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ABSTRACT This paper presents a supervisor model-switch method for model predictive control of room
temperature using a one-to-three variable refrigerant flow (VRF) system. This method utilizes system
identification to obtain linearized transfer functions of the variable refrigerant flow system’s compressor
speed and electronic expansion valve to room and superheat temperature. The transfer functions for room
and the two-phase region temperatures of the evaporator are derived from the energy conservation law to
apply in VRF systems. The model predictive control structure is adopted to consider the coupling effects
between control states. The effects of superheat and room temperature error weighting factors on rapid
cooling and steady-state error are numerically investigated. In addition, this research utilizes a switching
linearization model approach to overcome the limitation of a single identification model with a narrow,
accurate temperature control range. A supervisor model-switch strategy is proposed to switch multiple
models for the same target temperature to average the risk of model mismatch, and calculate the minimum
allowable switching time to ensure system stability during switching, thereby expanding the range of
temperature control. The proposed method has been experimentally evaluated on a one-to-three VRF system
to control the steady-state temperature of each indoor unit within 0.5◦C and maintain a superheat above 0◦C
to avoid liquid refrigerant from entering the compressor.

INDEX TERMS Variable refrigerant flow system, model predictive control, room temperature.

I. INTRODUCTION
The variable refrigerant flow (VRF) system controls the
flow rate of refrigerants to different rooms to achieve
desired temperatures. Compared to one-to-one air condition-
ers, VRF systems consist of an outdoor compressor and
multiple indoor units to reduce the required compressors and
decrease energy consumption in buildings. For central air-
conditioning systems, the connected state of air circulation
affects each room’s air quality. The main issue with VRF
systems is their architecture, which connects one outdoor
unit to multiple indoor units, causing room temperatures
and superheat to interfere with each other and posing a
challenge for temperature control. Thus, system modeling
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is essential for VRF systems to control subsystems and
diagnose equipment malfunctions. Such a physical model
based on energy, mass, andmomentum conservation has been
proposed [1]. However, identifying the massive parameters
of air conditioning components requires complex processing.
System identification is a practical tool for modeling single-
or multi-evaporator air-conditioning systems [2], [3], whuch
measures system inputs and outputs through data regression
to derive the system’s state-space equation. Furthermore,
a semi-nonlinear ordinary differential heat model has been
used to simulate model indoor room temperatures [4].

Various control methods have been applied to refrigera-
tion and airconditioning systems, including on-off control,
proportionalintegralderivative (PID) controllers, nonlinear
control, robust control, fuzzy logic control, neural network
control, and model predictive control (MPC). To improve
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the system’s transient response, the system can be linearized
at a single operating point, and the PID controller param-
eters can be automatically adjusted using multiobjective
particle swarm optimization [5]. Nonlinear control based
on linearized feedback, gain scheduling, and nonlinear
feedback control can also be applied to control refrigeration
and airconditioning systems [6], [7]. However, a one-to-
many refrigeration and air-conditioning system involves
higher-order system dynamics and, thus, more complex
mathematical analysis. In such cases, a multi-input, multi-
output robust controller can effectively handle disturbances
and uncertainties in system parameters [8] but requires
a high-order controller after the model reduction process.
Fuzzy control, which bypasses the need for a mathematical
model, requires extensive experience and domain knowledge
related to refrigeration and air conditioning during the
design of fuzzy logic controllers [9], making controller
design challenging. Proportional-integral controllers can
be combined with neural networks for thermal comfort
control [10], ensuring thermal comfort by using the predicted
mean vote as the input to train the neural network to adjust
occupants’ perceived temperature [11]. However, neural
network control requires a large amount of training data. VRF
systems are slow to respond, making it difficult to obtain
sufficient experimental data, thus affecting the development
and implementation of control methods.

The MPC design yields high-performance control systems
that operate without intervention for periods [12]. MPC
has been extensively studied and integrated into heating
systems [13]. To optimize a control vector over the prediction
horizon,MPC employs a cost function expressed as a tracking
error, control effort, demand cost, power consumption, and
constraints. These features keep control variables within
bounds and improve transient and steady-state responses in
VRF systems. The advantages and disadvantages of the MPC
method compared with other traditional control methods are
listed in Table 1. While MPC requires a physical model as a
control reference, for systems with relatively slow response,
such as VRF, the process of building a neural network
with a large dataset can be time-consuming. PID and Fuzzy
control, on the other hand, require a specialized knowledge
background for parameter tuning. MPC can mitigate the
risk of component damage by considering input-output
constraints during the control process using model-based
optimization calculations.

According to the arrangements of MPC controllers,
the MPC controllers can be categorized as a centralized
MPC [14], decentralized MPC, and distributed MPC. The
advantages of distributed MPC lie in its controllers being
able to exchange data, thereby reducing computational costs
and having good output characteristics [15]. Conversely,
centralized MPC is characterized by achieving optimal
output, but its computational costs are higher than those of the
other two forms, making it less suitable for computing cores
with limited capabilities. Decentralized MPC has the lowest
computational costs among the three forms but produces the

TABLE 1. Controller comparison.

least optimal output results. For the cost function parameters
inMPC, the RobustMPC combines robust control techniques
to overcome model uncertainties [16], [17].

Furthermore, combining parameter estimation and robust
MPC improves control accuracy [18], [19]. The Supervisory
MPC involves a hierarchical control architecture, in which
a supervisory controller generates setpoints for local con-
trollers. The supervisory controller considers the overall
system objectives, such as thermal comfort and temperature
regulation, and calculates operating conditions for the
system [20], [21]. However,MPC still has some problems that
need to be solved, including high computational complexity,
difficulty in practical application, and parameter adjustment
challenges.

This study applies system identification methods and
supervisory centralized MPC as the control strategy in a
VRF system. Additionally, it combines a strategy applied in
vapor compression systems to achieve zero steady-state errors
under unknown thermal loads [22]. For computational costs,
this study identifiesmultiple operating points and expands the
controllable range of the system by switching mathematical
model controllers. A switching control strategy is proposed to
ensure the continuity of signals when switching controllers
and to avoid system instability caused by rapid switching
by accessing past state values [23]. In the supervisor
model-switch strategy, mode dwell time (MDT) is a crucial
parameter that ensures the system operates in a stable range
before allowing switching [24], [25]. For nonlinear system
design, all controllers guarantee Lyapunov decrement and
constrain mode switching to ensure the stability of the closed-
loop system [26].

This paper aims to investigate temperature control in
a one-to-many VRF system. Previous research [1], [27]
derived a physical model of a one-to-one air conditioning
system. However, most physical models for one-to-many
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VRF systems are overly complex, and obtaining their param-
eters is challenging [28]. Additionally, the two-phase zone
temperature of the evaporator cannot be directly measured in
experimental setups. Therefore, this paper employs system
identification to directly obtain the transfer functions between
compressor speed, expansion valve opening, room temper-
ature, and superheat. Through this approach, a linearized
model is obtained and used to design theMPC controller. The
remainder of this article offers the following.
– The supervisor model-switch method for designing

model predictive control of room temperature using a
one-to-three VRF system, including model identifica-
tion, MPC applications, and rules for switching MPC
reference models, is introduced.

– The effects of the system identification on VRF systems
are numerically investigated using experimental data.
The MPC and the supervisor model-switch strategy for
the VRF systems are numerically validated.

– The experiments illustrate the feasibility of theMPC and
propose a strategy for transitioning models to control the
room temperature at the user-set temperature.

II. MODEL PREDICTIVE CONTROL ON VARIABLE
REFRIGERANT FLOW SYSTEM
Fig. 1 illustrates a VRF system comprising one outdoor
and multiple indoor units to achieve different desired
temperatures in each room. In Fig. 1(a), each indoor unit’s
electronic expansion valve (EEV) controls the flow of liquid
refrigerant delivered from the outdoor unit to adjust cooling
capacity according to users’ desired temperature settings. The
gaseous refrigerant flows back to the outdoor unit to release
heat from the indoor to the outdoor.

FIGURE 1. Illustration of the working principle of the one-to-many VRF
system. (a) Configuration. (b) Physical system architecture.

The configuration of the VRF system, composed of the
refrigerant cycle and indoor dynamics, is shown in Fig. 1(b).
The compressor compresses the gaseous refrigerant to form a
high-temperature and high-pressure refrigerant, which flows
into the condenser and exchanges heat with the outdoor
environment, resulting in a low-temperature refrigerant.

The EEV distributes the refrigerant into its indoor evapora-
tor to exchange heat with the indoor environment, decreasing
the room temperature Tri of rooms i (i= 1, 2, . . . , n). During
the heat exchange process, the refrigerant with liquid and
gas coexisting inside the evaporator completely transforms
into a gaseous refrigerant with temperature changing from
two-phase region temperature (Tei) to evaporator outlet
temperature (Tesi). The temperature difference between Tes
and Te is defined as the superheat temperature Tsh, which
is greater than 0◦C, indicating complete vaporization of the
refrigerant. The gaseous refrigerant ultimately flows back to
the compressor, completing the refrigerant cycle in the VRF
system for cooling. Assuming the fan speeds of the condenser
and the indoor air conditioner are constant, the system inputs
are the compressor speed (ωc) and the EEVopening (αvi). The
outputs are the room temperature (Tri) and the evaporator’s
superheat temperature (Tshi).

FIGURE 2. Illustration of the supervisor model-switch method for model
predictive control of the room temperature. (a) Model of the VRF system.
(b) Linearized models. (c) Block diagram of the supervisor model-switch
strategy for model predictive control.

The proposed control strategy to control Tr and Tsh for
the VRF system involves the hardware of the VRF system,
supervisor, and MPC, as shown in Fig. 2. As illustrated
in Fig. 2(a), the experimental VRF system is modeled
as a state-space representation with A(t), B(t), and C(t),
which are nonlinear and high-order matrices and can be
approximated by the multiple linearized models concerning
different equilibrium points. The matrix C(t) is an identity
matrix that outputs the states fully.

Fig. 2(b) shows the VRF model is separated into linearized
models (Aj,Bj) (j= 1, 2, . . . ,m), constructed using the system
identification method according to the outdoor temperature
(To) and room temperatures (Tr ) within different ranges.
When the user sets different room temperatures, an approach
is needed to select an appropriate model from the established
linear models. Fig. 2(c) shows that the supervisor-controlled
layer is added to switch a proper reference model for MPC
automatically, which is the supervisory centralized MPC
applied in the VRF systems for controlling Tr and Tsh.
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The user-set room temperature T̂r and To are not only put
into the supervisor, but the current room temperature (Tr )
and superheat (Tsh) are also feedback to switch a model
from linearized models (Aj, Bj). The MPC determines each
indoor unit’s compressor speed and the EEV openings to
execute closed-loop control based on the user-set room
temperature (T̂r ) and superheat temperature (T̂sh), reference
model, and feedback temperatures. MPC discretizes the
system’s dynamic equation, uses an iterative algorithm to
predict future states to minimize the cost function within
a finite time horizon, and calculates the optimal control
inputs ωc and αv for the next sampling time. The approach
reduces model mismatch issues, allowing the system to
achieve the user-set temperatures, thereby improving system
performance and energy efficiency.

A. DYNAMIC MODEL OF VRF SYSTEMS
In [3], the dynamic model of a triple-evaporator air-
conditioning (TEAC) system is given by a system of first-
order equations:



δTe1 (s)
δTsh1 (s)

...

δTei (s)
δTshi (s)

...

δTen (s)
δTshn (s)


=



b̃1,1
s+ã1

b̃1,2
s+ã1

· · ·
b̃1,i+1
s+ã1

· · ·
b̃1,n+1
s+ã1

b2,1
s+a2

b2,2
s+a2

· · ·
b2,i+1
s+a2

· · ·
b2,n+1
s+a2

...
...

. . .
...

...
b̃2i−1,1
s+ã2i−1

b̃2i−1,2
s+ã2i−1

· · ·
b̃2i−1,i+1
s+ã2i−1

· · ·
b̃2i−1,n+1
s+ã2i−1

b2i,1
s+a2i

b2i,2
s+a2i

· · ·
b2i,i+1
s+a2i

· · ·
b2i,n+1
s+a2i

...
...

. . .
...

...
b̃2n−1,1
s+ã2n−1

b̃2n−1,2
s+ã2n−1

· · ·
b̃2n−1,i+1
s+ã2n−1

· · ·
b̃2n−1,n+1
s+ã2n−1

b2n,1
s+a2n

b2n,2
s+a2n

· · ·
b2n,i+1
s+a2n

· · ·
b2n,n+1
s+a2n



×



δωc (s)
δαv1 (s)

...

δαvi (s)
...

δαvn (s)


(1)

where the compressor speed (ωc) and the EEV openings
(αv1, αv2, . . . , αvn) are the inputs of total n rooms. The
two-phase region temperatures (Te1, Te2, . . . , Ten), and the
superheat temperatures (Tsh1, Tsh2, . . . , Tshn) are the outputs.
δ is the slight disturbance around the equilibrium inputs and
outputs. The coefficients of the first-order transfer functions
are symbolled as ã and b̃ in the odd rows; a and b are in
the even rows. However, the two-phase region temperatures
of the evaporator are challenging to measure in experiments.
In the odd columns of (1), Tei is replaced by Tri. In [2],
the indoor thermal loads are ignored, and the heat exchange
between the evaporator and room temperature is determined
by the law of energy conservation:

C
dTr
dt

= Q̇e. (2)

C = ρairVrKair (3)

Q̇e = αe1πDele(Te − Tr ) + αe2πDe(Le − le)(Tes − Tr )

(4)

where C is the indoor heat capacity, and Q̇e is the heat
transfer rate of the evaporator. ρair , Vr , Kair , αe1, αe2, De,
le, Le, and Tes are air density (kg/m3), room size (m3), the
specific heat of air (J/kg·K), heat transfer coefficient in the
two-phase region (W/K·Dm2), heat transfer coefficient in
the superheated zone (W/K·Dm2), evaporator outer diameter
(m), two-phase region length (m), total length of evaporator
(m), and evaporator outlet temperature, respectively. The
superheat temperature (Tsh) is defined as follows:

Tsh = Tes − Te. (5)

With the small variations Tr≈ δTr , Te≈ δTe, and
Tsh≈ δTsh, and substituting (4) and (5) into (2), the small
variation in room temperature δTr is obtained:

d(δTr )
dt

= −
πDe [αe1le + αe2(Le − le)]

C
δTr

+
πDe [αe2(Le − le)]

C
δTsh

+
πDe [αe1le + αe2(Le − le)]

C
δTe (6)

Noting that the two-phase region occupies more than 90%
of the total length of the evaporator, indicating Le-le ≪ le, the
right-hand side of (6) can be neglected:

d(δTr )
dt

= −
αe1πDele

C
δTr +

αe1πDele
C

δTe. (7)

The relationship between the temperature of the two-
phase region and the room temperature is obtained by taking
Laplace transform:

δTr (s) =
c0

s+ c0
δTe(s). (8)

where c0 = αe1πDele
/
C

For the transfer function of odd rows in (1), δTei is
substituted by δTri as follows:

δTri(s) =
b̃2i−1,1

s+ ã2i−1

c0
s+ c0

δωc(s) +
b̃2i−1,2

s+ ã2i−1

c0
s+ c0

δαv1(s)

+ . . . +
b̃2n−1,2

s+ ã2n−1

c0
s+ c0

δαvn(s). (9)

In [3], the pole value ã2i−1 is ten times greater than c0;
therefore, the pole c0 can be considered the dominant pole
to ignore the effect of ã2i−1. The dynamics of the inputs
compressor speed and EEV openings to the outputs room and
superheat temperatures are formulated as the equations of the
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first-order system:



δTr1 (s)
δTsh1 (s)

...

δTri (s)
δTshi (s)

...

δTrn (s)
δTshn (s)


=



b1,1
s+a1

b1,2
s+a1

· · ·
b1,i+1
s+a1

· · ·
b1,n+1
s+a1

b2,1
s+a2

b2,2
s+a2

· · ·
b2,i+1
s+a2

· · ·
b2,n+1
s+a2

...
...

. . .
...

...
b2i−1,1
s+a2i−1

b2i−1,2
s+a2i−1

· · ·
b2i−1,i+1
s+a2i−1

· · ·
b2i−1,n+1
s+a2i−1

b2i,1
s+a2i

b2i,2
s+a2i

· · ·
b2i,i+1
s+a2i

· · ·
b2i,n+1
s+a2i

...
...

. . .
...

...
b2n−1,1
s+a2n−1

b2n−1,2
s+a2n−1

· · ·
b2n−1,i+1
s+a2n−1

· · ·
b2n−1,n+1
s+a2n−1

b2n,1
s+a2n

b2n,2
s+a2n

· · ·
b2n,i+1
s+a2n

· · ·
b2n,n+1
s+a2n



×



δωc (s)
δαv1 (s)

...

δαvi (s)
...

δαvn (s)


. (10)

where

b2i−1,i+1 = b̃2i−1,i+1ci;

a2i−1 = ci;

ci =
(
αe1πDele

/
C

)
i

The coefficient ci is the heat transfer relation to the ith

evaporator in ith room. The output modification of the
transfer function makes the system measure only the room
temperature and does not need to measure the temperature
of the two-phase region of the evaporator. The system
identification obtains the coefficients a2i−1, a2i, b2i−1,i+1,
and b2i,i+1, where i= 1, 2, . . . , n, for total n numbers
rooms. In [3], the linearized model in (10) is a system
that is identified around the equilibrium output vector x̄ =[
T̄r1 T̄sh1 · · · T̄rn T̄shn

]T and the equilibrium input vector
ū =

[
ω̄c ᾱv1 · · · ᾱvn

]T . The model employs a slight input
disturbance to record a small output response when the
system achieves stable values.

1) SYSTEM IDENTIFICATION
For the first-order system transfer function,

G0(s) =
b0

s+ a0
(11)

where a0 and b0 are the parameters to be identified in the
experiment, and a low-pass filter is utilized to reduce the noise
in the experiment:

λ =
1

1 + τ s
(12)

where τ is the time constant.
Using (11) and (12), the transfer function is expressed as

follows:

G0(λ ) =
β0λ

1 + α0λ
(13)

where α0 = a0τ -1, β0 = b0τ . The time-domain responses are
given by the following:

y0 (t) = −α0
[
λy0

]
(t) + β0

[
λu0

]
(t) (14)

where [λy0] and [λu0] are the filtered inputs and outputs.
The continuous time domain can be discredited from 0 to

kT as the following matrix:

Y = ϕθ , (15)

where

Y
(
∈ R(k+1)×1

)
=

[
y0(0) y0(T) · · · y0(kT)

]T
ϕ

(
∈ R(k+1)×2

)
=

[
−[λy0](0) −[λy0](T) · · · −[λy0] (kT)

[λu0](0) [λu0](T) · · · [λu0] (kT)

]T
θ

(
∈ R2×1

)
=

[
α0 β0

]T
The estimated parameter θ̂ is obtained by the least squares
method to identify a0 and b0 in the experiment as follows:

θ̂ = (ϕTϕ)−1ϕTY. (16)

B. MODEL PREDICTIVE CONTROLLER DESIGN FOR THE
VRF SYSTEM
MPC is featured in easy-to-incorporate constraints, such as
maximum or minimum values for states, inputs, and rate
limits. The physical constraints are directly used in controller
design, ensuring that the superheat in the VRF system must
always be greater than zero to prevent liquid refrigerant from
entering the compressor and causing damage. (10) can be
expressed as the state-space representation:

δx(k+1) = Aδx(k) + Bδu(k) (17)

where

δx (k) = [δTr1(k)δTsh1(k) · · ·δTri(k)δTshi(k) · · ·

δTrn(k)δTshn(k)]T ;

δu (k) =

[
δωc(k) δαv1(k) · · · δαvi(k) · · · δαvn(k)

]T
;

A
(
∈ R2n×2n

)
=


−a1 · · · 0

...
. . .

...

0 · · · −a2n

 ;

B
(
∈ R2n×(n+1)

)
=


b1,1 · · · b1,n+1

...
. . .

...

b2n,1 · · · b2n,n+1

 .

For the present time, the MPC iterates the future responses
in advance to optimize the input. Through accumulating
the total output vector δx and input vector δu within the
prediction horizon NP from k to k + Np, A and B form the
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matrices within the control horizon NC :

δX (k + 1) ∈ R(2n·NP)×1

=


δx (k + 1)
δx (k + 2)

...

δx (k + NP)

 =


A
A2

...

ANP

 δx (k)

+


B
AB
...

ANP−1B

0 · · · 0

B
...

...
. . .

...

ANP−2B · · · AB




δu (k)
δu (k + 1)

...

δu
(
k + Np − 2

)
 .

(18)

where NP = NC+1.
The output vector δx represents the response of the output

state after the input from the previous state, while δX is
a matrix formed by the accumulated output states over a
period of time. The cost function of MPC is formed by the
accumulated output matrix δX(k + 1), tracking error, and
constraints to obtain the optimized input at the k+1 moment.
The first element δu(k) of the computed input vector at any
sampling instant is the system input umpc, and the remainder
is discarded.

Tomake δX(k+1) approach the user-set temperatures t̂ , the
target tracking function 1T(k + 1) and two positive-definite
matrices Qx, Ru are utilized to calculate the cost function J :

J = [δX (k + 1) − 1T(k + 1)]T Q [δX (k + 1)

−1T(k + 1)]+δUTRδU (19)

where

Q
(
∈ R(2n·NP)×(2n·NP)

)
=

Qx 0 0

0
. . . 0

0 0 Qx

 ;

R
(
∈ R[(n+1)·(NP−1)]×[(n+1)·(NP−1)]

)
=

Ru 0 0

0
. . . 0

0 0 Ru

 ;

1T (k + 1) ∈ R(2n·NP)×1

=
[
1t (k + 1) 1t (k + 2) · · · 1t (k + NP)

]T
;

δU
(
∈ R[(n+1)·(NP−1)]×1

)
=


δu (k)

δu (k + 1)
...

δu
(
k + Np − 2

)
 ;

Qx

(
∈ R2n×2n

)
=


WTr1 · · · 0

WTsh1
...

. . .
...

WTrn
0 · · · WTshn

 ;

Ru

(
∈ R(n+1)×(n+1)

)
=


Wωc · · · 0

Wαv1

...
...

. . .

0 · · · Wαvn


(n+1)×(n+1)

;

1t = t̂ − x̄ =
[
1Tr1 1Tsh1 · · · 1Trn 1Tshn

]
;

1Tr = T̂r − T̄r ; 1Tsh = T̂sh − T̄sh.

The matrix 1t represents the difference between the user-
set temperatures t̂ and the equilibrium output vector x̄, which
is the linearized point of the (A, B) model. The input and
output weighting matrices Qx and Ru are introduced in the
cost function to balance the importance of adjusting inputs
and outputs. The matrix form in (19) is formulated into
cumulative form to facilitate calculation:

umpc = argmin
u(k)

J

=

NP−1∑
i=1

[
δx(k + i) − 1tt (k + i)

]TQx
[
δx(k + i)−1tt (k + i)

]
+

NP−1∑
i=1

δu(k + i− 1)TRuδu(k + i− 1)

s.t. δx(k + i) ∈ X, δu(k + i− 1) ∈ U (20)

The optimal input umpc is determined by minimizing J
with the MPC’s output and input constraints X, U in the VRF
system, promising positive superheat temperature to prevent
liquid refrigerant from entering the compressor and causing
equipment damage. This cost function J is modified to meet
the iterative feasibility and asymptotic stability requirements
in closed-loopMPC, ensuring that the terminal state x(k+NP)
remains within the terminal set. The entire process is repeated
in the next time instant.

C. SUPERVISOR
Linearizedmodels have been obtained for certain equilibrium
output and input vectors x̄, ū in system identification.
Supervisors switch between multiple reference models as
optimization objectives for MPC. With a proper model, the
MPC controls the VRF system to the linearized models’
equilibrium output vectors by predicting and optimizing the
future state. Because a linearized model is only used for
describing linearized ranges around an equilibrium point, the
supervisor dynamically selects an appropriate model for the
MPC using algorithms to eliminate steady-state temperatures
and compute mode-dependent dwell times in advance. This
study proposes amethod of using the supervisor for switching
models within a limited number of linear models based on the
current state.

1) STEADY-STATE TEMPERATURE ERROR ELIMINATION
For the linearized model established on the equilibrium point,
the steady-state response can converge to the equilibrium
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point under MPC control. According to the system identi-
fication in Section II-A, the linearized model (Aj, Bj) is a
linear approximation within the range of x̄ ±δ x and ū ±δ

u. When the user-set temperature t̂ is not within the linear
range, this model cannot calculate the correct input value,
meaning it needs to switch others. However, when the user-set
temperature is within the linear range of the model (Aj, Bj),
but is not equal to x̄, the steady-state input must be calculated
first as:[
I − Aj −Bj
C 0

] [
t̂
uss

]
=

[
0̂
t̂

]
where C = I ∈ R2n×2n

; 0 ∈ R2n×(n+1)
; 0̂ ∈ R(n+1)×1

;

t̂ =
[
T̂r1 T̂sh1 · · · T̂rn T̂shn

]T
;

uss =
[
(ωc)ss (αv1)ss (αv2)ss · · · (αvn)ss

]T
. (21)

The least squares method is applied to solve t̂ and uss
in (21). If there is no solution, the MPC reference model must
be switched. If the steady-state input uss exists, the user-set
temperature is within the linear range of the reference model,
and uss can be applied to eliminate the steady-state error.
According to the user-set temperature t̂ , there may only a
number of nf (nf < m) linearized models be solvable, with
the solutions being uss.

2) MODE-DEPENDENT DWELL TIME (MDT)
The mode-dependent dwell time (MDT) [29] is used for
switching between appropriate linear models based on the
states and the target. Before calculating theMDT, the feasible
set X is introduced to determine the possible initial state
x(k), which induces the terminal state x(k+ Np) to reach the
stable equilibrium output vector x̄ of the model controlled
by MPC, where the initial state x(k) is the summation of
the input vector δx(k) and the equilibrium output vector x̄.
By using (20) on the jth model (Aj, Bj) (j= 1, 2, . . . , m), if the
terminal state xj(k + Np), which is iterated from the initial
state xj(k), equals the stable equilibrium output vector x̄i
(i = 1, 2, . . . , m), the feasible initial state xj(k) belong to the
feasible set Xj (x̄i).
The feasible set Xj (x̄i) means the initial states xj(k),

iterated through the jth model, will reach the equilibrium
output vector x̄i, identified by the ith linearized model.
Therefore, when the distance between the two equilibrium
output vectors x̄1 and x̄2 is close, four feasible sets may exist:
X1 (x̄1) ,X1 (x̄2) ,X2 (x̄1), and X2 (x̄2). The intersection of
two models’ feasible sets converged to x̄1 isX1 (x̄1)∩X2 (x̄1)
and converged to x̄2 is X1 (x̄2) ∩X2 (x̄2). The intersection of
all models’ feasible sets converged to x̄i can be determined as

Xx̄i =
m
∩
j=1
Xj (x̄i) . (22)

Under the steady-state temperature error elimination
and MPC optimization input calculation, the VRF system
response controlled by the linearized model (Aj, Bj) at step

Hj control is expressed as:

t
(
k + Hj

)
= Ajt

(
k + Hj − 1

)
+ Bjuact

(
k + Hj − 1

)
.

(23)

where

uact = uss + ūj + umpc;

t =
[
Tr1 Tsh1 · · · Tri Tshi · · · Trn Tshn

]T
The difference between the state representations

in (17) and (23) is that t(k + Hj) represents the system
response captured from the temperature sensors in the VRF
system at the H th moment. For the δx(k + 1) in (17),
it only represents the state output obtained from the state
at k moment via the input δu(k). The response t(k + Hj) is
controlled by the sum of optimized input umpc with the jth

model, the equilibrium input vector ūj of the model (Aj, Bj),
and the steady-state input uss.

Using (22) and (23), the MDT Hj,i can be defined
as the number of step counts for a VRF system controlled
by the jth model when the t(k + Hj,i ) is a superset of Xx̄i ,
as the following condition:

t
(
k + Hj,i

)
⊆ Xx̄i . (24)

The MDT can calculate the time required to switch
between models. Switching is only permitted when the time
exceeds the MDT, and a more suitable model describes the
VRF system. The theoretical approach requires calculating
the MDT for each model switch, which consumes excessive
computational resources in real-time control. Precomputing
and storing the results of MDTs saves computational time
and ensures the feasibility of system switching. Therefore,
the number of preprocessed MDTs can be obtained for
each model at all user-set temperatures. MDT is essential to
prevent the switching frequency from becoming excessively
fast and ensure switching stability. If two models are
established with equilibrium room temperatures of 27◦C and
25◦C, respectively, the number of MDT step counts required
to reach 26◦C can be calculated by (24). When the user
sets the temperature to 26◦C, existing MDTs H27◦C,26◦C and
H25◦C,26◦C, the two models might switch frequently because
the temperature of both models differs by one degree relative
to 26◦C; therefore, the supervisor model-switch strategy is
proposed to switch a reference model for MPC dynamically.

3) SUPERVISOR MODEL-SWITCH STRATEGY
Fig. 3 shows the supervisor model-switch strategy flow
chart for the VRF system. First, the pre-established data
are initialized, as shown in Fig. 3(a). When identifying the
system for a quantity of m room temperatures, linearized
models (Aj, Bj) (j= 1, 2, . . . , m) are obtained in the form
of (10) for each of the equilibrium output vectors x̄j and input
vectors ūj. Feasible sets and intersections are established
through (20) and (22) to checkwhether the equilibrium output
vector of the ithmodel x̄i will reach asMPC’s referencemodel
is jth model. The next step calculates MDTs Hj,i, the number
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FIGURE 3. The flowchart of the supervisor model-switch strategy.
(a) Pre-established data. (b) Supervisor model-switch strategy.

of steps required to switch between models, indicating the
availability of the switchmodel when the steps exceedMDTs.
Therefore, the MDTs and linearized models are saved to load
for the real-time VRF system, as shown in Fig. 3(b).

After the user activates the VRF system, the supervisor
obtains the user-set temperatures t̂ and outdoor temperature
To, and the set of linearized models (AJ, BJ) (J= {1,2,. . . },
|J| =m) with different equilibrium output vector x̄J and input
ūJ. The first step in the experimental process is to eliminate
the steady-state temperature error and to obtain steady-state
inputs uss by calculating (21) if solvable.
The next step is to load MDT and choose one model

(Af , Bf ) from the solvable models, denoted as (AF, BF)
(F⊆J,|F| = nf < m), in which the distance between the
initial temperature t(k) and the equilibrium output vector x̄f is
shortest. The next step is to choose one model (Af , Bf ) as the
reference model for MPC. The user-set weighting matrices
Qx andRu are transmitted to the cost function (20) for solving
optimized umpc. The actual inputs uact, summing of uss, umpc,
and ūf , input to the VRF system.
Once the current temperature t(k +Hf ) is close to another

equilibrium output vector x̄f ∗ (f ∗ ̸= f ) and the iteration Hf
is larger than MDT, the reference model f will switch until
the correct model f ∗. The following equation guarantees that
switching is available when the number of steps Hf in the
current state is greater than MDT:

f ∗ = arg min
f ∗(∈F)

(∥∥t (k + Hf
)
− x̄F

∥∥)
s.t. Hf > Hf ,f ∗ (25)

This approach allows for controlling the same target
temperature by switching between multiple mathematical
models, prevents the switching frequency from becom-
ing excessively fast, and ensures switching stability. The
switching occurs when the accumulated residence time of a
particular model exceeds the set residence time, guaranteeing
the switching frequency and the continuous feasibility of
MPC. Due to the susceptibility of room and superheat
temperatures to various factors, the decision to switch models
depends on the residence time being greater than the set value.
The state must enter the feasible set corresponding to the
model to ensure stable switching.

III. NUMERICAL VERIFICATIONS AND ILLUSTRATIVE
APPLICATIONS
The use of MPCwith the supervisor modelswitch strategy for
controlling the VRF system is numerically verified through
the following three focuses:

1) Numerical verification of system identification for
the commercial one-to-three VRF system. Three different
equilibrium room temperatures at 26.5◦C, 25◦C, and 23.5◦C
are operated to obtain the transfer functionmatrices, verifying
the match of output responses when the same situation and
inputs are in the experiment.

2) Numerical investigation exploring the effect of MPC
weighting parameters Qx and Ru.
3) Numerical validation of the supervisor model-switch

strategy on the VRF system through setting room tempera-
tures from 26.5◦C through 25◦C to 23.5◦C in sequence.

A. NUMERICAL VERIFICATION OF SYSTEM
IDENTIFICATION ON THE VRF SYSTEM
The system identification process involves giving steady
inputs, waiting for the system to reach equilibrium, and
applying input disturbances of square waveforms. According
to the filtered input and output responses by (14) in the time
domain, the transfer function matrices are obtained in the
form of (10) using the system identification technique. The
different equilibrium output and input vectors lead tomultiple
linearized models. In the experiments with the one-to-three
VRF system, the linearized models are identified based on
the room temperature (Tr ) and superheat temperature (Tsh)
in equilibrium output vector x̄, and the EEV opening (αv)
and compressor speed (ωc) as equilibrium input vector ū
are listed in Table 2. The configuration of the rooms is
shown in Fig. 1(a). The linearized models are formulated by
tuning the inputs of αv and ωc to operate the three rooms
at steady-state temperatures of 26.5◦C, 25◦C, and 23.5◦C.
Since the objective of this experiment is to control the room
temperature while ensuring that the superheat remains above
0◦C, the focus of the output operating point lies primarily on
the room temperature.

The experimental parameters of the environment and
thermal loads for the VRF system are listed in Table 3.
An evaporator corresponding to the cooling capacity of the
room size was installed in each room. Room 5 was installed
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TABLE 2. Operating points for system identification.

TABLE 3. Experimental parameters for the VRF system.

with a condenser with a 14 kW cooling capacity and an
environmental control system that served as the test facility
to maintain a temperature of 35◦C, simulating the outdoor
space. In addition, heat loads of 1.5 to 2.75 kW were added
to the experiments to simulate the actual situation of people as
a heat source and compensate for environmental temperature
variations while maintaining steady-state room temperatures.

FIGURE 4. System identification results at the 26.5◦C room temperature
operating point. (a) System input response of compressor speed.
(b) System input response of the EEV opening. (c) Room temperature
response. (d) Superheat response.

Figs. 4 to 6 illustrate the input and corresponding output
responses for the three experiments at 26.5◦C, 25◦C, and
23.5◦C room temperature operating points using the system
identification results to verify the match of transfer functions.

FIGURE 5. System identification results at the 25◦C room temperature
operating point. (a) System input response of compressor speed.
(b) System input response of the EEV opening. (c) Room temperature
response. (d) Superheat response.

FIGURE 6. System identification results at the 23.5◦C room temperature
operating point. (a) System input response of compressor speed.
(b) System input response of the EEV opening. (c) Room temperature
response. (d) Superheat response.

The simulated parameters are listed in Tables 2 and 3.
The experimental times of Fig. 4 to 6 are 127 minutes,
277 minutes, and 125 minutes, respectively. For Fig. 4(a), (b)
to Fig. 6(a), (b), the inputs of compressor speed and EEV
openings are given complete square waves in sequence to
separate and identify each input effect. Before starting the
following input, the previous input and state will wait for
the return to equilibrium to prevent affecting the next state.
The output responses of room and superheat temperatures
are shown in Fig. 4(c), (d), Fig. 5(c), (d), Fig. 6(c), (d),
which include experimental and simulated data. The first-
order transfer function listed in Table 4 was obtained using
the system identification technique on the inputoutput curves
of the experimental data. Fig. 4(c), (d) show the simulated
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and experimental room and superheat temperature responses.
When only one EEV opening becomes larger with the
others unchanged, the other room temperatures increase,
and the superheat decreases. The situation is caused by
more refrigerant flowing in that evaporator, and the others
decreased. Experiments 2 and 3 were also conducted to
identify the room temperatures at 25◦C and 23.5◦C. The
results are shown in Figs. 5 and 6, with the identified
parameters listed in Table 4.

TABLE 4. Model parameters for the VRF system.

The large room temperature oscillation responses in
Fig. 4(c), Fig. 5(c), and Fig. 6(c) are caused by people
entering the room. In addition, according to the same row
in (10), a single output is contributed by summing the transfer
functions with the same pole for all inputs. During the
system identification, the pole with a smaller fitting error
will be selected to present the effect of the whole input to
the output. Under this balance consideration, there will be
a gap between the simulation and experimental responses.
The transfer function matrices obtained from the system
identificationwere utilized for the following controller design
to verify the MPC feasibility further.

B. NUMERICAL VERIFICATION OF MODEL PREDICTIVE
CONTROL FOR VRF SYSTEM
Simulations were conducted to investigate the response of
the room and superheat temperatures in the VRF system.

The objective is to achieve the user-set room temperatures of
25◦C in three rooms controlled by the 25◦C room temperature
model. Considering that reducing superheat can enhance
energy efficiency, two sets of controllers with different
superheat weighting matrices, Qx and Ru referred to (20),
were designed and are listed in Table 5. The selection of
the weighting matrices in the cost function is primarily
based on multiple simulations to adjust the parameters that
best align with the set objectives, including convergence
time and steady-state error. Two different weighting matrices
for the superheat, aiming to analyze the differences in the
corresponding room temperature and superheat response, are
compared.

TABLE 5. The parameters of the weighting matrices for the model
predictive controller.

Since the VRF system is a slower response system,
setting a faster sampling time would lead to system input
oscillations and poor state response performance. In system
identification, the transient response of the VRF system
determines the appropriate sampling time duration. For
the identified process of the room temperature of 26.5◦C,
in Fig. 4(b), a complete input square wave αv1 ranging
from 5 minutes to 25 minutes in duration is provided, and
the corresponding experimental outputs Tsh are shown in
Fig. 4(d). The input-output signal allows the calculation of
a delay time of approximately 40 seconds for the square
wave. Therefore, the sampling time for the controller is set
to 40 seconds, with a prediction horizon NP of 20 sampling
times and a control horizon Nc of 19 sampling times.
By predicting the system’s state output over a more extended
period, the system inputs can be adjusted based on the results
to achieve smoother system state outputs.

Fig. 7 and Fig. 8 show simulation results of the controller
weighting parameters on MPC within 50 minutes. The
compressor speed and EEV opening input are shown in
Fig. 7(a), (b) and Fig. 8(a), (b). The initial conditions for all
room temperatures were 30◦C; user-set room and superheat
temperatures were set to 25◦C and 17◦C. Constraints were
incorporated into the MPC, including input constraints U,
such as the EEV opening limited between 130 and 400 pulses
and the compressor speed limited between 20 and 64 rps.
The room temperature and superheat output are shown in
Fig. 7(c), (d), and Fig. 8(c), (d). Regarding the state response
constraint X, the superheat is required to remain above 0◦C
to ensure the safety of the compressor equipment.

As shown in Fig. 7, the MPC2 places a higher weight
on the superheat, causing the demand to simultaneously

123202 VOLUME 12, 2024



C.-Y. Lin et al.: Model Predictive Control of VRF Systems for Room Temperature Control

FIGURE 7. Model predictive controller simulation with low superheat
weight. (a) Room temperature response. (b) Superheat response.
(c) System input response of compressor speed. (d) System input
response of the EEV opening.

FIGURE 8. Model predictive controller simulation with a high superheat
weight. (a) Room temperature response. (b) Superheat response;
(c) System input response of compressor speed. (d) System input
response of the EEV opening.

track the room temperature and converge the superheat to
the user-set temperature. This design leads to oscillations
in the compressor input, resulting in a higher load on
the compressor than on the MPC1. Additionally, the early
decrease in compressor speed causes a slower convergence
of the room temperature. Fig. 7(a) and Fig. 8(a) demonstrate
that MPC1 aligns better with the research objective, allowing
full-speed cooling until the room temperature reaches the
target value and reducing the superheat to minimize energy
consumption. Comparing Fig. 7(c), (d) and Fig. 8(c), (d),
since MPC1 does not need to track the superheat and room
temperature at the same time, the input changes of the
latter are smoother and can avoid system input oscillation.
Therefore, the weight parameters of MPC1 were used in this
study.

FIGURE 9. Model predictive controller simulation with model-switching
strategy. (a) Room temperature and switching mode. (b) Superheat
response. (c) Compressor speed. (d) EEV opening.

FIGURE 10. Experimental setup. (a) Indoor unit. (b) Outdoor unit;
(c) Heater.

C. NUMERICAL VALIDATION OF THE SUPERVISOR
MODEL-SWITCH STRATEGY ON THE VRF SYSTEM
The linearized models and proper MPC’s parameters Qx
and Ru, referred to Table 4 and 5, have been proposed
in Sections III-A and III-B. The supervisor model-switch
strategy is essential to validate room temperature and
superheat control according to the distance between the
current states and equilibrium output vectors.

Fig. 9 shows the simulation results of the MPC controller
using the model-switch strategy. Based on the limitations of
the VRF system, the upper and lower constraints of EEV
opening are setting 450 pulses and 130 pulses, and the
compressor speeds are setting 64 rps and 20 rps. Three rooms’
temperatures are controlled at 26.5◦C, 25◦C, and 23.5◦C in
sequence; furthermore, by changes in temperature settings,
the supervisor model-switch strategy automatically changes
reference models, as shown in Fig. 9(a). Fig. 9(b) displays
the simulation results for the superheat temperature, with
all superheat values above 0◦C and meeting the specified
requirements. It can be observed that the increase in com-
pressor speed during model switching leads to an increase in
superheating. Fig. 9(c) illustrates the increase in compressor
speed when switching models and the gradual decrease
when the target temperature is close. However, during the
transition from 25◦C to 23.5◦C, the temperature reduction
is slow because the compressor speed limit is 64 rps.
Fig. 9(d) presents the simulation results for the EEV opening
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input. Under variations in input constraints and temperature
settings, it is demonstrated that the supervisor model-switch
strategy can be applied to a one-to-three VRF system,
smoothly transitioning between different linear models in
the MPC controller, maintaining the target temperatures at
26.5◦C, 25◦C, and 23.5◦C while keeping superheat above
0◦C.

IV. EXPERIMENT
The proposed control method for a one-to-three system in
Fig. 2(c) has been experimentally investigated. Two exper-
iments were conducted to validate the proposed supervisor
model-switch strategy. The first one validates the feasibility
of the MPC method on a one-to-three VRF system to
track the desired single-point target temperature on different
temperature models. The second experiment investigates to
validate whether the supervisor model-switch strategy can
smoothly transition models and control the room temperature
at the user-set temperatures.

TABLE 6. Thermal loads for the experiment.

A. MODEL PREDICTIVE CONTROLLER ON ONE-TO-THREE
VRF SYSTEM
Fig. 1(a) shows the relative room location in the experiment.
The space sizes, evaporator capacities, and condenser capac-
ity of each room are listed in Table 3. The walls of each
room were made of steel and cement, and the color of the
walls was white. The experimental equipment is shown in
Fig. 10. The evaporator and EEV were installed in the indoor
unit, above which the temperature sensor was located at the
inlet, as shown in Fig. 10(a). The thermal loads of the four
indoor units for the two experiments are shown in Table 6.
To simulate the outdoor environment, an environmental
control systemwas used to fix the room temperature at 35 ◦C.
In particular, the walls of room 5 are covered with thermal
insulation paper to prevent them from affecting other rooms
with indoor units. The outdoor unit comprised a compressor
and a condenser, as shown in Fig. 10(b). As shown in
Fig. 10(c), the heater provided heat sources from 1 kW to
3 kW, and the experimental refrigerant was R-410A. The
thermal loads were located at the center of each room,
primarily aimed to compensate for room temperatures and
achieve consistent environmental conditions across different
rooms. The execution time with a PC (Intel Core i7-1280P,
32-GB SRAM, 64-bit OS) is 1.6 seconds. In addition, several
uncertain heat sources exist in the experimental environment,
further complicating the controller design. Another important
mechanism of the VRF system is lubrication oil return,
in which oil accumulates in the pipelines of the closed

indoor units under a partial load to lubricate the compressor.
To stabilize the system operation, the closed EEV had to
open and increase the compressor speed to lubricate the oil
returning to the compressor. However, this mechanism leads
to a sudden decrease in superheat and a reduction in cooling
capacity. These circumstances present challenges in the
controller’s design, highlighting the controller’s significance
in effectively addressing such situations.

For the experimental validation of the MPC, the exper-
iment controlled the room temperatures from 28.3◦C to
26◦C within a deviation of less than 0.5◦C and maintained
the superheat above 0◦C. Following the flowchart of the
supervisor model-switch strategy in Fig. 3(b), the 26.5◦C
models were selected to describe the reference model, and
user-set temperatures t̂ of the three rooms were set to [26◦C,
0◦C, 26◦C, 0◦C, 26◦C, 0◦C]. The temperature difference 1t
can be obtained according to the 26.5◦C model as [0.5◦C,
0◦C, 0.5◦C, 0◦C, 0.5◦C, 0◦C]. The steady-state temperature
uss is calculated by (21). Since this experiment didn’t require
switching to another model, the model f selected at the
beginning was f∗. With the parameters Qx and Ru, the
next step was to solve umpc using (20). The lower limit of
the EEV opening was set as 130 pulses to ensure enough
refrigerant flowing into the evaporator. The upper limit of the
EEV opening was set as 400 pulses to reduce the superheat
temperature and reduce energy consumption in the control
process. Fig. 11 represents the experimental results of the
model predictive controller, with an experimental duration
of 85 minutes. Fig. 11 (a) is the room temperature output,
Fig. 11 (b) is the superheat output, and the dashed line
represents the lower limit of the superheat. The values of the
compressor speed and EEV opening obtained by the MPC
are demonstrated in Fig. 11(c), (d). The experimental results
showed that the system achieved the target temperaturewithin
40 minutes when the compressor operated at full speed. Due
to an upper limit on the compressor speed, the hardware of
the VRF system was protected. Due to superheat limits being
included in the MPC, the system adjusted the compressor and
EEV to control the superheat above the lower limit, as shown
in Fig. 11(b). The oil returnmechanismwas initiated at 20 and
58 minutes, as shown in Fig. 11(d).

Nevertheless, after the oil returned, the MPC adjusted
the system input to maintain a steady room temperature.
The steady-state room temperature errors were 0.09◦C,
0.09◦C, and 0.17◦C for three rooms, respectively. The
room temperature errors for each room were below 0.2◦C,
which aligns with expectations and signifies that the MPC
effectively maintains a room temperature close to the target
temperature.

B. MODEL PREDICTIVE CONTROLLER WITH SUPERVISOR
MODEL-SWITCH STRATEGY ON ONE-TO-THREE VRF
SYSTEM
The proposed supervisor model-switch strategy can expand
a single-point temperature control to achieve different user-
set temperatures in each room. In the experiments, the initial
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FIGURE 11. Model predictive controller experiment for the 26◦C target
temperature. (a) Temperature. (b) Superheat. (c) Compressor speed.
(d) EEV opening.

room temperatures for Room 1, Room 2, and Room 3
are 31◦C, 29◦C, and 28◦C, respectively. The temperatures
controlled by the three rooms are divided into two parts. In the
first part, the temperatures controlled by the three rooms were
the same, which were 26◦C, 25◦C, and 24◦C, respectively.
In the second part, the temperature of the second roomwas set
as 23◦C, while the other rooms were 24◦C. Various models
correspond to different model predictive controllers. Model
1 used a 26.5◦C room temperature model, Model 2 used a
25◦C indoor temperature model, and Model 3 used a 23.5◦C
indoor temperature model. TheMDTwas set at five sampling
times.

FIGURE 12. Experimental results of the model predictive controller with
the supervisor model-switch strategy. (a) Room temperature response
with mode selection; (b) Superheat response; (c) Compressor speed;
(d) EEV opening.

The experimental results, as shown in Fig. 12, revealed six
model switchings during the process, and the total duration

of the experiment was 250 minutes. In this experiment, it was
observed that for the same user-set temperature of 26◦C,
Model 1 could not control the steady-state error to be within
0.5◦C, leading to a switching event. Due to the considerable
disparity between the thermal load configuration used in the
experiment and the thermal load configuration estimated by
Model 1, a model mismatch scenario emerged. Fig. 12(a)
shows the room temperature response and model switching.
Fig. 12(b) shows the superheat response above the lower
limit (dashed line) with MPC. However, when the occasional
instances fell below the lower limit, the controller promptly
increased the superheat by adjusting the compressor and
EEV input to prevent the liquid refrigerant from entering
the compressor. Fig. 12(c) and Fig. 12(d) show each room’s
inputs for the compressor and the EEV opening, respectively.
The steady-state errors from the experiments are listed in
Table 7. The experimental results indicate that using the
supervisor model-switch strategy makes controlling the same
user-set temperature possible using different models, thereby
mitigating the risk of model mismatch. The system operated
stably and precisely controlled the room temperature at the
target value, with a steady-state error within 0.5◦C. The
experimental results align with expectations, demonstrating
the system’s ability to maintain stable temperature control
and decrease uncertainties in heat sources.

TABLE 7. Steady-state error of room temperature for Experiment 2.

TABLE 8. System specifications.

Table 8 summarizes the performance parameters of the
proposed supervisor model-switch strategy in MPC of the
variable flow system fields. In [14], centralized MPC
was implemented in the variable air volume system with
1500 seconds settling time and 0.18oC temperature error in
the steady state. For the slower-response one-to-three VRF
plant compared to air volume control in [21], the supervisor
decentralized MPC was applied to calculate evaporator
cooling and pressure setpoints for each zone with the settling
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time larger about 2500 seconds and the temperature error
of 0.5oC. The proposed supervisor model-switch strategy
using supervisory centralized MPC can reduce calculation
time compared to the decentralized MPC, so the settling time
is slightly less, about 2100 seconds, and there is a similar
temperature error.

V. CONCLUSION
The proposed supervisor model-switch strategy employs the
system identification method and supervisory centralized
MPC to control each room’s temperature and to main-
tain positive superheat in the one-to-many VRF system,
thereby addressing the room temperature coupling problem.
The single-input, single-output linearized models are pre-
established using the compressor speed and the indoor
unit’s electronic expansion valves as inputs, and the room
temperature and corresponding superheat temperature as
outputs. The first-order linear models represent the one-to-
three VRF system with equilibrium room temperatures of
26.5◦C, 25◦C, and 23.5◦C. The supervisor in the flowchart
determines whether there is a steady-state input between the
equilibrium temperature and the user-set temperature for all
models, then calculates the MDT from the current model to
another, which utilizes switching the appropriate model as a
reference model for MPC.

The supervisor model-switch strategy has been verified
by simulating the proper superheat weights in MPC; the
approach has been numerically validated by controlling
room temperatures from 26.5◦C through 25◦C to 23.5◦C.
The one-to-three VRF system experiments were conducted
with and without a supervisor to verify the stability of the
supervisor model-switch strategy. For MPC alone applied
in the experiment, with the VRF system controlling room
temperature from 28.3◦C to 26◦C, a steady-state error of
less than 0.5◦C was achieved even after the oil return
condition. In the second experiment in which the supervisor
model-switch strategy was employed, with varying initial
room temperatures of 31◦C, 29◦C, and 28◦C corresponding
to distinct thermal loads, the user-set temperatures were
changed with the executed time series. The room temperature
results revealed that model switching was automatically
regulated six times across the three models. This control
approach effectively guided the room temperatures to reach
the desired temperatures of 26◦C, 25◦C, and 24◦C within
0.5◦C. The results indicate that the supervisor model-switch
strategy can effectively maintain the user-set temperature,
expand the controllable area, and demonstrate the potential
for many-to-many VRF system control.
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