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ABSTRACT As the landscape of electric power systems is transforming towards decentralization, small-
scale electric power systems have garnered increased attention. Meanwhile, the proliferation of artificial
intelligence (AI) technologies has provided new opportunities for power system management. Thus, this
review paper examines AI technology applications and their range of uses in small-scale electrical power
systems. First, a brief overview of the evolution of small-scale electric power systems and the importance
of AI integration is given. The background section explains the principles of small-scale electric power
systems, including stand-alone systems, grid-interactive systems, microgrids, hybrid systems, and virtual
power plants. A thorough analysis is conducted on the effects of AI technologies on power system aspects
such as energy consumption, demand response, grid management, operation, energy generation, and storage.
Based on this foundation, AI Acceleration Performance Indicators (AAPIs) for small-scale electric power
systems are developed to establish a standardized framework for evaluating and comparing different studies.
AAPI framework considers a binary scoring for five quantitative Key Performance Indicators (KPIs) and
five qualitative KPIs examined through a three-tiered scale – established, evolved, and emerging.

INDEX TERMS Artificial intelligence, electric power systems, performance indicators.

I. INTRODUCTION
A. BRIEF OVERVIEW OF THE EVOLUTION OF
SMALL-SCALE ELECTRIC POWER SYSTEMS
Significant developments in societal expectations, regulatory
frameworks, and technology paradigms have shaped the
evolution of small-scale electric power systems. Small-scale
systems have historically served isolated locations or sectors,
taking on a supporting role to centralized power grids. Due
to technological breakthroughs, renewable energy sources
have become more prevalent over time, and power gen-
eration equipment has become more affordable, propelling
small-scale systems to become an essential component of
modern-day sustainable energy solutions [1].

Decentralized energy production emerged in the early 20th
century when small-scale systems used local resources like
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wind and water to produce electricity. These systems were
distinguished by their independence from large-scale grids,
and their location frequently served rural populations. There
was a technological innovation boom in the late 20th century,
especially in the area of renewable energy. Photovoltaic cells,
wind turbines, and other clean energy technologies grewmore
efficient and affordable, as demonstrated by the increase in
solar energy output from 30 GW to 118 GW and wind energy
production from 78 GW to 167 GW within the European
Union between 2010 and 2019 [2].

The need to switch to carbon-neutral energy sources
has become more pressing due to growing worries about
climate change and environmental pollution. As essential
parts of the broader energy infrastructure, small-scale electric
power systems are crucial in reducing the carbon footprint
of conventional energy sources [3]. Nations all across the
globe have pledged to cut greenhouse gas emissions and
move toward sustainable energy practices under international
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agreements like the Paris Agreement [4]. Since small-scale
electric power systems allow for localized, clean energy
production with lower transmission losses, they provide
a reasonable and practical solution to meet these global
sustainability targets.

Although small-scale systems have evolved promisingly,
there are still challenges, especially when incorporating
fluctuating renewable energy sources. Advanced solutions
like aggregated energy flexibility are required for efficient
grid management because of the operational problems
posed by the intermittent and variable nature of renew-
able energy sources like solar and wind [5]. In addition
to benefiting the environment, small-scale electric power
systems empower nearby communities by promoting energy
independence, creating job opportunities, and boosting
the local economy [6]. Decentralized energy resources
in small-scale systems improve community sustainability
overall and increase resilience to disruptions from the main
grid.

B. IMPORTANCE OF INTEGRATING AI TECHNOLOGIES IN
MODERN ENERGY SYSTEMS
The incorporation of artificial intelligence (AI) technology
presents unique potential for enhancing the performance
and reliability of small-scale electric power infrastructures.
By employing machine learning, predictive maintenance
algorithms can evaluate past data, identify patterns, and
anticipate equipment breakdowns before they happen [7].
This lowers total maintenance costs by extending the lifespan
of crucial components and minimizing downtime [8].
AI-powered load forecasting models make real-time

energy demand forecasts possible, making grid management
and resource allocation more effective [9]. These models
improve the flexibility of small-scale systems by analyzing
variables like user behavior, weather patterns, and past
consumption data, guaranteeing that supply and demand
are balanced [10]. Given that renewable energy sources
are naturally uncertain, this capability becomes even more
essential.

The introduction of AI-powered smart grid technologies
is revolutionizing energy transmission, distribution, and
usage. Fig. 1 demonstrates the components of small-scale
power systems, which are the scope of this review paper.
AI algorithms make real-time grid monitoring and control
possible, allowing for automatic response to changing
conditions. In addition to improving grid stability, it regulates
fluctuations and keeps a steady supply of power, which
facilitates the integration of various energy sources, including
renewables [11].
AI plays a crucial role in coordination and control as

small-scale electric power systems adopt increasingly decen-
tralized energy resources. Decentralized energy management
systems use AI to balance loads, optimize power flows, and
coordinate the use of various energy sources. This raises
the system’s overall efficiency and strengthens the grid’s
resistance to disturbances [12].

Because renewable energy resources, such as wind and
solar power, are unpredictable, sophisticated forecasting
methods are required. To generate reliable renewable energy
generation forecasts, AI algorithms analyze meteorological
data, historical trends, and current conditions [13]. This
makes it possible for grid operators to effectively incorporate
renewable energy into small-scale power systems andmanage
fluctuations proactively.

For small-scale electric power systems to balance supply
and demand, energy storage systems need to be optimized
- AI technologies are key to this process. Optimizing
energy storage devices’ charging and discharging processes
enhances their lifespan and efficiency, which is achieved via
machine learning algorithms that analyze demand patterns,
weather forecasts, and grid conditions [14].

Demand response programs powered by AI enable users
to actively participate in energy-saving activities. These
technologies help to increase overall energy efficiency and
sustainability by allowing users to modify their energy
consumption according to grid conditions through intelligent
automation and real-time communication [15].

The paper is organized as follows: Section II provides
background information on small-scale electric power sys-
tems. Section III is dedicated to an in-depth analysis of the
existing literature related to AI applications in small-scale
electric power systems. Section IV discusses the find-
ings and proposes AI Acceleration Performance Indicators
(AAIPs) that enable evaluating and comparing different
studies. Section V concludes the review paper with relevant
findings.

C. RELATED WORK AND MOTIVATION
The deployment of AI in power systems has become topical in
the scientific literature as the number of publications related
to deep learning and electric power systems in the ScienceDi-
rect database has grown from around 20 in 2015 to 200 in
2019 [16]. Review articles related to this paper primarily
focus on AI’s applications in power systems [17], [18]. For
example, the research status in the operation, optimization,
control, dispatching, and management of Smart Grid and
Energy Internet fields using AI has been reviewed in [19],
where it was found that the bottlenecks for future develop-
ment include the lack of training datasets, the interpretability
and reliability of models, and semantic reasoning issues
of language models. Machine learning algorithms, such as
Support Vector Machines (SVMs) and Gradient Boosting
Machines (GBMs), have been utilized to predict energy
consumption patterns with high accuracy, enabling more
efficient demand response and load forecasting [20], [21].
AI supports VPPs by optimizing the utilization of renewable
resources based on their availability and demand predic-
tions [22]. Deep learning models, particularly Convolutional
Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks, have demonstrated exceptional capability
in identifying and diagnosing faults within microgrids,
thus reducing downtime and maintenance costs [23], [24].
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FIGURE 1. Illustration of the structure of a power system.

Furthermore, reinforcement learning approaches, including
DeepQ-Networks (DQNs) and Proximal PolicyOptimization
(PPO), have been utilized to optimize microgrid operations
and manage distributed energy resources more effectively,
thereby enhancing overall system performance and sustain-
ability [25], [26]. The authors of [27] reviewed Explainable
Artificial Intelligence techniques for energy and power
systems. The application of resilience enhancement of power
systems using AI was reviewed by the authors of [28],
who concluded that supervised deep learning is particularly
suited for anomaly detection, classification, and damage
detection. In contrast, unsupervised deep learning methods
are suitable for defending against cyber-attacks. Thus, the
research has primarily focused on AI applications in power
systems; however, to the authors’ best knowledge, there
is a lack of research in evaluating and benchmarking the
efficacy of AI implementations in electric power systems.
Therefore, the motivation of this research paper is not
only to give a comprehensive review of AI applications in
small-scale electric power systems but also to provide a
framework for evaluating and benchmarking the efficacy of
AI implementations using the AAPI framework developed in
this paper.

D. REVIEW METHODOLOGY
A thorough literature search was conducted across major
academic databases such as Scopus, ScienceDirect, and
IEEE Xplore. The search strategy included a combination
of the following keywords and many more: ‘‘AI tech-
nologies,’’ ‘‘small-scale electric power systems,’’ ‘‘micro-
grids,’’ ‘‘energy consumption,’’ ‘‘demand response,’’ ‘‘grid
management,’’ ‘‘energy generation,’’ and ‘‘energy storage.’’
The focus was on newer studies conducted from 2019
to 2024.

The inclusion criteria for selecting relevant studies include
peer-reviewed journal articles and conference papers that
specifically address the focus of this study, namely the impact
of AI technologies in small-scale electric power systems.
Studies that either provided insufficient information about
the uses of AI technology or did not explore the relationship
between AI and small-scale electric power networks were
excluded from the analysis.

The key themes of the literature were identified through
systematic data extraction. The data was compiled into tables
based on which the objectives, methodologies, AI models,
key findings, and limitations of existing research can be
analyzed.

II. FUNDAMENTALS OF SMALL-SCALE ELECTRIC POWER
SYSTEMS
The effective operation of small-scale electric power systems
is essential in meeting the changing energy demands. The
basic concepts of these systems, which include standalone,
grid-interactive, microgrid, hybrid, and other configurations,
including Virtual Power Plants (VPPs), are examined in this
section.

A. STANDALONE SYSTEMS
Reliable electricity supply in isolated or off-grid places
relies heavily on small-scale electric power systems, mainly
standalone designs. These systems have become essential in
addressing issues related to energy access because of their
independence from the main grid [29]. Standalone systems
include devices such as production units, energy storage, and
loads. Energy is produced with diesel generators, combined
heat and power units, or renewable energy sources like
solar or wind. At the same time, the storage, which usually
takes the form of batteries, guarantees a steady supply of
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electricity at times when production is low. Optimizing the
performance of standalone systems requires understanding
how these components interact [30].

Although standalone systems provide energy indepen-
dence, they have maintenance, fuel supply, and reliability
issues. Despite these challenges, standalone systems are
viable for some applications due to their flexibility, auton-
omy, and lower environmental impact [31]. Examples from
real life demonstrate the adaptability and efficiency of
standalone systems [32]. Applications for standalone systems
are diverse; they can be used to power distant communication
stations or provide electricity in rural areas or areas affected
by disasters. In situations when grid access is difficult or
economically unreasonable, these systems showcase their
importance in meeting energy demands [33].

B. GRID-INTERACTIVE SYSTEMS
Grid-interactive systems are a type of small-scale electric
power systems that integrate with the main grid. By enabling
bidirectional power flow, these systems allow an interchange
of electricity between the main grid and the local power
sources [34].

Integrating grid-interactive equipment with themain grid is
a crucial component that makes a consistent and dependable
power supply possible. Grid compatibility and control
methods are subject to additional challenges in the context of
bidirectional power flow, allowing electricity to be provided
to and consumed from the grid [35].

Grid-interactive systems have several advantages, such as
improved energy efficiency and higher reliability, thanks to
grid assistance. However, for deployment to be effective,
obstacles to maintaining grid stability and resolving regula-
tory concerns must be carefully considered [36].

C. MICROGRIDS
Microgrids represent a significant shift in small-scale
electrical power systems, offering localized control and
independence. Microgrids are characterized by having the
ability to function both autonomously and alongside the
main grid, i.e., in off-grid or on-grid modes. These attributes
are among the major reasons for their increasing appeal.
There are several use cases of microgrids, each designed to
meet specific requirements, e.g., community, campus, and
remote microgrids [37]. It is necessary to understand these
distinctions to develop microgrids that meet the particular
needs of various settings.

Microgrid management is greatly aided by advanced
control systems, which ensure optimal performance and
coordination between various energy sources. The respon-
siveness and flexibility of microgrid systems are improved by
integrating intelligent technologies such as optimization and
machine learning algorithms [38]. Enhancing power supply
reliability is one of microgrids’ distinguishing features.
Microgrids play an important role in attaining energy security
and contribute to grid stability by offering localized solutions
to energy-related problems [39].

D. HYBRID SYSTEMS
Hybrid systems are a complex solution to small-scale electric
power systems since they integrate multiple energy sources.
These systems combine the benefits of many technologies
by integrating renewable energy sources with conventional
generators [40]. The viability and versatility of this technique
are demonstrated by examples of hybrid systems, such
as wind-hydro or solar-diesel combinations. Intermittency-
related issues are resolved by combining renewable and
conventional sources to ensure a more steady power
output [41]. Other benefits include better environmental
sustainability, decreased dependency on fossil fuels, and
enhanced efficiency. However, the challenges in designing
and integrating complex systems call for both careful
planning and innovative technologies [42].

E. VIRTUAL POWER PLANTS
The concept of Virtual Power Plants (VPPs) is new in the
world of small-scale electric power systems. These designs
provide a scalable and adaptable solution by combining
distributed energy resources through the use of modern
technologies. Due to their ability to coordinate operations
centrally, VPPs are essential for optimizing the usage
of distributed resources [43]. Beyond conventional power
generation, VPPs are also applicable for energy storage and
demand-side control, which improves system efficiency as a
whole [44]. Improved stability of the grid, effective resource
use, and a lower carbon footprint are just a few of the
economic and environmental advantages that come with the
deployment of VPPs [45]. It is anticipated that as technology
develops, VPPs will have an even more significant impact on
small-scale electric power systems.

III. AI APPLICATIONS IN SMALL-SCALE ELECTRIC
POWER SYSTEMS
Integrating Artificial Intelligence into small-scale electric
power systems presents a promising opportunity for man-
aging and optimizing energy resources distinct from those
encountered in large-scale systems. While AI’s applications
in both contexts aim to enhance efficiency, reliability, and
optimization, the scale of operation significantly influences
the nature and impact of these applications.

In small-scale systems, the applications of AI range from
enhancing the efficiency and reliability of distributed energy
resources, such as through predictive maintenance, optimal
segmentation of renewable sources, and accurate forecasting,
to optimizing battery energy storage and consumption by
predicting remaining useful life (RUL), SoC patterns, and
charging and discharging times. AI in these settings is focused
on enhancing local grid stability, managing dynamic load,
and integrating a higher proportion of renewable energy
sources. Due to the smaller scale, AI-driven strategies are
more agile, tailored to local conditions, and responsive to
rapid changes in demand and supply. It plays a pivotal
role in intelligent load management and demand response,
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providing dynamic pricing strategies and balancing sup-
ply and demand while predicting consumer behavior for
optimized energy distribution. Furthermore, AI significantly
boosts small-scale grid management by enabling real-time
anomaly detection, predictive maintenance, and dynamic
reconfiguration in microgrids to enhance grid stability and
resilience and maintain continuous and efficient power
delivery.

On the other hand, AI applications in large-scale power
systems typically deal with the complexity of interconnected
networks and centralized generation facilities, focusing more
on high-level grid management, large-scale energy trading,
and maintaining the reliability and security of supply across
vast geographical areas.

The scope of AI in small systems extends to sophisticated
applications such as coordinating VPP and community
energy systems, aggregating, and intelligently managing
diverse energy resources. Following the overview, the
subsequent sections will thoroughly discuss the specifics of
each area, exploring the enhancement of energy generation,
storage, consumption, grid management, and advanced appli-
cations within small-scale electric power systems through AI
technologies.

A. ENERGY CONSUMPTION AND DEMAND RESPONSE
In the domain of small-scale electric power systems, the
application of artificial intelligence in energy consump-
tion and demand response offers model-free solutions as
compared to traditional mathematical models to analyze con-
sumption patterns, predict demand peaks, exploit consumer
energy flexibility, and implement dynamic load adjustments,
perform real-time pricing and offering innovative solu-
tions for intelligent energy management at both household
and building scales either with residential or community
settings.

A DRL algorithm to schedule ESS and HVAC loads
in a smart home without building thermal dynamics is
proposed in [46]. The results indicate 8.10%–15.21% cost
minimization compared to rule-based control approaches.
In [47], the Temporal Convolutional Networks (TCNs) are
utilized for community energy management using PV and
ESS. Energy consumption optimization includes data-driven
models for occupant behavior, user comfort, and RES
management using Random Forest [48], NARX ANN [49],
DNN [50], and Q-Learning [51]. Similarly, energy demand
prediction for economic and energy savings is also a key
aspect of DR strategies. In the literature, authors employed
different machine-learning techniques for short-term [52],
[53], [54] and day-ahead load forecasting [55], [56],
[57] to enhance consumer engagement in energy trading,
renewable energy integration, and dynamic tariff schemes.
Table 1 comprehensively examines AI-driven strategies
for enhancing energy consumption patterns and refining
demand response mechanisms for small-scale electric power
systems.

B. GRID MANAGEMENT AND OPERATIONS
Energy fluctuations from intermittent renewable energy
generations introduce vulnerability in grid operations [69].
ML plays a crucial role in transforming grid management,
particularly in enhancing the capabilities for on-grid sys-
tem optimizations, dynamic reconfiguration in microgrids,
and anomaly detection in power systems. For example,
the LSTM-based reinforcement learning model improved
renewable energy integration and load balancing optimization
in a smart grid with 92% accuracy as compared to other
ML algorithms [70]. On-grid system optimization involves
interactions between various microgrid components such as
consumers, renewable energy producers, electricity suppliers,
and storage systems. This interaction is characterized by
dynamic reconfiguration, adapting microgrid operations to
varying factors like renewable energy production, con-
sumption patterns, and storage capacities [71]. A techno-
environmental-economic strategy using multi-agent DRL for
microgrid planning and optimization is presented in [72].
Effective grid management requires improved prediction
stability of microgrids. This includes load-shifting, demand
offsetting, decision-making in virtual power plants, and
providing ancillary services, thereby focusing on urban
scales and their inherent complexities [73]. To ensure
grid reliability and security, federated learning techniques
allow for on-device model training and parameter updat-
ing, significantly enhancing privacy and reducing data
transmission requirements. These approaches, secured with
SSL/TLS protocols, effectively mitigate challenges related
to bandwidth, latency, and security, aligning with stringent
privacy regulations [74]. To provide security to client data
in microgrids from being compromised, a CNN-BiLSTM
categorization criterion for cyber-attacks has shown a success
rate of 99% compared with traditional approaches [75].
Table 2 summarizes the research on AI applications in grid
management and operations of small-scale electric power
systems.

C. ENERGY GENERATION
Smart grid technology has enabled the potential benefits of
RES for consumers in small-scale electric power systems.
In this context, the application of AI becomes instrumental
in enhancing energy generation capabilities by optimally
positioning and controlling RES to maximize the efficiency
of these installations, specifically for the task of maximum
power point tracking (MPPT) and adaptive power manage-
ment [76]. By analyzing historical data from various sensors,
AI algorithms predict potential failures, remaining useful
life (RUL), and schedule timely maintenance of equipment,
thus minimizing downtime and extending the lifespan of the
generation equipment. Furthermore, accurate solar irradiance
and wind speed forecasts enable proper load scheduling and
grid power allocation, ensuring a steady and reliable energy
supply [77]. A SHAP cat-boost algorithm improves MPPT
control in PV systems by minimizing steady-state error
during low irradiance and partial shading conditions [78].
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TABLE 1. Summary of AI studies for energy consumption and demand response.
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TABLE 1. (Continued.) Summary of AI studies for energy consumption and demand response.

A Q-learning-based control strategy has identified optimal
equilibrium policies for various power system operating
conditions and improved control performance by around 10%
compared to other ML algorithms [79]. Similarly, for predict-
ing the RUL of rotating machines, a DNN-based model is
utilized that considers time–frequency-wavelet joint features
to effectively represent the degradation of bearings [80].
A deep learning-based RNN model is designed to forecast
short-term intra-hour solar irradiance by using infrared sky
images, resulting in reduced algorithm computational cost
and grid operational cost with high participation of solar
energy [81]. Table 3 provides a detailed overview of AI
applications for optimizing energy generation in small-scale
electric power systems.

D. ENERGY STORAGE
Efficient energy storage management is essential for the
effectiveness and reliability of small-scale electric power
systems that rely on intermittent renewable energy sources,
such as solar and wind [101]. The development of energy
storage system (ESS) technologies such as compressed air,
flywheel, pumped hydro storage, and batteries can increase
the ESS capacity to store energy from power grids. This
stored energy can then be used when needed. The advance-
ment of ESS technologies with microgrid utilization has
created a large market for ESS to offer bulk energy storage,
transmission and distribution support, ancillary services,
and energy management solutions [102]. AI technologies
significantly enhance the capabilities and functionalities of
ESS by providing battery-based control and monitoring

solutions, predicting battery health, optimizing charging
cycles based on real-time energy demands, and identifying
degradation patterns [103]. A predictive control mechanism
has demonstrated an 84% overall efficiency in microgrid
peak shaving by managing the flow rate of energy storage
systems for stable power generation [104]. To improve the
real-time charging/discharging decision-making of ESS, RL-
based actor-critic agents are used to optimize the power flow
while minimizing the energy cost [105]. Battery state of
health is determined with a mean absolute error of 1.39%
by using a simple ANN with a small amount of data. This
helps optimize the operation and management of energy
storage systems [106]. A degradation model of lithium
batteries is developed to predict the remaining useful life
using ensemble learning methods for fault diagnosis during
the equipment operation service period to ensure an effective
energy supply [107].

Table 4 analyzes AI-based techniques to improve the
operation of energy storage systems in small-scale electric
power systems.

IV. DISCUSSION
A. AI ACCELERATION PERFORMANCE INDICATORS
(AAPIS) FOR SMALL-SCALE ELECTRIC POWER SYSTEMS
In the rapidly evolving field of small-scale electric power
systems, the integration of AI has shown promising potential.
However, a critical gap exists in the standardization of
evaluating and comparing the diverse AI methodologies
being employed for similar tasks. This requires a set of
baseline assessment parameters to establish a standardized
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TABLE 2. Summary of AI studies for grid management and operations.
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TABLE 2. (Continued.) Summary of AI studies for grid management and operations.

framework that enables evaluating and comparing different
studies. Considering the variations in methodologies and
outcomes in energy sector research, the AI-Acceleration
Performance Indicators (AAPIs) are proposed as an initial
proposition to provide a consistent benchmark for AI-
accelerated approaches. It involves identifying key per-
formance indicators (KPIs) crucial for evaluating AI in
small-scale electric power systems. The process is guided by
the dual objectives of ensuring technological viability and
enhancing user-centric outcomes. AAPI framework serves
as a starting point for standardization in the field, with the
main purpose of establishing a foundation upon which further
research and validation can be built.

The acceleratedKPIs are designed to speed up the commer-
cialization of AI technologies in energy systems by ensuring
user comfort, scalability, and practical applicability while
enhancing user engagement. The framework categorizes
KPIs into quantitative and qualitative measures, as outlined
in Table 5.

Key performance areas critical to AI applications in energy
systems are identified, such as cost-effectiveness, demand

management, and prediction accuracy, along with qualitative
aspects like innovation level and practical applicability.
AAPIs framework employs a binary scoring system for
quantitative KPIs to highlight which aspects are clearly
covered in the studies. In contrast, the qualitative aspects are
examined through a three-tiered scale – established, evolved,
and emerging, where established indicator shows real-world,
data-driven, and validated AI solutions with reliable results
in different operating scenarios, evolving parameter shows
the ongoing development and incremental improvements in
the research with simulated analysis to enhance practical
viability. In contrast, emerging shows new machine learning
concepts and early-stage AI solutions that are yet to be
extensively tested but point to new directions that could
drive future advancements. This assessment approach guides
the field towards practical, user-oriented, and commercially
sustainable AI solutions.

These indicators are applicable across various types
of AI applications, be they computational, experimental,
or integrative. Researchers can track the evolution and
performance enhancements of these systems by consistently
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TABLE 3. Summary of AI studies for optimizing energy generation for small-scale electric power systems.
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TABLE 4. Summary of AI studies for energy storage in small scale power systems.
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TABLE 4. (Continued.) Summary of AI studies for energy storage in small scale power systems.

TABLE 5. Overview of assessment criterion for AI applications.

applying AAPIs in the development and assessment of
new AI-based energy platforms. This standardized approach
enables comparing varied AI algorithms, from traditional
algorithm-based systems to more advanced, innovative
applications such as deep neural network models. To pro-
vide context and demonstrate the potential application of
the AAPIs, the paper applies the framework to various
AI-driven studies in the realm of small-scale electric power
systems. As a demonstration, these KPIs are applied to
various studies to evaluate their accelerated performance for
different applications of electric power systems, as shown in
Table 6.

The quantitative assessment of the reviewed literature
highlights distinct trajectories in the application of AI across
various domains of small-scale electric power systems.
Regarding energy generation and energy storage, AI plays
a significant role in grid management and operations,
energy consumption, and demand response with respect to
optimizing renewable energy production in smart grids and
managing energy flexibility for demand response and other
processes. The advancement in AI technologies, especially
deep learning, makes the prediction accuracy more accurate
but at the cost of higher computational demand and complex
ML algorithms. The assessment of demand management

indicates enhanced AI capability in managing energy demand
by improving load forecasting and performing complex oper-
ational decisions by executing real-time analytics tomodulate
energy supply in correspondence with consumption patterns.
However, energy generation and energy storage register a less
pronounced engagement with AI for demand management,
implying that current research has not fully exploited
the potential of AI in this regard. Fig. 2 demonstrates
the comparative performance of key indicators by scoring
AI-based reviewed articles in various application areas – such
as energy storage, grid management and operations, energy
generation, and energy consumption and demand response
against the quantitative KPIs of cost-effectiveness, demand
management, prediction accuracy, computational simplicity,
and user comfort to highlight emerging research trends.

The qualitative assessment of the reviewed articles pro-
vides information about the advancement and maturity
of AI-accelerated solutions within diverse domains of
small-scale electric power systems. In the case of energy
storage, AI applications are mainly in the evolving phase
as methods are being developed for more accurate battery
RUL and SOC predictions. In the same way, AI applications
seem more established for grid management and operations
due to the proven effectiveness of reinforcement learning in
optimizing the decision-making process of integrating and
maximizing the use of renewables in microgrids and virtual
power plants. Similarly, the higher innovation level in the
case of energy consumption and demand response indicates
real-world implementation of most of the AI applications
in forecasting demand, optimizing energy consumption,
and scheduling controllable appliances with more research
focused on improving the already developed solutions for
better grid operational efficiency. The scalability potential for
energy generation shows the dynamic phase of AI solutions,
such as federated and transfer learning, in improving
renewable energy generation and predicting the maintenance
of generation equipment while delving into expanding the
impact of AI in larger systems. Fig. 3 highlights the
qualitative spectrum of small-scale electric power systems
acrossmultiple operational domains ranging from established
practices to emerging innovations within energy storage,
grid management and operations, energy consumption, and
energy generation.

Similarly, the research trends are more oriented towards
microgrids with household-level energy management to
address various objectives related to renewable energy
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TABLE 6. Demonstration of the use of KPIs in evaluating the performance of AI-driven research in electric power systems.

FIGURE 2. Comparative radar charts illustrating the performance of reviewed articles across key quantitative indicators for small-scale
electric power systems.

FIGURE 3. Qualitative analysis of AI application across different domains in small-scale electric power systems.

optimization, energy efficiency, and load forecasting.
Microgrids-related studies represent 29.4% of the literature,
while smart grids and VPPs account for 14.7% and 8.8%,
respectively, thus pointing towards a trend of decentralized,
consumer-focused energy solutions. Compared to building-
level studies, which comprise 13.3% of the studies,
household-level studies make up 26.5% of the research,

indicating the significant emphasis on AI in the residential
sector.

AI applications show promising results in several
small-scale power system domains. However, based on
AAPI analysis, certain application limitations and areas
require further research to fully exploit AI’s potential in
this sector. Many AI applications are data-dependent and
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are confined to specific scenarios. For instance, studies
using federated learning or interactive learning require
large, diversified datasets for training and validation that
impact the performance and generalizability of AI models
to different environments, operational conditions, and grid
configurations. Most of the studies focus on the specific area
of energy management systems, such as only consideration
of shiftable appliances while lacking integration of thermal
models with HVAC control systems, which hinders practical
applicability. Computational complexity, data synchroniza-
tion, and resource demands of advanced AI systems pose
significant challenges to scalability and real-time application.
AI applications in power systems also pose security and
privacy concerns, such as vulnerability to eavesdropping
attacks and IoT integration in microgrids that affect reliability
in the residential sector. In the case of energy storage,
AI-based battery energy storage system shows limited
focus on different battery chemistries and aging factors.
By incorporating a broader range of datasets, enhancing the
processing capability of AI models in dynamic environments,
implementing robust security protocols, and exploring
unified AI models that can adapt to various power system
scenarios related to energy storage and grid management will
significantly contribute to the user-centric and feasible AI
solution in small-scale electric power systems.

V. CONCLUSION
Small-scale electric power systems have been instrumental in
enhancing energy resilience and sustainability. These systems
allow for a more flexible and efficient energy management
approach, facilitating the local generation, storage, and
distribution of energy, thereby mitigating the challenges
associated with the integration of renewables. This review
paper presents an extensive analysis of AI applications within
these systems, highlighting the transformative role AI plays
across various aspects of energy generation, storage, and
consumption, offering a unique perspective on the future
trajectory of AI in enhancing the efficiency and reliability of
small-scale electric power systems.

Firstly, a brief overview of small-scale electric power
systems’ evolution is presented. Subsequently, the review
explores their key role in enhancing the resilience and
efficiency of modern energy distribution. A detailed analysis
of AI across various domains of power systems is presented,
from optimizing energy consumption and demand response
through smart load management and dynamic pricing to
enhancing grid operations with real-time anomaly detection
and predictive maintenance. The discussion converges on
the AAPIs framework, representing an initial step towards
establishing a standardized evaluative framework for AI
applications in small-scale electric power systems. This
framework incorporates both quantitative and qualitative
KPIs, such as cost-effectiveness, prediction accuracy, and
innovation level, providing a comprehensive metric for
assessing AI technologies. The AAPIs framework reveals
significant research trends, with 70% of studies focusing

on computational simplicity and only 10% considering
user comfort in energy storage methodologies. Conversely,
research related to grid management and operations has
shown a robust interest in prediction accuracy and demand
management, with 80% of articles emphasizing these aspects.
Qualitatively, innovation in energy generation has emerged
as a critical area with approximately 60% of research
marked as ‘Emerging’, indicating a promising frontier for
future research. The AAPIs framework serves not only as a
benchmarking tool for current research performance but also
guides future AI applications toward achieving user-centric
and economically viable solutions.
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