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ABSTRACT In practical application scenarios, the phenomena of nonlinearity and missing data are
commonly present in networked multi-sensor systems. Therefore, this paper investigates distributed filtering
problems for networked stochastic nonlinear systems with fading measurements and random packet
dropouts. Considering the statistical characteristics of sensors’ fading measurements and random losses in
transmitting state estimates of their neighbor nodes, a novel distributed Kalman filter (DKF) with multiple
filter gains is proposed for each sensor, where multiple filter gains include one Kalman filter gain for
measurements of sensor itself and different consensus filter gains for state estimates of its different neighbor
nodes. Two compensation mechanisms are used for random packet losses among sensor nodes. Based on an
inequality scaling method, an upper bound of the filtering error covariance matrix (UBFECM) dependent on
a set of positive scalar parameters is derived, which can avoid calculating the cross-covariance matrices
among sensor nodes and the state second moment matrix. Furthermore, multiple filter gains and scalar
parameters are optimized by minimizing locally an UBFECM and using nonlinear optimization methods.
The exponential boundedness in mean square of filtering error of DKF is proved, and the performance of
DKF is also compared with local filter. Simulation results illustrate the effectiveness of the presented DKF
algorithm.

INDEX TERMS Distributed Kalman filter, networked multi-sensor system, stochastic nonlinearities, fading
measurements, random packet dropouts, boundedness analysis.

I. INTRODUCTION
In recent years, with the continuous innovation and develop-
ment of science and technology, networked multi-sensor sys-
tems (NMSSs) based on intelligent sensors [1] have emerged,
which have been widely applied in many fields [2], [3].
In NMSSs, each intelligent sensor can not only obtain local
target information, but also obtain target information from
its neighbor nodes through the network, aiming to further
improve the performance of networked systems. However,
considering the various network-induced phenomena such as
nonlinear dynamics, missing data, and fading measurements
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in NMSSs [4], how to design a distributed estimation
algorithm suitable for NMSSs to overcome the negative
impact of network-induced phenomena on the performance
of networked systems, which has become one of the hot topics
studied by scholars [5], [6].

For the current research results on distributed estima-
tion problems, three fusion techniques have been mainly
developed [7], i.e., diffusion-based fusion, consensus-based
fusion, and estimator-based fusion. In the consensus-based
fusion, Olfati-Saber [8], [9] proposed a novel distributed
Kalman consensus filter (KCF) on the basis of the standard
Kalman filter, where KCF contains a consensus term with
the difference in state estimation between sensor itself
and its neighbor nodes. Obviously, in addition to inherit
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the merits of the standard Kalman filter, KCF also has
advantages such as distributed structure, lower computing
and communication burden, higher estimation accuracy, ease
of fault diagnosis et al., which has received widespread
attention in the research of distributed estimation algorithms.

In almost all practical systems, nonlinear phenomena
are common in the dynamic or/and measurement process
that might severely degrade the performance of networked
systems. So, much work has been done on the distributed
KCF problems for various nonlinear systems, see e.g., [10]
and [11]. However, the estimation methods in the above
literature are commonly used to solve nonlinear problems that
occur in deterministic ways. Owing to sudden environment
changes, the high maneuverability of the tracked target,
intermittent network congestion et al., another kind of
nonlinearities can be defined as stochastic nonlinearities,
which may occur in a random manner [12], [13]. In fact,
such stochastic nonlinearities include the state-dependent
multiplicative noises as special cases, which have also
been attracting extensive attention [14], [15]. Moreover,
to meet the needs of practical applications, some literature
has designed different distributed estimators for stochastic
nonlinear systems, such as event-triggered multi-rate fusion
estimation [16] and distributed state estimation with random
delays and packet dropouts [17].

Besides, missing data often occur in NMSSs due to
some uncertain factors such as sensor aging or failure,
unreliable communication links, and external environmental
interference. To reduce the impact of missing data on
the performance of networked systems, according to the
KCF framework, the distributed estimator designed in [18]
depends on Bernoulli random variables that describe missing
measurements, while the distributed estimator proposed
in [19], as well as its filter gains and covariance matrices,
depend entirely on the probabilities of missing measure-
ments. Considering fading measurements as a more general
form of missing measurements, the literature [20] proposed
a distributed KCF based on fading measurement rates under
the linear unbiased minimum variance criterion (LUMVC).
For the phenomenon of random packet dropouts in networks,
some distributed KCF algorithms mainly study measurement
packet losses [21], transmission packet losses among sensor
nodes [22], and mixture packet losses of the above two
types [23].

In the above literature, there are still problems that the
filtering algorithms rely on the arbitrary given or/and one
common consensus filter gains, as well as free scalar parame-
ters, which may lead to a decrease in estimation accuracy. So,
some recent literature [24], [25] have developed distributed
KCFs with optimal multiple filter gains and optimal scalar
parameters, where the distributed filter proposed in [25]
can avoid calculating the filtering error cross-covariance
matrices (FECCM) by seeking the minimum upper bound
of the filtering error covariance matrix. Unfortunately, for
networked stochastic nonlinear systems, the design problems
of distributed filters withmultiple filter gains have been rarely

taken into account, and the distributed filter proposed in [24]
for missing data only considers the FECCM with significant
computational burden, the above questions constitute the
research motivations.

Motivated by the above discussion, combining with the
KCF framework with multiple filter gains, we are interested
in designing a distributed filtering algorithm for stochastic
nonlinear systems with fading measurements and random
packet dropouts in the present paper. For the proposed
research topic, the following challenges that need to be
solved: (1) how to design a novel distributed Kalman filter
that can improve estimation accuracy for state estimates
of different neighbor nodes? (2) how to reduce the impact
of missing data from neighbor nodes on estimation perfor-
mance? (3) how to design a distributed filtering algorithm
with lower computing and communication burden to meet
the needs of practical applications? (4) how to analyze the
stability of the distributed filtering algorithm? Hence, the
main contributions of this paper are summarized as follows:

• In response to the difficulty in determining whether
data are missing or not in practice, based on statistical
characteristics of fading measurements and random
packet dropouts among sensor nodes, a novel dis-
tributed Kalman filter (DKF) with multiple filter gains
is proposed to improve estimation accuracy, where
multiple filter gains include one Kalman filter gain for
measurements of sensor itself and different consensus
filter gains for state estimates of its different neighbor
nodes.

• For updating the state estimates at every time, the
zero-input and the hold-input compensation mecha-
nisms are used for missing estimates and missing
covariance matrices of neighbor nodes, respectively.

• To avoid the calculation of the FECCM and the state
second moment matrix, an upper bound of filtering
error covariance matrix (UBFECM) containing a set
of positive scalar parameters is sought by applying
the linear matrix inequality technique. Furthermore,
multiple filter gains and scalar parameters are optimized
by minimizing locally an UBFECM and using nonlinear
optimization methods.

• The exponential boundedness inmean square of filtering
error of DKF is analyzed, and the estimation accuracy of
DKF is also proven to be superior to that of local filter
with fading measurements.

The rest of the paper is arranged as follows: In Section II,
the distributed filtering problem is formulated. In Section III,
the main results are derived for DKF. The stability of the
proposed DKF is analyzed in Section IV. In Section V,
an example is used to verify the feasibility of theoretical
results. Finally, the conclusions are given.
Notation: ℜ

n denotes n dimensional Euclidean space. L
is the number of sensors. E[•] stands for the expectation of
a random variable ‘‘•’’. δij is the Kronecker delta function.
Pr ob{•} denotes occurring probability of an event ‘‘•’’. tr{ A}
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and AT refer to the trace and the transpose of a matrix A,
respectively. diag[•] stands for a block-diagonal matrix of a
general term ‘‘•’’. In stands for an n by n identity matrix. ⊥

denotes uncorrelation or orthogonality. (X )(•)T is equivalent
to (X )(X )T. ∥•∥ stands for Euclidean norm of a vector ‘‘•’’ or
spectral norm of a matrix ‘‘•’’.

II. PROBLEM FORMULATION
Similar to [24], we can also use a graph G = (α, β)
to describe the topological structure of NMSSs, where the
vertex set α = {1, 2, . . . ,L} and the edge set β ⊆ α × α

stand for all sensor nodes and communication channels,
respectively. Especially in a directed graph, an arrow pointing
from sensor l to sensor imeans that sensor l is a neighbor node
of sensor i. Moreover, the set of all neighbor sensor nodes of
sensor i is represented as Ni = {l|(l, i) ∈ β,∀l ̸= i}, which
can also be denoted as l = i1, i2, . . . , iri , and ri is the number
of neighbor nodes of sensor i.
Consider the following time-varying discrete-time system

with stochastic nonlinearities and fading measurements:

x(t + 1) = A(t)x(t) + f (x(t), ξ (t)) + B(t)w(t), (1)

yi(t) = ρi(t)Hi(t)x(t) + vi(t), i = 1, 2, . . . ,L, (2)

where the discrete time t is the natural number greater than
zero. x(t) ∈ ℜ

n is the state vector and yi(t) ∈ ℜ
mi is the

measurement vector of sensor i. w(t) ∈ ℜ
r and vi(t) ∈ ℜ

mi ,
i = 1, 2, . . . ,L are the process noise and measurement
noises, respectively. The random variables ρi(t) in (2), i =

1, 2, . . . ,L are used to describe fading measurements of
sensors, which are distributed over the interval [0, 1] with
known mean ρ̄i and variance σ 2

i . A(t), B(t), and Hi(t), i =

1, 2, . . . ,L are known matrices with suitable dimensions.
In addition, the function f (x(t), ξ (t)) in (1) denotes the

stochastic nonlinearities of the state x(t), which satisfies

E [f (x(t), ξ (t))|x(t)] = 0, (3)

E
[
f (x(t), ξ (t))f T(x(k), ξ (k))|x(t)

]
=

o∑
τ=1

9τ (t)xT(t)8τ (t)x(t)δtk , (4)

where ξ (t) is a zero-mean white noise sequence independent
of all other random variables, 9τ (t) and 8τ (t), τ =

1, 2, . . . , o are known matrices with appropriate dimensions,
and o is a known integer.

As we all know, the filter of sensor i can improve
its estimation accuracy by using the one-step prediction
estimates x̂l(t|t − 1), l ∈ Ni of its neighbor nodes. However,
packet dropouts often occur during data communication
among any two sensor nodes, which can be described by
using a group of Bernoulli distributed random variables γil(t)
with Pr ob{ γil(t) = 1} = γ̄il and Pr ob{ γil(t) = 0} =

1 − γ̄il , i.e., γil(t) = 1 represents that sensor i can receive
prediction estimates of its neighbor nodes l, otherwise it
cannot, i = 1, 2, . . . ,L; l ∈ Ni. In this paper, we assume

that the randomvariables ρi(t) and γil(t) are uncorrelatedwith
each other and also independent of other variables.

In summary, the data used by the filter of sensor i are given
as follows:

zi(t) =


yi(t)
yii1 (t)
yii2 (t)
...

yiiri (t)

 =


ρi(t)Hi(t)x(t) + vi(t)
γii1 (t)x̂i1 (t|t − 1)
γii2 (t)x̂i2 (t|t − 1)

...

γiiri (t)x̂iri (t|t − 1)

 ,
i = 1, 2, . . . ,L. (5)

Considering the practical applications of filter, it is difficult
to obtain the values of random variables ρi(t) and γil(t),
l ∈ Ni, a filter that depends on the statistical characteristics
of these random variables can be developed. Then, based
on (5) and the form of standard Kalman filter, we can use
the methods in [24] and [25] to design the DKF of sensor i in
the following form:

x̂i(t|t) = x̂i(t|t − 1) + Gi(t)
(
yi(t) − ρ̄iHi(t)x̂i(t|t − 1)

)
+

∑
l∈Ni

Cil(t)
(
yil(t) − γ̄il x̂i(t|t − 1)

)
, (6)

where x̂i(t|t) and x̂i(t|t−1) denote filter and predictor at time
t, respectively. Gi(t) ∈ ℜ

n×mi and Cil(t) ∈ ℜ
n×n, l ∈ Ni

are one Kalman filter gain for measurements and different
consensus filter gains for state estimates of different neighbor
nodes, respectively, which will be designed in the LUMVC.

In short, by minimizing an UBFECM of DKF x̂i(t|t) in (6),
our goal is to solve optimal solutions of filter gain matrices
Gi(t) and Cil(t), l ∈ Ni.
The following assumptions will be used in this paper.
Assumption 1: w(t) and vi(t) are uncorrelated white noises

with mean zero and covariance matrices E
[
w(t)wT(t)

]
=

Qw(t) ≥ 0 and E
[
vi(t)vTj (t)

]
= Ri(t)δij > 0, where

Qw(t) ∈ ℜ
r×r and Ri(t) ∈ ℜ

mi×mi , i, j = 1, 2, . . . ,L.
Assumption 2: The initial state x(0) with E [x(0)] = µ0

and E
[
(x(0) − µ0) (x(0) − µ0)

T]
= P0 is uncorrelated with

w(t), vi(t), ξ (t), ρi(t), and γil(t), i = 1, 2, . . . ,L; l ∈ Ni.
Remark 1: Obviously, the phenomenon of fading mea-

surements has been included in (2), which can be transformed
to the phenomenon of missing measurements when the
random variables ρi(t) describing the fading measurements
only take two values 1 or 0. Therefore, the DKF in (6)
proposed in this paper is also suitable for NMSSs with
random missing data, where missing data are composed
of measurements or/and transmission packets. Moreover,
it follows from (5) that the measurement of sensor i depends
on the number ri of its neighbor nodes, and the missing
data between sensor i and its neighbor nodes may affect the
number of its neighbor nodes used in its filter. Based on
the above analysis, it is known that random packet dropouts
among sensor nodes described by the random variables γil(t),
l ∈ Ni in (5) can also reflect the dynamically changing
network topology structures.
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Remark 2: Generally, the estimates and covariance matri-
ces of every neighbor node of sensor i are packed into a data
package at time t, which is used for transmission in networks.
Moreover, for the problem of missing estimates of neighbor
nodes, the zero-input compensation mechanism [26] is
adopted in (5), i.e., the one-step prediction estimates of
neighbor nodes at the filter are set to zero when γil(t) = 0, l ∈

Ni. However, considering the fact that the covariancematrices
are usually greater than zero, the hold-input compensation
mechanism [26] for missing covariance matrices of neighbor
nodes is used to update the filter of sensor i, i.e., the filter
holds at the last available one-step prediction error covariance
matrices P∗

l (t|t − 1) of neighbor nodes, which are defined as
P∗
l (t|t−1) = γil(t)Pl(t|t−1)+(1 − γil(t))Pl(t−κ|t−κ−1),

0 < κ ≤ t; l ∈ Ni. Note that the covariance matrices received
from neighbor nodes should be immediately stored in sensors
at every moment.
Remark 3: Similar to the design methods proposed in [24]

and [25], different consensus filter gains Cil(t), l ∈ Ni
are also developed for state estimates of different neighbor
nodes of sensor i in (6), which are completely different from
one common consensus filter gain in [10], [11], [18], [19],
[20], [21], [22], and [23]. The main difference from one
common gain is that Cil(t) take into account the difference
in accuracy among sensor nodes, i.e., emphasizing the role
of high-precision sensors while neglecting the role of low-
precision sensors, it is shown that this design method can
improve estimation accuracy and reduce conservation for
DKF in (6).
Remark 4: It is worth pointing out that stochastic nonlin-

earities described by (3) and (4) encompass the linear systems
with the state-dependent multiplicative noises Dx(t)ξ (t),
where D and ξ (t) are a matrix of appropriate dimensions and
a zero mean Gaussian noise sequence, respectively [27].

III. DESIGN OF DKF
In this section, considering unknown whether data are
missing or not at each time, a DKF algorithm that depends on
the probabilities ρ̄i and γ̄il of randomvariables ρi(t) and γil(t),
l ∈ Ni is proposed in the LUMVC. The following lemmas are
required before giving our main results.
Lemma 1 ([28]): The matrices X , A, and B with suitable

dimensions satisfy the following derivation formula of traces
of matrices product:

∂

∂X
tr {AXB} = ATBT,

∂

∂X
tr
{
AXBXTAT

}
= ATAX

(
B+ BT

)
.

Lemma 2 ([29]): For the real matrices X and Y with
appropriate dimensions, and a positive scalar θ , the following
inequality holds:

XY T
+ YXT

≤ θXXT
+ θ−1YY T.

To begin with, for sensor i, the filtering error and the
one-step prediction error of DKF are denoted as respectively:

x̃i(t|t) = x(t) − x̂i(t|t), (7)

x̃i(t|t − 1) = x(t) − x̂i(t|t − 1), (8)

and their corresponding covariance matrices are denoted as
respectively:

Pi(t|t) = E
[
x̃i(t|t)x̃Ti (t|t)

]
, (9)

Pi(t|t − 1) = E
[
x̃i(t|t − 1)x̃Ti (t|t − 1)

]
. (10)

To proceed, the following theorems give main results for
our DKF algorithm.
Theorem 1: For systems (1) and (5) under Assumptions 1

and 2, based on any given positive scalar parameters θi(t),
θil(t), ϕi(t), and πil(t), l ∈ Ni, an UBFECM Pui (t|t) of DKF
in (6) of sensor i is computed by

Pui (t|t) = h̄i(t)Fi(t)Pui (t|t − 1)FT
i (t) + Gi(t)2̄i(t)GT

i (t)

+ Ci(t)diag[–λil(t)χ̄il(t)]l∈NiC
T
i (t), (11)

where

h̄i(t) = 1 + θi(t),

–λiik (t) =

(
1 + θ−1

i (t)
) (

1 + θiik (t)
) k−1∏
s=1

(
1 + θ−1

iis (t)
)
,

k = 1, 2, . . . ,ri; θiiri (t) = 0,

Fi(t) = In − ρ̄iGi(t)Hi(t) − Ci(t)0i,

Ci(t) =

(
Cii1 (t), Cii2 (t), . . . , Ciiri (t)

)
n×nri

,

0i =

(
γ̄ii1 In, γ̄ii2 In, . . . , γ̄iiri In

)T
nri×n

,

χ̄il(t) = γ̄il (1 + πil(t))Pu∗l (t|t − 1)

+ γ̄il (1 − γ̄il)
(
1 + π−1

il (t)
)
X̄ (t),

2̄i(t) = σ 2
i Hi(t)X̄ (t)H

T
i (t) + Ri(t),

X̄ (t) = (1 + ϕi(t))Pui (t|t − 1)

+

(
1 + ϕ−1

i (t)
)
x̂i(t|t − 1)x̂Ti (t|t − 1), (12)

and Pu∗l (t|t−1) are the last available upper bound of one-step
prediction error covariance matrices of neighbor nodes of
sensor i, which have already been explained in Remark 2.

Then, we adopt the following filter gain matrices to mini-
mize the UBFECM Pui (t|t) in (11) under given parameters:

Gi(t) = h̄i(t)ρ̄i
(
In − h̄i(t)Pui (t|t − 1)0iTN

−1
i (t)0i

)
× Pui (t|t − 1)HT

i (t)M
−1
i (t), (13)

Ci(t) = h̄i(t) (In − ρ̄iGi(t)Hi(t))Pui (t|t − 1)0iTN
−1
i (t),

(14)

with

Ni(t) = h̄i(t)0iPui (t|t − 1)0iT + diag[–λil(t)χ̄il(t)]l∈Ni ,

Mi(t) = h̄i(t)ρ̄2i Hi(t)P
u
i (t|t − 1)HT

i (t) + 2̄i(t)

VOLUME 12, 2024 110263



H. Jin et al.: Distributed Filtering for Networked Stochastic Nonlinear Systems

− h̄2i (t)ρ̄
2
i Hi(t)P

u
i (t|t − 1)0T

i N
−1
i (t)0i

× Pui (t|t − 1)HT
i (t).

Proof: According to (7), (8), and (12), subtracting (6) from
x(t) yields the filtering error equation as

x̃i(t|t) = Fi(t)x̃i(t|t − 1) − Gi(t)ηi(t) −

∑
l∈Ni

Cil(t)ζil(t),

(15)

where

ηi(t) = (ρi(t) − ρ̄i)Hi(t)x(t) + vi(t), (16)

ζil(t) = (γil(t) − γ̄il) x(t) − γil(t)x̃l(t|t − 1), l ∈ Ni. (17)

Based on (9) and (15), the filtering error covariance matrix
Pi(t|t) of DKF in (6) can be derived as follows:

Pi(t|t) = E

Fi(t)x̃i(t|t − 1) −

∑
l∈Ni

Cil(t)ζil(t)

 (•)T


+ Gi(t)2i(t)GT
i (t), (18)

where the fact of x̃i(t|t − 1)⊥vi(t), E [ρi(t)] = ρ̄i, and
E [γil(t)] = γ̄il , l ∈ Ni has been used. In term of x(t)⊥vi(t)
and E

[
(ρi(t) − ρ̄i)

2]
= σ 2

i , substituting ηi(t) in (16) into the
definition 2i(t) = E

[
ηi(t)ηTi (t)

]
yields

2i(t) = E
[
((ρi(t) − ρ̄i)Hi(t)x(t) + vi(t)) (•)T

]
= σ 2

i Hi(t)X (t)H
T
i (t) + Ri(t), (19)

and then based on (8), (10), and Lemma 2, the state second
moment matrix X (t) in (19) satisfies the following inequality:

X (t) = E
[
x(t)xT(t)

]
= E

[(
x̃i(t|t − 1) + x̂i(t|t − 1)

)
(•)T

]
≤ (1 + ϕi(t))Pi(t|t − 1)

+

(
1 + ϕ−1

i (t)
)
x̂i(t|t − 1)x̂Ti (t|t − 1). (20)

Hence, it follows from the last equality of (20) that the
upper bound X̄ (t) in (12) of X (t) is obtained. Moreover, it is
easy to obtain the upper bound 2̄i(t) in (12) of 2i(t) by
substituting X̄ (t) into (19).

Subsequently, on the basis of (9), (10), (12), (18), and
Lemma 2, we have

Pi(t|t)

≤ (1 + θi(t))Fi(t)Pi(t|t − 1)FT
i (t) + Gi(t)2i(t)GT

i (t)

+

(
1 + θ−1

i (t)
)

× E

[(
Cii1 (t)ζii1 (t) +

ri∑
k=2

Ciik (t)ζiik (t)

)
(•)T

]
≤ (1 + θi(t))Fi(t)Pi(t|t − 1)FT

i (t) + Gi(t)2i(t)GT
i (t)

+

(
1 + θ−1

i (t)
) (

1 + θii1 (t)
)
Cii1 (t)χii1 (t)C

T
ii1 (t)

+

(
1 + θ−1

i (t)
) (

1 + θ−1
ii1

(t)
)

× E

[(
Cii2 (t)ζii2 (t) +

ri∑
k=3

Ciik (t)ζiik (t)

)
(•)T

]
≤ (1 + θi(t))Fi(t)Pi(t|t − 1)FT

i (t) + Gi(t)2i(t)GT
i (t)

+

(
1 + θ−1

i (t)
) (

1 + θii1 (t)
)
Cii1 (t)χii1 (t)C

T
ii1 (t)

+

(
1 + θ−1

i (t)
) (

1 + θ−1
ii1

(t)
) (

1 + θii2 (t)
)

× Cii2 (t)χii2 (t)C
T
ii2 (t)

+ · · · +

(
1 + θ−1

i (t)
) (

1 + θ−1
ii1

(t)
) (

1 + θ−1
ii2

(t)
)

× · · · ×

(
1 + θ−1

iiri−1
(t)
)
Ciiri (t)χiiri (t)C

T
iiri
(t)

= h̄i(t)Fi(t)Pi(t|t − 1)FT
i (t) + Gi(t)2i(t)GT

i (t)

+ Ci(t)diag[–λil(t)χil(t)]l∈NiC
T
i (t). (21)

It is noted that the UBFECM Pui (t|t) in (11) can be derived
from (12) and the last equality in (21), where it follows
from (10), (17), (20), Lemma 2, and E

[
γ 2
il (t)

]
= γ̄il , l ∈ Ni

that

χil(t) = E
[
ζiil (t)ζ

T
iil (t)

]
= E

[
((γil(t) − γ̄il) x(t) − γil(t)x̃l(t|t − 1)) (•)T

]
≤ γ̄il (1 + πil(t))Pl(t|t − 1)

+ γ̄il (1 − γ̄il)
(
1 + π−1

il (t)
)
X (t), (22)

and the upper bound χ̄il(t) in (12) of χil(t), l ∈ Ni is also
obtained by combining (22), X̄ (t) in (12), and P∗

l (t|t − 1),
l ∈ Ni in Remark 2.
Finally, we will minimize the following performance index

to solve filter gain matrices:

J (Gi(t),Ci(t)) = tr
{
Pui (t|t)

}
. (23)

According to (11), (23), and Lemma 1, we can let

∂

∂Gi(t)
tr
{
Pui (t|t)

}
= G(t)

(
h̄i(t)ρ̄2i Hi(t)P

u
i (t|t − 1)HT

i (t) + 2̄i(t)
)

− h̄i(t)ρ̄i (In − Ci(t)0i)Pui (t|t − 1)HT
i (t)

= 0,
∂

∂Ci(t)
tr
{
Pui (t|t)

}
= Ci(t)

(
h̄i(t)0iPui (t|t − 1)0iT + diag[–λil(t)χ̄il(t)]l∈Ni

)
− h̄i(t) (In − ρ̄iGi(t)Hi(t))Pui (t|t − 1)0iT

= 0, (24)

and the filter gain matrices Gi(t) in (13) and Ci(t) in (14) to
minimize (23) are obtained by solving (24).
Theorem 2: For systems (1) and (5) under Assumptions 1

and 2, the one-step predictor x̂i(t + 1|t) in (6) is computed by

x̂i(t + 1|t) = A(t)x̂i(t|t). (25)

Furthermore, the upper bound of one-step prediction
error covariance matrix Pui (t + 1|t) in (11), l ∈ Ni can
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be described by

Pui (t + 1|t) = A(t)Pui (t|t)A
T(t) + B(t)Qw(t)BT(t)

+

o∑
τ=1

9τ (t)tr
{
8T
τ (t)X̄ (t)

}
. (26)

Proof: Considering the linear space L (zi(1), zi(2), . . . ,
zi(t)), we easily have (25) from (1).
Based on (7) and (8), subtracting (25) from (1) yields

one-step prediction error equation of sensor i as

x̃i(t + 1|t) = A(t)x̃i(t|t) + f (x(t), ξ (t)) + B(t)w(t). (27)

By using (3), (4), (9), (10), (20), (27), x̃i(t|t)⊥w(t), and
ξ (t)⊥w(t), we have the one-step prediction error covariance
matrix Pi(t + 1|t), i.e.,

Pi(t + 1|t) = A(t)Pi(t|t)AT(t) + B(t)Qw(t)BT(t)

+

o∑
τ=1

9τ (t)E
[
xT(t)8τ (t)x(t)

]
= A(t)Pi(t|t)AT(t) + B(t)Qw(t)BT(t)

+

o∑
τ=1

9τ (t)tr
{
8T
τ (t)X (t)

}
, (28)

where the fact of tr
{
abT

}
= aTb with the same dimensional

vectors a and b has been used.
So, the Pui (t + 1|t) in (26) is easily got from (12) and (28).
Remark 5: From (13) and (14), it is not difficult to found

that the filter gain matrices Gi(t) and Ci(t) in Theorem 1
depend on a set of arbitrarily given positive scalar parameters,
and these gain matrices are not optimal and may even
deteriorate the estimation accuracy of the filter. In order
to overcome the above problem, by applying the fact that

θ =

√
tr
(
YY T

)/
tr
(
XXT

)
in Lemma 2 is the minimum value

to (12) and (20)–(22), the optimal expressions are derived for
the scalar parameters in Theorem 1, i.e., the parameters θi(t)
and θil(t), l ∈ Ni are

θiik (t) =

√√√√ tr
{
Ci(t)diag[ηil(t)χ̄il(t)]l∈NiC

T
i (t)

}
tr
{
Ciik (t)χ̄iik (t)C

T
iik (t)

} ,

ηiis (t) =


0, s = 1, 2, . . . ,k ,(
1 + θiis (t)

) s−1∏
m=k+1

(
1 + θ−1

iim (t)
)
,

s = k + 1, k + 2, . . . ,ri,

k = ri − 1, ri − 2, . . . , 1; θiiri (t) = 0, (29)

θi(t) =

√√√√ tr
{
Ci(t)diag[εil(t)χ̄il(t)]l∈NiC

T
i (t)

}
tr
{
Fi(t)Pui (t|t − 1)FT

i (t)
} ,

εiis (t) =
(
1 + θiis (t)

) s−1∏
m=1

(
1 + θ−1

iim (t)
)
, s = 1, 2, . . . ,ri,

(30)

the parameters ϕi(t) are

ϕi(t) =

√
tr
{
x̂i(t|t − 1)x̂Ti (t|t − 1)

}/
tr
{
Pui (t|t − 1)

}
,

(31)

and the parameters πil(t), l ∈ Ni are

πil(t) =

√
γ̄il (1 − γ̄il) tr

{
X̄ (t)

}/
γ̄il tr

{
Pu∗l (t|t − 1)

}
. (32)

Now, based on (13), (14), and (29)–(32), the optimal gain
matrices Gmi (t) and Cm

i (t) with optimal scalar parameters
θmi (t), θ

m
il (t), ϕ

m
i (t), and πmil (t), l ∈ Ni can be solved.

Furthermore, the minimum UBFECM Pmui (t|t) for Pui (t|t)
in (11) can also be solved. However, according to (13),
(14), (29), and (30), it can be found that the gain matrices
and some scalar parameters are nonlinearly coupled, so we
can use some nonlinear optimization methods to seek their
approximate optimal numerical solutions, such as an iterative
method used in this paper.

IV. STABILITY ANALYSIS OF DKF
In this section, the stability of the proposed DKF will be
analyzed. To begin with, we will introduce the following
useful lemma and assumption to ensure the stability analysis.
Lemma 3 ( [30]): Suppose that there exists a stochastic

process V (ς (t)), real numbers κ, κ̄, u > 0, and 0 < ψ ≤

1 such that

κ∥ς (t)∥2 ≤ V (ς (t)) ≤ κ̄∥ς (t)∥2, (33)

and

E [V (ς (t + 1))|ς (t)] ≤ (1 − ψ)V (ς (t)) + u. (34)

Then, the stochastic process ς (t) is exponentially bounded
in mean square, i.e.,

E
[
∥ς (t)∥2

]
≤
κ̄

κ
(1 − ψ)tE

[
∥ς (0)∥2

]
+
u
κ

t−1∑
i=1

(1 − ψ)i.

Assumption 3: There exist positive scalars a, b, cil , gi, hi,
ϖ , qi, δ, and –λ, l ∈ Ni such that

∥A(t)∥ ≤ a, ∥B(t)∥ ≤ b, ∥Cil(t)∥ ≤ cil, ∥Gi(t)∥ ≤ gi,

∥Hi(t)∥ ≤ hi,Qw(t) ≤ ϖ In,Ri(t) ≤ qiImi ,

x(t)xT(t) ≤ xT(t)x(t)In ≤ δIn,

and noticing the stochastic nonlinear function f (x(t), ξ (t)),
one gets

E
[
f (x(t), ξ (t))f T(x(t), ξ (t))|x(t)

]
≤ –λIn.

Moreover, based on any given positive scalar parameters
ϑ , the following condition holds:

∥∂(t + 1)∥ < 1, (35)

where ∂(t + 1) is defined as

∂(t + 1) = (1 + ϑ)E
[
FT(t + 1)F(t + 1)

]
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= (1 + ϑ)
(
F̄T(t + 1)F̄(t + 1)

+

L∑
i=1

L∑
j=1, j ̸=i

γ̄ij
(
1 − γ̄ij

)
�T
ij(t + 1)�ij(t + 1)),

(36)

and F(t + 1) in (36) is an nL × nL block matrix, each block
of which is an n× n matrix, the matrix element at the (i, i)-
block place is Fi(t + 1)A(t) and the matrix element at the
(i, j)-block place is γij(t + 1)Cij(t + 1)A(t) if j ∈ Ni and
zero matrix otherwise, F̄(t + 1) in (36) can be computed by
replacing γij(t + 1) with γ̄ij in F(t + 1), i, j = 1, 2, . . . ,L.
�ij(t + 1) in (36) is an nL × nL block matrix in which the
block element at i row and j column is Cij(t + 1)A(t), j ∈ Ni,
and otherwise the block elements are zero, i, j = 1, 2, . . . ,L.
Next, we will give main results for stability analysis of

DKF.
Theorem 3: Under Lemma 3 and Assumption 3, the

filtering error x̃i(t|t) in (15) of the DKF in Theorems 1-2
is exponentially bounded in mean square for bounded initial
error.
Proof: Based on the augmented filtering error x̃(t|t) =[
x̃T1 (t|t), x̃

T
2 (t|t), . . . , x̃

T
L (t|t)

]T
nL×1, the Lyapunov function

can be defined as

V (x̃(t|t)) = x̃T(t|t)x̃(t|t). (37)

Obviously, if κ = κ̄ = 1, then (37) satisfies (33).
Besides, it follows from (15)–(17) and (27) that the

filtering error equation of sensor i can be obtained as

x̃i(t + 1|t + 1)

= Fi(t + 1)A(t)x̃i(t|t) + Fi(t + 1)f (x(t), ξ (t))

+ Fi(t + 1)B(t)w(t) +

∑
l∈Ni

γil(t + 1)Cil(t + 1)A(t)x̃l(t|t)

+

∑
l∈Ni

γil(t + 1)Cil(t + 1)f (x(t), ξ (t))

+

∑
l∈Ni

γil(t + 1)Cil(t + 1)B(t)w(t) − Gi(t + 1)vi(t + 1)

− (ρi(t + 1) − ρ̄i)Gi(t + 1)Hi(t + 1)x(t + 1)

−

∑
l∈Ni

(γil(t + 1) − γ̄il)Cil(t + 1)x(t + 1). (38)

Introduce augmented vectors:

G(t + 1) = diag[Gi(t + 1)]
nL×

L∑
i=1

mi
,

v(t + 1) =
[
vT1 (t + 1) vT2 (t + 1)

· · · vTL(t + 1)
]T
L∑
i=1

mi×1
,

M (t + 1) =


In − ρ̄1G1(t + 1)H1(t + 1)
In − ρ̄2G2(t + 1)H2(t + 1)

...

In − ρ̄LGL(t + 1)HL(t + 1)


nL×n

,

N (t + 1) =



∑
l∈N1

(γ1l(t + 1) − γ̄1l)C1l(t + 1)∑
l∈N2

(γ2l(t + 1) − γ̄2l)C2l(t + 1)

...∑
l∈NL

(γLl(t + 1) − γ̄Ll)CLl(t + 1)


nL×n

,

3(t + 1) =


(ρ1(t + 1) − ρ̄1)G1(t + 1)H1(t + 1)
(ρ2(t + 1) − ρ̄2)G2(t + 1)H2(t + 1)

...

(ρL(t + 1) − ρ̄L)GL(t + 1)HL(t + 1)


nL×n

.

(39)

By using (1) and (39) to augment (38), it is achieved that

x̃(t + 1|t + 1)

= F(t + 1)x̃(t|t) − (3(t + 1) + N (t + 1))A(t)x(t)

+ (M (t + 1) −3(t + 1)) f (x(t), ξ (t))

+ (M (t + 1) −3(t + 1))B(t)w(t) − G(t + 1)v(t + 1),

(40)

where F(t + 1) has been defined in (36).
By applying Lemma 1 and the fact of tr{ abT} = aTb for

vectors a and b, it follows from (37) and (40) that

E
[
V (x̃(t + 1|t + 1))|x̃(t|t)

]
=41(t + 1) +42(t + 1)

+43(t + 1) +44(t + 1),

(41)

where according to Lemma 3, Assumption 3, E [ρi(t)] = ρ̄i,
and E [γil(t)] = γ̄il , l ∈ Ni, we have

41(t + 1)

= E
[
(F(t + 1)x̃(t|t)

− (3(t + 1) + N (t + 1))A(t)x(t))T (•)
]

≤ x̃T(t|t)∂(t + 1)x̃(t|t)

+

(
1 + ϑ−1

)
tr
{
E
[
(3(t + 1)A(t)x(t)) (•)T

]}
+

(
1 + ϑ−1

)
tr
{
E
[
(N (t + 1)A(t)x(t)) (•)T

]}
≤ x̃T(t|t)∂(t + 1)x̃(t|t) +

(
1 + ϑ−1

) L∑
i=1

σ 2
i g

2
i h

2
i a

2nδ

+

(
1 + ϑ−1

) L∑
i=1

∑
l∈Ni

γ̄il (1 − γ̄il) c2ila
2nδ, (42)

with ∂(t + 1) in (36),

42(t + 1)

= E
[
((M (t + 1) −3(t + 1)) f (x(t), ξ (t)))T (•)

]
= tr

{
E
[
((M (t + 1) −3(t + 1)) f (x(t), ξ (t))) (•)T

]}
≤

L∑
i=1

(
(1 + ρ̄igihi)2 + σ 2

i g
2
i h

2
i

)
n–λ, (43)

110266 VOLUME 12, 2024



H. Jin et al.: Distributed Filtering for Networked Stochastic Nonlinear Systems

and similar to (42) and (43), we also have

43(t + 1) = E
[
((M (t + 1) −3(t + 1))B(t)w(t))T (•)

]
≤

L∑
i=1

(
(1 + ρ̄igihi)2 + σ 2

i g
2
i h

2
i

)
b2nϖ, (44)

44(t + 1) = E
[
(G(t + 1)v(t + 1))T (•)

]
≤

L∑
i=1

g2i miqi. (45)

Substituting (42)–(45) into (41) yields

E
[
V (x̃(t + 1|t + 1))|x̃(t|t)

]
≤ x̃T(t|t)∂(t + 1)x̃(t|t) + u,

(46)

where

u =

(
1 + ϑ−1

)
a2nδ

 L∑
i=1

σ 2
i g

2
i h

2
i +

L∑
i=1

∑
l∈Ni

γ̄il (1 − γ̄il) c2il


+ n

(
–λ+ b2ϖ

) L∑
i=1

(
(1 + ρ̄igihi)2 + σ 2

i g
2
i h

2
i

)
+

L∑
i=1

g2i miqi.

Then, it follows from (35), (36), and (46) that there are
always positive scalars 0 < ψ ≤ 1 and u > 0 such that (34)
holds, where

ψ = 1 − max
Gi(t+1), Cil (t+1), ρ̄i, γ̄il , ϑ

∥∂(t + 1)∥ .

To sum up, in line with Lemma 3, it is clear that the filtering
error x̃i(t|t) in (15) is exponentially bounded in mean square.
Theorem 4: For systems (1) and (2) with Assumptions 1

and 2, the minimum UBFECM Pmui (t|t) is bounded and
satisfies the following inequality:

tr
{
Pmui (t|t)

}
≤ tr

{
Ploci (t|t)

}
,

where the local filtering error covariance matrix Ploci (t|t) with
fading measurements is described as

Ploci (t|t)

=

(
In − ρ̄iK loc

i (t)Hi(t)
)
Ploci (t|t − 1)

(
In − ρ̄iK loc

i (t)Hi(t)
)T

+ K loc
i (t)2̄i(t)

(
K loc
i (t)

)T
,

and filter gain matrix K loc
i (t) is computed by

K loc
i (t) = ρ̄iPloci (t|t − 1)HT

i (t)

×

[
ρ̄2i Hi(t)P

loc
i (t|t − 1)HT

i (t) + 2̄i(t)
]−1

.

Proof: The proof can be carried out along the similar line
to the Theorem 3 in [25]. The detail is omitted to save space.
Remark 6: As is well known, the filtering algorithms

in [14] and [24] dependent on the missing probabilities

involve recursive calculation of the state second moment
matrix, which inevitably require the system matrix A(t) to
be stable, leading to significant limitations in the application
ranges. However, according to (11) and (12), we know that
Pui (t|t) depends on the upper bound X̄ (t) of the state second
moment matrix, which avoids the calculation of the state
second moment matrix. Although the proposed DKF may
reduce estimation accuracy, it does not require system matrix
A(t) to be stable, which can reduce computational burden and
expand application ranges. Besides, as shown in Theorem 4,
the proposedDKFwith optimal filter gains and optimal scalar
parameters can achieve better estimation accuracy than local
filter with fading measurements by using data information of
neighbor nodes.
Remark 7: At every moment, based on the data informa-

tion of sensor i itself and its neighbor nodes, the update
of state estimation for sensor i only may require one-step
prediction estimates and the minimum upper bounds of
one-step prediction error covariance matrices. Note that the
zero-input and the hold-input compensation mechanisms are
used in DKF. In a word, for sensor i, i = 1, 2, . . . ,L, the
operations of the proposed DKF in Theorems 1-2, Remark 2,
and Remark 5 can be summarized as in Algorithm 1.

Algorithm 1 DKF for Networked Stochastic Nonlinear
Systems With Fading Measurements and Random Packet
Dropouts
Initialization:
Loaded information includes A(t), B(t), Hi(t), 9τ (t),

8τ (t), Qw(t), Ri(t), ρ̄i, σ 2
i , γ̄il , and topological structure,

τ = 1, 2, . . . , o; l ∈ Ni. Set the initial values x̂i(0| − 1) =

µ0, Pmui (0| − 1) = P0, and Pmu∗l (0| − 1) = P0, l ∈ Ni.

Sensor i iteratively updates the state estimation at each
time t through the following four steps:
Receive data:
If sensor i receives the data packets of its neighbor nodes,

the current received one-step prediction estimates x̂l(t|t −

1) and minimum upper bounds of one-step prediction error
covariance matrix Pmul (t|t − 1) are used, l ∈ Ni, otherwise
the compensation mechanisms in Remark 2 are adopted.
Filtering update:
Compute optimal filter gain matrices Gmi (t) and C

m
i (t),

and optimal scalar parameters θmi (t), θ
m
il (t), ϕ

m
i (t), and

πmil (t), l ∈ Ni by Theorems 1-2 and Remark 5.
Compute the filter x̂i(t|t) and the minimum UBFECM

Pmui (t|t) by (6) and (11), respectively.
Prediction update:

Compute the one-step prediction estimate x̂i(t + 1|t)
and the minimum upper bound of one-step prediction
error covariance matrix Pmui (t + 1|t) by (25) and (26),
respectively.
Send data:

Send x̂i(t + 1|t) and Pmui (t + 1|t) to sensor j, i ∈ Nj;
j = 1, 2, . . . ,L; i ̸= j.
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FIGURE 1. The directed topology with five sensors.

V. NUMERICAL EXAMPLE
In this section, considering NMSSs with five sensors shown
in Figure 1, according to the definition of neighbor nodes,
for instance, the set of neighbor nodes of sensor 3 can
be represented as N3 = {l |(l, 3) ∈ β, ∀l ̸= 3 }, i.e., l =

2, 4, 5 and r3 = 3. In addition, we use an uninterruptible
power system (UPS) in [24] as a simulation example to
verify the effectiveness and feasibility of the proposed DKF
algorithm. For the UPS with 1 kVA, the corresponding
discrete-time model (1) with stochastic nonlinearities and
fading measurements are derived based on the sampling time
10 ms at half-load operating point as follows:

x(t + 1) =

 0.9226 −0.6330 0
1 0 0
0 1 0

 x(t)
+ f (x(t), ξ (t)) +

 0.5
0
0.2

w(t),
with the stochastic nonlinear function

f (x(t), ξ (t))

=
[
0.2 0.3 0.3

]T [0.3sign(x1(t))x1(t)ξ1(t)
+ 0.4sign(x2(t))x2(t)ξ2(t) + 0.5sign(x3(t))x3(t)ξ3(t)

]
,

(47)

where xi(t), i = 1, 2, 3 stand for the ith element of the system
state x(t). ξi(t), i = 1, 2, 3 are uncorrelated Gaussian white
noises with mean zero and variance one. It is easy to verify
that the stochastic nonlinear function (47) satisfies (4) with

E
[
f (x(t), ξ (t))f T(x(t), ξ (t))|x(t)

]
=

 0.2
0.3
0.5

 0.2
0.3
0.5

T

xT(t)diag
[
0.09 0.16 0.25

]
x(t).

The measurement equations satisfy (5) with Hi =

[23.738 20.287 0
]
, i = 1, 2, 4 and Hi =

[
0 20 23

]
,

i = 3, 5. The measurement noises vi(t) of mean zero
and variances Ri = 0.1i, i = 1, 2, . . . , 5 is uncorrelated
with the process noise w(t) of mean zero and variance one.
By setting the mean values γ̄il of the random variable γil(t),
l ∈ Ni, i.e., the data reception probabilities, random packet

dropouts among sensors and their neighbor nodes can be
described in simulation, where the mean values γ̄ij, i, j =

1, 2, . . . , 5 satisfy

(γ̄ij)5×5 =


0 0.78 0 0 1
1 0 0 0.83 0
0 0.75 0 1 0.85

0.95 0 0.75 0 0.88
0.76 1 0.92 0.86 0

 , (48)

and we can see from (48) that the data reception probabilities
between sensor 3 and its three neighbor nodes are γ̄32 =

0.75,γ̄34 = 1, and γ̄35 = 0.85, respectively. It should be noted
that the value ‘0’ means that there is no connection between
a sensor and itself or other sensors, the value ‘1’ means that
a sensor can fully receive data from its neighbor nodes, and
other values represent the data reception probabilities, which
means that there are missing data between a sensor and its
neighbor nodes. The probability density functions pi(s) over
the interval [0, 1] for ρi(t), i = 1, 2, . . . , 5 satisfy

p1(s) =


0.05, s = 0
0.10, s = 0.5
0.85, s = 1

, p2(s) =


0.05, s = 0
0.10, s = 0.2
0.35, s = 0.6
0.50, s = 1

,

p3(s) =


0.05, s = 0
0.15, s = 0.5
0.80, s = 1

, p4(s) =


0.05, s = 0
0.10, s = 0.3
0.35, s = 0.7
0.50, s = 1

,

p5(s) =


0.05, s = 0
0.10, s = 0.2
0.20, s = 0.5
0.30, s = 0.8
0.35, s = 1

,

with the expectations and variances can easily be calculated
as ρ̄1 = 0.9, ρ̄2 = 0.73, ρ̄3 = 0.875, ρ̄4 = 0.775, ρ̄5 = 0.71,
σ 2
1 = 0.065, σ 2

2 = 0.0971, σ 2
3 = 0.0719, σ 2

4 = 0.0799,
and σ 2

5 = 0.0919, respectively. The initial values are x(0) =[
0 0 0

]T and P0 = 0.01I3. The 100 sampling data are used
in simulation.
Firstly, according to the tracking performance of proposed

DKF algorithm shown in Figure 2, we can see that sensors 1,
3, and 5 can track the real trajectory very well in the network
shown in Figure 1, which shows that the proposed DKF
algorithm is effective.
Secondly, from Figure 3, it can be seen that the mean

square errors (MSEs) of all sensors are different, which
means that the estimation accuracy of different sensors is
different, mainly because each sensor has different simulation
parameters. However, the MSEs of all sensors are bounded,
which further verifies the correctness of Theorem 3. Note that
the MSE can be defined by

MSEi,b(t) =
1
M

M∑
k=1

(
x(k)b (t) − x̂(k)i,b (t|t)

)2
, (49)
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FIGURE 2. Tracking performance of DKFs of sensors 1, 3, and 5 in the
directed topology.

where i represents sensor node, b = 1, 2, 3 represent state
components, M represents the number of Monte-Carlo tests
and M = 3000 in simulation.
Thirdly, we compare the mean of minimum UBFECM

(MMUBFECM) with the MSE for filter of sensor 3, where
the MMUBFECM is computed by

MMUBFECMi,b(t) =
1
M

M∑
k=1

Pmu(k)i,b (t|t),

where the definitions of i, b, and M are the same as that
of (49).

It follows fromFigure 4 that theMSEs are almost below the
MMUBFECMs for filter of sensor 3 in the directed topology,

FIGURE 3. Comparisons of MSEs for DKFs of all sensors in the directed
topology.

which indicates that the correctness of Theorems 1-2 and
Remark 5.

Fourthly, the effect of different fadingmeasurements on the
performance of the proposed DKF is studied. For sensor 3,
three kinds of DKFs with different fading measurements are
compared. One is the DKF with the mean ρ̄3 = 0.875 in
Theorems 1-2 and Remark 5, the other is DKF_FM whose
probability density function for ρ3(t) satisfies p3(0) =

0.85, p3(0.5) = 0.1, and p3(1) = 0.05, where the
mean ρ̄3 = 0.1 and the variance σ 2

3 = 0.065, the last
one is DKF_WFM with the mean ρ̄3 = 1, which is the
proposed DKF without fading measurements. Note that other
parameters remain the same as above. The simulation results
are given in Figure 5. From Figure 5, we can see that the
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FIGURE 4. Comparisons of MSEs and MMUBFECMs for DKF of sensor 3 in
the directed topology.

performance of DKF is better than that of DKF_FM and
worse than that of DKF_WFM, which demonstrates that the
estimation accuracy becomes worse as the mean ρ̄3 of fading
measurements decreases.

Finally, the performance of the following six filter
algorithms will be compared: DKFs in Theorems 1-2 with
fixed parameters, i.e., θi(t), θil(t), ϕi(t), and πil(t), l ∈ Ni are
all 6 (DKF_FP1) or 1.8 (DKF_FP2); local filter with fading
measurements in Theorem 4 (LF_FM); DKF in Theorems 1-
2 and Remark 5; optimal distributed Kalman consensus filter
(ODKCF) with one common optimal consensus filter gain
and the FECCM in [9]; the proposed DKF without fading
measurements and random packet dropouts (DKF_W). Note
that ODKCF does not consider missing data, and requires

FIGURE 5. Comparisons of MSEs for DKFs of sensor 3 with different
fading measurements in the directed topology.

the recursive calculation of the state second moment matrix.
Other simulation parameters remain unchanged.

To compare estimation accuracy of different algorithms,
the mean square deviation (MSD) for all sensors is used in
simulation, i.e., MSDb(t) = 1

L

∑L
i=1MSEi,b(t), where b and

MSEi,b(t) are defined in (49).
The simulation results are shown in Figure 6. From

Figure 6, we can see that the performance of DKF out-
performs that of LF_FM, which verifies the correctness of
Theorems 1-4 and Remark 5. Especially, the performance
of DKF_W is close to that of ODKCF, which further
demonstrates the effectiveness of the proposed DKF with
optimal multiple consensus filter gains and optimal scalar
parameters. In addition, we can see that the performance of

110270 VOLUME 12, 2024



H. Jin et al.: Distributed Filtering for Networked Stochastic Nonlinear Systems

FIGURE 6. Comparisons of MSDs for different filter algorithms in the
directed topology.

LF_FM outperforms that of DKF_FP1 and underperforms
that of DKF_FP2, but the performance of both DKF_FP1
and DKF_FP2 is worse than that of DKF, which shows that
inappropriate scalar parameters may lead to a decrease in
estimation accuracy of DKF.

VI. CONCLUSION
Considering NMSSs with stochastic nonlinearities, fading
measurements, and random packet dropouts, a novel DKF
dependent on the probabilities of data loss has been presented,
where multiple filter gain matrices are designed to improve
estimation accuracy. For missing estimates and missing
covariance matrices of neighbor nodes, the zero-input and the
hold-input compensation mechanisms are used to update the

state estimates of filter. Optimal Kalman filter gain, optimal
different consensus filter gains, and optimal scalar parameters
are obtained by minimizing locally an UBFECM and using a
nonlinear optimization method. Moreover, it has proved that
the filtering error of DKF has the exponential boundedness in
mean square and the estimation accuracy ofDKF outperforms
that of local filter with fading measurements. The proposed
DKF has low calculation and communication cost owing to
avoiding the FECCM and the state second moment matrix.
An UPS is used as a simulation example to illustrate the
effectiveness of the presented DKF algorithm.
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