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ABSTRACT Metal induced artefacts in computed tomography (CT) images are primarily caused by
beam hardening, scatter effects, and photon starvation. These artefacts impede the characterization of
fine anatomical structures and compromise the diagnostic value of the CT images. We aim to develop
an innovative machine learning-based technique called residual dense U-Net (RDU-Net), specifically for
spectral photon-counting CT (SPCCT), to mitigate metal artefacts across all energy bins. The proposed
model was quantitatively evaluated, with and without the metal artefact reduction (MAR) algorithm,
using line profiles, histogram analysis, signal-to-noise ratio (SNR), root mean squared error (RMSE), and
structural similarity index measure (SSIM). The results show significant improvements with the average
SNR increasing from 3.37 to 17.40 across the five energy bins after the application of the MAR algorithm.
The average RMSE decreased from 0.016 to 0.001, and the average SSIM increased by 34.9%. The study also
evaluated material density images of hydroxyapatite (HA) and iodine, with and without the MAR algorithm,
using the receiver operating characteristic (ROC) paradigm. The results show improved accuracy in the
material identification for HA (86% to 91%) and iodine (84% to 93%) after MAR. Overall, the evaluation
of the model show promising results and the potential to significantly decrease the metal artefacts in all the
parameters used in the energy analysis at p < 0.0001, while preserving the attenuation profile of SPCCT
images.

INDEX TERMS Computed tomography (CT), metal artefacts reduction (MAR), spectral photon-counting
CT (SPCCT).

I. INTRODUCTION
Computed Tomography (CT) is one of the most widely
used diagnostic tool [1], [2], [3], [4]. It provides detailed
high-resolution 3D views of the internal organs crucial for
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diagnosing diseases such as cancer, cardiovascular disorders,
and internal bleeding [5], [6], [7]. Additionally, CT images
incorporate tissue density information, which is essential for
radiation therapy treatment planning [8], [9]. However, one
of the major challenges in CT imaging is the occurrence of
metal artefacts due to the presence of high-density materials.
These artefacts affect the assessment of tissues surrounding
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metal structures, such as intracranial coils, clips, stents, dental
or orthopedic implants, fixation devices, and other metal
objects [10], [11], [12]. This limitation poses challenges in
visualizing structures, hindering the detection of early-stage
complications, such as inflammation, infection, tumors, and
assessing the integration of metal implants into bone tissue.
Metal artefacts distort CT scans due to beam hardening,
scattering, photon starvation, and non-linear partial volume
(NLPV) effects [13]. Beam hardening occurs mainly in
polychromatic X-ray beams; low-energy photons are more
readily absorbed by these materials leading to an increase
in the average energy of the beam. This alters the path
of the beam and leads to streaking, cupping artefact, and
degradation of data integrity [14], [15]. Photon starvation
occurs when metal objects absorb and restrict the number
of photons within the beam, leading to insufficient photons
reaching the detector. Such a reduced number of photon
counts results in the increase of statistical noise due to
deviation of the detected photon flux from the usual Poisson
distribution [16]. NLPV effects arise from metal edges
partially intersecting projection lines, causing inaccuracies
in the calculation of attenuation coefficients and subsequent
image reconstruction [17]. The combined effect of these
artefacts may lead to imprecise outcomes. Accordingly, there
is an increasing clinical demand to develop techniques to
minimise metal artefacts. This demand has led to extensive
research in this field, as shown in Fig. 1. While numerous
studies focus on minimizing metal artefacts in CT images
through specialized image reconstruction and processing
algorithms [18], [19], [20], [21], [22], significant research
is also focused on reducing these artefacts during the
acquisition process, including but not limited to adjusting
X-ray tube voltage and current, acquisition time, and voxel
size [23], [24], [25], [26]. Despite employing these diverse
techniques, conventional CT systems are inherently limited
by the amount of information they can collect, primarily
due to their reliance on single-energy spectrum X-ray
sources and energy-integrating detectors. To address these
limitations and facilitate a more thorough analysis, spectral
photon-counting CT (SPCCT) with photon-counting and
energy-discriminating detectors emerges as a promising solu-
tion. It possesses the capability to generate multiple images
corresponding to different energy bins, providing more
comprehensive spectral information for enhanced imaging
and advanced analysis. It presents a significant transition
in clinical imaging as it efficiently distinguishes between
metals and surrounding tissues through the utilization of
multi-energy data. Additionally, higher energies X-rays are
less susceptible to metal artefacts, paving the way for the
development of more efficient algorithms for the reduction
of metal artefacts [27]. SPCCT employs photon-counting
detectors (PCDs) with a single semiconductor diode layer,
which applies high voltage directly without the need for
photon-to-light conversion. This enables precise photon
counting and improves the ability to differentiate between
energy levels, which enhances contrast-to-noise ratios, spatial

FIGURE 1. Illustration depicting the number of publications focused on
metal artefact reduction (MAR) algorithms, comparing conventional CT
techniques with the newer Spectral Photon Counting Computed
Tomography (SPCCT) methods from January 2000 to June 2024. For
conventional CT, the keywords used in Scopus were (‘Metal artefact
removal’ OR ‘MAR’ OR ‘Metal artefact removal’ OR ‘Metal artefact
reduction’ OR ‘Metal artefact reduction’) AND (‘Computed Tomography’
OR ‘CT’). For SPCCT, these keywords were combined with (‘Spectral
Computed Tomography’ OR ‘Spectral CT’ OR ‘PCCT’ OR ‘Photon Counting
CT’ OR ‘Photon Counting Computed Tomography’ OR ‘SPCCT’ OR ‘Spectral
Photon Counting CT’ OR ‘Spectral Photon Counting Computed
Tomography’) AND NOT (‘Dual Energy CT’ OR ‘DECT’ OR ‘Dual Energy
Computed Tomography’).

resolution, and minimizes radiation exposure and electronic
noise [28], [29]. SPCCT also opens a gateway for new med-
ical applications, such as precise material identification and
quantification, commonly known as material decomposition
(MD) [30], [31]. MD involves calculating material-specific
basis vectors using multi-energy data from SPCCT and
decomposing materials into accurate density images. This
can further aid in early diagnosis, improve anatomical
visualization, and facilitate the detection of diverse con-
ditions, such as bone diseases, soft tissue abnormalities,
cancer imaging with nanoparticles, crystal-induced arthritis,
and imaging in the presence of metal implants [32], [33],
[34]. Besides technological advancements, metal artefact
reduction (MAR) can be accomplished through the utilization
of complex and sophisticated computational techniques,
commonly referred to as MAR algorithms. MAR algorithms
detect and segment the corrupted data caused by metal
implants, and further modify and replace the corrupted data
with estimates of the corrected values. MAR algorithms are
applied either in the sinogram/projection domain (consists
of the projection data) or in the image domain (consists of
reconstructed images) or in a combination of both called dual
domain [35]. Sinogram domain methods treat metal-affected
regions in sinograms as if they are missing and replace
them using interpolation or forward projection. However,
this approach would introduce streak artefacts tangent to the
metal objects, as it is challenging to avoid discontinuities
in the sinogram [36]. For image-based metal segmentation
methods, the metal region is segmented in the reconstruction
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images and is forward-projected to localize the projection
data that the metal has contaminated. Moreover, many of the
available MAR algorithms employ the image-based metal
segmentation method due to restricted access to the raw
data [37], [38], [39]. In recent years, deep learning-based
MAR methods have emerged as promising tools in medical
imaging, demonstrating reliable results [40]. For instance,
Zhang et al. presented a convolutional neural network (CNN)
MAR model as an open artefact reduction framework for
CT, capable of distinguishing tissue structures from the
artefacts and fusing the useful information to generate
CNN images. By utilizing the designed tissue processing
technique, artefacts are suppressed to generate a high-quality
prior image. Both clinical and numerical simulations have
shown that CNN-MAR can reduce metal artefacts and restore
fine structures near the metals to a large extent [41]. Lin
et al. also developed a deep learning architecture named
an end-to-end trainable Dual Domain Network (DuDoNet),
which simultaneously enhances CT images and restores
the sinogram consistency to solve the problem of metal
artefacts. The model consists of a radon inversion layer,
a sinogram enhancement network (SE-Net), and an image
enhancement network (IE-Net). Results show that DuDoNET
has outperformedmanyMAR techniques, such as normalized
MAR (NMAR) and CNN-MAR, through the superior
peak signal-to-noise ratio (SNR) and structural similarity
index measure (SSIM) values with lesser computational
time [42]. Furthermore, Hegazy et al. introduced the U-NET
model for MAR in dental CT and compared four different
configurations of CT i.e., Unet-64, Unet-32, Unet-16, and
Unet-8. These experiments have shown that the computation
speeds in Unet-32 and Unet-16 increased about 3.6 and
7.3 times compared to Unet-64, respectively. As a result,
Unet-16 could segment the metal regions with accuracy very
close to the original U-net and even with 7.3 times faster
computation speed [43]. Zhuoxing et al. introduced a deep
learning-based method to address metal artefacts in dual-
energy CT; the approach synthesizes triple-energy spectral
CT datasets and employs CNN to generate virtual monochro-
matic images (VMIs), effectively reducing artefact-induced
streaks. Results show significant artefact reduction through
simulations on an abdominal phantom, with root mean square
error (RMSE) reaching below 30Hounsfield units (HU). This
work emphasizes the benefits of dual-energy CT in material
discrimination and show how deep learning frameworks
can improve image quality without raising patient dose
levels [44].
Busi et al. presented a significant contribution focusing

on spectral deep learning to mitigate metal artefacts in
spectral X-ray computed tomography (SCT), utilizing photon
counting detectors. Their study proposed a 3D U-Net
architecture for metal artefact reduction in spectral X-ray
CT to handle the large 3D matrices of spectral images.
The method faces limitations due to high computational
demands, hardware constraints leading to loss of detail,
and biased training from highly attenuating materials like

metals. To address these, the study proposes high attenuation
thresholding and normalization steps. However, challenges
persist in representing geometric shapes and preserving
effective linear attenuation coefficients [45]. This highlights
the necessity for more effective models to manage spectral
data. As shown in Fig. 1, there is a noticeable research gap in
MAR algorithms for SPCCT, suggesting numerous avenues
for additional exploration in this field.

We aim to introduce a novel MAR algorithm based on a
residual dense U-Net (RDU-Net) deep learning architecture.
The proposed algorithm simultaneously corrects artefacts
across all energy bins of SPCCT. To achieve this, we used
a commercially available Mars SPCCT scanner installed in
our laboratory to acquire multi-energy CT images. Results
were evaluated quantitatively using line profiles for spatial
assessments, histograms for CT values analysis, along with
SNR, root mean squared error (RMSE), SSIM, and receiver
operating characteristic (ROC).

II. MATERIALS AND METHODS
A. PHANTOM CONFIGURATIONS AND DISTRIBUTION OF
DATASETS
We used a 100 mm-diameter QRM Spectral CT phantom
(QRM, GbH, Moehrendrof, Germany) consisting of 20 mm-
diameter holes to hold eight multiple solid inserts. Ten
scans of the QRM phantom were taken in order to
generate ten datasets: Six datasets were used for training
the MAR algorithm, two datasets for generating simulated
images, and the remaining two datasets were used for
the validation of MAR algorithm as shown in Fig. 2.
The overall distribution and utilization of the datasets are
summarized in Table 1. Training datasets include two types of
datasets: one dataset comprises variations in the placements
of aluminium (99% Al; 20 mm-diameter) and steel (surgical
stainless steel; 20 mm-diameter) Fig. 2 (a-d)), while the other
dataset consists of varying concentrations of hydroxyapatite
(HA) (201.4 and 406.9 mg/cm3) and iodine (9.66 and
14.56 mg/cm3), along with adipose, and CT water in the
presence of aluminium and steel (shown in Fig. 2 (e,f)). The
training datasets comprised a scan length of 50 mm along
the scanner data acquisition axis: 20 mm containing metal
inserts, followed by 10 mm eliminated length (not used for
analysis) to prevent the detection of residual artefacts, and
20 mm used as an empty phantom for generating simulated
images, as illustrated in Fig. 3. Datasets for Simulation
(Fig. 2 (g,h)) were used to extract metal-specific attenuation
profiles of aluminium and steel. After the training of theMAR
model, we assessed its performance using two validation
datasets: the first dataset consisted of aluminium and steel,
while the second dataset included varying concentrations of
HA and iodine, along with muscle, and CT water in the
presence of an aluminium insert, as shown in Fig. 2 (i,j).

B. SCANNER CONFIGURATION
All datasets were collected using the small bore MARS
SPCCT scanner (MARS Microlab 5 × 120). MARS
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FIGURE 2. Illustration of different phantom configurations and their corresponding CT images across first energy bin (7-40 keV) acquired at 118 kVp with
80 µ A tube current. The training datasets (yellow block) consist of varying placements of steel and aluminium (a-d), while (e,f) contained two
concentrations of hydroxyapatite HA (201.4 and 406.9 mg/cm3) and iodine (9.66, and 14.56 mg/cm3), along with adipose, CT, and water in the presence
of metal inserts; steel (e) and aluminium insert (f). The red block shows datasets used for simulation (g,h), consisting of only steel or aluminium inserts
for extracting material-specific attenuation profiles. Validation datasets are shown in the blue block; a dataset that includes both metal inserts (i), and
(j) a dataset that includes material inserts in the presence of aluminium insert. All energy images are scaled in linear attenuation coefficients (cm-1) in
the range of 0 to 0.3 cm-1. The label ‘S’ and ‘Al’ refers to steel and aluminium respectively.

SPCCT integrates conventional CT principles with spec-
tral imaging utilizing Medipix3RX PCDs. Medipix3RX
PCDs measure individual detected photons exceeding the
user-defined energy thresholds and process these signals
through electronic comparators and counters to calculate
photon counts [46]. The Medipix3RX chip gives MARS
SPCCT the ability to acquire multi-energy data for up to
8 energy bins. The scanner is comprised of amicrofocus poly-
energetic X-ray source (Source Ray SB-120-350, SourceRay
Inc, Bohemia, NY) with an additional 1.8 mm Al equivalent
intrinsic filtration, and 0.125 mm external brass filtration.
All scans were performed using 118 kVp tube voltage,
981 circular projections with an exposure time of 160 ms per
frame. The tube current was set at 80µA tomaintain a photon
count rate less than 11 counts/ms to avoid detector saturation

and pulse pileup [47]. All scans were performed in the
charge-summing mode using the default energy thresholds of
40, 50, 60, and 79 keV. The data were reconstructed using
the proprietary MARS iterative reconstruction technique in
the narrow energy bins, 7-40, 40-50, 50-60, 60-79, and
79-118 keV. The resulting images have an isotropic voxel size
of 0.1 mm and an image matrix of 1300 × 1300.

C. CREATION OF ARTEFACT-FREE SIMULATED DATA
Any supervised deep learning-basedMAR technique requires
artefact-free images for model training. For this task,
simulated images were generated using an automated strategy
developed in Python (Python 3.10.12). Datasets for simu-
lation depicted in Fig. 2 (g,h) were employed to calculate
the mean attenuation (1) and standard deviation (2) values
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FIGURE 3. Demonstration of step-by-step methodological pipeline. Different sections show the acquisition, processing, and utilization of datasets for the
training, simulation, and validation of the MAR algorithm. The label ‘S’ and ‘Al’ refers to steel and aluminium respectively. The left block indicates the
training and simulation section. The total scan length was 50 mm along the scanner data acquisition axis: the first 20 mm contained metal inserts was
used as input training datasets and the last 20 mm was used as an empty phantom for generating simulated images. The dataset for simulation provides
the attenuation profile for steel and aluminium to simulate the artefact-free images using empty images. The right block depicts the process of how the
datasets for validation were used for testing the algorithm.

TABLE 1. Summary of Datasets for Training, Simulation, Validation (Fig. 2) and Evaluation Strategy for validation of Metal Artefact Reduction (MAR)
Algorithm.

across five energy bins for aluminium and steel. The scan
of each metal was done separately to ensure the extraction
of metal-specific profiles without any external factors
influencing the results. The values were then superimposed
throughout the images of the empty phantoms, acquired
from the training dataset (shown in Fig. 2 (a-f)), to obtain
artefact-free ground truths for the model training.

µ =
1
Nmt

Nmt∑
i=1

(MTpixi ) (1)

σ =

√√√√ 1
Nmt − 1

Nmt∑
i=1

(MT pixi − µ)2 (2)

where:
• µ is the mean attenuation value of the metal insert ROI.
• σ is the standard deviation of the the metal insert ROI.
• Nmt represents the number of pixel values.
• MT pixi represents individual pixel values.

D. DEEP LEARNING MAR ALGORITHM
A SPCCT image array denoted by I ∈ RE×L×W , where R is
a set of real numbers, E is the number of energy bins, L is the
length of the image, andW is the width of the image. A deep
learning model is trained to generate an artefact free image
array M ∈ RE×L×W . This process of MAR is expressed
as M = f (I ; θ), where ′θ ′ contains the learnable parameter
of the model. The proposed MAR algorithm employs a
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FIGURE 4. Overall architecture and functioning of the RDU-Net model For MAR. The RDU-Net model is an encoder-decoder-based architecture. The
encoder block consists of four dense blocks and three residual connections. The decoder consists of three convolution layers followed by an adaptive
average pooling layer. The figure shows corrected metal artefacts of spectral photon-counting multi-energy CT images as outputs by applying the
proposed MAR algorithm. E1 (7-40 keV), E2 (40-50 keV), E3 (50-60 keV), E4 (60-79 keV), and E5 (79-118 keV) represent the five energy bins. Conv2D refers
to two-dimensional convolution layers, while ‘n’ is the number of connected layers in the dense block.

deep learning approach based on RDU-Net, performing
image-to-image transformation. Themodel combines ResNet
(Residual Network) [48], DenseNet [49], and U-Net [50]
architectures to create the RDU-Net architecture which
was implemented using the PyTorch library, as shown in
Fig. 4.

1) RESNET
ResNet model was developed to tackle the problem of vanish-
ing gradients in deep neural networks. The vanishing gradient
problem arises when gradients decrease exponentially during
back-propagation in deep neural networks, impeding the
training process and leading to degradation in performance.
ResNet addresses this issue by incorporating residual connec-
tions, which enable themodel to learn residual functions. This
innovation allows the training of deeper networks without
a deterioration in performance. Through the integration of
residual connections, ResNet models achieve state-of-the-art

performance in various image recognition tasks whilst being
more straightforward to optimize and train when compared to
traditional deep networks.

2) DENSENET
DenseNet model, or Densely Connected Convolutional
Networks, introduces dense connectivity patterns between
layers, where each layer receives feature maps from all
preceding layers. This dense interconnection facilitates
feature reuse and gradient flow, promoting deeper networks
with fewer parameters. This leads to improved feature
propagation, ultimately enhancing model performance and
training efficiency.

3) U-NET
U-Net is a convolutional neural network architecture
designed for biomedical image segmentation tasks. It features
a U-shaped architecture with an encoder-decoder structure,

109740 VOLUME 12, 2024



O. Khan et al.: Development of RDU-Net-Based MAR Technique Using SPCCT

where the encoder extracts high-level features and the
decoder performs pixel-wise classification. Additionally,
U-Net incorporates skip connections between corresponding
encoder and decoder layers to preserve spatial information
and facilitate precise segmentation.

4) PROPOSED METHOD
The RDU-Net architecture features an entry channel of
5×1300×1300 and is structured around aU-net type encoder-
decoder backbone. The encoder module consists of 4 dense
blocks and 3 residual layers, as shown in Fig. 4. The dense
block is denoted by D = X0 ⊕ f1(X0; θ1) . . . ⊕ fi(Xn−1; θn),
where X represents the feature map, ⊕ represents the con-
catenation operation, f represents the convolution function,
and n represents the number of layers in the dense block.
The dense block connects each layer to every other layer
in a feed-forward fashion by concatenating features after
every layer. This dense connectivity facilitates feature reuse,
encourages feature propagation, and enhances gradient flow
throughout the network, which result in more efficient feature
extraction. The first dense layer consists of 4 connected layers
while each of the remaining three consists of 8 connected
layers. All convolution layers in the dense block had a
kernel size of 3 × 3, padding of 1, and ReLU activation
function, except the last layer in each dense block, which
had a kernel size of 1 × 1, no padding, and ReLU activation
function. The residual layers includes two 2D convolution
layers: the first one with a kernel size of 2 × 2, padding
of 1, and ReLU activation function; and the second one with
a kernel size of 1 × 1, no padding, and ReLU activation
function. The three residual layers establish connections
between the input and the dense layers, thereby mitigating
the risk of gradient vanishing and preserving features from
the input. Subsequently, the decoder comprises three 2D
convolution layers, with kernel size 1 × 1, no padding and
ReLU activation, to reconstruct the encoded image back to
its original input format. An adaptive average pooling layer
is applied following the encoder-decoder sequence adjusting
the output dimensions to match those of the input. For model
training, we employed L1 Loss Function along with Adam
optimizer, utilizing a learning rate of 0.001. Various loss
functions, including mean squared error (MSE) and binary
cross entropy (BCE) loss, were tested, but L1 loss [51] gave
more distinct boundaries and sharper images with reduced
noise. MSE loss also yielded comparable results; however,
due to its tendency to dampen smaller errors, it did not
effectively mitigate lighter streaks and noise in our scenario,
where the majority of attenuation values are small. Adam
optimizer was chosen for our problem. It was selected
because of its adaptive learning rate, efficiency with sparse
gradients, and regularization benefits. These qualities are
crucial for handling complex spectral data. Other optimizers,
such as SGD and RMSprop, are less suitable. They handle
sparse gradients less efficiently and have slower convergence
rates in complex models like the RDU-Net. The utilization

of adam optimizer contributed to faster convergence of
gradients, leading to a quicker and more accurate reduction in
loss. This resulted in a decreased number of epochs required
for convergence. We settled on a learning rate of 0.001 after
experimenting with different values. Higher learning rates
were ineffective due to our small pixel values. Lower rates,
on the other hand, resulted in excessively slow training
because of the large size of the image slice (5 × 1300 ×

1300). Thus, we opted for the lowest effective learning rate
that consistently delivered satisfactory results. The model
was trained on an HPC node equipped with two Nvidia
V100 GPUs, each with 32 GB of memory. The overall steps
employed in this study to train and validate the RDU-Net
model are depicted in Fig. 3 and Fig. 4.

E. EVALUATION STRATEGY
The evaluation of the RDU-Net-driven MAR algorithm
involves two distinct phases: validation using a dataset
containing only metal inserts, and validation using a dataset
encompassing both materials and metal inserts. The initial
validation of the first dataset includes the analysis of images
across five discrete energy bins, referred to as ‘‘Energy
Analysis’’. The second evaluation of the second dataset
involves the utilization of density images, identified as
‘‘Material Analysis.’’

1) ENERGY ANALYSIS
Energy analysis of the obtained results was performed using
four techniques. The spectral response of the first validation
dataset (Fig. 2 (i)) was analyzed using line profiles (with a
length of 30mm) through the center of the inserts. These lines
were consistently positioned across all five energy bin images
for input, simulated, and output images, see Fig. 6 (a,e).
Cumulative histograms for the six regions of interests (ROIs),
as indicated in Fig. 7 (a), across all five energy bins were
plotted to evaluate the distribution of the linear attenuation
values in input, simulated, and output images.

For the statistical assessment, SNR and RMSE were
calculated within the same six ROIs using (3) and (4)
respectively. SNR represents the ratio between the mean
attenuation and the standard deviation values inside the ROI.
A higher SNR indicates that the signal is more prominent
relative to the noise, which generally corresponds to a clearer
and more accurate representation of the imaged structures.

SNR =
µ

σ
(3)

The RMSE measures the square root of the average of
the square error between the corresponding values of the
input and simulated images and between the output and the
simulated images. It is a standard measure for the differences
between values of inputs and outputs with respect to the
simulated images. A lower RMSE value is indicative of more
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FIGURE 5. Illustration of the validation dataset shown in Fig. 2(i). (a) Input images acquired at 118 kVp and 80 µA
across five energy bins. (b) simulated images created using mathematical simulation to generate artefact-free
reference images. (c) output images are the corrected input images (from (a)) using the proposed RDU-Net
model. The grayscale bar represents the linear attenuation coefficient range from 0 to 0.3 cm-1concatenation. The
label ‘S’ and ‘Al’ refers to steel and aluminium respectively.

optimal results.

RMSE =

√√√√1
n

n∑
i=1

(xi − yi)2 (4)

where:
• xi and yi are the corresponding pixel values of the
original and reconstructed images.

• n is the total number of pixels in the image.
The structural similarity index (SSIM) (5) was used to
quantitatively evaluate the similarity across the entire scanned
phantom, as shown in Fig. 8 (d). The SSIM measures
the structural similarity, luminance, and contrast between
two images to provide a value between −1 and 1; where
1 indicates perfect similarity.

SSIM (x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µx

2 + µy
2 + C1

) (
σx2 + σy2 + C2

) (5)

where:
• x and y are the two compared images.
• µx and µy are the mean attenuation values of the ROIs
in images x and y.

• σx
2 and σy

2 are the variances of the attenuation values
of the ROIs in images x and y.

• σxy is the covariance of x and y.
• C1 and C2 are constants to stabilize the division with a
weak denominator.

A standard independent-2 sample t-test, that assumes equal
population variances, was performed on the following three
metrics of evaluation in order to calculate the p-values and
asses if the observed change was significant. A comparative
study was conducted to ascertain the performance of the

proposedmodel against two state-of-the-art machine learning
algorithms, U-Net [50] and VGG-16 [52]. Both U-Net and
VGG-16 have been extensively used for image recognition
and segmentation tasks in medical imaging [53], [54], [55].
All three models were trained for 200 epochs on the same
training dataset. The performance was quantitatively assessed
using Peak Signal-to-Noise Ratio (PSNR), SSIM and RMSE.
These metrics were then used to evaluate and compare the
results of each model.

2) MATERIAL ANALYSIS
The material analysis was conducted using the validation
dataset that contain materials and metal inserts (as shown in
Fig. 2 (j)). The evaluation was performed using the effect of
MAR algorithm on material identification and quantification
obtained through MD on CT images. All energy images
were converted to material density images using vendor-
provided MARS-FASTMD v1.4 software. The software uses
the basis vectors and the linear least squares estimation
to predict the material combinations and concentrations
from the attenuation profiles [30]. Additional details on
Mars MD can be found in [56]. The MD algorithm was
utilized to decompose input and output images, both with
and without MAR algorithm, into HA and iodine density
images. The QRM phantom contained two concentrations
of HA (201.4 and 406.9 mg/cm3) and iodine (9.66 and
14.56 mg/cm3), along with water and muscle. Material
decomposition were quantitatively assessed using Python
3.10.12. The sensitivity was determined by comparing voxel
counts in a ROI for the target material in density images
against ground truth energy images. The specificity was
evaluated for the entire density image ROI against the target
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FIGURE 6. Depiction of line profiles passing through the center of metal inserts. The line profiles of 30 mm in length (illustrated in red
color in (a) and (e)) show the assessment of linear attenuation profiles and cupping artefacts in the input, simulated, and output images
across the five energy bins of the validation datasets (shown in Fig. 5).

FIGURE 7. The Histogram analysis of the validation dataset shown in Fig. 5. (a) Six Region of Interests, indicated by the yellow
circles, were used to plot the cumulative histograms of pixel values of the input, simulated, and output images across five energy
bins (b-f).

TABLE 2. Statistical results of evaluation metrics: SNR (signal-to-noise ratio), RMSE (root mean square error), and SSIM (structural similarity index) with
respect to simulated images.

material ROI. The comprehensive quantitative assessment
encompassed additional metrics, including accuracy, posi-
tive predicted value (PPV), and negative predicted value
(NPV).

III. RESULTS
A. ENERGY ANALYSIS
In this section, we present the results of the energy analysis
using our proposed machine learning model. Fig. 5 shows the
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FIGURE 8. The Evaluation metrics for the MAR algorithm. (a) The Region
of Interests (ROIs) used for SNR and RMSE calculations. (b) Graph for
input and output SNR and (c) RMSE values of input to output calculated
with respect to the simulated images. (d) The ROI for SSIM calculation,
and (e) SSIM of the input and output images with respect to simulated
images.

validation dataset we used for this analysis. The input images
included various prominent artefacts including streaking,
increased noise, as well as deep ring artefacts that were
enhanced in the presence ofmetals. The qualitative evaluation
of the output images, after the application of MAR, shows
a considerable decrease in these artefacts. Nevertheless,
a subtle spatial distortion was observed in the output images,
particularly in regions impacted by ring artefacts and in close
proximity to metals. However, the extent of this distortion
progressively diminishes from Fig. 5 (c1) to (c5) as the energy
level increases.

Fig. 6 illustrates the line profiles of the linear attenuation
coefficient across both aluminum and steel metal inserts. The
line profiles show gross overestimation of linear attenuation
coefficients at the edges of the metal inserts, which can
be observed as two steep peaks seen in the line profiles
of Fig. 6 (b) for aluminium and Fig. 6 (f) for steel.
Furthermore, it is noticeable that this overestimation is
particularly pronounced in steel, which consistently displays
elevated levels of noise even at higher energies. In contrast,
for aluminum, the height of the peaks diminishes, indicating a
reduction in artefacts and noise compared to steel. Fig. 6 (d,h)
show how the utilization of the RDU-Net model eliminates
metal artefact, reduces the noise, and produces sharper edges.

Fig. 7 demonstrates the spread of pixel values along the
phantom body. The histogram analysis reveals consistently
narrower spreads in the output images, indicating lower noise
effects compared to the input images.

Fig. 8 shows the graphical representation of the evaluation
metrics, while Table. 2 provides the quantified values.
Fig. 8 (a) shows the ROIs that were selected in order to
calculate SNR and RMSE results. SNR results, calculated for
the input and output images across the five energy bins, are
shown in Fig. 8 (b). Furthermore, Fig. 8 (c) and (e) show
the comparison of RMSE and SSIM values, respectively,
between input and stimulated images, as well as between
output and simulated images. A student t-test was performed
on these results and demonstrated significant changes with
p-values < 0.0001.
Table 3 demonstrates the results of the comparative study,

revealing the superior performance of the proposed RDU-
Net model. The RDU-Net model surpasses the other two
state-of-the-art models (U-Net and VGG-16) in all metrics
across all energy bins. This highlights its increased ability to
efficiently handle spectral data, significantly reducing noise
and artefacts simultaneously across all energy bins.

B. MATERIAL ANALYSIS
In this section, we present the results of the material analysis
using our proposedmachine learningmodel. Fig. 9 (b) and (c)
show the phantom material density images of both HA and
iodine without MAR. On the other hand, Fig. 9 (f) and (g)
show the phantom material density images of HA and iodine
after the application of the proposedMAR algorithm. Follow-
ing the implementation of MAR algorithm, an improvement
in the accuracy of the MD was observed. Artefacts misclassi-
fied as HA and iodine were properly identified and corrected
after the application of MAR. In Fig. 9 (d) and (h), the
voxel-wise distribution of HA and iodine is depicted based
on known concentrations, with and without MAR algorithm,
utilizing the box and whiskers plot. Smaller size of these plots
for both materials highlight reduction in the material density
distributions when MAR algorithm is applied. Performance
parameters including, sensitivity, specificity, accuracy, NPV,
and PPV for the material density images of HA and iodine,
with and without MAR are shown in Table 4.

IV. DISCUSSION
The proposed RDU-Net MAR algorithm in this study is
specifically designed to correct multi-energy SPCCT images.
It capitalizes on the inherent artefact reduction capabilities
of SPCCT at the data acquisition level and during the
reconstruction algorithms, especially in higher energy bins.
Our methodology leverages these inherent benefits of the
image domain, resulting in increased algorithm efficiency
and superior outcomes. Overall, the RDU-Net exhibits good
performance across all evaluated metrics, as demonstrated in
the results section. It effectively mitigates artefacts induced
by metallic objects while accurately preserving multi-energy
attenuation characteristics. This capability ensures the reten-
tion of spectral data integrity and the post-artefact correction.
The algorithm was evaluated in the energy and material
domain to quantitatively assess its effectiveness.
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TABLE 3. Qualitative Assessment of RDU-Net, Unet, and VGG16 across the five energy bins. The assessment was conducted on the validation dataset in
Fig. 5. The best results for each assessment are highlighted.

FIGURE 9. The results of the material analysis after using MAR algorithm. (a) shows the first energy bin image (7-40 keV) obtained from
the SPCCT containing aluminium and material inserts. (b) and (c) show the material density images of hydroxyapatite (HA) and iodine
obtained from the image shown in (a). (d) shows the box whiskers plot for HA with and without MAR. (e) shows the output obtained after
MAR on (a). (f) and (g) show the material density images of HA and iodine-density images with MAR. (h) shows the box whiskers plot for
iodine with and without MAR. The materials labels are ‘Al’ for aluminium, HA200 and 400 are for hydroxyapatite concentrations of
201.4 and 406.9 mg/cm3), respectively. I-10 and I-15 refers to iodine concentrations of 9.66, and 14.56 mg/cm3, respectively.

TABLE 4. Material Identification (sensitivity, specificity, accuracy, negative predictive value (NPV), and positive predictive value (PPV)) and Quantification
(RMSE) analysis for material decomposition of hydroxyapatite (HA) and iodine(I) with and without metal artefact reduction (MAR), in the presence of
aluminium insert. RMSE was estimated as a percent of known concentrations. ‘‘TP’’ stands for true positive values, ‘‘TN’’ stands for true negative values,
‘‘FP’’ stands for False positive values, and ‘‘FN’’ stands for false negative values.

As illustrated in Fig. 5 (a), input images show significant
streaking and overestimation in the attenuation coefficients
across all energy bins. Moreover, an increase in the depth of
ring artefacts was also observed, which is more prominent
in the proximity of the metal inserts. Fig. 5 (c) shows the

corrected images resulted from the proposedMAR algorithm.
The visual analysis of the two images shows a reduction in
metal artefacts, ring artefacts, and noise levels.

In Fig. 6 (b) we can observe that aluminium has
considerably less NLPV and cupping artefacts in the higher
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energy bins as the peaks edges of the aluminium profile nearly
vanish in these bins. Steel however, hasmuchmore prominent
artefacts which did not insignificantly decrease at higher
energies, as can be seen in Fig. 6 (f). Additionally, it was
observed that the mean linear attenuation coefficient of the
region containing steel increased with the increasing energy
level, primarily due to the cupping artefact. The pronounced
artefacts observed in steel arise mainly from its substantially
higher density, 7.98 g/cm3, in contrast to the comparatively
lower density of aluminium, 2.71 g/cm3. Nevertheless, the
application of MAR algorithm effectively eliminates most of
artefacts including NLPV, cupping artefacts, as well as noise
for both metals, as shown in Fig. 6 (d,h).
Fig. 7 illustrates this observation, indicating that although

the mean linear attenuation values of the output images
closely match those of the simulated images, there is a
consistent reduction in the spread or width of the histogram.
This indicates that the algorithm corrects the images without
affecting the attenuation profiles, thus maintaining the
integrity of the extracted data. In Fig. 8 (b), the SNR of
the output images is improved, indicating substantial noise
reduction following the MAR algorithm’s application. The
lower RMSE (Fig. 8 (c)) suggests closer resemblance to
artefact-free simulated images. Additionally, higher struc-
tural similarity (Fig. 8 (e)) compared to input images indicates
improved preservation of spatial and attenuation profile
integrity. This shows that the algorithm maintains the spatial
and attenuation profile integrity while correcting the artefacts
from the scan images.

Table. 3 shows that the RDU-Net outperforms the other
two models across all metrics. However, the most significant
change observed is in the RMSE values, where RDU-Net
achieves significantly lower values. This indicates that
the RDU-Net model not only achieves good structural
similarity but also preserves the linear attenuation values,
thereby retaining the spectral attenuation profiles of the scan
effectively.

Furthermore, we conducted material analysis to assess
the impact of MAR algorithm on MD. Fig. 9 (b) and (c)
illustrate substantial loss of material information and
miss-identification that occurs as a result of streaking and
noise. However, after applying MAR algorithm, we observe
an improvement in the density images of both HA and iodine,
Fig. 9 (f) and (g), which shows more accurate material identi-
fication and decomposition. The box plot graphs for HA and
iodine in Fig. 9 (d,h) similarly demonstrate these observations
as the variations in the calculated densities for both materials
decrease. This is evident from the reduction in the size of the
box plots after implementing MAR algorithm.Moreover, the
plot also reveals significant overlap between the box plots
for both HA and iodine before MAR, leading to serious
misquantification. Following the application of MAR, the
quantification is improved and becomes more accurate with
the median positioned closer to the actual values. Addi-
tionally, the box size is decreased in both plots, indicating
enhanced accuracy in measurement. Furthermore, Table 4

provides statistical quantification of these enhancements,
revealing improvements in all evaluation metrics following
the implementation of MAR algorithm. The sensitivity and
specificity for the detected concentrations of HA and iodine
density images indicate their improved identification and
quantification. The increased accuracy of both HA and iodine
signifies a higher proportion of correct classifications. Even
though the NPV remained the same for HA, it was increased
for iodine, which indicates a better ability to correctly identify
the absence of the materials. On the other hand, the PPV was
increased significantly for both HA and iodine, suggesting a
higher likelihood of correct identification when the materials
are present. These improvements collectively highlight the
enhanced performance of the algorithm in increasing the
detection and quantification of materials by reducing noise
and artefacts.

The present study has a few limitations. One of the
primary challenges encountered early on was computational
limitations. The photon counting CT data was substantial,
with each slice measuring 5 × 1300 × 1300 in dimensions.
This necessitated a sophisticated and complex algorithm
capable of detecting essential features. However, striking a
balance between complexity and computational feasibility
was crucial. Highly complex models strained our computing
resources, affecting achievable accuracy. Managing model
complexity and computational efficiency was challenging,
sometimes requiring prioritization of efficiency over maxi-
mizing accuracy. Another prominent limitation is the reliance
of the proposed framework on training datasets, restricting
the model’s performance to the specific data it has been
trained on. Currently, the training data is derived solely from
phantoms, providing information on a singular regular shape,
thus rendering the model less effective when confronted
with irregular shapes. The machine used in this study is
a small-bore micro SPCCT, which lacks the capability
to perform complex scans that simulate clinical settings.
Additionally, due to its novelty, there is limited available data
for SPCCT technology. To address this, future efforts are
required to focus on the creation of a comprehensive biolog-
ical training dataset that encompasses diverse metal shapes,
placements, and types. This also necessitates the development
of a sophisticated simulation framework for SPCCT capable
of generating artefact-free images of complex geometries,
a task beyond the capabilities of current simulation methods.
Another limitation is that the current simulation process
involves manual input for metal placements in artefact-free
images, a difficult and time-consuming process. Due to this,
the performance of the algorithm has not yet been validated
on biological datasets, posing a challenge in its application
to clinical settings. However, this is future work and we will
conduct more studies in this regard for further optimization
of our proposed framework.

V. CONCLUSION
The proposed RDU-Net has demonstrated promising results,
exhibiting improvements in artefact-affected images across
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all evaluation metrics. This advancement represents a signif-
icant step towards the development of a commercially viable
MAR algorithm for multi-energy SPCCT. The algorithm not
only effectively reduce artefacts but also retains compre-
hensive spectral information from the scans. This capability
holds immense potential for facilitating advanced analyses,
as evident from the results of MD presented in the paper.
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