ĉrk i, ĝrk+1 = ĈT
rkvk+1

ĝrk ,

r̂irk+1
rk+1 = ČT

rkvk+1

(
r̂irkrk − r̂vk rkrk

)
,

Črk+1vk+1 = I, řvk+1rk+1
rk+1 = 0 (15)

The state covariances must also be propagated to account
for the operation described in equation 16.

P̂k+1,rk+1 = Uk+1P̂k+1UT
k+1,

Uk+1 =
∂δx̂k+1,rk+1

∂δx̂k+1
(16)

D. DI-EKF-VIO: DEEP ITERATED EXTENDED KALMAN
FILTER
With deep learning, DI-EKF-VIO incorporates the architec-
ture of an optical flow estimator into a part of the overall
structure. Given two consecutive images in time as input,
this network’s task is to produce an optical flow estimation
corresponding to the two initial images. This estimation is
then fed into a regressor network, which is a convolutional
network to compute the relative poses zk and the uncertainty
values wk . The architecture of the network is generally
depicted as shown in Figure 2 below.

Through the partitioning of the network architecture
into two distinct sub-networks, each serving unique roles
and generating separate outputs, the training process gains
robustness and flexibility. This segregated training approach
enables independent enhancement of each network com-
ponent, thereby contributing to an overall improvement in
performance. Further elaboration on this methodology is
provided in Section IV.
In the context of optical flow estimation, we utilized a

well-established deep learning framework previously doc-
umented in scholarly literature, along with its pretrained
parameters. Considering the delineation of optical flow
estimation as a distinct problem domain, our principal
objective is dedicated to augmenting visual-inertial odometry.
In pursuit of this objective, we embraced the RAFT [27],
recognized for its resilience and extensive adoption within the
research community. Section IV provides a comprehensive
examination of the influence exerted by various optical flow
networks on ultimate results.

The architecture of the regressor network employed for
output estimation resembles that of the ResNet network, akin
to the approach outlined in [28]. Illustrated in Figure 3,
each ResNet block maintains a consistent structure. However,
within the DI-EKF-VIO framework, this network integrates
spatial and channel attention blocks, as proposed in [29],
alongside the ResNet architecture. The incorporation of

TABLE 1. Specification of ResNet utilized in the Regression network.

spatial and channel attention mechanisms, following the
methodology of [29], serves to augment the ResNet’s
output with focused attention. Our observations indicate that
this amalgamation has contributed to enhanced regression
outcomes. Furthermore, we provide detailed specifications of
the ResNet network in Table 1.

The output of ResNet is then flattened and fed into
a sequential of linear layer for regression purpose. The
network’s output consists of 12 elements, corresponding to

the relative pose zk =

[
φ̃
T
rkvk+1

r̃vk+1rkT
rk

]T
∈ R6 and the

uncertainty wk =

[
wT
rk wT

φk

]T
∈ R6, where wrk and wφk

are the uncertainty values for the translation and rotation
respectively.

To ensure positive definiteness for the output covariance
matrix, we assume the uncertainties of the non-correlated
measurements for each motion dimension. We apply For-
mula 17 element-wise to wk , resulting in the diagonal
covariance matrix Rk as in equation 18. Here, wi represents
each element in the vector wk , σ0 is the initial estimate of the
noise standard deviation bias, and β ∈ R>0 is an adjusting
parameter. The value of the tanh function is bounded between
-1 and 1, and by varying β, we can control the degree of
deviation of σ 2 from σ 2

0 , allowing us to set reasonable lower
and upper bounds for σ 2 values. Another characteristic is
that this formula encourages small values for wk because the
derivative magnitude of the tanh function rapidly approaches
zero as wi moves far away from zero.

σ 2
= σ 2

0 10
β tanh(wi) (17)

Rk = diag(σ 2
0 10

β tanh(wk )) (18)

To train the model, DI-EKF-VIO employs a combination
of two different loss functions, Lr and La. Lr is a loss function
directly applied to the output of the deep learning network,
as depicted in equation 19. On the other hand, La is a loss
function applied to the final output of the model (after passing
through the deep learning network and EKF). Lr is used to
guide the model to directly learn the relative poses of the
object, while the La loss takes into account both the measured
data and the associated uncertainties to guide the learning
process of the network. By incorporating the measurement
covariance matrix Rk , the network can better understand the
reliability of the measurements and adjust its predictions
accordingly. This helps generate more accurate and stable
absolute pose estimates, as it accounts for the uncertainty in
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FIGURE 2. Measured optical flow is used to estimate relative poses zk and the uncertainty value wk .

FIGURE 3. ResNet block used in the Network. The architecture follows the
conventional ResNet18 Network, but adding the Spatial & Channel
Attention Layer to each block to further improve results.

the measurements.

Lr =

N∑
k=1

κ1eTφeφ + eTr er

eφ = φ̃rkvk+1
− φrkvk+1

er = r̃vk+1rk
rk − rvk+1rk

rk (19)

We utilize the loss function introduced in [8] for La.
In contrast to the commonly used Mean Square Error (MSE)
loss in [30] and [31], this particular loss function offers
the advantage of preventing quaternion flips during the
initial stages of training, where errors tend to be significant.
Additionally, the expression I − ĈT

vk iCvk i serves as an

approximation of ln
(
ĈT
vk iCvk i

)
when Ĉvk i closely matches

Cvk i, providing a valid distance measure while bypassing the
issue of differentiability near π .

La =

N∑
k=1

∥∥∥r̂ivkvk − rivkvk

∥∥∥2
2
+ κ2

∥∥∥I − ĈT
vk iCvk i

∥∥∥2
F

(20)

Here, κ2 is a tuning coefficient used to balance the role
of components in the loss function. We use the squared
Euclidean norm to measure the error in absolute translation
estimates r̂ivkvk compared to the actual translation rivkvk .
Simultaneously, we employ the Frobenius norm to measure
the rotation error between ĈT

vk iCvk i and the identity matrix I.

To enable a metrically scaled pose initialization, a scale
parameter λ is augmented to the end of the state vector
(similar to [9]). The continuous time dynamics model for the
scale is λ̇ = 0 and error state is δλ̇ = 0. The scale factor is
applied to the IMU translation state, through λrvk+1rk

rk , prior
to computing ϵr within the measurement model. The rotation
measurement is unchanged. Themeasurement JacobianHk+1
becomes[

09×3 −J
(
−φ̌rkvk+1

)−1
0 09×2 09×1

09×3 0 −λI 09×2 rvk+1rk
rk

]
(21)

IV. EXPERIMENTS
We begin experimenting DI-EKF-VIO on 2 different datasets
with different settings: KITTI [32] and EuroC [33].

DI-EKF-VIO is implemented using PyTorch. The model
utilizes the Adam optimizer with coefficients β1 = 0.9,
β2 = 0.999, and a learning rate of 10−4. In our investigation
of DI-EKF-VIO, we undertook a methodical examination
of the Adam optimizer’s hyperparameters to elucidate their
influence on the system’s efficacy. However, given the
considerable scale of the dataset and constraints pertaining
to our training resources, we opted not to extensively
explore alternative optimizers. Rather, we selected the Adam
optimizer, recognized for its versatility in model training.
Throughout our experimentation, we systematically adjusted
the values of β1, β2, and the learning rate while maintaining
consistency in other model parameter. We observed that
setting β1 to values lower than 0.9 resulted in slower con-
vergence during training, leading to prolonged optimization
times and potentially suboptimal performance. Conversely,
increasing β1 beyond 0.9 accelerated convergence initially
but often led to overshooting or instability issues in later
epochs. Similarly, variations in β2 impacted the smoothness
of optimization trajectories, with excessively high values
causing erratic behavior.

Moreover, our experiments highlighted the sensitivity of
the model to the learning rate. While a learning rate of
10−4 provided satisfactory results in most cases, we found
that adjusting this parameter could fine-tune the balance
between convergence speed and final accuracy. Higher
learning rates facilitated faster initial progress but risked
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overshooting optimal solutions, whereas lower rates required
more iterations to converge but yielded more precise results.

For the optical flow estimator network, DI-EKF-VIO
employs RAFT [27] along with its pre-trained weights.
Additionally, the project implements other optical flow
estimation networks for comparison, aiming to understand
the importance of optical flow quality in relation to pose
estimation accuracy.

During training, the project divides large image sequences
into smaller subsequences of 6 frames. This allows for faster
training because a larger batch size can be used. However,
it also results in fewer updates to the Extended Kalman
Filter compared to using longer subsequences of 32 frames as
seen in Deep-EKF-VIO [8]. Nonetheless, since DI-EKF-VIO
uses an iterative EKF filter instead of the traditional EKF in
Deep-EKF-VIO, a sufficient number of EKF updates is still
ensured. The IEKF is iterated 6 times in our settings.

Data augmentation techniques are also used to prevent
overfitting, such as varying the starting point of the subse-
quences. In addition to cutting sequences of length 6 starting
from frame 0, the project also cuts sequences of the same
length starting from frame 3. This effectively doubles the
input datawhile ensuring diversity due to the different starting
points of the subsequences.

Furthermore, data augmentation includes techniques such
as introducing random noise to brightness, contrast, satura-
tion, and color levels. Data is also augmented by horizontally
flipping frames and temporally reversing the data. The
left-right flipping generates examples with turning scenarios,
while temporal reversing prevents the network from having
a forward-moving bias since vehicles often move forward.
These data augmentation techniques overall help to improve
the model’s generalization capabilities and reduce the risk of
overfitting.

A. KITTI DATASET
The KITTI odometry dataset [32] comprises outdoor driving
environments on urban streets primarily involving 3-DoF
planar motions, with speeds ranging from complete standstill
to 90 km/h. Some scenes taken from the dataset is shown
in figure 4. The groundtruth data is provided by the
output of the GPS/IMU localization unit, which is then
projected onto the coordinate system of the left camera
post-rectification. Sequences 00, 02, and 05 are excluded
from the evaluation process due to missing IMU data
for several seconds at various timestamps. However, valid
portions of these sequences are retained for training data.
The evaluation metric used is the KITTI standard evaluation
metric, calculating errors in translation and rotation per unit
of distance traveled. These errors are evaluated at distances of
100, 200, 300, 400, 500, 600, 700, and 800 meters. The unit
for translation error is percentage, and the unit for rotation
error is degrees per 100 meters (o/100m). The average error
for these data sequences is computed by taking the average of
all segments from 100 to 800 meters across all test sequences.

FIGURE 4. Images taken from KITTI Dataset.

Longer sequences have a more significant impact on the
average error calculation.

Although evaluating VIO methods on the KITTI dataset is
less common due to incomplete inertial data, we prioritized
comparisons with methods similar to ours, those considered
state-of-the-art at the time of our research, and those with
publicly available implementations for validation.

Therefore, we selected ORB-MSF [34], DeepVIO [6],
Deep-EKF-VIO [8], TartanVO [28],for comparison.
ORB+MSF is a traditional sensor fusion method serving as
a benchmark for classical approaches. It utilizes ORB for
visual feature extraction and the popular MSF for sensor
fusion with inertial data via EKF. DeepVIO is a state-of-the-
art learning-based VIO method demonstrating exceptional
performance on the KITTI dataset. It leverages CNNs and
LSTM networks for sensor data processing, along with a
self-supervised training method. Deep-EKF-VIO is a hybrid
method combining a DeepVO model for image feature
extraction and LSTM for IMU data, with EKF for sensor
fusion. TartanVO stands out for utilizing only a monocular
camera. We compared against TartanVO because our feature
extraction deep network is based on it. This comparison
allows us to assess the performance gains achieved through
sensor fusion with IMU data using our proposed IEKF
method. Results are shown in table 2
Deep-EKF-VIO [8] achieves high accuracy results in terms

of rerr on several sequences, but it significantly struggles
on sequence 01. This can be attributed to the fact that in
Deep-EKF-VIO, the authors apply LSTM [35] similar to [30]
to estimate relative poses and propagate this information
throughout the estimation of different data sequences. This
allows the model to retain velocity information across
sequences, which leads to better pose estimation results,
given that the robot’s velocities are similar across those
sequences. However, in sequence 01, the robot moves at a
high speed of 90 km/h, which is vastly different from the
velocities in the other sequences. As a result, Deep-EKF-
VIO incorrectly estimates the relative pose of the robot in
sequence 01, causing the results to deviate significantly from
the ground truth. On the other hand, DI-EKF-VIO does not
employ LSTM or any other temporal information but directly
estimates relative poses based on two consecutive input
images. Although this approach ignores the time constraints
between poses, it can lead to better results for sequence 01
compared to Deep-EKF-VIO.

Table 2 also clearly shows that combining both IMU
and camera information yields better results than using
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TABLE 2. Experimental results on KITTI dataset. Unit of terr and rerr are [%] and [◦/100m] correspondingly. ‘‘-’’ indicate unavailable or unrecored results.
Best results are written bold in the table.

FIGURE 5. Trajectory result on sequence KITTI 08.

only the camera. Given the localized nature of the problem
settings, wherein no overarching global reference, such as
GPS, is available, the deep learning model’s reliance solely
on camera input results in a cumulative error in rotational
estimation, consequently leading to a substantial deviation
from ground truth over time. The inclusion of IMU data
in the fusion process facilitates precise angular rotation
estimation, thereby mitigating the progressive drift inherent
in the estimation process. Figures 5 and 6 illustrate estimation
results for some sequences, comparing the use of EKF versus
not using EKF.

It is evident that without using EKF, the results are prone
to cumulative drift due to local errors. This cumulative
drift becomes more significant as the trajectory progresses.
Drifted results can lead to substantial deviations, as seen in
Figures 5 and 6, where the trajectory is initially correct but
deviates as it moves away from the starting point.

B. EUROC DATASET
The EuRoCMAVdataset [33] comprises 11 indoor sequences
captured using a Skybotix stereo VI sensor mounted on a
small Unmanned Aerial Vehicle (UAV) commonly known
as a Micro Aerial Vehicle (MAV). Some images taken
from the datasets is displayed in figure 7. The available

FIGURE 6. Trajectory result on sequence KITTI 10.

data includes grayscale images, accelerometer, gyroscope
readings, and ground truth measurements obtained from the
Vicon motion capture system and Leica MS50 laser tracker.
One significant challenge in this dataset, crucial for our
project, is synchronizing the sensor data with the motion
ground truth, as they are recorded using different systems.
This means that the input images and the corresponding
camera ego-motion are not perfectly aligned. For instance,
while the images are captured by the onboard system, the
position data is gathered by the Vicon system. Despite both
sources having global timestamps, there is inconsistency
in aligning the image frames with the positional data.
Unlike the KITTI datasets, where the camera motion is
consistently forward with a fixed speed, the motion of the
MAV (Micro Aerial Vehicle) can vary in direction with
minimal displacement per frame. In such scenarios, the actual
motion may be smaller than the inherent noise in the data.
It is organized into three distinct scenes: Machine Hall
(MH) containing 5 sequences, Vicon Room 1 (V1) consisting
of 3 sequences, and Vicon Room 2 (V2) also comprising
3 sequences. Sequence V2 03 has been excluded from the
dataset due to issues related to the acquisition of image data
at the anticipated rate.

Unlike the KITTI dataset, the EuroC dataset presents a
more challenging scenario due to the presence of significant
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FIGURE 7. Images taken from EuroC Dataset.

relative errors in the IMU data. This is because the EuroC
dataset contains grayscale single-channel images. To use the
same pre-trained optical flow estimation network weights as
in KITTI, the grayscale images are duplicated three times to
create RGB-like images. This is necessary to match the input
format of the optical flow estimation network used in KITTI.

Except for sequence V2 03, which was omitted due to
issues with image acquisition rate, all remaining sequences
from the EuroC dataset are used. Sequences MH 05 and V1
02 are utilized for validation data, while all other sequences
are used for training data. The challenges posed by the
EuroC dataset, including its large IMU error, make it a more
demanding dataset compared to KITTI.

As a result, unlike the results obtained from the KITTI
dataset, the EuroC dataset yields considerably worse results
compared to traditional methods. The experimental results
are compared with results proposed in [8], [9], [11], and [28].
It is important to note that the EuroC dataset presents
greater challenges due to its significant IMU errors and
other complexities, making it harder for the DI-EKF-VIO
approach to outperform traditional methods in this particular
context. Vins-Mono [11] is a state-of-the-art classical VIO
model, employs a tightly coupled optimization approach,
jointly optimizing the system state and 3D positions of
tracked features. Deep-EKF-VIO [8] while performs well
on KITTI, its performance on EuroC is lower. This raises
questions about the effectiveness of the hybrid EKF approach
in more challenging datasets. Self-EKF-VIO [9] builds upon
Deep-EKF-VIO by incorporating self-supervised training.
The comparison is demonstrated in Table 3.
The predicted trajectories of several sequences in the

EuroC dataset are shown in Figures 8 and 9. The integration
of deep learning with the Extended Kalman Filter presents
a notable observation: the incorporation of EKF tends to
yield less accurate predicted trajectories when compared to
instances where EKF is not utilized. A plausible explanation
for this phenomenon lies in the inferior quality of IMU
data within the EuroC dataset as opposed to the IMU data
contained within the KITTI dataset. The EuroC dataset
suffers from substantial IMU errors. The high noise levels
in EuroC’s IMU measurements lead to filter divergence.
The EKF tend to underestimates the noise in the IMU

data, causing it to place undue trust in these erroneous
measurements. This results in the EKF propagating noise and
generating inaccurate state estimates, ultimately reflected in
the degraded trajectory predictions seen in Figures 8 and 9.

One potential limitation of our approach on the EuroC
dataset is the use of grayscale images. The pre-trained
optical flow estimation network was originally designed
for RGB images. While we convert the grayscale EuroC
images to pseudo-RGB by replicating channels, this process
might introduce artifacts that could negatively affect network
performance. Future work should investigate the extent of
this impact and potentially explore techniques for handling
grayscale data within the deep learning framework.

Furthermore, the EuroC dataset presents distinct chal-
lenges compared to the KITTI dataset. KITTI captures
images from a car driving in an urban environment, offering
a relatively stable viewpoint. In contrast, the EuroC dataset
captures indoor environments from a flying UAV, which
experiences significantly greater freedom of movement. This
can lead to sequences with rapid rotations, a known difficulty
for visual odometry methods. The limited field of view of the
camera in these scenarios may result in insufficient unique
visual features for accurate tracking. The noisy IMU data in
EuroC further amplifies this issue, as the EKF struggles to
compensate for the rapid changes.

Additionally, the EuroC dataset may contain sequences
with varying or low illumination conditions. Such conditions
can negatively impact feature extraction and matching within
the visual odometry component. When combined with the
noisy IMU data, these scenarios can lead to significant errors
in the estimated trajectories.

Finally, environments with repetitive textures pose another
challenge. These environments offer minimal unique visual
features for the network to track, potentially causing the
visual odometry component to drift. The noisy IMU data in
EuroC exacerbates this issue in DI-EKF-VIO.

Nevertheless, when we examine Table 3, we can see
that even without utilizing EKF, the combination of deep
learning and camera data still achieves better outcomes than
networks using IMU information and other visual odometry

FIGURE 8. Trajectory result on sequence EuroC MH03.
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TABLE 3. Experimental results on EuroC dataset. Unit of results is meter, with bold black number are best results, and red numbers indicate best deep
learning results.

FIGURE 9. Trajectory result on sequence EuroC V102.

networks. This highlights the superior capabilities of the deep
learning network in DI-EKF-VIO when compared to other
approaches.

C. OPTICAL FLOW PRETRAIN NETWORK
DI-EKF-VIO employs the architecture and weights of the
RAFT optical flow estimation network RAFT [27] as a
pretrained network for training. RAFT was chosen as the
pretrained network due to its accurate optical flow estimation
results and robustness on unobserved data. Hereafter, we will
modify the pretrained network architecture to assess the
significance of accurate optical flow estimation in relation
to relative pose estimation. We will solely compare the
estimation results of the deep learning network without using
EKF for this experiment. However, it can be implied that a
more accurate relative pose estimation from the deep learning
network will yield even more precise pose estimation results
across the system.

We conduct a comparison between results obtained using
the RAFT optical flow estimation network and results
from using the RAFT-S [27] and GMFlow [36] optical
flow estimation networks. This comparison is performed on
sequences KITTI 01, 04, 06, and 10, as shown in table 4.

It’s evident that DI-EKF-VIO, utilizing the pretrained
network RAFT-L as introduced in [27], achieves the most
promising results among the three compared networks. This
observation can be attributed to the optical flow estimation

TABLE 4. Compared KITTI result using different optical flow pretrain
network.

performance that the authors of the paper reported using
RAFT-L, which surpasses both of the other networks. From
this, it can be deduced that even though the differences might
not be significant, a better-performing pretrained optical
flow estimation network can lead to improved relative pose
estimation results.

D. RUNTIME COMPARISON
Intuitively, increasing the number of iterations has a positive
impact on the system’s accuracy because it allows for
improved estimation with each iteration of IEKF. However,
it’s important to note that as the number of iterations goes up,
the runtime of the IEKF also increases significantly. Thus,
there exists a trade-off between accuracy and runtime.

Nevertheless, our testing has led us to a crucial observation:
increasing the number of iterations does not always result
in a corresponding increase in accuracy, as demonstrated in
table 5. We posit that this discrepancy occurs because as
the number of iterations increases, the IEKF’s linearization
process becomes more susceptible to bias and errors.
Consequently, the overestimation caused by bias in the IEKF
aggravate, leading to a decline in accuracy. To address this
issue, we conducted experiments with varying numbers of
iterations to strike a balance between maintaining accuracy
and achieving a sufficiently low runtime for future real-time
implementation.

As in table 5, these results illustrate the trade-off between
runtime and accuracy as the number of iterations increases.
With fewer iterations, the runtime is low, but accuracy is
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TABLE 5. Compared KITTI result using different number of iteration
settings.

only moderate. As the number of iterations grows to 6,
accuracy significantly improves, although at the cost of a
moderate increase in runtime. However, with 12 iterations,
while accuracy continues to increase, the runtime becomes
high, and there is a noticeable decrease in accuracy due to
issues related to overestimation caused by bias. Therefore,
choosing the appropriate number of iterations depends on
striking a balance between runtime constraints and achieving
the desired level of accuracy for your specific application.

E. PRACTICAL DISCUSSION
Analysis of data from the KITTI and EuRoC datasets
underscores the potential of DI-EKF-VIO for autonomous
navigation tasks in vehicles and UAVs. This approach offers
a compelling solution for enhancing navigation precision
and efficiency by fusing monocular camera data with
inertial measurements from an IMU. Compared to prevalent
LiDAR-based systems in the autonomous vehicle industry,
DI-EKF-VIO presents several advantages. By leveraging
readily available cameras and IMU, which are generally
cheap and easy to acquire, DI-EKF-VIO is a more cost-
effective solution. Additionally, cameras and IMU are
generally smaller and lighter than LiDAR sensors, leading to
a more compact system design - particularly beneficial for
UAVs with limited payload capacity.

Real-time operation is also critical. The use of iterated
EKFs enhances performance but introduces a significant
computational burden. In our work, we have explored
balancing iterations with accuracy by modifying the number
of iteration in the IEKF. As shown in table 5, utilizing
iteration of 6 can achieve real time computation, with the FPS
of 12.

Another crucial factor for deploying DI-EKF-VIO in
real-world scenarios with diverse environments is its gen-
eralizability. The current evaluation utilizes the KITTI and
EuRoC datasets, which offer a variety of conditions. How-
ever, to solidify the claims of DI-EKF-VIO’s effectiveness
across a wider range of situations, further validation with
datasets encompassing extreme weather conditions, off-
road terrains, and highly dynamic scenarios is necessary.
Additionally, exploring the performance of DI-EKF-VIO
with different sensor configurations, such as varying camera
resolutions or incorporating additional sensor modalities,
would broaden its applicability to a wider range of VIO
applications.

One of the main challenges for achieving generalizability
is the dependence of DI-EKF-VIO on training data for
parameter tuning. This is a common hurdle faced by many
visual-inertial odometry methods, particularly those with

deep learning elements. The effectiveness of DI-EKF-VIO
can be significantly impacted by the quality and quantity of
data used. To achieve robustness in diverse environments,
the system may require a substantial amount of training data
encompassing a wide range of conditions.

Recent work [9] proposes a potential solution to this
challenge. Their approach explores training DI-EKF-VIO
on synthetic datasets. Synthetic datasets offer a significant
advantage in terms of environmental variability. By generat-
ing diverse and controlled virtual environments, researchers
can train the system on a much larger and more varied dataset
compared to real-world data collection. This approach holds
promise for improving the generalizability and robustness of
DI-EKF-VIO in real-world applications.

Finally, real-world sensor measurements are inherently
susceptible to noise from both cameras and IMUs. Sensor
noise significantly impacts DI-EKF-VIO’s performance,
as evidenced in the EuroC dataset section, where high-noise
data led to poor EKF performance. This is a well-known
weakness of EKFs. We will investigate alternative filtering
techniques specifically designed to handle sensor noise and
improve DI-EKF-VIO’s robustness in noisy environments.
This could involve incorporating noise models into the EKF
framework or exploring Kalman filter variants better suited
for handling non-Gaussian noise.

V. CONCLUSION AND FUTURE RESEARCH
DI-EKF-VIO is a novel visual-inertial odometry (VIO)
system that combines a deep learning network with a
Robocentric-Iterated Extended Kalman Filter (EKF) for
accurate relative pose estimation. The deep learning network
provides pose estimates and uncertainties, which are fused
with IMU data in the Robocentric Iterated EKF block to
obtain absolute robot poses. DI-EKF-VIO’s performance was
evaluated on both KITTI and EuroC datasets. On KITTI, DI-
EKF-VIO achieved promising results with an average trans-
lation error of 2.27% and rotational error of 0.226 degrees,
outperforming other deep learning-based VIO methods and
competing favorably with traditional approaches. Although
less favorable on EuroC, DI-EKF-VIO still outperformed
other deep learning methods.

To enhance the performance of DI-EKF-VIO’s deep
learning components for relative pose estimation, future
research will explore a multifaceted approach. Novel deep
learning architectures, inspired by recent breakthroughs in
computer vision like transformers or GAN, hold promise for
significant improvements.

Furthermore, addressing the challenge of data scarcity,
a common hurdle in deep learning, will be crucial. Unsu-
pervised and self-supervised learning techniques offer a
compelling solution, allowing DI-EKF-VIO to leverage
unlabeled data and alleviate the burden of meticulously
labeled training sets.

Additionally, researchers are investigating the integration
of statistical and Bayesian methods. This would enable DI-
EKF-VIO to move beyond a single point estimate for pose
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and instead quantify the uncertainty associated with each
estimation. This probabilistic approach would lead to a more
robust and reliable understanding of the environment.

Finally, synthetic data augmentation is emerging as a
promising avenue for future development. By meticulously
crafting simulated datasets, researchers can provide a vast
and diverse training ground for deep learning models. This
approach has the potential to significantly improve accuracy
and generalizability without the need for extensive real-world
data collection.
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