
IEEE Power & Energy Society Section

Received 23 July 2024, accepted 2 August 2024, date of publication 7 August 2024, date of current version 16 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3439693

Modeling Multi-Temporal Correlation of PV
Stations Output via Improved Nonparametric
Disaggregation Method in Power System
Reliability Evaluation
FEI FAN 1, XIANGJIE ZHOU 1, LINGZHI ZHANG1, ZHENJIANG HE2, WEIXIANG XU2,
AND YUAN ZHAO 3, (Member, IEEE)
1Hunan Vocational College of Railway Technology, Zhuzhou 412006, China
2State Grid Zhuzhou Power Supply Company, Zhuzhou 412000, China
3State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400030, China

Corresponding author: Xiangjie Zhou (xiangjiez2024@163.com)

This work was supported in part by the Scientific Research Fund of Hunan Provincial Education Department under Grant 22C1117, in part
by the Science and Technology Innovation Program of Hunan Province under Grant 2022RC1097, and in part by Hunan Provincial Natural
Science Foundation of China under Grant 2023JJ50209 and Grant 2022JJ60075.

ABSTRACT The accurate modeling of multi-temporal correlation of photovoltaic stations output is
important to achieve the precise power system reliability. However, the existing studies is mainly focused
on the hourly temporal correlation between adjacent interval outputs of photovoltaic station. In this paper,
a novel multi-temporal correlation modeling method for photovoltaic station output is proposed by using an
improved nonparametric disaggregation (INPD) technique, and the multi-temporal characteristic represent-
ing the interactive correlation between the total daily output and hourly temporal outputs are deeply explored.
Moreover, a three-stage sampling method for the INPD based power system reliability evaluation is further
presented considering the multi-temporal correlation of photovoltaic stations output, which includes 1) the
random sampling of daily photovoltaic station output; 2) the random disaggregation of daily output to the
hourly temporal outputs and 3) the random sampling of power device. Finally, several numerical tests are
conducted for a modified IEEE-RTS79 to validate the proposed method.

INDEX TERMS PV stations, improved nonparametric disaggregation, multi-temporal correlation, reliability
assessment.

I. INTRODUCTION
Renewable energy sources has been increasingly developed
in the past few decades across the world [1], [2]. Among all
possible renewable energy sources, photovoltaic (PV) gener-
ation [3] is considered the most promising resource for power
system despite its randomness, which is addressed by using
energy storages [4]. Given that the random fluctuations of PV
power has brought about an increasing challenge to the power
system operational reliability, a rational and precise probabil-
ity model for multi-temporal correlation of solar irradiance is
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crucial to achieve the accurate reliability evaluation of power
system incorporating photovoltaic stations [5].

The solar irradiance mainly determined by the earth’s
rotation and climate factors, are not only random but also
correlated at different moments. In the literature, a lot of
probabilistic model have been developed to account for the
random and correlated attributes of solar irradiance, and
they are approximately classified into two categories. The
first category is concentrated on the uncertainty modeling,
and various probabilistic models for solar irradiance like
the parameter fitting methods based on normal, lognormal,
Weibull, extreme value (Type I) and Beta distributions [6],
[7], [8], have been developed. The validity of such models
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is often checked via goodness-of-fit, but unfortunately, there
does not exist a universal parameter distribution which
is effective for any application scenarios. To address the
demerit of parametric distribution, a data-driven nonpara-
metric kernel density estimation technique is employed to
establish a PV probabilistic model without relying on any
prior knowledge [9]. With the development of artificial intel-
ligence(AI) algorithm, a novel convolution neural network
framework [10] has been presented to model the uncertainty
of the solar irradiance, and a chaos GA/PSO hybrid method
was applied to demonstrate the superiority through all the
simulation test results. The above models are useful but not
applicable for the time-dependent probabilistic simulation
analysis of power system, because only the uncertainty of
solar irradiance at a certain moment or during a time interval
(like a day, a month or a year) are considered. To conduct
the time-dependent probabilistic simulation analysis, the tem-
poral correlation besides the uncertainty are needed to be
considered. Therefore, the second category is focused on the
time correlation modeling. The auto-regressive moving aver-
age (ARMA) model of hourly solar irradiance is developed,
which combines a deterministic model of solar radiation
with stochastic simulations [11]. In addition, some studies
have tried to combine the Beta distributions of hourly solar
irradiance or hourly diffuse fraction kh [12], [13], but fail
to depict the time-series correlation of solar irradiance. The
temporal variation rule of solar irradiance is described as a
time function and a temporal dynamic probability distribution
model of solar irradiance is built by superimposing the corre-
sponding stochastic fluctuations [14], however a restriction
of this method is that a fixed correlation matrix is used.
To overcome this demerit, a conditional probability method
was proposed to capture the randomness, chronology and the
correlations among PV power outputs [15]. This improved
method is successful for the random variables with temporal
correlation, but ignores the summation constraint between the
total daily solar irradiance and the hourly solar irradiance.
Besides, the time series analysis for solar irradiance based
on machine learning methods are studied, but its accuracy
may be difficult to meet the requirement of solar irradiance
prediction [16].

The summation correlation reflects the inherent relation-
ship between the total solar irradiance during a time interval
and the respective solar irradiance at eachmoment of this time
interval, e.g., the relationship between the annual irradiance
and monthly irradiance, the monthly irradiance and daily
irradiance, or the daily irradiance and hourly irradiance. The
semi-sine model that distributes the daily irradiance hour by
hour is proposed in [17] to address the summation correlation,
but cannot accurately reflect the stochastic fluctuation law.
As similar as the semi-sine method, the disaggregation theory
has been adopted to develop a parametric or nonparamet-
ric probability model in many fields, including hydrology
stochastic simulation [18], [19], loadmodeling [20], andwind
speed modeling [21]. Besides, a parametric disaggregation

TABLE 1. Taxonomy table reviewing recent advances in probabilistic
modeling of irradiance.

model is developed to model the summation relationship
between the total daily irradiance to hourly irradiance [22],
but encountering the demerit of parametric estimation. The
taxonomy for similar studies on solar irradiance probabilistic
modeling are shown in Table 1.
This paper proposes a novel multi-temporal correlation

modeling approach based on an improved nonparametric
disaggregation (INPD) method for power system reliabil-
ity assessment. This proposed method can capture the
multi-temporal correlation between the total daily irradiance
and hourly irradiance, and the generated chronological curve
of PV station outputs is less biased from the actual curves.
The main contributions of this paper are listed below,

1) A novel multi-temporal correlation analysis method
concerning photovoltaic station output within an INPD
framework is proposed. This approach allows for the identi-
fication of correlations between the total daily irradiance and
hourly prediction values.

2) A refined three-stage sampling method for elec-
trical power system reliability assessment considering
the multi-temporal correlation of photovoltaic stations is
developed.

The rest of this paper is organized as follows. The prob-
ability model of daily irradiance is proposed in Section II,
and the INPD model for hourly irradiance is established in
Section III. The three-stage stochastic sampling technique of
hourly irradiance time series is presented in Section IV. The
test results and practicality analyses are shown in Section V,
followed by conclusions in Section VI.

II. CKDE OF DAILY SOLAR IRRADIANCE
Let It represents the solar irradiance on the t-th day, measured
in W/m2. Daily irradiance is random because of uncertain
environmental factors like cloud changes. Besides, daily irra-
diance between two adjacent days is related to each other.
In other words, the daily irradiance at the prior day affects
that at the following day. To consider the randomness and
correlation of daily irradiance simultaneously, this paper con-
structs the conditional probability density function of daily
irradiance according to the conditional probability theory,
which can be built as:

f (It |It−1 ) =
f (It , It−1)
f (It−1)

=
f (I t )
f (It−1)

(1)
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where f (It , It−1) is the joint probability density function of
It and It−1, and f (It−1) is the marginal probability density
of It−1. Let vector It = [It , It−1]T denote the adjacent daily
irradiance and n day samples are used, then Iti = [Iti, Iti−1]T

is the i-th sample of It . Moreover, the sample sizes of It−1
and It are n-1, respectively.

The bivariate kernel density estimation and the univariate
kernel density estimation are used to evaluate f (It , It−1) and
f (It−1), respectively. The Gaussian function is selected as the
kernel function in this paper. In addition, let

⌢

f (It−1) and f̂ (I t )
denote the kernel estimation of f (It−1) and f (It ), respectively.
They are estimated as [23]:

⌢

f (It−1)

=
1

(n− 1)

n−1∑
i=1

1
(2πht−1)1/2

· exp

(
−

(It−1 − Iti−1)
2

2ht−1

)
(2)

⌢

f (I t )

=
1

(n− 1)

n−1∑
i=1

1

(2π)dt /2 det(H t )1/2

× exp

(
−

(I t − I ti)T H−1
t (I t − I ti)
2

)
(3)

where dt = 2 denotes the dimension of vector It , det(·) is the
determinant operator, ht−1 is the bandwidth of the univariate
kernel density estimation

⌢

f (It−1), and Ht is a symmetric
positive definite dt× dt bandwidth matrix of the bivariate
kernel density estimation f̂ (I t ).
According to the conditional kernel density estimation

concept [24], formula (1) can be expressed as shown in (4):

⌢

f (It |It−1 ) =

⌢

f (It , It−1)
⌢

f (It−1)
=

⌢

f (I t )
⌢

f (It−1)
(4)

The expression for the conditional kernel density estimate
of the daily irradiance can be derived by substituting (2)
and (3) into (4), whose computational complexity lies in
finding the bandwidth matrix Ht , while the bandwidth ht−1
is only a special case of this matrix solution. Therefore, the
bandwidth matrix Ht is the key to an accurate estimation of
the kernel density estimation. Several optimization methods
for choosing optimal values of the bandwidth matrix are
available in the literature. This paper uses the asymptotic
mean integrated squared error (AMISE) between estimated
function f̂ (I t ) and real function f (It ), the AMISE optimal
bandwidth matrix being obtained by a minimization of the
following function:

minAMISE =
1

n− 1
(4π )−dt /2 det(H t )−1/2

+
1
4
d2t ·

∫
tr2
{
H t f ′′(I t )

}
dI t (5)

where tr{·} is the trace operator, and f ’’(It ) is the
second-order partial derivatives of the unknown function

f (It ). If the bandwidth matrix is rewritten as [25]:

H t = λ2t St (6)

Then (5) is minimized at optimal scale parameter λt , obtained
by [25]:

λt =

[
(n− 1)dt (4π )dt /2R(f )

]−1/(dt+4)
(7)

where R(f ) =
∫
tr2
{
St · f ′′(I t )

}
dI t , and St is the sample

covariance matrix of the variable set It , defined as:

St =

[
Sh Shq
Shq Sq

]
(8)

Here Sh is the sample variance of It , Sq is the sample varian-ce
of It−1, and Shq is the sample covariance of It and It−1. Sub-
stituting (6) and (7) into (3), we have:

⌢

f (I t ) =
1

(n− 1)

n−1∑
i=1

1

(2π)dt /2 λ
dt
t det(St )1/2

· exp

(
−

(I t − I ti)T S−1
t (I t − I ti)

2λ2t

)
(9)

In the same way, if the bandwidth ht−1 is rewritten as:

ht−1 = λ2t−1Sq (10)

Then, optimal scale parameter λt−1 can be determined using
the above method as described in (5) - (7). Substituting (10)
into (2), we have:

⌢

f (It−1) =
1

(n− 1)

n−1∑
j=1

1

(2π)1/2 λt−1 det(Sq)1/2

× exp

(
−

(
It−1 − Itj−1

)2
2λ2t−1Sq

)
(11)

Therefore, the derivation of
⌢

f (It |It−1 ) is as follows. Since
the sample variance of It−1 is generally non-zero, the elemen-
tary transformation can be applied to St .

St =

[
1 ShqS−1

q
0 1

]
×

[
Sh − S2hqS

−1
q 0

0 Sq

]
×

[
1 0

ShqS−1
q 1

]
(12)

Let At = Sh-S2hqS
−1
q , then the determinant of St is calculated

as follows:

det(St ) = det(Sq) det(At ) (13)

According to the matrix inverse formula and matrix
algorithm rules, and substituting (9) and (11) into (4), the
CKDE of daily irradiance can be derived as follows:

⌢

f (It |It−1 ) =

⌢

f (I t )
⌢

f (It−1)
=

λt−1

(2π)1/2 λ2t det(At )1/2

×

n−1∑
i=1

ωti exp
(

−
(It − Bti)2

2λ2t At

)
(14)
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where

Bti = Iti + ShqS−1
q (It−1 − Iti−1) (15)

ωti =
Cti

n−1∑
k=1

Ctk

(16)

Cti =

exp
(

−
(It−1−Iti−1)

2

2λ2t Sq

)
n−1∑
j=1

exp
(

−
(It−1−Itj−1)

2

2λ2t−1Sq

) (17)

n−1∑
i=1

ωti = 1 (18)

The conditional probability density estimate in (14) can
be considered to be a mixture of n-1 univariate Gaussian
functions (called kernels), each kernel having a mean equal
to the i-th sample value Bti, a variance equal to λ2t At , and a
weight equal to ωti, which depends directly on the distance
between It−1 and the i-th historical sample Iti−1.

III. INPD OF HOURLY SOLAR IRRADIANCE
Let vector rt = [rt,1, rt,2, . . . , rt,d ]T represent the hourly solar
irradiance on the t-th day, and d denotes the number of hours
in a day. n day samples are used and the i-th sample of hourly
irradiance is ri = [ri1, ri2, . . . , rid ]T , i= 1,2,. . . , n. Therefore,
the additive correlation between daily irradiance and hourly
irradiance can be defined by

It = rt,1 + rt,2 + · · · + rt,d (19)

The hourly irradiance rt is not only subject to the additive
constraint with the daily irradiance It , but also influenced
by the preceding day’s hourly irradiance rt−1. According to
the known rt−1 and It , the conditional probability density
function f (rt |rt−1, It ) can be built as follows:

f (rt |rt−1, It ) = f (rt |V t ) =
f (rt ,V t )
f (V t )

(20)

where Vt = (rt−1, It )T, f (rt , Vt ) is the (2d + 1)-dimensional
joint probability density function of rt and Vt , and f (Vt ) is
the (d + 1)-dimensional marginal probability density of Vt .

The conditional probability density in (20) can be specified
through a linear transformation of the vector rt into a new
vector Yt = (yt,1, yt,2, . . . , yt,d )T, defined as

Y t = Rrt (21)

where R is a unit orthogonal matrix, i.e. RT = R−1. Let
R= (e1, e2,. . . , ed )T and ed = (1/

√
d ,1/

√
d, . . . , 1/

√
d),

then row vector ej(j =1,2,. . . , d-1) can be obtained by the
Gram-Schmidt orthogonal transformation:

e′j = iTj −

d∑
k=j+1

(ek · ij)ek (22)

ej = e′j
/∣∣e′j∣∣j = d − 1, d − 2, · · · , 1 (23)

where i1 = (1,0,. . . ,0)T , i2 = (0,1,. . . ,0)T ,. . . , id =

(0,0,. . . ,1)T , and |ej′ | is the 2-norm of ej′. According to (21),
yt,d = (rt,1 + rt,2+. . .+rt,d )/

√
d = It /

√
d . Let It ′ = yt,d =

It /
√
d , Ut = (yt,1, yt,2, . . . , yt,d−1)T , thus Yt = (yt,1, yt,2, . . . ,

yt,d )T = (UTt , It ′ )
T , and we can transform (20) into

f (U t
∣∣U t−1, I ′t ) = f (U t

∣∣V ′
t ) =

f (U t ,V ′
t )

f (V ′
t )

(24)

whereVt ′ = (Ut−1, It ′ )T , and the dimension of f (Ut ,Vt ′ ) and
f (Vt ′ ) is 2d-1 and d , respectively. According to multivariate
kernel density estimation and the above bandwidth matrix
method, f (Ut , Vt ′ ) and f (Vt ′ ) can be estimated as
⌢

f (U t ,V ′
t )

=
1
n

n∑
i=1

1

(2πλ2UV ′ )(2d−1)/2 det(S)1/2

× exp

{
−

(
U t − U i
V ′

t − V ′
i

)T
S−1

(
U t − U i
V ′

t − V ′
i

)/
2λ2UV ′

}
(25)

⌢

f (V ′
t )

=
1
n

n∑
i=1

1

(2πλ2V ′ )d/2 det(SV ′)1/2

× exp

−

(
V ′

t − V ′
i
)T S−1

V′

(
V ′

t − V ′
i
)

2λ2V ′

 (26)

and

S =

[
SU SUV ′

STUV ′ SV ′

]
(27)

where λUV ′ is the optimal scale parameter for
⌢

f (U t ,V ′
t ), λV′

is the optimal scale parameter for
⌢

f (V ′
t ),and the i-th sample

Vi′ = (Ui−1, Iti′ )T and Ui (i = 1,2,. . . , n) can be generated
from the linear transformation of ri. Besides, S is the sample
covariance matrix of (Ut , Vt ′ ), SU is the (d-1)×(d-1) sample
covariance matrix of Ut , SUV ′ is the (d-1)×d covariance
vector for Ut and Vt ′, SV ′ is the d×d sample covariance
matrix of Vt ′.
Similarly, since the sample covariance matrix of Vt ′ is

generally non-zero, the elementary transformation can be
applied to S.

S =

(
Ed−1 SUV ′S−1

V ′

0 Ed

)
×

(
SU − SUV ′S−1

V ′ STUV ′ 0
0 SV ′

)
×

(
Ed−1 0

S−1
V ′ STUV ′ Ed

)
(28)

where Ed−1 is the (d-1)-order identity matrix, Ed is the d-
order identity matrix.

LetA = SU−SUV ′S−1
V ′ STUV ′ , thusA is a symmetric matrix,

i.e. AT = A, and the determinant of S can be calculated as
follows:

det(S) = det(SV ′ ) det(A) (29)
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According to the block matrix inversion formula and
matrix algorithm rules, the INPD of hourly irradiance can be
derived as follows:

f̂ (U t |V ′
t ) =

f̂ (U t ,V ′
t )

f̂ (V ′
t )

=
λdV ′

(2π)
(d−1)/2

λ2d−1
UV ′ det(A)1/2

×

n∑
i=1

ωi exp

(
−

(U t − Bi)T A−1 (U t − Bi)
2λ2UV ′

)
(30)

where

Bi = U i + SUV ′S−1
V ′
(
V ′

t − V ′
i
)

(31)

ωi =
Ci
n∑

k=1
Ck

(32)

Ci =

exp
(

−
(V ′

t−V ′
i)T S−1

V′(V
′
t−V ′

i)

2λ2
UV′

)
n∑
j=1

exp
{
−
(
V ′

t − V ′
j
)T S−1

V ′
(
V ′

t − V ′
j
)/

2λ2V ′

}
(33)

n∑
i=1

ωi = 1 (34)

The
⌢

f (U t
∣∣V ′

t ) in (30) can be seen as a weighted sum of
n kernels each with mean vector Bi and covariance matrix
λ2UV ′A. Equation (32) and (33) show that the weight ωi
which only relies on the conditioning Vt ′ depends directly
on the distance between Vt ′ and the sample Vi′. Utilizing this
feature the sample can be easily generated by the following
three-stage sampling method.

IV. PROPOSED THREE STAGE SAMPLING METHOD
On the basis of the stochastic sampling technique of the
multivariate normal distribution [26], a three-stage sampling
method of the solar irradiance time series is developed using
the proposed conditional probability model. Stage 1 involves
the initialization of sample parameters, while stage 2 focuses
on generating random samples of daily irradiance using the
above CKDE model. Lastly, in stage 3, hourly irradiance
random samples are generated using the above INPD model.
The specific procedure for sampling is as follows:

Stage 1: 1) Generate the samples Iti and ri from the mea-
sured data of solar irradiance. 2) Use the linear transformation
in (21) to obtain the samples Ui and Vi′ = (Ui−1, Iti′ )T .
3) Compute St , S, λt , λt−1, λUV ′ and λV ′. 4) Generate At
and A from St and S, then use Cholesky decomposition to
get At = LtLTt and A= LLT .

Stage 2: 1) Let t = 2, and initialize It−1. 2) Given It−1,
calculate the weight ωti(i= 1,2,. . . , n-1) associated with each
sample Iti−1 by (16), and divide [0,1] into n-1 subintervals
where the length of the i-th subinterval is ωti. 3) Generate
a uniformly distributed sample x over [0,1], and select the
responsible kernel by this means: if the subinterval k contains

x, i.e.
∑k−1

i=1 ωti ≤ x≤
∑k

i=1 ωti, then the k-th kernel function
with mean Btk and variance λ2t At is selected. 4) Generate
a standard normally distributed random number Vk , then
calculate the conditioned It by It = Btk+ λtLtVk under the
known conditioning It−1. If t≤ 365 day, assign It to It−1 as a
new conditioning value and set t= t+1 to step 2); otherwise,
proceed to stage 3.

Stage 3: 1) Let t = 2, and initialize rt−1 by It−1. 2) Given
rt−1 and It , i.e. Vt ′, calculate the weight ωi(i =1,2,. . . , n)
associated with each sample Vi′ by (32), and divide [0,1] into
n subintervals where the length of the i-th subinterval is ωi.
3) Generate a uniformly distributed sample x over [0,1], and
select the responsible kernel by this means: if the subinterval
k contains x, i.e.

∑k−1
i=1 ωi ≤ x ≤

∑k
i=1 ωi, then the k-th

kernel function with mean vector Bk and covariance matrix
λ2UV ′A is selected. 4) Generate a (d-1)×1 standard normally
distributed random vectorQ, and calculate the conditionedUt
byUt = Bk+λUV ′LQ under the known conditioningVt ′, thus
rt = RTYt is achieved by Yt =(UTt , It ′ )T . If t ≤365 day, let
t = t+1 and go back to step 2); otherwise, exit.

V. CASE STUDIES
The hourly irradiance data of the Ashland and UO Solar
Awning installation in Eugene (called Eugene), provided by
the Solar Radiation Monitoring Laboratory at Oregon Uni-
versity in the US [27] from 2020 to 2022, are used to test the
practicality of the model proposed here, where the above two
PV stations are marked by Pv1 and Pv2. Then two 40 MW
Pv1 and Pv2 are added to bus 15 and bus 20 in the IEEE-
RTS79 [28] for power system with PV stations reliability
evaluation. Finally, the power output of a PV station is calcu-
lated using the relationship between the power output of the
PV station and solar irradiance, which is given by the solar
irradiance-to-energy conversion function ignoring the effect
of the size or type of the PV modules on the power out [29].
In the case, the unit solar irradiance in the standard envi-

ronment is set to 1000 W/m2, the specific solar irradiance is
taken as 150W/m2, and the forced outage rate and repair time
are assumed to be 0.12 and 60 hours, respectively.

A. PRACTICALITY ASSESSMENT OF THE MODEL
short sequence method [30] is adopted to test the practi-
cability of the model, which generates 900 sets of irradi-
ance sequences simulated using the nonrarametric model
described earlier. The length of each simulation set was cho-
sen to match the length of the measured data, ensuring that
the variability of sample statistics across these realizations
is representative of the sampling variability of the historical
data. Both models (CKDE of daily irradiance and INPD of
hourly irradiance) compared with the ARMA model men-
tioned above [11] were tested for their ability to reproduce
the following statistics of the historic data: mean; standard
deviation (Std ); coefficient of variation (Cv); lag 1 autocorre-
lation coefficient (R1); and cross correlation between hourly
irradiance. Besides, the probability-probability (P-P) plot and
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FIGURE 1. Box plot of the mean using hourly INPD and daily CKDE model
compared with the ARMA model at the Pv1 site.

FIGURE 2. Box plot of the Std using hourly INPD and daily CKDE model
compared with the ARMA model at the Pv1 site.

FIGURE 3. Box plot of the Cv using hourly INPD and daily CKDE model
compared with the ARMA model at the Pv1 site.

marginal density distribution curves will be used to test the
goodness-of-fit of the proposed model.

As used here, the simulated statistics of daily and hourly
solar irradiance for the proposed and compared models at the
Pv1 site are represented using box plots, which consist of a
box that represents 25% to 75% percentiles, a red line in the
center of the box that represents the median, and whiskers
that extend to the 5% and 95% percentiles. Similarly, The
observed statistics of daily and hourly solar irradiance at the
Pv1 site are denoted by the broken line and triangle labels.
Finally, the results are shown in Figures 1-4.

FIGURE 4. Box plot of the R1 using hourly INPD and daily CKDE model
compared with the ARMA model at the Pv1 site.

The hourly and daily mean, Std and Cv of the observed and
simulated irradiance are illustrated in Figures 1-3. As one can
seen from figures, the statistics of the measured data for the
proposed model fall within the range of the boxes, thus all
statistics were reproduced well by the proposed hourly and
daily irradiance model, which shows that differences between
data and model can be ascribed to sampling variability. But,
the historical statistics for ARMA model is outside the range
of the boxes, which indicates the parametric model does not
reproduce.

Figure 4 illustrates the R1 of the historical and simulated
samples from the proposed and compared models. It shows
that the proposed model reproduces this statistic well. This is
an important result as it denotes that longer-term dependence
is being properly represented. Besides, the aggregate daily
irradiance R1 for the observed and simulated samples is
presented from the CKDE model in the Figure. Note how
well the daily lag 1 correlation is simulated. This is also
an important result as the model has not been designed to
ensure the proper representation of dependence at the daily
timescale. However, the ARMA model is a linear model,
in which the auto-correlation of the simulated samples can
not be reproduced due to the inherent nonlinear characteristic
and time varying of solar irradiance.

To test the simulation effectiveness of the proposed model
on modeling the correlation between hourly irradiance, the
correlation coefficient matrices and its relative errors of
hourly irradiance at the Pv1 and Pv2 sites are calculated and
analyzed. The correlation coefficients shown in the upper
triangle of Tables 2 and 3 are calculated by using the observed
irradiance. The lower triangle of Tables 2 and 3 denote
the correlation coefficients calculated by using the simu-
lated irradiance. The percentages in the brackets in Tables 2
and 3 represent the errors of the indices. It can be seen
that the correlation coefficients calculated for the simulated
sequences of adjacent hourly irradiance from Pv1 and Pv2
sites exhibit a relatively small error compared to the results
obtained from measured data, controlled within 5%. Con-
versely, the errors of correlation coefficients for non-adjacent
hourly irradiance are relatively larger but still maintained
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TABLE 2. Correlation coefficient error matrix of hourly irradiance in Pv1.

FIGURE 5. P-P plots of INPD model at the Pv1 and Pv2 sites.

within a reasonable range of 10%. The results verify that the
proposed method effectively considers temporal correlations
between adjacent and nonadjacent hourly irradiance as well
as the additive correlation, resulting in improved simulation
accuracy.

Probability-Probability (called PP) plot will be used to
test the goodness-of-fit of multidimensional variables. In the
unit square shown in Figure 5, the abscissa represents the
cumulative empirical distribution values of hourly irradiance
obtained by the measured data, and the ordinate denotes
the cumulative distribution function values of the simulated
samples obtained using the proposed model. It can be seen
that the scatter sequence is basically located on the diago-
nal, which indicates that the proposed model has sufficient
fitting accuracy for the measured data and can better maintain
the probability distribution characteristics of the observed
samples.

Furthermore, the probability density distributions of hourly
and daily irradiance for the two PV sites estimated using the
actual measured data and the data sampled by the proposed
models are shown in Figures 6-7. It can be seen that the
probability distribution curves of hourly and daily irradiance
calculated by the proposed method can well track the prob-
ability density distribution curves of the measured sample
data, which once again indicates that the proposed model has
relatively high simulation accuracy.

FIGURE 6. Probability density curves of hourly irradiance at the Pv1 and
Pv2 sites.

FIGURE 7. Probability density curves of daily irradiance at the Pv1 and
Pv2 sites.

B. RELIABILITY ANALYSIS FOR POWER SYSTEM
WITH PV STATIONS
The IEEE-RTS79 with Pv1 and Pv2 is used to assess the
impact of PV station on power system reliability. Table 3
presents, for three cases, the reliability indices loss of
load probability (LOLP) and expected energy not supplied
(EENS) obtained from sequential Monte Carlo simula-
tion [31]. Case a shows the reliability indices before adding
the two PV stations, case b shows the reliability indices
of 2 × 40 MW PV stations added, and case c shows the
reliability indices with the same capacity of two traditional
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TABLE 3. Correlation coefficient error matrix of hourly irradiance in Pv2.

TABLE 4. Reliability indices in different cases.

TABLE 5. Reliability indices for different capacities.

units. Besides, the convergence criterion for all cases is
βEENS ≤ 5%.

As shown in Table 4, the LOLP index obtained from case
b results in a 17.08% decrease from 0.001112 to 0.000922,
and a 20.37% decrease in EENS indicator, indicating that
PV station can partially meet the energy demand of load
and improve system reliability. In case c, the LOLP and
EENS decreased by 45.41% and 50.39% respectively, due
to the stable output of traditional units, in contrast to the
random fluctuations observed in PV stations, which do not
generate electricity during nighttime. Therefore, traditional
unit contributes more to the system reliability than the PV
station at the same capacity.

Furthermore, the reliability indicators with different capac-
ities of two added PV stations obtained using the proposed
method are shown in Table 5. The reliability indicators
decrease with the increase of capacities of added PV sta-
tions. However, when the capacity of the PV station increases
to 200 MW, both LOLP and EENS remain larger than the
reliability index obtained by the same capacities of added
traditional units. This further means that the randomness of
PV station has a great impact on the system reliability.

VI. CONCLUSION
Compared with existing studies that focus on the self-
correlation or hourly correlation characteristic of PV station

output, this paper presents a novel solar radiation generation
model that successfully retains the multi-temporal correla-
tion of photovoltaic station outputs between daily irradiance
amount and hourly prediction value. And the hierarchical
global-to-local relations of photovoltaic station output can
also be guaranteed.

To verify its goodness, the proposed method compared
with ARMA model were tested for their ability to reproduce
the four statistics. Three tests, including correlation coef-
ficient matrices, P-P plot and probability distribution were
then performed for the practicality analysis. The test results
indicate that the simulated statistics for the proposed model
can be reproduced better than ARMA model, and that the
proposed model can also be suitable to the PV station output
with distinct patterns in uncertainty and multi-temporal cor-
relation. Finally, the proposed three-stage sampling method
was used to assess the reliability of power systemwith PV sta-
tions, which indicates that the proposed method can provide
a more accurate and reliable reliability index of the power
system.
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