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ABSTRACT Diffusion models have demonstrated significant potential in achieving state-of-the-art
performance across various text generation tasks. In this systematic study, we investigate their application
to the table-to-text problem by adapting the diffusion model to the task and conducting an in-depth analysis.
Our experiments cover multiple aspects of diffusion models training.We explore sampling strategy influence
by inducing recent diffusion model accelerator DPM-Solver++ into our core model. We have tested
different prediction aggregation methods, like ROVER andMinimum Bayes-Risk (MBR). Our studies cover
the impact of the pre-training phase in diffusion models and the generation length constraints influence.
We also have compared diffusion model generation with auto-regressive text-to-text models with different
temperature settings for diversity evaluation. Our key observation is that diffusion models demonstrate
the balance between quality and diversity while auto-regressive text-to-text models are not successful at
handling both at the same time. Furthermore, we found out that to achieve the highest quality possible, it is
preferable to use a regular sampler with the strictest length constraint to create multiple samples, and then
use MBR to aggregate the predictions. However, if you are prepared to give up high level of diversity and to
accelerate the process, you can also utilize a fast sampler DPM-Solver++. Our findings reveal that diffusion
models achieve comparable results in the table-to-text domain, highlighting their viability in the table-to-text
challenge as a promising research direction.

INDEX TERMS Machine learning, diffusion models, deep learning, data-to-text, table-to-text, natural
language processing, artificial intelligence.

I. INTRODUCTION
Diffusion models, initially prominent in the vision [13], have
shown remarkable potential in text generation tasks. These
iterative generative models are trained to recover corrupted
data through a multi-step denoising process, refining samples
from pure noise to produce high-fidelity and diverse outputs.
Inspired by their success in vision [13] and audio [19],
researchers are exploring diffusion models for text genera-
tion [10], [20], [21], where they introduce a novel noising
paradigm and a distinct training objective. This approach
offers an alternative to traditional token prediction methods,
promising enhanced language modeling capabilities and
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paving the way for advancements in generating coherent and
contextually appropriate text.

Data-to-text generation is the task of generating a target
textual description conditioned on source content in the form
of structured data. Table-to-text generation involves creating
textual descriptions from tables. Examples include generating
sentences from historical data, attractions descriptions,
football game summaries from box score statistics, and fun
facts from Wikipedia info tables [24].

Current experiments demonstrate that state-of-the-art neu-
ral models struggle to generate satisfactory results, despite the
high quality of the training data. Therefore it is necessary to
explore other generation methods.

In turn, we propose a diffusion model for this task, because
it is known for generating highly diverse outputs, robust
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generative process, and advanced prediction aggregation
techniques, and in natural language processing, in such
tasks as summarization, paraphrasing, open domain dialogue,
diffusion models showed increased text diversity, while
maintaining a comparable accuracy level to modern text-to-
text solutions [10], [21].

In our work, we have applied the diffusion model
GENIE [21] with a fast sampler [11] to the table-to-text
ToTTo challenge [24], because there isn’t a pre-trained
diffusion architecture with weights other than this one, and
pre-training of own architecture is excessively costly and
resource-intensive. For the comparison with our solution,
we have used models of relevant sizes from the T5
family [17], [26], which are auto-regressive text-to-text
models.

As a core part of the paper, we have carried out extensive
research on the main parts of diffusion models. We did
an in-depth impact analysis of the pre-training phase and
generation length of the diffusion model. We replaced the
original sampler with efficient DPM-Solver++ [11] and
evaluated its performance on our task. We compared the
diffusionmodel diversity with different temperature sampling
of the T5 model [17], [26].

Our results show that diffusion models can achieve similar
scores in terms of accuracy and diversity in comparison to
auto-regressive text-to-text models.

The contribution of this paper is the following:

• We propose an approach for the table-to-text problem
that leverages an pretrained diffusion model.

• We compare the proposed method to the auto-regressive
baselines and experimentally show that it is effective
both in terms of the quality and diversity.

• We adapt fast DPM-Solver++ for GENIE model and
compare with regular architecture to test impact to the
quality and diversity.

• We discover that trained from scratch diffusion models
outperform autoregressive models on the table-to-text
issue.

• Weassess several features of diffusionmodels, including
the influence of output length limits, different aggre-
gation techniques, and also the impact of sampling
temperature to auto-regressive baselines.

II. RELATED WORK
A. DATA-TO-TEXT CHALLENGE
Data-to-text is a task of describing structured data adequately
and fluently. The three most common datasets for this
domain are WebNLG [9], MultiWoz [3], and ToTTo [24].
WebNLG [9] is a dataset with approximately 18K graphs
of subject-object-predicate triplets and their textual descrip-
tions. MultiWoz [3] consists of 10K human-human dialogues
for developing task-oriented dialogue systems with approx-
imately 56K training samples. The ToTTo dataset [24] is a
corpus of over 120K Wikipedia tables paired with natural
language descriptions. We conducted our experiments on the

ToTTo dataset [24], because it is the biggest and most modern
dataset for the data-to-text task.

Recent research utilized mostly neural solutions for end-
to-end generation from a linearized table to its summary.
After the triumph of extensively pre-trained sequence-
to-sequence Transformer models, modern state-of-the-art
systems utilize these models for table-to-text generation,
in which the input table is converted into a textual sequence
through linearization. Examples of such models include
the pre-trained language model Bert-to-Bert [28] and T5
models [17]. Condensing a table’s extensive information
into one sentence is challenging, but focusing on key
details enables selective descriptions, so [32] suggest T5
with structural attention and special position encoding. This
helped improve the generation results, but not significantly.
Also, some researchers proposed plan-based methods, such
as PlanGen [31] and Content Planner [25] to control the
structure of the generated output. Eventually, an CoNT [1]
developed a new Contrastive Neural Text generation frame-
work and validated it on data-to-text tasks, achieving state-
of-the-art quality among base-size models. However, none of
existing methods achieved ideal quality, so this still remains
an unsolved problem. In addition, there are no works on
table-to-text diffusion models and no in-depth exploration of
diversity metrics in that challenge, and we decided to do it.

B. DIFFUSION MODELS IN NLP
Diffusion models have demonstrated significant potential in
achieving state-of-the-art performance across various text
generation tasks [13], [19]. At first text-to-text diffusion
models were discrete, for example, each token can, with some
probability, be noisy or replaced with a random token [2],
[15], [16]. Then Diffusion-LM [20] appeared as the diffusion
model in continuous space for unconditional generation,
which maps discrete tokens into continuous latent variables,
achieving more complex controllable text generation through
continuous diffusion. DiffuSeq [10] proposed a new method
for conditional text generation. This represents a BERT-like
encoder where it is fed concatenated input and additionally
noisy output.

In GENIE [21] was presented a pre-trained encoder-
decoder diffusion transformer which improved text genera-
tion quality.

Lately, the most notable advancements in diffusion text
generation models are - Difformer [8] with an anchor loss
to regularize the embeddings and stabilize the training
simultaneously, and Diffuseq-v2 [11] which proposed a
decision for increasing the speed of training in 4 times and
speed of inference in 800 times.

III. METHOD
The proposed method is shown in the Fig. 1 and is described
in detail below.

A. DATA PREPARATION
At first, we translate tables into sequences. We use the
standard linearization method, proposed by [24]. Then we
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FIGURE 1. We take the linearized source table as the input of the Encoder to obtain the hidden information
embeddings which interact with the Language Diffusion Model through cross attention. The Language
Diffusion Model deletes the random Gaussian noise from the output text embeddings through the iterative
denoising and grounding process. Finally, we map received embeddings to tokens and concatenate them to
get the output summary of the input table.

represent a transformed table as vector x = {x1, x2, x3, . . . , xn}
with n tokens xi, where i is the token’s position. The
target sequence is also represented as vector y =

{v1, v2, v3, . . . , vm} with m tokens vi, where i is the token’s
position.

B. DIFFUSION MODEL
Diffusion models are a type of iter-NAR model [10] where
a series of intermediate sequences vy are introduced over
T iterations:

piter-NAR(v
y
1:n|w

x) =

∑
vy1,...,v

y
T−1

[ ∏
i=1...n

p(vy1,i|w
x)︸ ︷︷ ︸

initial prediction

·

·

∏
t=1..T−1

∏
i=1...n

p(vyt+1,i|v
y
t,1:n,w

x)︸ ︷︷ ︸
progressive full-context prediction

]
.

(1)

We use the pre-trained encoder-decoder diffusion model
GENIE [21] for conditional generation p(y|x). This
model contains forward and reverse discrete-time Markov
processes.

1) FORWARD PROCESS
In the forward process, we gradually perturb embed-
dings of input tokens according to a variance scheduler
β0, β1, . . . , βT , during T iterations, while we get standard
Gaussian noise. The diffusion process starts with the initial
state x0 at time step t = 0, where x0 is sampled from
the Gaussian distribution of the original data q(y0|v) =

N (Emb(v), β0I ). At the time step t + 1, the latent variable
yt+1 is only determined by the xt at time t , expressed as:

q(yt+1|yt ) = N (yt+1;
√
1 − βt+1yt , βt+1I ) (2)

2) REVERSE PROCESS
The reverse diffusion process is needed to recover the original
y0 by denoising yt :

p(yt |yt+1) = N (yt ; µt
θ , σt ) (3)

µt
θ (yt , yθ ) =

√
αt ∗ (1 − ᾱt−1)
(1 − ᾱt )

∗ yt +
βt ∗

√
ᾱt−1

1 − ᾱt
∗ yθ

(4)

σ 2
t =

1 − ᾱt

1 − ᾱt+1
∗ βt+1 (5)
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Algorithm 1 Inference Algorithm
1: Input: Linearized table as a vector of tokens.
2: Output: Summary of table as text.
3: Transform input tokens to embeddings.
4: Pass them through the encoder and get hidden states.
5: Initialize input for diffusion decoder µ = 0 and σ = I .
6: for t = T − 1 . . . 1 do
7: yt = Sample from N (µt

θ (yt+1, y0), σt+1)
8: We pass yt to the decoder and with the help of hidden

states from the encoder non-autoregressive generate zθ
9: yθ (yt , t) = Quantize zθ (yt , t) to nearest embeddings

10: µt−1
θ (yt , y0) =

√
αt∗(1−ᾱt−1)
(1−ᾱt )

∗yt +
βt∗

√
ᾱt−1

1−ᾱt
∗yθ (yt , t)

11: σ 2
t−1 =

1−ᾱt−1
1−ᾱt

∗ βt
12: end for

where αt+1 = 1− βt+1, ᾱt+1 =
∏t

i=1 αi and the vector yθ is
predicted by a neural network parameterized by θ .

3) TRAINING STEP
We want to minimize the distance between forward and
reverse trajectories to receive a transformer-type model that
is capable of removing noise and predicting p(y|x) in the iter-
NAR strategy.We use the variational lower bound to optimize
the negative log-likelihood E[−logpθ (y0)] <= LVLB. The
final objective is a combination of several KL-divergence and
entropy terms following [10]:

LVLB = LT + LT−1 + . . . + L0

= Eq(y1:T |y0,x)[log
q(yT |y0, x)
pθ (yT )

+

T∑
i=2

log
q(yt−1|y0, yt , x)
pθ (yt−1|yt , x)

+ log
q(y0|v)
pθ (y0|y1)

−logpθ (v|y0)] (6)

Lt = Eq(y1:T |y0,x[Const ∗ ||µt (yt , y0) − µθ (yt , t)||2]

= Const ∗ Eq(y1:T |y0,x[y0 − fθ (yt , t)||2] (7)

We sample t from the distribution rt ∼

√
E[L2t ],∑T−1

i=0 pt = 1, thus we can sample more often those steps
where we have the biggest loss.

4) INFERENCE STEP
First of all, we score our input table with the help of an
encoder. After that, we generate noise from the Gaussian
distribution and consequentially transform it into the target
description, as described in Algorithm 1.

IV. EXPERIMENTS
A. EXPERIMENT SETUP
1) DATASET
We evaluate ourmethod from the quality and diversity aspects
on the ToTTo dataset. The validation and testing sets are
based on examples from the training samples and other new
tables. Test set Dtest is divided into overlap and non-overlap

sets in the following way:

Dtest-overlap := {d : h(d) in h(Dtrain)},

Dtest-nonoverlap := {d : h(d) not in h(Dtrain)}

where h is the header value of table d . Development set Ddev
is divided into parts similarly [24].

2) BASELINES
As baselines, we use T5 models with 60M (small version)
and 220M (base version) parameters. We finetune them
10 epochs (about 150000 steps) with AdamW [22] optimizer
with learning rate 2e-4, weight decay 0, and batch size 8 on
V100, following the paper [32]. All other baseline results on
ToTTo can be found in the official leaderboard.

3) EVALUATION
For quality evaluation, we use the metrics BLEU [23], [24]
to measure intersection with the target sequence by n-grams,
PARENT [5], [24] to get the F1-score with table data, and
BLEURT [30] to robust evaluate closeness of the target
sequence and the predictions on overall, overlapping and
non-overlapping subsets. To assess diversity, we generate
10 samples and use three metrics such as div-4 [4], [10]
to measure the percentage of distinct 4-grams in the set
of outputs, dist-1 [10] to measure internal diversity as the
percentage of distinct unigrams, and self-BLEU [10], [34] as
the metric of overlapping between different candidates.

Also, we compute the average length of predictions to
understand the reasons for changing BLEU and diversity
metrics. In all tables, the length is presented in the number
of characters.

4) IMPLEMENTATION DETAILS
As a core model we use the official implementation
GENIE [21].1 Our model is a 6-layer transformer as the
encoder and a 6-layer cross-attention transformer as the
denoising decoder. The latent variable dimension to 768 and
the embedding dimension to 128. Our model has 144M
parameters. The batch size is 64. The input length is
475 and the output length is 119. The model was trained for
120000 steps with the help of AdamW optimizer [22] with
a learning rate 5e-5 and weight decay 0 on V100. After the
training, we compute the exponential moving average of the
model’s weights for stability.

B. MAIN RESULTS
We compare the iter-NAR encoder-decoder diffusion model
with modern text-to-text baselines T5-small and T5-
base [17]. For the quality of generation, we have followed the
existing work [24], reporting BLEU [23] and PARENT [5]
on the Overall, Overlap, and Non-Overlap parts of the
development and test parts of the dataset ToTTo [24]. For the
test part we also public learning robust metric BLEURT [30]

1https://github.com/microsoft/ProphetNet/tree/master/GENIE
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TABLE 1. Sample outputs in ToTTo [24] development set, conditioned on the same x.

TABLE 2. Results on the ToTTo development set. We obtained comparable with baselines metrics.

TABLE 3. Results on the ToTTo test set. Our diffusion model outperforms BERT-to-BERT [28] which is twice number of parameters, and achieves
comparable with state-of-the-art baselines metrics. BLEURT is original BLEURT score multiplied by 100 for comparable looks to other measures.

TABLE 4. Diversity metrics on the ToTTo development set. Our model
maintains diversity near the auto-regressive baselines yet.

for completeness of comparison. We evaluated the diversity
of these models following the [10] paper by length, dist-1,
div-4 [4], and Self-BLEU [34] metrics.

We present the main results of the diffusion model and the
baselines on the dataset ToTTo in Fig. 2 and Fig. 4 for the dev
set, and in Fig. 3 for the test set. The results are submitted to
the ToTTo leaderboard2 - Diffusion-TT.

1) QUALITY
For the development set, to evaluate the quality of the
diffusion model, we sample 10 examples from our model
and choose the best prediction. For T5 models decoding is
done via the usual greedy search following the paper [17].
For the test set, we apply Minimum Bayes-Risk (MBR) [10],
[18] on 30 predictions (10 of each model with different
output lengths - 119, 128, 153) to achieve the best results.
Our results demonstrate that the diffusion model can achieve
comparable quality with T5 models. Moreover, we see that

2https://github.com/google-research-datasets/ToTTo
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TABLE 5. Impact of different samplers on the ToTTo development set. All metrics are estimated on 1 sample.

TABLE 6. Impact of different samplers. Results on the ToTTo development
set. DPM-Solver++ [11] reduces diversity, but improves the quality of
each prediction.

for all models, the difference in metrics between the Overlap
and Non-Overlap parts of the dataset is essentially the same.
From this, we might infer that overfitting affects all models
to a roughly equal degree.

2) DIVERSITY
From the table 4 can see that the diffusion model achieves
comparable diversity metrics, but falls behind the plan-based
model [27] and auto-regressive models with temperature
sampling. We see that our model confidently outperforms
auto-regressive models with other types of diverse gener-
ations such as beam search [33], nucleus [14], and top-k
generation [6]. Also, we note that auto-regressive models
generate longer predictions than our diffusion model, so it
may be the cause for the slightly higher diversity metrics.
The examples of both models generation are presented
in Fig. 1.

C. ABLATION STUDY
1) IMPACT OF DIFFERENT SAMPLERS
DPM-Solver++

3 [11] was adopted for text-to-text diffusion
models and increased the speed of training by 4 times
and the speed of inference by 800 times without loss
of quality [11]. We applied it to our encoder-decoder
diffusion model. We see that this solver increases quality
metrics, expressed in Fig. 5, but, diversity metrics and
the length have deteriorated greatly (Fig. 6). The model
starts generating nearly identical, brief, and highly accurate
sentences, which when aggregated, do not improve model
quality.

2) PREDICTION AGGREGATION METHODS
The challenge with diffusion models for text is that we
consistently receive various predictions and struggle to obtain
the optimal one every time. We can use different strategies
to aggregate predictions in text diffusion models. We test
ROVER [7], MBR [10], [18], and Best-of-all [21] algorithms

3https://github.com/Shark-NLP/DiffuSeq/tree/diffuseq-v2

TABLE 7. Comparison of different prediction aggregation methods. All
algorithms are applied to 10 samples.

on our model and T5. All quality metrics correlate in this
experiment, we only use BLEU in Fig. 7. We see that the best
results without the target’s leak are obtained with the help of
the MBR [18].

3) IMPACT OF SAMPLING TEMPERATURE
We also study the impact of sampling temperature in T5
models on diversity in comparison to diffusion models. The
decrease of the temperature in the sampling of T5 leads
to the quality increase but diversity deterioration. In Fig. 8
we explore how diversity and quality depend on sampling
temperature in T5 vs our model. The key observation is
that our diffusion model demonstrates the balance between
quality and diversity whilst T5-models with the temperature
near one get worse in quality and near zero get worse in
diversity.

4) PRE-TRAINING IMPACT
The pre-training is known to increase generalization in
text-to-text tasks. We evaluate if it matters on our task.
We compared auto-regressive models vs diffusion models
with and without pre-training.

As we see in Fig. 2 and in Fig. 9, diffusion models
trained from scratch outperform auto-regressive baselines.
We believe it is caused by increasing size of the training
dataset with help of the adding gaussian noise.

However, the pre-training improves quality for all models
evenly, resulting in a 15 to 16 percent increase.

5) IMPACT OF OUTPUT LENGTH
We explore how the fixed length of outputs influences
quality and diversity. We select three various lengths, 119 as
the maximum length of the target sequence in the training
subset ToTTo [24], 128 as the classical output length of
our baselines, and 153 as the length in the pre-training
phase of our diffusion model [21]. Our diffusion model
generates better results with the small length, as we see
in Fig. 10 and Fig. 3. We also observe that the average
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FIGURE 2. Difference between pre-trained and trained from scratch models. The result of our model is the optimal value
of 10 Gaussian samples.

FIGURE 3. Effect of the maximum output length on the ToTTo development set. The result is the optimal value of 10 Gaussian
samples.

output prediction length did not change with the increasing
maximum allowed output length. The diffusion model uses
normal noise during the generation process, so the longer
the length, the more noise the model receives and the higher

the likelihood of receiving an inappropriate word. This,
we believe, explains why the quality of the model predictions
decreases with length. This leads to an increase in inaccuracy,
but it appears that these hallucinations only alter words, they
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TABLE 8. Impact of sampling temperature to BLEU [23] on the overall development set and self-BLEU [34] between 10 samples.

TABLE 9. Results on the ToTTo development set for trained from scratch models. Diffusion models outperform auto-regressive baselines in quality
metrics.

TABLE 10. Effect of the maximum output length on the ToTTo
development set. The result is the optimal value of 10 Gaussian samples.

do not add new ones, because the average length remains the
same.

V. CONCLUSION AND FUTURE WORK
We investigated diffusion models application to the table-to-
text problem by adapting them to the task and conducting an
in-depth analysis. Our experiments covered multiple aspects
of diffusion models training. We explored sampling strategy
influence by inducing recent diffusion model accelerator
DPM-Solver++ [11] into our core model and found out
that DPM-Solver++ [11] reduces diversity, but improves
the quality of each prediction. In addition, we assessed
many prediction aggregation techniques, includingMinimum
Bayes Risk (MBR) and ROVER, and found that MBR
was more effective. We also looked into the effects of
generation length limits and the pre-training phase on
diffusion models. It was discovered that diffusion models
trained from scratch outperformed auto-regressive baselines.
In order to assess variety, we also contrasted the performance
of diffusion models with that of auto-regressive text-
to-text models at various temperature settings. The key
observation is that our diffusion model demonstrates the
balance between quality and diversity whilst T5-models
with the temperature near one get worse in quality and

near zero get worse in diversity. Our findings reveal that
diffusion models achieve comparable results in the table-
to-text domain, highlighting their diversity in the table-to-
text challenge as a promising research direction. We see the
future of this topic to explore more modern transformers
variations at the core of the model along with the scaling
experiments. Another path of investigation is the effect of
resource allocation, the impact of the text structure and table
complexity.

VI. LIMITATIONS
We use the pre-trained model GENIE [21], which has
the vanilla BERT-to-BERT [28] transformer core. We did
not test other contemporary architectures like T5 [26] or
Deberta-V3 [12].
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