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ABSTRACT The spinal cord is an important part of the central nervous system, responsible for transmitting
nerve signals throughout the body. The cervical spinal cord contains eight nerve bundles located in the neck
region of the spinal cord that transmit to the face and head region. For this reason, in addition to traditional
methods of monitoring changes in the spinal cord region in routine clinical practice, spinal cord segmentation
using innovative computer-based systems makes an important contribution to the understanding of disease
progression. Lesions in the cervical spinal cord can be a symptom of several neurological diseases, especially
demyelinating diseases such as multiple sclerosis (MS). The detection of lesions in the spinal cord is
particularly important in diseases such as MS, which affect a wide age range and for which early diagnosis
is crucial. Therefore, automated segmentation of the spinal cord to quantify spinal cord atrophy is critical
for changes in the human spinal cord. In addition to clinical findings, magnetic resonance imaging (MRI)
technologies have improved the quality of images for monitoring, diagnosing and determining the treatment
protocol for MS lesions in the spinal cord. However, due to the difficulty of scanning the cervical spinal
cord region and the occurrence of artefacts during acquisition, it is very difficult to determine the spinal
cord boundaries and detect lesions in this region. In this study, we propose a fractal network-based U-Net
(FractalSpiNet) deep learning architecture for automatic segmentation of the spinal cord and spinal cord MS
lesions from cervical spinal cord MR slices. The developed FractalSpiNet architecture incorporate a fractal
network for enhanced feature extraction in MRI scans. In addition, a new dataset of axial plane MR images
from the cervical spinal cord of 87MS patients is first created in the study. Using the proposed FractalSpiNet
architecture, the cross-sectional area of the cervical spinal cord was segmented with a Dice Similarity
Coefficient (DSC) score of 98.88%, while MS lesions in the cervical spinal cord were detected with a DSC
score of 90.90%. These results indicate that FractalSpiNet provides results that close to expert mask for
segmentation of cervical spinal cord and MS lesion detection. The experimental studies also compare the
results of the proposed FractalSpiNet with the results of state-of-the-art hybrid U-Net models such as base
U-Net, Attention U-Net, Residual U-Net, and Attention Residual U-Net. In conclusion, the experimental
results demonstrate the effectiveness of our approach in achieving accurate segmentation of cervical spinal
cord andMS lesions, outperforming state-of-the-art methods. The proposed FractalSpiNet offers a promising
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approach for automated segmentation of the cervical spinal cord and MS lesions, potentially aiding in the diagnosis
and treatment of neurological disorders.

INDEX TERMS Cervical spinal cord, multiple sclerosis, automatic segmentation, fractal networks, U-Net,
FractalSpiNet.

I. INTRODUCTION
The spinal cord is part of the central nervous system and its
anatomical structure is very complex, as it is part of the spinal
canal [1]. The cervical spinal cord is a segment of the spinal
cord located in the neck of the spine and forms the transition
zone for many important functional pathways in the body.
The cervical spinal cord - the neck of the spine - consists of
seven stacked vertebrae from C1 to C7. The cervical spinal
cord runs through the centre of the cervical spine [2]. The
cervical spinal cord, as the centre through which motor and
sensory nerves flow, controls arm and shoulder movements
and transmits sensory information from the body to the
brain [3]. Accurate segmentation of the cervical spinal cord
is therefore a critical step in the diagnosis and treatment of
neurological disorders.

The cervical spinal cord is the transit zone for many impor-
tant tracts and nerve roots that affect the upper part of the
body, such as the arm and shoulder. These tracts provide
communication between the brain and the body and regu-
late movement, sensation and other neural functions. The
cervical spinal cord is also a region affected by many neu-
rological disorders. Various conditions such as spinal cord
injury, degenerative diseases such as multiple sclerosis (MS),
infections and tumours can affect the cervical spinal cord [4].
Therefore, accurate anatomical and functional assessment
and imaging of the cervical spinal cord is important in the
diagnosis and treatment of neurological disorders. Magnetic
resonance imaging (MRI) is therefore widely used in the
examination and follow-up of the cervical spinal cord.

The cervical spinal cord is a common area of MS lesions.
MS is a chronic, demyelinating, neurodegenerative autoim-
mune disease that affects the central nervous system (CNS)
[5], [6]. It is characterised by damage and inflammation of
the myelin sheath that surrounds the brain and spinal cord.
MS is an inflammatory disease of the central nervous system,
often affecting structures such as the brain and spinal cord.
MS affects the brain, spinal cord and optic nerves and is
caused by the accumulation of demyelinating plaques in the
white and grey matter. A wealth of epidemiological data has
been obtained from studies of MS conducted over a long
period of time. However, it is still a difficult task to model the
geographical distribution of MS worldwide [7]. According to
the World Health Organisation, more than 1.8 million people
worldwide have MS, and although it affects people of all
ages, it is more common in young adults and especially in
women [8].

Although MS lesions can be seen along the entire spinal
cord, including the cervical, thoracic and lumbar regions, they
are most commonly seen in the cervical spinal cord and MS

lesions are usually looked for in this region on MR scans [9],
[10]. Clinical follow-up of the cervical spinal cord and MS
lesions in this region, and treatment planning based on MR
findings, are possible thanks to the rapid development of MR
technology. However, structural differences, regional diffi-
culties or pathological reasons in the area of the spinal cord
being imaged can affect the quality of the medical imaging
and lead to suboptimal performance [11], [12]. On conven-
tional spine sequences, spinal cord lesions are visualized as
areas of T2 hyperintensity and less commonly as areas of
T1 hypointensity [13]. MS lesions occur most frequently
(59%) in the cervical spinal cord and less frequently (20%)
in the lower thoracic spinal cord (T7-12) [14]. In contrast,
MS lesions often appear cylindrical on sagittal MR images
and wedge-shaped on axial MR images, and typically have
sharp borders [15]. In sagittal views, their length rarely
exceeds two vertebral segments. On axial scans, MS lesions
occupy less than 50% of the slice area, preferentially occu-
pying the lateral and posterior white matter columns and not
sparing the grey matter. Recommended protocols for spinal
cordMRI in the clinical setting include both sagittal and axial
MR scans [16].

Accurate segmentation of the cervical spinal cord and
detection of MS lesions allows early and accurate diagnosis
of disease [17]. Traditionally, manual assessment methods
based on expert observation have been used to detect and
evaluate cervical spinal cord and MS lesions. However, these
methods can be subjective and time-consuming, and may
also be limited in their ability to accurately detect the num-
ber, size and distribution of lesions. Therefore, automated
segmentation methods have significant potential for accurate
and reliable identification of MS lesions in MR images of
the cervical spinal cord. Automatic segmentation methods
can process large datasets quickly, saving time and reducing
subjective errors. In recent years, deep learning techniques
and artificial intelligence have led to significant advances in
automatic segmentation of the spinal cord.

While advancements in MRI technology have improved
image quality, challenges like image artifacts due to motion
or scanner imperfections can hinder accurate and consis-
tent segmentation, especially in the complex cervical region.
Existing automated segmentation methods might not capture
the full complexity of the cervical spinal cord andMS lesions,
particularly in cases with subtle lesions or challenging image
quality. This can lead to missed diagnoses or inaccurate treat-
ment plans. Therefore, there is a critical need for a robust
and fully automatic segmentation method that can overcome
these limitations and achieve accurate segmentation of the
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cervical spinal cord and MS lesions in MR scans, even in the
presence of image artifacts. To the best of our knowledge,
the number of previously proposed works that provide fully
automatic segmentation of the cervical spinal cord from MR
scans and detection of MS lesions therein is very limited.
To fill this gap, in this work, we propose the FractalSpiNet
architecture, a fully automatic fractal network-based U-Net
model for cervical spinal cord segmentation and MS lesion
detection. The FractalSpiNet framework is designed to start
with a new dataset obtained from the study, first locate the
cervical spinal cord, then localise the cervical spinal cord
region and perform segmentation. The final step is to detect
MS lesions in the cervical spinal cord region. The key novelty
of FractalSpiNet lies in its ability to apply fractal convolution
instead of regular convolution to U-Net architecture using
multi-scale processing.

The contributions of the proposed FractalSpiNet architec-
ture to the segmentation of the cervical spinal cord region and
the detection of MS lesions within these boundaries:

1- Preparation of a new dataset of MR scans for the cervi-
cal spinal cord

2- Fully automatic segmentation of the cervical spinal
cord using the proposed FractalSpiNet architecture

3- Successful detection of MS lesions in the cervical
spinal cord region with the proposed FractalSpiNet
architecture

4- Comparison of the performance of the proposed Frac-
talSpiNet architecture with state-of-the-art methods
using key metrics

5- Designing an assistant framework that experts can use
in the decision-making process for the detection of
cervical spinal cord and MS lesions on MR scans

6- FractalSpiNet represents a significant advancement in
the field of cervical spinal cord segmentation, offering
a reliable and efficient solution that is adaptable to var-
ious clinical scenarios, thereby improving diagnostic
accuracy and patient outcomes, particularly MS.

The rest of the study are organised as follows: Section II
reviews related work in the field of cervical spinal cord seg-
mentation and MS lesion detection. Section III presents the
details of the prepared original dataset, image pre-processing
steps and the proposed FractalSpiNet architecture in detail.
Section IV explains the parameters used in the architec-
ture and the results obtained for experimental analyses as a
result of model training. In addition, this section compares
the performance of FractalSpiNet with other state-of-the-art
methods. Section V discusses the implications of the findings
and compares the results obtained by the proposed Fractal-
SpiNet model with other previously proposed methods and
discusses the results. The last section concludes the paper
with a summary of the contributions and key results.

II. RELATED WORKS
Innovative approaches are often used to overcome traditional
clinical challenges in cervical spinal cord segmentation and

MS lesion detection. In this context, many contributions have
been made in recent years to the detection and automatic seg-
mentation of the spinal cord region of interest and lesion areas
using MR images. Using various MR planes such as axial,
coronal and sagittal, and different acquisition modalities such
as T1-weighted (T1-w) and T2-weighted (T2-w) with manual
or automated models, different approaches to spinal cord
segmentation and lesion detection have been presented from
the past to the present [17]. Different segmentation techniques
are proposed for the spinal cord region, white matter (WM),
grey matter (GM), cross-sectional area (CSA) and for the
detection of different spinal cord lesions.

Manual [18], semi-automatic [19], [20] and fully auto-
matic [21], [22], [23], [24], [25], [26] methods have been
proposed for spinal cord segmentation using different tech-
niques and approaches. More recently, deep learning-based
approaches have also been proposed for spinal cord detec-
tion [27], [28], [29]. However, the number of studies
proposed for spinal cord segmentation and MS lesion
detection is limited. In a proposed semi-automated study,
El Mendili et al. [20] proposed a semi-automated double-
threshold based method for segmentation of the cervical and
thoracic spinal cord from T2-w MR images. They analysed
MR scans from healthy subjects, patients with amyotrophic
lateral sclerosis, spinal muscular atrophy and spinal cord
injury. They also evaluated the results obtained by comparing
the proposed semi-automatic method with the active surface
method and the threshold-based method.

Cadotte et al. [30] proposed a semi-automatic algorithm
to find the centreline of the human cervical spinal cord and
measure the distances from a fixed point in the brainstem to
each of the spinal roots and vertebral bodies.

Gros et al. [24] proposed the structure of the OptiC
algorithm, which attempts to strike a balance between the
probabilistic localisation map of the spinal cord midpoint in
the cervical spinal cord and the overall spatial coherence of
the spinal cord midline using MR images of patients with
neurological disorders from different centres. In order to
obtain more consistent boundaries, a process is added that
separates the spinal cord centre line from the boundaries of
the brain regions. When comparing the proposed OptiC with
the spinal cord localisation technique based on the Hough
transform, it is highlighted that successful results are obtained
in pathological cases.

Deep learning methods are much more advantageous in
terms of time and cost. This is because the best feature sets
that characterise the data are created to solve problems related
to machine learning, whereas in deep learning this approach
has been replaced by creating an architecture to automate
feature processing. In a fully automated study on spinal cord
localisation, Gros et al. [31] presented two sequential CNN
approaches for segmentation of cervical spinal cord and MS
lesions from MR scans. In addition, the study provided seg-
mentation of the spinal cord and lesion, including detection
of the spinal cord midline. The results of the study are also
compared with another state-of-the-art method. In addition,
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the proposed approach was developed into an open-source
framework. In the study, the spinal cord segmentation results
of the proposed method outperformed the existing studies,
but remained close to the manual segmentation results in MS
lesion detection.

In another study, McCoy et al. [32] detected the cervical
spinal cord region and intramedullary spinal cord lesions
from the full axial plane using their proposed 2D CNN-based
image analysis pipeline. In the method, a dataset of MR
images obtained from patients with spinal cord injury within
24 hours was generated. Although the 2D CNN architectures
developed in the study were compared, it was found that
the proposed models did not differ significantly in terms of
performance.

In their own study, Merali et al. [28] developed a
deep learning-based model using ResNet-50 architecture to
identify cervical spinal cord compression in patients with
degenerative cervical myelopathy from T2-w MR images.
However, they emphasised that for the proposed model to
perform better, data has to be acquired only from patients with
degenerative cervical myelopathy (DCM), and asymptomatic
patients or patients with mild DCM symptoms should be
included in model training, resulting in more diverse training
images and perhaps a more generalisable model. In addition,
the manual ground truth generation process performed by the
expert was also identified as a limitation.

The U-Net architecture performs the extraction of the
specific region to be segmented on the images and shows
more successful performance with less data compared to
other deep learning models with advanced feature selec-
tion. In particular, in medical image processing, spinal cord
region segmentation usingMR images scanned from different
planes [33], [34], automatic segmentation and classification
of spinal cord tumours and lesions [35], [36], [37] are also
performed using U-Net models, which provide stable and
powerful results in many aspects. Zhang et al. [38] proposed a
channel-attentive U-net model for segmentation of the cervi-
cal spinal cord from MR scans. In the study, a new dataset
of cervical spinal cord MR scans was generated. The pro-
posed model adds double convolution for feature extraction.
The results obtained in the study were compared with other
previously proposed state-of-the-art methods and the results
were found to be close to each other.

Based on the provided previous works, although many
studies have been proposed, they have some limitations and
there are still parts that need to be improved.

i. Overall, research in this area is limited compared to
other medical image segmentation tasks.

ii. Many studies suffer from the use of small datasets,
which can lead to overfitting and limit the model’s gen-
eralizability to unseen data. Additionally, some studies
lack diversity in the data, focusing on specific patient
populations.

iii. Traditional methods rely on manual feature extraction,
which can be time-consuming, subjective, and require
expert knowledge.

iv. Studies comparing proposed methods with existing
ones often show similar performance, suggesting a
need for significant advancements in segmentation
accuracy, especially for MS lesion detection.

v. Some studies focus solely on cervical spinal cord
segmentation or MS lesion detection, neglecting the
potential for a combined approach.

These limitations highlight the need for further research in
automatic segmentation of cervical spinal cord and detection
of MS lesions, focusing on larger and more diverse datasets,
improved deep learning architectures, and standardized eval-
uation metrics. Additionally, exploring combined approaches
for segmentation and lesion detection within a single frame-
work could be beneficial.

This study proposes a new model, FractalSpiNet, for auto-
matic segmentation of the cervical spinal cord and automatic
detection of MS lesions in this region. In this model, a new
hybrid model is developed by integrating the convolutional
structure of FractalSpiNet into the U-Net architecture. In this
study, the cervical spinal cord region is segmented using axial
plane MR images and MS lesions are detected using the
proposed model.

III. MATERIALS AND METHODS
In this study, automatic detection of the cervical spinal cord
region and MS lesions in this region was performed using
the proposed FractalSpiNet with a new dataset created from
axial-plane T2-w MR slices. The methodology of the pro-
posed FractalSpiNet model is shown in Fig. 1. In the study,
an original dataset was first created using MR scans from
Akdeniz University Hospital. Fig. 1 (a) shows a series of
MR scans in the original dataset and the ground truth masks
prepared for each MR slice. Then, in Fig. 1 (b), image
pre-processing procedures such as resampling and cropping
were applied to the MR slices, followed by data enhance-
ment. Here, the pre-processing is included and represents the
320 × 250 MR slices and the cropping process applied to
the masks resulting in 128 × 128 images. For the next step,
Fig. 1 (c) represents the augmented dataset obtained using
data augmentation techniques using the cropped images.
In Fig 1 (d), the dataset, divided into training and test sets, was
trained with the proposed FractalSpiNet network to obtain
the optimal weights. In the last step, using FractalSpiNet in
Fig 1. (e), the predictive ability of the proposed FractalSpiNet
model for cervical spinal cord segmentation and MS lesions
is analysed.MS lesions, CSA region and non-MSCSA region
are detected from axial spinal cord images in the test set using
FractalSpiNet.

A. DATASET
The cervical region is located approximately at the level of
the C1-C7 intervertebral disc of the spinal cord. In this study,
with the decision of the Clinical Research Ethics Commit-
tee of the Faculty of Medicine of Akdeniz University dated
15.09.2021 and numbered KAEK-644, a new dataset was
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FIGURE 1. The methodology of the proposed FractalSpiNet architecture for automatic segmentation of the cervical spinal cord and MS lesions from
axial planes. (a) A set of original MR scans and ground truth masks prepared for each MR slice, (b) includes pre-processing and refers to the
320 × 250 MR slices and the images obtained in 128 × 128 size as a result of the cropping process applied to the masks, (c) refers to the augmented
dataset obtained by data augmentation techniques using the cropped images, (d) separating the data set into 20% test set and 80% training set
and obtaining the results with the best epoch value obtained as a result of training the proposed FractalSpiNet model, (e) detecting MS lesions, CSA
region and CSA region without MS in axial spinal cord images as a result of FractalSpiNet.

created by obtaining MR data of MS lesions in the spinal
cord and spinal cord regionwith a retrospective study. Dataset
used in this study were obtained from a total of 87 patients
diagnosed with MS within the last 2 years until May 2024,
without patient definition. Of the 87 patients, 68 were female
and the remaining 19 were male. The age range of the patients
varied between 14 and 72 years. MR scans of the patient
group were performed on a Siemens Magnetom Spectra 3.0T
MR scanner. The data were collected using 2D MR slices in
the T2-w modality in the turbo spin echo sequence, scanned
from the axial (transverse) angle of the cervical spinal cord
region, requested fromMS patients as part of clinical routine.
The slice thickness for MR slices in the scans in the dataset
is 4 mm and there are between 24 and 30 slices in a scan.
Since the spinal cord and lesions within these boundaries

are detected from axial planes of cervical spinal cord as in
the study, MR images from the cervical region of the spinal
cord, where MS lesions are more commonly observed, were
used instead of the entire spinal cord [39]. In addition, the
original dataset prepared for the automatic segmentation of
the cervical spinal cord and cervical MS lesions in this study
is publicly available from Mendeley Data.1

The acquisition parameters and other technical details for
the dataset are given in Table 1.
The MR slices in the dataset were provided in DICOM

format, which is widely used in medical imaging, and
were converted to NIfTI format during the pre-processing
steps. The ITK-Snap software tool [40] was used for data

1https://data.mendeley.com/datasets/ydkrtmygjp/1
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TABLE 1. Technical Details and Acquisition Parameters in Axial
(Transversal) Plane MR Scans For Original Dataset.

conversion. The MR scans in the dataset were reviewed by
two different radiologists, and the ground truth mask creation
processes were performed manually in the ITK-Snap envi-
ronment, and the selected slices were double-checked and
verified. An example of MR data masking of the spinal cord
region and the MS lesion detected in this region for axial
data using ITK-Snap software is shown in Fig. 2. Fig. 2(a)
shows the axial plane MR image of the cervical spinal cord,
and Fig. 2(b) shows the CSA region delineated and the MS
lesions identified by experts with a concensus for ground truth
masking. In this study, for the cervical spinal cord dataset,
ground truth masks were created by consensus of two radiol-
ogists on MR slices. The first label indicates the area of the
MS lesion in the CSA region, while the other label identifies
the remaining area (CSA without MS) after subtracting the
MS lesion from the CSA region. The grey area in Fig. 2 was
not labelled.

When the cervical spinal cord is examined from the sagittal
plane approximately along the C1-C7 vertebrae, each slice
taken in the horizontal plane corresponds to axial MR data.
In Fig. 3, each slice in axial planes was expertly controlled
separately to determine which slices contained MS lesions.
Masking of the slices with MS lesions was then performed,
and masking of the entire dataset was completed by perform-
ing the same steps for all MR data. The dataset contains
axial spinal cord boundaries and ground truth masks of MS
lesions in this region. Since the spinal cord boundaries and
MS lesions within these boundaries are detected in the study,
there are 25 slices in average in the existing axial MR scans,
and since MS lesions are observed in an average of 3 of
these slices, ground truth labelling of spinal cord and MS
lesions was performed only for these slices. On the MR slices
in the dataset, MS lesions in the cervical spinal cord are
located paracentrally in the caudal parts and peripherally in
the posterior paramedian areas. As a result, a total of 231 MR
slices and masks were obtained from all MR scans of 87 MS
patients.

FIGURE 2. (a) Axial plane MR image of the cervical spinal cord and
(b) spinal cord boundaries (cross-sectional area) and ground truth mask
of MS lesions within this area delineated by the expert.

As MR technology does not yet allow zooming into the
desired area, the slice of interest is obtained by general
scanning. In this study, in order to eliminate the unnecessary
background of the MR slices in the dataset and to increase
the performance of the study, the data were resized and saved
in.png format by cropping and rescaling operations based
on the mask centre in the Python environment. The resizing
process is considered as a stage that can significantly affect
the success of the training

B. DATA ORGANIZATION
In the study, axial slices obtained from the MR scans were
evaluated by experts and a dataset of spinal cord images
with MS lesions was created. In data pre-processing shown
in Fig. 4, a series of pre-processing steps were applied to
organize the MR slices from 87 subjects in the dataset.
In the first step of data preparation, axial planes from mul-
tiple DICOM images were identified. These images were
re-registered in.nii format as NIfTI file. Subsequently, from
these MR scans, 231 suitable sections from these MR scans
were obtained in.png format in a second step, preserving
their original size. In the third step, the region of the spinal
cord was cut to 128 × 128 by cutting from the slices with
320 × 250 resolution. Here, the cervical spinal cord and MS
areas in this region were manually masked by experts using
ITK Snap software. Thus, theMR images were pre-processed
for resampling and cropping to ensure that the images were
of the same size. In our study, the size of the preprocessed
MR slices was resized from 320 × 250 to 128 × 128. The
reason for this is that in our study, we worked only in the CSA
region of the cervical spinal cord axial plane MR slices. The
regions outside the CSA are not region of interest (RoI) for us.
Therefore, the CSA regions are automatically found in MR
slices and the input images are resized, and since no resizing
process is applied for the CSA region, there is no loss of
essential features. In addition, in our study, data augmentation
is applied to the resized images, making the proposed method
robust for low resolution images.

As the total number of cross slices in the dataset was quite
small, data augmentation was used to increase the available
dataset in forth step of pre-processing and data organization.
Data augmentation is a process to improve the variety and
quantity of a limited dataset [41], [42]. In general, data
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FIGURE 3. Axial plane slices of the spinal cord along the cord in the sagittal plane and the mask of those with
MS in these axial plane slices and zoomed MRI of the mask.

FIGURE 4. Pre-processing steps and data augmentation of the existing
dataset and separation of data into test and training.

augmentation is applied when the desired number of data
cannot be obtained in the field of medical image processing.
In this study, the most important factor providing data diver-
sity is that the structure, shape and size of the spinal cord and
MS lesions are different in each scan. Although this is the
most challenging part of the study, both the unique shape of
the spinal cord region and the different locations and sizes of
the MS lesions are the most important factors in the diversity
of the dataset. In this study, for data augmentation, theNumPy
library functions rotation (in x and y axes), flipping, shift and
same were used. As part of the study, the total number of
images in the dataset was increased from 231 to 1080 using
the procedures shown in Fig. 4.

C. PROPOSED METHODOLOGY
In the field of deep learning, many models have been devel-
oped from the past to the present, and convolutional deep
networks are the most popular in this sense. Thanks to
its adjustable parameter structure, convolution allows the

development of deeper networks [43], [44]. It has often been
used as the most basic model in deep network structures,
thanks to its ability to detect higher-valued features than sim-
ple features throughout the convolutional layers. In fact, with
the development of the U-Net architecture in the field of med-
ical imaging using this convolutional structure, it has become
very widely used. The U-Net architecture is widely used by
researchers in many fields other than medical imaging. In this
study, FractalSpiNet architecture, a fractal convolution-based
hybrid U-Net model, is proposed for the detection of cervical
spinal cord and MS lesions.

1) U-NET
The U-Net architecture was firstly developed for biomedi-
cal imaging applications [45]. It has become very popular
among image segmentation methods due to its structure
and performance [46]. Thanks to the flexibility of the U-
net architecture, whose typical structure is shown in Fig. 5,
to evolve into different models (U-shaped), mixed models or
new U-models with new layer connections can be developed
by using the block structures of other deep learning models or
the proposed convolutional models. The success of classical
convolutional neural network models is directly proportional
to the size of the dataset. This is because the images in the
datasets are labelled, feature maps are extracted and supplied
to the model, and the model performs operations by identi-
fying this data from the label information. Unlike other deep
learning models, U-Net can achieve faster results with fewer
datasets thanks to its context-based learning feature [47].
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In addition to the effective learning capability of the base
model, the different layer connections of the hybrid mod-
els provide more different feature sets. This is achieved by
preserving the features that characterise the data within the
layer structure. In this way, the new U-Net hybrid models
contribute positively to the performance value obtained from
the model.

The U-Net deep learning architecture consists of two
symmetric parts, an encoder and a decoder, connected by
a bottleneck [48]. Convolutional operations are applied in
the direction of downward contraction (encoder) and upward
expansion (decoder) [49]. The downstream coding block con-
sists of twice 3 × 3 convolution operations, ReLu activation
and 2 × 2 maximum pooling operations for downstream
transmitted data [50]. At this stage, batch normalization,
which is not used in the classical U-Net architecture, can be
integrated into the model. Batch normalisation is a widely
used technique that allows Deep Neural Networks (DNNs)
to train the model faster and more stable by keeping the opti-
misation in the training process as smooth as possible [51].
As a result of these operations, one output, obtained as a result
of convolution activation and batch normalisation, is given
as input to the decoder block, while the other output, which
is subjected to maximum pooling, is sent to a lower layer.
These processes are applied sequentially at a lower level
along each layer. This is the most important feature of the U-
Net architecture, which combines low-level features from the
encoder path with the high-level representation derived from
the decoder path to enrich the localisation information [52].
The downstream data size is halved while the filter size
is doubled. Downward convolution is followed by upward
inverse convolution and ReLu activation is applied. In addi-
tion, the expansion path increases the resolution of the output,
which then provides data to the final convolutional layer to
produce a fully segmented image. The fully connected layer
structure often used in convolutional models is not used in the
U-Net architecture, instead class mapping is performed at the
end of the model using a 1×1 convolution. The success of the
model is obtained by evaluating the results with pixel-based
similarity metrics between the output and the input.

2) FRACTAL NETWORKS
Mandelbrot expresses fractal geometry as a statistical quan-
tity that expresses fractal dimensionality. It is defined as a
set formed as a result of the formation of a whole by a
series of shapes that are similar in themselves, i.e. with self-
similarity [53], [54]. This set is called the ‘‘Mandelbrot set’’.
In fractal geometry, each part is a linear geometric reduction
of the whole, with the same reduction ratios in all directions
and adds ‘‘the parts, no matter how small, are similar to the
whole’’. In other words, fractals can be expressed in terms
of an infinitely expandable unity that has the similarity of
the fundamental particle. Within this represented wholeness,
each part carries the essential part of the fractal. The Mandel-
brot set seen in Eq. (1) is formed by squaring the parameter

FIGURE 5. The typical architecture of the U-Net deep learning network
used in this study for automatic segmentation of the spinal cord and
deduction of MS lesion.

z of the function f (z) in the plane of complex numbers and
adding a fixed number [53]. In fact, it is concluded that
different complex fractal structures can be created with very
simple mathematical equations or iterative processes.

f (z) = z2 + c (1)

It is very important to develop deep networks in convolutional
architecture. The transversal and longitudinal expansion fea-
ture of the fractal structure has been very inspiring to develop
a convolutional model [55]. In this context, there is a con-
volutional model developed using the fractal structure [56].
As shown in Fig. 6(a), in the convolution block structure
inspired by fractal geometry, a single convolution structure
between input and output is expressed as fc(z). Each expan-
sion is denoted by fc+1(z). From bottom to up as seen in
Fig. 6 (c), columns nested by C have a convolution structure
of 2C−1. It is possible to deepen the network as many times as
the fractal convolution block between each input and output
layer [56]. The expression in Eq. (2) is used for the fractal
convolution structure, while Eq. (3) is used for the custom
fractal structure.

fc (z) = conv(z) (2)

fc (z) = conv (z) + BN (z) + Activation ReLu(z) (3)

The expanding convolution structure within the fractal con-
volution allows for a deeper architecture configuration. The
main advantage of this approach is that the output features can
be applied to datasets with different resolution values, scaled
rather than absolute values [57]. As shown in Fig. 6 (b) and
Fig. 6(c), the block structure of the architecture expands by
2n at each step and each of them is connected by different
sub-paths. Such an expansion of the fractal structure shows
that an extremely deep convolutional network structure can
be obtained.

3) FractalSpiNet
For the development of new U-Net architectures, it is
possible to contribute skip connection enhancements, back-
bone design enhancements, bottleneck enhancements, trans-
formers, rich representation enhancements, probabilistic
design [52]. Thus, in this study, a U-Net configuration with
different convolutional layer structure is proposed for a new
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FIGURE 6. Fractal convolution structure progresses from simple to expanding structure in the order a, b,
c. FractalNet convolution base structure fc (z) = conv (z) (a), the fractal structure, which expands with a
convolution of 2C−1, is shown in b in the 2nd expansion, c in the 3rd expansion. As seen in c, each
convolution block is designed as a convolution, batch normalization and ReLu activation function.

FIGURE 7. U-Net and FractalSpinet convolution block structure. (a) In the
original U-Net by Ronneberger et al. [46], each level in the encoder
consists of two 3 × 3 convolutional layers with batch normalization and
ReLu activation, (b) FractalSpiNet convolution block structure which
expands with a convolution of 2C−1.

backbone design enhancement. It is also possible to design
different deep network models with different number of lay-
ers and block structures in the U-Net architecture. In this
study, a new hybrid model FractalSpiNet was developed for
cervical spinal cord segmentation and MS lesion detection
using the fractal convolution structure shown in Fig. 7 instead
of the sequential/regular convolution used in the encoder and
decoder blocks in the U-Net model. Fractal convolution is
a concept in deep learning to enhance feature extraction by

leveraging fractal structures. Regular convolution identifies
specific features present in a small area of the image, while
fractal convolution can identify features that repeat at differ-
ent scales within the image. Therefore, fractal convolution
leverages the principles of fractals to capture multi-scale
features efficiently, providing a larger receptive field and
potentially reducing the complexity of the network. Fig. 7(a)
shows the U-Net convolution block structure with batch nor-
malisation and Fig. 7(b) shows the proposed FractalSpiNet
convolution block structure. In the FractalSpiNet model,
the convolution used in the encoder and decoder blocks is
extended to add depth to the U-Net architecture. The code of
the proposed FractalSpiNet architecture is publicly available
on GitHub.2

In order to keep the depth of the fractal structure inte-
grated into the U-Net architecture at an optimal level, the
FractalSpiNet structure in Fig. 8 was designed considering
the benefit-loss relationship. In the benefit-loss relationship,
the model was evaluated according to its contribution to the
key metric performances obtained during the training period.
In fact, it is possible to extend the network as much as desired,
but designing the deepest network does not always give the
optimal result for the model. In this context, the number c in
the convolution structure, up to 2C−1, determines the depth
of the network. The fractal structures embedded in the cod-
ing blocks are downsampled and upsampled in the decoder

2https://github.com/BSEU-Misal/FractalSpiNet
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FIGURE 8. The proposed architecture of the FractalSpiNet for segmentation of cervical spinal cord and MS lesions on MR scans.

direction to create a segmentation mask for the input images.
As in the classical convolution block structure, the fractal
convolution block is used as a convolution batch normalisa-
tion and ReLu activation. In the FractalSpiNet architecture,
the processing steps of the model are the same, but the convo-
lution structure of the model is changed and the contribution
of the newly proposed convolution block to themodel is taken
into consideration.

IV. EXPERIMENTAL AND RESULTS
In this study, the FractalSpiNet hybrid architecture was devel-
oped for automatic segmentation of the cervical spinal cord
region and detection of MS lesions in the cervical spinal cord
using a new dataset consisting of axial plane T2-wMR slices.
In the experimental studies, the ITK-Snap software was used
to examine the original MR data and perform masking, while
the Python programming language and the Jupyter Notebook
IDE, commonly used in deep learning studies, were used
for network training and evaluation of results. A computer
with Intel Core i5 4.10 GHz CPU, 16 GB DDR4 3000 MHz
RAM, NVIDIA RTX A4000 16 GB GPU and 1TB HDD
together with 500 GB SSD disc hardware was used for all
experimental studies in the study.

In this study, the performance of the proposed Fractal-
SpiNet method for automatic segmentation of the cervical
spinal cord region and detection of MS lesions in the cer-
vical spinal cord is compared with state-of-the-art methods
such as Attention U-Net (Att U-Net), Residual U-Net (Res
U-Net) and Attention Residual U-Net (Att-Res U-Net), espe-
cially typical U-Net. Unnecessary areas like background
in the images are ignored when segmenting the region of
interest using the Att U-Net architecture [58]. By using
only the relevant areas during training, this architecture
reduces the computational cost and improves the generalisa-
tion of the network. In the Res U-Net model, the convergence
problem of deep networks is solved and the success of model
training is increased by adding the connection structures used
in CNN structures to the convolution blocks in the U-Net
model [59]. Thus, it can progress faster in the deep network
structure with residual connection structures. In the Att-Res
U-Net architecture, the attention mechanism and residual
blocks are used together in the U-Net architecture [60].

In our study, in the preliminary experimental analyses
with only 231 images in the dataset, DSC scores of 91.02%,
90.50%, 89.62%, 90.12% and 85.69% were obtained for the
proposed FractalSpiNet, U-Net, Att U-Net, Res U-Net and
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TABLE 2. The Training Times And The Number Of Parameters At The End
Of Training For The Proposed Fractalspinet And Other State-Of-The-Art
Methods.

Att-Res U-Net for segmentation of the CSA region without
MS lesions, respectively. On the other hand, for the detection
of MS lesions in the cervical spinal cord, DSC scores of
63.64%, 47.91%, 50.34%, 52.57% and 30.11%were obtained
with the same models, respectively. Therefore, since the
results obtained for the data set were not satisfactory, data
augmentation was applied to the dataset. In the experimental
studies with data augmentation, 864 (%80) of the images
were used for training and the remaining 216 (%20) were
used for test in a dataset consisting of 1080 images. In addi-
tion, our study used data augmentation to increase the number
of images in the dataset from 231 to approximately 5 times
to reduce the overfitting effect. This exploits the learned
features from the larger dataset and improves performance
on smaller datasets. Table 2 shows the training times and
the number of parameters at the end of training for the pro-
posed FractalSpiNet and other state-of-the-art methods for
a total of 200 epoch. Since the number of parameters com-
puted for FractalSpiNet is higher than the other models with
109.922.693, the training time is also higher with approxi-
mately 91 minutes. For the typical U-Net architecture, the
number of parameters and the training time are about 3 times
lower than for FractalSpiNet. Compared to FractalSpiNet, U-
Net and other state-of-theart methods have a lower number of
parameters, leading to faster training times and lowermemory
usage. However, FractalSpiNet’s strength lies in its ability
to capture complex features, potentially leading to superior
performance on tasks involving intricate details or highly
textured data.

In order to verify the performance of the FractalSpiNet
architecture, the same hyperparameter values given in Table 3
were used to train the proposed FractalSpiNet architecture
and other state-of-the-art U-Net models. The number of
images in the dataset, which was 231, was increased approx-
imately five times with data augmentation techniques. The
number of epochs was set at 200 due to the large number
of images used in the training sets to train the networks.
The number of epochs is used in this way to emphasize that
the results are compared under equal conditions in terms of
evaluating the models with the same hyperparameter inputs.
Batch size is an important parameter in the training of U-Net
and models. Batch size=8 was used as a small cluster size
as it optimizes the memory usage in the training process and
increases the generalization ability of the models. On the
other hand, a small batch size and learning rate=0.001 was

TABLE 3. Optimization Of Hyperparameters Used in the Training of U-Net
and FractalSpiNet Networks.

sufficient for the network to learn and generalize quickly.
In the pre-analyses, dropout=0.5 was used in the training of
the models to reduce the overfitting effect of the network. The
ReLu activation function was used for segmentation, espe-
cially for U-Net based architectures, due to its non-linearity,
sparsity and vanishing gradient reduction. Since multi-label
segmentation was used in this study, Sigmoid was preferred
as the output activation function. In addition, Adam was used
as the optimization function because it is more effective in
U-Net based segmentation and enhances adaptive learning.
Furthermore, Binary Loss Function was chosen as the loss
function because it is efficient in binary segmentation tasks
and faster when used with the Adam optimization function.

The progress of training loss, training accuracy (train-
ing acc), validation loss and validation accuracy (validation
acc) values obtained as a result of training the proposed
FractalSpiNet architecture and other state-of-the-art U-Net
models for segmentation of the cervical spinal cord and MS
lesions along the cord using MR images in the dataset during
200 epochs is shown in Fig. 9 (a), Fig. 9 (b), Fig. 9 (c)
and Fig. 9 (d). As can be seen from these change graphs,
significant results are obtained for the training phase for the
proposed FractalSpiNet architecture in terms of accuracy and
validation values.

In the experimental studies, important key metrics were
used to evaluate the performance of the segmentation of the
cervical spinal cord region and the detection of MS lesions.
One of them, the Dice similarity coefficient (DSC), shows
the segmentation ratio between the ground truth and the
prediction mask in Eq. (4). Other metrics, such as volumetric
overlap error (VOE) in Eq. (5), Hausdorff distance 95 (HD95)
in Eq. (6.1), (6.2) and (6.3), average surface distance (ASD)
in Eq. (7) and relative volume difference (RVD) in Eq. (8), are
often used to evaluate the segmentation results. On the other
hand, it is possible to compute many evaluation metrics using
confusion matrix values, including true positive (TP), false
positive (FP), false negative (FN) and true negative (TN) [61].
Recall (REC) in Eq. (9) is the ratio of correctly predicted pix-
els by the model to the actual correct pixels, while Precision
(PRE) in Eq. (10) shows how many of the values predicted as
positive are actually positive. In the equations for the metrics
used, PM (predicted mask) represents the segmentation result
obtained by the proposed method, while GM (ground truth
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FIGURE 9. Development of (a) training loss and (c) validation loss and (b) training accuracy and (d) validation accuracy values for proposed
FractalSpiNet architecture and other state-of-the-art models such as U-Net, Att U-Net, Res U-Net and Att-Res U-Net during 200 epochs of
training (batch size=8).

mask) represents the reference area masked by the expert
radiologist.

DSC(PM,GM) =
2x |PM ∩ GM|

|PM| ∪ |GM|
x100 (4)

VOE (PM,GM) = (1−
|PM ∩ GM|

|PM| + |GM| − |PM ∪ GM|
)x100

(5)

hd(PM,GM) = maxx∈PMminy∈GM∥x − y∥2 (6.1)

hd(GM,PM) = maxy∈GMminx∈PM ∥x − y∥2 (6.2)

HD95 (PM,GM) = max(hd(PM,GM), hd(GM,PM))
(6.3)

ASD (PM,GM) =
1

|s (PM)| + |s (GM)|

×

( ∑
SPM∈S(PM ) d (SPM,S (GM)) +∑
SGM∈S(GM ) d (SGM,S (PM))

)
(7)

RVD (PM,GM) = (
|PM| − |GM|

|GM|
)x100 (8)

REC(PM,GM) =
TP

TP + FN
x100 (9)

PRE (PM,GM) =
TP

TP + FP
x100 (10)

The parameter values used in the training of the proposed
FractalSpiNet architecture and other state-of-the-art models
such as U-Net, Att U-Net, Res U-Net andAtt-Res U-Net were
trained with the same values and the effect of the model struc-
ture on the performance was evaluated. A number of results
were obtained for the models as a result of training with
the proposed FractalSpiNet and other architectures using the
dataset specifically prepared for the study. Using these archi-
tectures, CSA segmentation of cervical spinal cord from the
axial plane within the limits of the total cervical spinal cord
area, segmentation without MS lesions within cervical spinal
cord CSA from the axial plane, and detection of MS lesions
in the cervical spinal cord CSA were achieved. Firstly, the
predictive capabilities of the proposed FractalSpiNet model
and others for segmentation of the spinal CSA in the axial
plane within the boundaries of the whole cervical spinal cord
area are shown in Fig. 10with the DSC scores. Analysis of the
sample images selected from the test set shows that all models
produced segmentation results with very high DSC scores.
Despite the high performance of all models, it can be seen
that theDSC scores obtainedwith the proposed FractalSpiNet
architecture are higher.

The results obtained for the proposed FractalSpiNet model
and other state-of-the-art models such as U-Net, Att U-Net,
Res U-Net and Att-Res U-Net architectures for the segmen-
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FIGURE 10. Results for segmentation of the CSA region in cervical spinal cord for the proposed FractalSpiNet and other state-of-the-art
models.

tation of the spinal cord CSA in the axial plane within the
boundaries of the entire cervical spinal cord area are shown
in Table 4. Here, all key metric values are obtained individ-
ually for all images in the test dataset, and the segmentation
results of the spinal cord area are calculated separately. The
segmentation success is obtained by averaging the metric
results calculated for each MR slice and the results are
reported in detail. For the models, the same values were
given for all training parameters and the training performance
was evaluated for 200 epochs. All values were calculated
by averaging the segmentation successes for the MR slices
forming the test set. A detailed analysis of Table 4 shows that
the FractalSpiNet results are more successful in segmenting
the CSA region in cervical spinal cord. The DSC scores
obtained using the proposed FractalSpiNet architecture are
98.88% for the CSA region in whole spinal cord, while the
DSC scores for U-Net, Att U-Net, Res U-Net and Att-Res
U-Net models are 98.54%, 98.01%, 98.67%, and 97.90%,
respectively. In addition, the results of distance-based metrics

such as HD95 and ASD were also confirmed to be more
successful with the proposed FractalSpiNet, with smaller
distances being achieved. Furthermore, it can be seen from
the key metric results that the most successful model after
the proposed FractalSpinet architecture is the Res U-net,
although for some metrics the U-net is more successful.

The prediction results of the proposed FractalSpiNet,
U-Net, Att U-Net, Res U-Net and Att-Res U-Net architec-
tures for segmentation of MS lesions within the boundaries
of the cervical spinal cord area are shown in Fig. 11 with
the DSC scores. Analysis of sample images selected from the
test set with ground truth delineated by experts shows that
MS lesions are detected with high DSC scores. Although the
detection ofMS lesions in this small area is a very challenging
task, very high scores were obtained. The proposed Fractal-
SpiNet architecture achieved higher scores on average than
other state-of-the-art U-Net architectures in the detection of
MS lesions in cervical spinal cord. In the segmentation of MS
lesions with the proposed FractalSpiNet architecture, there
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FIGURE 11. Comparison of state-of-the-art methods and the proposed FractalSpiNet architecture in segmentation of MS lesions in cervical
spinal cord area.

is no artefact around the lesion, whereas in the segmentation
with the other methods U-Net, Att U-Net, Res U-Net and Att-
Res U-Net, there are large and small pieces.

The performance results of the proposed FractalSpiNet
and other state-of-the-art models such as U-Net, Att U-Net,
Res U-Net and Att-Res U-Net architectures in the detection
of MS lesions in the cervical spinal cord region is shown
in Table 5. The segmentation results of MS lesions for all
MR images in the test set were measured separately for all
models. The segmentation success is obtained by averaging
the metric results calculated for eachMR slice, and the results
are presented in detail based on the key metric. It is seen
that the proposed FractalSpiNet method is more successful
and detects MS lesions in all slices in the test set with a
DSC score of 90.90%. The DSC values obtained for other
state-of-the-art models such as U-Net, Att U-Net, Res U-Net
and Att-Res U-Net for segmentation of MS lesions in the
cervical spinal cord are 86.0%, 75.34%, 88.87% and 83.06%

respectively. On the other hand, the proposed FractalSpiNet
architecture has a lower error for VOE, which is used to
measure the overlap error in segmentation tasks. Moreover,
for HD95 and ASD, which are distance-based key metrics
in segmentation, FractalSpiNet achieves better performance
with 8.08 mm and 16.08 mm, respectively. According to the
proposed FractalSpiNet architecture, the Res U-Net model
appears to be more successful in segmenting MS lesions in
the cervical spinal cord. Furthermore, for the remaining key
metrics RVD, REC and PRE, the FractalSpiNet architecture
has better performance in segmentation of MS lesions in the
cervical spinal cord.

The CSA region without MS lesion is one of the two labels
delineated by experts on the images in the dataset. This label
represents the CSA region without an MS lesion in the cer-
vical spinal cord, if present. Segmentation of this area allows
detection of the remaining non-MS spinal cord area, despite
the difficulty in detecting MS lesions. Thus, MS lesions
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TABLE 4. Results Obtained for The Proposed FractalSpiNet and Other
State-of-the-art Methods for Axial Plane Spinal Cord CSA Segmentation.

can be detected with binary validation. In the experimental
studies, the results of the proposed FractalSpiNet, U-Net,
Att U-Net, Res U-Net and Att-Res U-Net architectures were
also compared for segmenting the CSA region without MS
lesions within the boundaries of the cervical spinal cord area.
As can be seen in Fig. 12, analysis of the sample MR images
selected from the test set shows that segmentation is achieved
with higher DSC values using the proposed FractalSpiNet
architecture, although the segmentation results are close to
each other.

In addition, Table 6 shows the segmentation of the spinal
cord CSA region without MS lesion for proposed Fractal-
SpiNet, U-Net, Att U-Net, Res U-Net and Att-Res U-Net
architectures and the detailed comparison of the segmentation
results obtained based on the key metrics. It can be concluded
that the proposed FractalSpiNet method outperforms U-Net
architecture in terms of segmentation performance for all
key metrics. Proposed FractalSpiNet, U-Net, Att U-Net, Res
U-Net and Att-Res U-Net architectures achieved scores of
97.17%, 96.18%, 94.42%, 96.64% and 94.50% for DSC in
spinal cord CSA region without MS lesion segmentation,
respectively. Following the proposed FractalSpiNet architec-
ture, the Res U-Net model is more successful in spinal cord
CSA region without MS lesion segmentation.

V. DISCUSSIONS
When the results obtained as a result of the experimental
analyses are examined in detail, it can be seen that the results
obtained by using the proposed FractalSpiNet and other state-
of-the-art models such as U-Net, Att U-Net, Res U-Net and
Att-Res U-Net are more successful in finding both the entire
cervical spinal cord area and the spinal cord area of the MS
lesion compared to the MS lesion detection. The DSC values
obtained using the proposed FractalSpiNet architecture show
a score of 98.88% for full CSA area in the whole spinal cord,
while detecting the spinal cord area without considering the
MS lesion is 97.17%. On the other hand, using the proposed

TABLE 5. Performance Of Proposed FractalSpiNet Architecture and Other
State-of-the-art Methods in Segmentation of Cervical Spinal Cord MS
Lesions.

FractalSpiNet architecture for the detection of MS lesions,
a DSC score of 90.90% was achieved, comparing to other
models. Considering the fact that MS lesions are expressed
with very small pixels and do not have a specific geometric
shape, it can be said that the proposed FractalSpiNet architec-
ture also performs very successful segmentation and achieves
remarkable results.

In general, MS lesions keep a very small area in the axial
spinal cord slice. Although the detection and segmentation of
these lesions is a very challenging process, it is seen that the
proposed FractalSpiNet method can detect MS lesions with
high accuracy even in MR slices with very small MS lesions.
However, it is an inference obtained as a result of the training
that the most important detail here is whether the areas with
MS lesions are clearly defined in the originalMR data. In fact,
the areas with similar polarities to the MS lesions in the MR
data reduce the success and make it very difficult to prepare
the mask data (ground truth) at the very beginning of the
process steps. Therefore, it is very likely that the proposed
study will contribute to the detection of MS lesions in high
quality clear MR slices.

On the other hand, in the segmentation results of some
MR slices in the test set, it was observed that the bound-
aries could be overflowed by small scales or an incomplete
segmentation prediction could be performed, although very
rarely. Fig. 13 shows some examples of less successful results
for the proposed FractalSpiNet architecture and other state-
of-the-art models such as U-Net, Att U-Net, Res U-Net and
Att-Res U-Net. Fig. 13 (a) shows the segmented CSA area
in the spinal cord with a lower DSC score compared to
the ground truth mask delineated by experts. Comparing the
FractalSpiNet architecture with other state-of-the-art models
such as U-Net, Att U-Net, Res U-Net and Att-Res U-Net for
the same MR slice, the proposed FractalSpiNet architecture
has a less successful segmentation result than the average for
full CSA, while here it is more successful than the others
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FIGURE 12. Segmentation of the spinal cord CSA region without MS lesions and key metric-based performance comparisons for the
proposed FractalSpiNet architecture and other state-of-the-art methods.

based on the DSC score. Fig. 13 (b) shows the segmentation
of the spinal cord region without MS lesion, which has a
lower DSC score than the average. In this segmentation, the
proposed FractalSpiNet architecture is more successful than
other state-of-the-art methods. On the other hand, Fig. 13 (c)
shows visualisations for less successful segmentation results
compared to the average for the detection of MS lesions in
the CSA region. In addition, the segmentation performance
in the detection of MS lesions is lower than the segmen-
tation of the CSA region and the CSA region without MS
lesions. One of the reasons for some of these less successful
segmentation and detection results is thought to be that the
boundaries with polarities similar to the MS polarity in the
MR data as a result of network training can be evaluated
as MS in the prediction phase of the models. On the other
hand, although lower than average results were obtained in
the segmentation of MS lesions in the CSA region, a higher
DSC score was obtained using the proposed FractalSpiNet

architecture compared to other state-of-the-art U-Net, Att U-
Net, Res U-Net and Att-Res U-Net models.

In this study, the performance of the FractalSpiNet model
based on the U-Net deep learning architecture, proposed
for automatic segmentation of the CSA region of the cer-
vical spinal cord and MS lesions in the CSA region, was
also evaluated on the Spinal Cord Grey Matter Segmenta-
tion Challenge [62], a publicly available dataset. In order
to have a more meaningful and fair evaluation and compar-
ison of this study, this spinal cord dataset was used. This
dataset consists of spinal cord images from four different
sites. A total of 411 MR images and ground truth masks,
including 328 training (∼80%) and 83 test (∼20%) sets,
were selected from this dataset for experimental analysis.
In addition, to verify the performance of the proposed Fractal-
SpiNet architecture on this dataset, the previously proposed
state-of-the-art methods were compared with U-Net and its
derivatives, Att U-Net, Res U-Net andAtt-Res U-Net models.

110970 VOLUME 12, 2024



R. Polattimur et al.: FractalSpiNet: Fractal-Based U-Net for Automatic Segmentation

FIGURE 13. Lower successful results for the proposed FractalSpiNet architecture and other state-of-the-art models for (a) full CSA
segmentation of the whole spinal cord area, (b) CSA segmentation in the spinal cord area without MS lesions, (c) segmentation of MS
lesions in CSA region of cervical spinal cord.

Fig. 14 shows the visual results obtained by the methods in
segmenting the CSA region and the grey matter in this region
after 200 epochs of training with the same network param-
eters for some images in the test set of this dataset. From
the results obtained for the MR images in the dataset, it can
be seen that the performance of the proposed FractalSpiNet
and typical U-Net models are fairly similar to each other. The
other state-of-the-art methods, Att U-Net, Res U-Net and Att-
Res U-Net, achieved lower performance in CSA and grey
matter segmentation compared to these two models.

The performance evaluation of the results obtained using
the proposed FractalSpiNet, U-Net, Att U-Net, Res U-Net
andAtt-Res U-Net architectures for greymatter segmentation
on the Spinal Cord Grey Matter Segmentation Challenge
dataset with key metrics is given in Table 7. From the results,
it can be concluded that the results of the proposed Fractal-
SpiNet and U-Net models are quite close and more successful
than the other models. While the performance achievement
in grey matter segmentation with the proposed FractalSpiNet
architecture is 83.05% with the DSC metric, this ratio is
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FIGURE 14. CSA and grey matter segmentation results of the proposed FractalSpiNet and other state-of-the-art methods for the Spinal Cord Grey
Matter Segmentation Challenge publicly available database.

TABLE 6. Segmentation of Spinal Cord CSA Region Without MS Lesion
and Key Metric Based Performance Comparisons For Proposed
FractalSpiNet Architecture and Other State-of-the-art Methods.

83.20% for U-Net. The results of these two models are also
very close for other metrics.

Although there are some publicly available datasets for
segmentation of the spinal cord, there is no publicly available
dataset that specifically includes the cervical spinal cord
region and MS lesions in this region. Therefore, it is very
difficult to compare the results of this study with other state-
of-the-art approaches on many parameters. In addition, the
different methods used in the studies make this comparison
even more difficult. In addition, the key performance metrics
evaluated in many studies is also different. Nevertheless,
in this context, the comparison of the results obtained in
this study with some state-of-the-art studies that have been

proposed previously and are similar in content to this study
is shown in Table 8. Considering the difficulties of working
in the cervical spine region, it can be seen that the Frac-
talSpiNet architecture proposed in this study achieves very
successful performance results. Of course, this is not a one-
to-one comparison, but it can only give an idea of the method
used and the DSC score obtained. Most of the previously
proposed spinal segmentation studies have used the original
dataset, including this study. However, Bedard et al. [63]
used the spine generic public dataset, which is a publicly
available dataset. On the other hand, the most recent studies
mostly performed spinal cord segmentation, and there are few
studies on MS lesion detection in the spinal cord. Among
these studies, only Gros et al. [31] and Zhuo et al. [36] studied
the detection of MS lesions in the spinal cord. In this study,
using the proposed FractalSpiNet architecture on the original
dataset, CSA segmentation in the spinal cord was achieved
with a DSC score of 98.88%, CSA segmentation without MS
lesions with a DSC score of 97.17%, andMS lesion detection
in the CSA region of the cervical spinal cord with a DSC
score of 90.90%, which are consistent with or higher than the
results of state-of-the-art methods.

Table 9 shows the total time required by the proposed
FractalSpiNet and other state-of-the-art models to detect MS
lesions in the cervical spinal cord for a total of 216 MR
images in the test set and the average detection time required
for a single MR image. Although the detection times for the
test set are close for all models, the minimum detection time
for the proposed FractalSpiNet architecture is 44.42 seconds.
On the other hand, the average detection time for a single MR
image is approximately 0.2 seconds for all models and there
is no significant difference between the models. However, the

110972 VOLUME 12, 2024



R. Polattimur et al.: FractalSpiNet: Fractal-Based U-Net for Automatic Segmentation

TABLE 7. The performance evaluation of the results For FractalSpiNet,
U-Net, Att U-Net, Res U-Net and Att-Res U-Net architectures for grey
matter segmentation on the Spinal Cord Grey Matter Segmentation
Challenge dataset.

TABLE 8. Comparison of The State-of-the-Art Studies with FractalSpiNet.

total detection time calculated for the test set and the detection
time obtained for a single MR image make it meaningful to
realise real-time applications of the proposed work.

TABLE 9. Total Detection Time For Test Set And Average Detection Time
For A Single Image For Models.

The experimental results clearly demonstrate the effec-
tiveness of the proposed FractalSpiNet architecture over
traditional U-Net models for cervical cord segmentation and
MS lesion detection. However, the FractalSpiNet architecture
proposed in this study has some limitations. One signifi-
cant limitation of this study is the lack of publicly available
datasets specifically targeting the cervical spinal cord andMS
lesions. The dataset used in this study was privately created,
which might limit the generalizability of the results. Public
datasets would enable more robust comparisons and valida-
tion across different studies. On the other hand, the dataset
consisted of MR images from 87 patients. Although the
FractalSpiNet architecture performed well, a larger dataset
could provide more comprehensive validation and potentially
improve the model’s robustness. Another limitation of the
study is that some segmentation errors were observed in cases
where the boundaries of MS lesions were not clearly defined.
This can result in small-scale overflow or incomplete seg-
mentation, highlighting a limitation in handling ambiguous
regions in MR images.

VI. CONCLUSION
The spinal cord does not have a specific geometric shape in
terms of its structure, but has a curved structure corresponding
to the vertebral structure. Therefore, segmenting the region
and determining its boundaries is a very challenging task.
The fact that the spinal cord boundaries have a variable shape
along the spinal cord and that the lesions to be detected in
the spinal cord are heterogeneous in terms of location, size
and shape is an important detail that needs to be considered
for segmentation, although it is positive in terms of data
diversity. In this study, automatic segmentation of the cer-
vical spinal cord and detection of MS lesions in the spinal
cord from MR images is achieved by using the proposed
FractalSpiNet model as a fractal convolution-based hybrid
U-Net architecture. In the experimental studies, using the
proposed FractalSpiNet architecture, the cervical spinal cord
CSA region was segmented with a DSC score of 98.88%,
while MS lesions in the cervical spinal cord region were suc-
cessfully detected with a DSC score of 90.90%. In addition,
the cervical spinal cord (CSA) region without MS lesions
was successfully segmented with a DSC score of 97.17%.
In summary, the experimental results demonstrate the effec-
tiveness of our approach in achieving accurate segmentation
of the cervical spinal cord and MS lesions, surpassing state-
of-the-art methods. In the most general sense, the proposed
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FractalSpiNet architecture achieves higher performance than
the basic U-Net model, and it is predicted that this method
can be improved for future new architectures.

The ability to accurately segment the cervical spinal cord
and detect MS lesions from MR images has profound impli-
cations for patient care. Early and precise identification ofMS
lesions is crucial for timely intervention, potentially slowing
disease progression and improving patient outcomes. The
FractalSpiNet model can enhance the accuracy and efficiency
of radiologists, reducing the time needed for manual segmen-
tation and increasing diagnostic confidence. This can lead to
more personalized and effective treatment plans, improving
the quality of life for patients withmultiple sclerosis and other
spinal cord-related conditions.

In MR imaging, it is not yet possible to focus on the area
of interest, and there is a lot of unnecessary space in the
overall MR data. For this reason, the axial plane MR image
of the spinal cord corresponds to a very small area in terms
of the area it covers, and MS lesions within these boundaries
correspond to much smaller pixel values. Masking such small
areas is very difficult, even for experienced specialists, and
the possibility of error remains. In this context, segmentation
of the spinal cord, different units within the spinal cord, and
MS lesions in the spinal cord region with deep learning archi-
tectures is very limited due to the difficulties in preparing
the dataset. In addition, the similarity of lesion densities to
grey matter densities and some other textural structures are
other factors that increase the possibility of error in man-
ual masking processes. Failure to perform masking correctly
will ultimately lead to training failure and subsequent detec-
tion of spinal cord and MS lesions with lower performance.
In this study, a new dataset was created using MR slices
of the cervical spinal cord scanned from the axial angle.
For this dataset, the spinal cord region and the ground truth
mask data for MS lesions were created with the consen-
sus of two experienced radiologists. The MR images in the
dataset were only scanned from the cervical region of the
spinal cord, and for further studies, it is intended to seg-
ment the MS lesion along the entire spinal cord by scanning
images from the thoracic and lumbar regions of the spinal
cord.
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