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ABSTRACT In the field of super-resolution reconstruction, generative adversarial networks are able to
generate textures that are more in line with the perception of the human eyes, but low-resolution images
often encounter information loss and edge blurring problems in the process of reconstruction. In order
to solve this problem, this article proposed an image super-resolution reconstruction model based on an
enhanced attention mechanism and gradient correlation loss, which can better focus on important details in
low-resolution images, thus improving the quality of reconstructed images. Firstly, an enhanced attention
mechanism is proposed and incorporated into the generator model as a way to reduce the amount of
information loss during image feature extraction and retain more image details. Furthermore, this paper
proposed a gradient correlation loss function to maximize the correlation between the gradient of the
generated image and the gradient of the original image. Thus, the generated image is more realistic and
maintains a consistent edge structure. Finally, the experimental results on the standard dataset show that
compared with other representative algorithms, the proposed algorithm has achieved some improvement in
PSNR, SSIM, and LPIPS, which can verify the effectiveness of the algorithm.

INDEX TERMS Image reconstruction, super-resolution, enhanced attention mechanism, gradient correla-
tion loss function.

I. INTRODUCTION

Super-resolution reconstruction of images is a technique for
obtaining high-resolution images from single or multiple low-
resolution images. The image super-resolution reconstruction
technology is used to restore and reconstruct low-resolution
images, which can effectively improve the details and quality
of images. Super-resolution image reconstruction algorithms
can be roughly divided into three categories, interpolation-
based algorithms [1], reconstruction-based algorithms [2]
and learning-based algorithms [3]. The first two categories
belong to the traditional methods, which usually suffer from
the drawbacks of overall blurring of the images and serious
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lack of details. In recent years, with the development of
deep learning, learning-based super-resolution reconstruction
technology has gradually become a hot topic. Among them,
image super-resolution reconstruction methods based on con-
volutional neural network (CNN) and generative adversarial
network (GAN) are widely used because the reconstruction
performance of them is much better than the traditional
algorithms.

In 2014, Dong et al. [4] proposed the super-resolution
convolutional neural network (SRCNN), which used three
convolutional layers for reconstruction and greatly improves
the speed of reconstruction compared with traditional meth-
ods. In 2016, Kim et al. [5] proposed a recursive recurrent
neural network (DRCN) that utilizes recurrent loops and jump
connections to further improve the image quality compared
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with SRCNN. In 2017, Lim et al. [6] improved the residual
network by removing the batch normalization layer (BN)
from the residual blocks, thereby enhancing the generaliza-
tion ability of the enhanced deep super-resolution network
(EDSR). In 2018, Zhang et al. [7] introduced the channel
attention mechanism into SR to construct residual channel
attention networks (RCAN). RCAN is the first network that
applies the attention mechanism to the SR problem, and
the information learned by the network is more effective.
In In 2020, Niu et al. [8] proposed holistic attention network
(HAN) to address the problem of ignoring the correlation
between different layers. This method introduces a hier-
archical attention module to learn feature values through
the interrelationships between multi-scale layers, and uses a
channel-spatial attention module (CSAM) to learn the chan-
nel and spatial correlation of features at each layer.

In recent years, Generative Adversarial Networks (GAN)
have been widely used in super-resolution reconstruction
algorithms due to their ability to learn more meaningful
loss functions through discriminators than those based on
pixel differences. In 2014, The performance of the Gener-
ative Adversarial Network (GAN) model first proposed by
Goodfellow et al. [9] in generating image data has greatly
surprised researchers. Inspired by GAN [8], in 2017, Ledig
et al. [10] applied it to the field of image super-resolution
reconstruction and proposed the Super-Resolution Using a
Generative Adversarial Network (SRGAN). The model com-
bines perceptual loss and adversarial loss to recover the
texture details of the image. Wang et al. [11] improved
the network architecture, adversarial loss and perceived
loss on the basis of SRGAN, and proposed an enhanced
super-resolution generative Adversarial network (ESRGAN),
which uses residual-dense blocks to replace residuals in the
original generator and uses relative discriminator to further
improve the quality of reconstructed images. In 2018, Luo et
al. [12] proposed a new framework for Bi-GANs-ST super-
resolution generative adversarial networks by introducing
two complementary branches of generative adversarial net-
works. The framework uses a combination of pixel loss,
perceptual loss, and adversarial loss for training, ultimately
achieving a balance between objective image evaluation met-
rics and subjective perceptual visual effects. In 2019, Zhang
et al. [13] proposed the Rank SRGAN model by incorpo-
rating content ranking into the SRGAN model framework,
which uses content ranking loss to optimize the quality of
generated images. In 2020, Prajapati et al. [14] used GAN
for unsupervised learning of the SR algorithm and intro-
duced a new objective learning function based on mean
opinion score. Ma et al. [15] proposed a super-resolution
generative adversarial network based on SPSR, which estab-
lishes the gradient feature mapping relationship between
low-resolution and high-resolution images by adding a new
gradient branch, introduces a gradient loss to better main-
tain the geometric structure of the reconstructed image, and
incorporates a combination of minimum absolute value loss,
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perceptual loss, adversarial loss, these operations effectively
preserve the overall edge structure features of the image.
Rakotonirina et al. [16] proposed a super-resolution recon-
struction method based on ESRGAN+-, which improved the
generative network of ESRGAN by adding residual skip
connections of additional levels in its dense blocks, thereby
enhancing the super-resolution image generation capabil-
ity of the network. In 2021, Chen et al. [17] integrated
the hierarchical feature extraction module into the SRGAN
model framework and proposed the HSRGAN model, which
extracts image features at multiple scales by hierarchically
guiding the reconstruction, thus enhancing the visual fidelity
of super-resolution reconstructed images. Zhang et al. [18]
designed a more complex but practical degradation model
for various degradation problems that could not cover real
images. The model consists of random shuffling fuzzy, down-
sampling and noise degradation. It can help to significantly
improve the practicability of deep super-resolvers, providing
a powerful alternative solution for real SISR applications.
In 2022, Liang et al. [19] proposed the LDL model for the
problem of artifacts in images, which determines the regions,
penalizes the image generation details, retains the useful
textures, reduces the artifacts and makes the image more
realistic. Li et al. [20] argued that the processing of images
with a single loss would produce artifacts as well as part of the
information would be too smooth, and therefore proposed a
one-to-many supervised Beby-GAN. In 2023, Yoo et al. [21]
combined CNN and Transformer and proposed a cross-scale
marker attention module, allowing transform branches to
efficiently exploit informative relationships between mark-
ers at different scales. In 2024, Lee et al. [22] performed
meta-learning from the information contained in the distribu-
tion of the image, which greatly improved adaptation speed to
new images as well as performance in kernel estimation and
image fidelity. Although many scholars have achieved some
results in the field of single-image super-resolution recon-
struction, they often face the problems of information loss and
blurred image edges in the reconstruction process. To address
this problem,this paper proposes an image super-resolution
reconstruction model based on enhanced attention and gradi-
ent correlation loss. The main contributions of this paper are
itemized as follows:

An enhanced attention mechanism module is designed.
The feature extraction capability of the generator is
enhanced by reducing the number of channels, introduc-
ing stride connections and pooling layers to reduce the
spatial dimensions of the network, as well as using con-
volutional groups to provide more variations and feature
combinations.

A gradient correlation loss function is proposed. This loss
function improves the visual effect of the reconstructed image
by maximizing the correlation between the gradient of the
generated image and the gradient of the original image, which
makes the generated image more realistic and maintains a
consistent edge structure.
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FIGURE 1. Here is the EAGCL-SR model, where (a) is the generator model and (b) is the discriminator model.

il. MODEL

Based on the SPSR model proposed in literature [15], this
section proposes a super-resolution reconstruction model
based on enhanced attention mechanism and gradient correla-
tion loss (EAGCL-SR),and the overall architecture is shown
in Fig.1. Fig.1(a) shows the generator model of EAGCL-
SR, which consists of two parts: one is the reconstruction
parts of EAGCL-SR generator based on EA-RRDB, and
the other is the reconstruction parts of EAGCL-SR gener-
ator based on gradient map. The latter adopts the gradient
branch part mentioned in reference [15], and this section
focuses on introducing the former. The features obtained
from the two parts are fused by a fusion block, and then
reconstructed by a convolutional layer to obtain the recon-
structed image. Finally, the gradient map is obtained by
gradient extraction. Fig.1(b) shows the discriminator model
of EAGCL-SR,which adopts the relative discriminator design
idea proposed in ESRGAN [11]. Conv denotes the regular
convolutional layer, LRelu denotes the Leaky ReLU activa-
tion function, BN denotes the batch normalization layer, and
Dense denotes the fully connected layer.

A. RECONSTRUCTION PART OF EAGCL-SR GENERATOR
BASED ON EA-RRDB

In this section, the generator reconstruction model of
EAGCL-SR based on EA-RRDB is given. Firstly, a mul-
tilevel residual dense connection module EA-RRDB based
on enhanced attention mechanism is proposed and five
EA-RRDBs are combined to obtain the MERF (Multi EA-
RRDB Fusion) module. Fig.1(a) gives the framework of the
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reconstruction part of the EAGCL-SR generator based on
EA-RRDB, which mainly performs reconstruction operations
on low-resolution images (LR). Firstly, LR is input into the
convolutional layer for shallow feature extraction. Then, the
extracted features are passed to the MERF. Next, the features
output from the MERF are passed to the next MERF while
also passing them to the generator to reconstruct another part
of the Gradient Block (GB), and so on. The gradient block
(GB) can be any basic block which can extract higher level
features, and the GB with 3 x 3 convolution kernel is used in
this experiment. After the last MERF is executed, the features
required for the reconstruction of this part of the generator
are obtained through convolution and upsampling operations
in turn.

1) ENHANCED ATTENTION MECHANISM

When extracting features from images, there is often a
problem of losing details. To solve this problem, attention
mechanism is integrated into the reconstruction model, which
focuses on the details of the image and makes them less likely
to be lost. However, ordinary attention mechanisms have the
problem of focusing only on features in certain regions of
the image and ignoring other key details, resulting in some
important details or features being ignored or blurred, so that
there is still the problem of detail loss.

In order to solve the above problems, this paper proposes
an Enhanced Attention Block (EA), which aims to further
solve the problem of detail loss in the process of image feature
extraction. The module enables the EAGCL-SR to focus on
feature-rich regions and extract more representative features,
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FIGURE 2. The structure of enhanced attention block module.
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FIGURE 3. The structure of EA-RRDB module.

thus improving the reconstruction of the image by enhancing
the detail information.

When designing the EA module, two aspects need to
be considered. Firstly, the EA module needs to be inserted
into multiple modules of the generator, so it should be
designed as a lightweight module. Secondly, the EA mod-
ule requires a large receptive field to better accomplish the
task of image super-resolution reconstruction [23]. The EA
module is designed as shown in Fig.2. Firstly, the feature
X is input into a convolutional layer (Conv) which uses a
1 x 1 convolutional kernel to reduce the channel dimension.
Then, a stride convolution (Strided conv) with a step size of
2 is used to expand the receptive field, and then the input
features are amplified using a deconvolution (Deconv) to
obtain richer high-frequency information. This combination
of stride convolution and deconvolution can quickly reduce
the spatial dimension of the network. Next, depthwise con-
volutions of 1 x 1, 3 x 3, and 5 x 5 are used to combine
features in different ways to enhance the expressive power
of the model. The spatial dimension is then recovered using
an upsampling layer and the channel dimension is recovered
using a 1 x 1 convolutional layer (Conv). Finally, the Softmax
layer was used to obtain the deep features of the image, which
were fused with the initial feature x to obtain the final feature.
The module can effectively retain the detailed information of
the image thus improving the effective transfer of features and
the stability of network training.

2) EA-RRDB MODULE

In this section, the EA proposed above is fused with Residual-
in-Residual Dense Block (RRDB) of the SPSR model
proposed in [15] to obtain the Residual-Residual Dense Block
(EA-RRDB) based on the Enhanced Attention Mechanism,
which is shown in Fig.3. Each EA-RRDB module consists of
three Enhanced Attention Mechanism-based Dense Connec-
tion Blocks (EADBs). Each EADB block consists of multiple
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densely connected residual blocks, and the input of each
residual block includes the input and output of the previous
level residual block. This densely connected approach helps
to capture detailed information in the image and has more
chances to pass gradients and can mitigate the problem of
gradient vanishing. Based on this, the introduction of the
enhanced attention mechanism allows the EADB to focus on
important image regions and enhance feature extraction from
these regions. This design enables the EA-RRDB module
to extract effective features, which helps to improve image
quality and detail retention during reconstruction.

B. LOSS FUNCTION

In the model of this paper, the classical loss function and
gradient correlation loss function are used. The classical
loss function includes pixel-based mean absolute error loss
(MAE), perceptual loss, and adversarial loss. A comprehen-
sive loss function is formed by a weighted summation of these
four loss functions.

1) MAE LOSS FUNCTION

The MAE (Mean Absolute Error) loss function calculates
the absolute value of the difference between the predicted
value and the true value of each sample and then takes the
average of the absolute differences of all samples as the loss.
Specifically as shown in Equation (1):

1 m
e = — > 16U~ M

where Iyag denotes the average absolute error loss function,
m is the number of iterations, II.HR is the distribution of the
ith real image and G(IiLR ) is the distribution of the i-th high-
resolution image generated by the generator.

2) PERCEPTUAL LOSS

The neural network is capable of extracting high-level fea-
tures of images by training on large-scale datasets. Thus,
the perceptual loss can calculate the difference between the
two images through the pre-trained neural network, which is
usually calculated by passing the input image and the target
image through the pre-trained neural network separately to
get their feature representations in the network. These feature
representations are then used as the input of the loss function
to calculate the Euclidean distance or Manhattan distance
between them. Specifically, this can be expressed by the
following Equation (2):

1
N
where x is the input image, y is the target image, F; (x)
and F; (y) denote their feature representations of i-th layer,
respectively, in a pre-trained neural network and N denotes
the number of feature layers. By minimizing the perceptual
loss, the generator is forced to produce an image that is closer
to the target image in terms of the feature space, which in turn
improves the quality of the generated image.

N 2
> Fi@ —Fi() @

lF%r =
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3) ADVERSARIAL LOSS

A binary cross entropy loss function is used to measure
the probability that an image generated by the generator is
correctly discriminated as a real image or a fake image. This
is shown in Equation (3):

lgan = —log (D (x) — log (1-D (G (2))) 3

where x denotes the real sample, D (x) denotes the judgement
result of the discriminator on the real sample, G (z) denotes
the fake sample generated by the generator, and D (G (z))
denotes the judgement result of the discriminator on the fake
sample. The goal of the discriminator is to minimize the
adversarial loss function so that the judgement result for
real samples is close to 1 and the judgement result for fake
samples is close to O.

4) GRADIENT CORRELATION LOSS FUNCTION

It has been shown that the use of classical loss functions
in the training process can easily lead to the problem of
over-smoothing of the reconstructed image, i.e., it is diffi-
cult to reconstruct the edges of low-resolution images with
the trained model to achieve the desired results. The main
reason of this problem is that the classical loss function
(e.g. mean square error) focuses more on minimizing the
global pixel-level differences in the optimization process
while ignoring the importance of image details and edges.
In this situation, the model tends to generate excessively
smooth images that lack sharp edge features. To solve this
problem, a gradient correlation loss function is proposed in
this paper.

The concern of the proposed gradient correlation loss func-
tion is to ensure that the generated image is aligned with
the original image in the gradient direction to maintain edge
and texture consistency. The performance of the gradient
correlation loss function is further enhanced by maximizing
the correlation between the gradient of the generated image
and the gradient of the original image. This loss function
enables stronger constraints on the super-resolution model,
which effectively maintains the structural information of the
image and helps the generated high-resolution image to be
more realistic and structurally consistent in terms of details
and edges, thus improving the quality and visual effect of the
reconstructed image. The specific calculation of the gradient
correlation loss function is shown in Equation (4):

cov (H (G (I*R)) , HIHR))
rLG = “
JoH (G (ILR))x, [o(H (11R))

In Equation (4), rr g represents the correlation coefficient.
The calculation result is that “1” indicates complete posi-
tive correlation (with the best loss function performance), -1
indicates negative correlation, and O indicates no correlation.
cov(-) denotes the calculation of the gradient covariance of the
generated image and the reconstructed image; H (G (I:F))
denotes the calculation of the gradient value of the recon-
structed low-resolution image, and H (I HR) denotes the
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TABLE 1. Commonly used super-resolution reconstruction datasets.

Scene

Dataset Number Advantages Disadvantages
content
Natur Small datasets ~ Lack of
Set5 5 Peoulz Convenient for  diversity
P quick testing Small size
Peonl Medium data
copie set with Dataset
Animals . .
Set14 14 diverse coverage 1s
Landscape : A
scenario limited
Nature
content
BSDS 100 Architecture Diversity of Dataset is too
100 Landscape vy complex

degradation

nature .
issues

calculation of the gradient value of the high-resolution image.
o () denotes the calculation of the gradient covariance of the
generated image and the reconstructed image.

The three classical loss functions proposed in Equa-
tions (1), (2) and (3) and the gradient correlation loss function
proposed in Equation (4) are fused to obtain the final loss
function as shown in Equation (5):

LG = lper + alyar + Blgan + nrig ©)

where Igan denotes the adversarial loss, Ip, denotes the
perceptual loss, and rz denotes the gradient correlation loss.
o and B are the weights of the reconstructed image loss and
n is the weight of the gradient correlation loss. Let « =0.01,
B =0.005, and n = 0.005.

Ill. EXPERIMENT

A. EXPERIMENTAL ENVIRONMENT AND DATASET

The DIV2K [24] dataset is used during the training process,
which includes 800 training images, 100 validation images
and 100 test images. In order to avoid overfitting during
the training process, data enhancement operations such as
random rotation and horizontal flipping are performed on the
training images as a way to increase the diversity of the data.
In order to test the model effect, three standard benchmark
datasets (Set5 [25], Setl14 [26] and BSDS100 [27]) are used
as the test sets, and the specific information is shown in
TABLE 1:

B. EVALUATION INDICATORS

In this paper, PSNR, SSIM [28] and LPIPS [29] are used to
evaluate the experimental results. As in Equation (6), PSNR
can be evaluated by the grey level difference between the
corresponding pixel points of two images. The higher the
value of PSNR, the smaller the distortion.

2552 % wih % ¢
S S > (X (my )Y (m, )2
(6)

where X denotes the original high-resolution image; Y
denotes the reconstructed image of generator; ¢ denotes the

PSNR(Xs Y) = 10*lg
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TABLE 2. Comparison of PSNR, SSIM, and LPIPS values for 4x reconstruction results of various algorithms.

Dataset Metric bicubic SRGAN ESRGAN ESRGAN+ PDM-GAN Beby-GAN SPSR Ours

PSNR 26.69 26.69 26.50 25.88 25.62 27.82 28.44 28.89

Set5 SSIM 0.7736 0.7813 0.7565 0.7511 0.7304 0.8004 0.8241 0.8386
LPIPS 0.3644 0.1305 0.1080 0.1178 0.1075 0.0875 0.0870 0.0802
PSNR 26.08 25.88 25.52 25.01 23.69 24.69 24.75 24.89

Set14 SSIM 0.7467 0.7480 0.7175 0.7159 0.6716 0.7016 0.6960 0.7025
LPIPS 0.3870 0.1421 0.1254 0.1362 0.1398 0.1094 0.1062 0.0972
PSNR 22.65 22.67 23.33 23.54 23.84 24.13 24.21 24.58

BSDS100 SSIM 0.6014 0.6363 0.6133 0.6172 0.6235 0.6355 0.6554 0.6584
LPIPS 0.4452 0.1636 0.1436 0.1434 0.1433 0.1274 0.1197 0.1125

number of channels of the image; w and % denote the width
and height of the image, respectively; m denotes the m-th
pixel on the width of the image; n denotes the n-th pixel on
the height of the image; and z denotes the z-th channel of the
three primary color channels.

As shown in Equation (7), SSIM evaluates the similarity of
two images from brightness, contrast and structure. The SSIM
value is close to 1, which indicates that the reconstructed
image is closer to the structure of the original image and
generates better results.

Cuxpy + C)(2oxy + C2)
(ux + Ky + C(og + 0y + C2)
where pyx denotes the mean value of X and py denotes
the mean value of Y; ,u)Z( denotes the average value of X,
,u%, denotes the average value of Y, and oyy denotes the
covariance of X and Y; C1 and C2 are constants.

As in Equation (8), the LPIPS measures the difference
between two images. LPIPS learns the reverse mapping of
reconstructed images to real images, calculates the perceptual
similarity between them, which can be used to evaluate the
difference between two images. The lower the LPIPS value,
the more similar the two images are, and vice versa. The lower
the value of LPIPS, the more similar the two images are.

1 [ ! 2
derx0) = 3 e 2,100 Ol = Y0l ®)

where y', yf) eRH*WixCi denotes that the inputs are sent to the
neural network for feature extraction, and the outputs of each
layer are normalized after activation, and w denotes the layer
of the network.

Ssm(X,Y) =

(N

C. TRAINING DETAILS
In order to ensure the fairness of the experimental results, all
the experiments in this paper use a 4-fold scale factor and
are conducted in the same hardware environment. The hard
ware device parameters used in this paper are: CPU: Intel(R)
Xeon(R) CPU E5-2680 v4; RAM: 12G; number of cores: 28;
GPU: 3080 Ti-12G. In the Linux operating system environ-
ment, we use PyTorch framework with version 1.13.1 to write
code and utilize Cudal 1.3 for accelerated learning.

In the training process, the parameter batch_size is set to
4 and the size of the cropped high-resolution image is set to
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128 x 128. The training process is divided into two stages:
first, the enhanced attention mechanism is incorporated into
the RRDB module of the model to get a pre-trained model
after training. Then, the obtained pre-trained model is used
to initialize the generator and the generator is trained using
a loss function. During the training process, the learning rate
is set to le-4 and decayed to 0.5 times the original learning
rate after every 5e4 iterations. The decay strategy of learn-
ing rate helps the model converge better during the training
process. The above experimental setup ensures comparability
and fairness of the experiments.

D. COMPARATIVE EXPERIMENTS

1) QUANTITATIVE COMPARISON

In the case of an amplification factor of 4, the model proposed
in this paper (Ours) is compared with Bicubic, SRGAN [10],
ESRGAN [11], ESRGAN+ [16], SPSR [15], Beby GAN [20]
and PDM-GAN [30]. The experimental results are shown
in TABLE 2. From TABLE 2, it can be seen that the
PSNR values of our method on Set5, Setl4, and BSDS100
datasets has been improved by 0.45dB, 0.14dB, and 0.37dB
compared with SPSR, respectively. This indicates that our
algorithm performs better in PSNR and the details of the gen-
erated image are clearer. On the Set5, Set14, and BSDS100
datasets, the SSIM values of our method are increased by
0.0145, 0.0065, and 0.0030 compared with SPSR, respec-
tively, which indicates that our method performs better in
maintaining image structural similarity. On the Set5, Set14,
and BSDS100 datasets, the LPIPS values of our method
are decreased by 0.0068, 0.0090, and 0.0072 compared with
SPSR, respectively. In summary, the method proposed in this
paper performs well in super-resolution image quality and is
superior to other methods by comprehensively evaluating the
PSNR, SSIM, and LPIPS indicators.

2) QUALITATIVE COMPARISON
In order to better highlightodel proposed in this paper we
compared it with Bicubic, SRGAN, ESRGAN, ESRGAN+,
SPSR, Beby GAN, and PDM-GAN. Figures 4-6 show some
of the image reconstruction results.

From the visual perspective, Fig.4(a) shows a realistic
image of the butterfly’s back and wings, while Fig.4(b)
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Bicubic ESRGAN

ESRGAN+ SPSR Beby-GAN

PDM-GAN Ours GT
(a) ()

FIGURE 4. The reconstruction results of each algorithm at 4x scaling factor. Image “butterfly” from Set5. where (a) is the original
image, and (b) is the local effect of the reconstructed image.

Bicubic

Qurs GT
(a) (b)

FIGURE 5. The reconstruction results of each algorithm at 4x scaling factor. Image “baboon” from Set14. where (a) is the original
image, and (b) is the local effect of the reconstructed image.
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PDM-GAN Qurs CGT

(a)

FIGURE 6. The reconstruction results of each algorithm at 4 x scaling factor.iImage “8023"” from BSDS100. where (a) is
the original image, and (b) is the local effect of the reconstructed image.

shows a local image of the wing root obtained using various
reconstruction methods. As shown in Fig.4(b), the images
generated by Bicubic are blurry and unclear, while the images
generated by SRGAN, ESRGAN, and ESRGAN+ suffer
from detail loss and severe sharpening. The reconstruction
effect of SPSR has been improved to some extent, but the
reconstruction effect in small areas is not good. The recon-
structed image of Beby GAN has blurred wing lines and still
suffers from detail loss. After analysis, it can be seen that the
image reconstructed using the mode proposed in this article
is closer to the real image (GT). Fig.5(a) shows a real image
of Baboon, and Fig.5(b) shows the pattern of Baboon’s left
beard. By observing the texture of the beard, it can be seen
that the image generated by Bicubic is blurry, and the recon-
struction effects of SRGAN, Beby GAN, and PDM-GAN
have severe detail loss and sharpening. The reconstruction
effect of SPSR is relatively good, but there is still some
detail loss compared with our proposed method. Therefore,
the image reconstructed using our proposed method is closer
to the real image (GT). Fig.6(a) is the actual picture of the
bird, and Fig.6(b) is the wing pattern of the bird. By observing
the wing details, it can be seen that the reconstructed images
generated by Bicubic, SRGAN, ESRGAN, Beby-GAN and
PDM-GAN models have serious blurring and sharpening
problems. Relatively speaking, the reconstruction effect of
the SPSR model is clear, but it is blurred near the first texture
of the wing. Relatively speaking, the reconstruction effect of
SPSR is relatively clear, but it can be seen to be quite blurry
near the first texture of the wings. In contrast, our proposed
method can reconstruct patterns that are closer to real images
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GT SPSR EACGL-SRnoL

FIGURE 7. Comparison of ablation experiments. Image “flowers” from
set14.

(GT). In summary, compared with other comparison algo-
rithms, the visual effect of reconstructing images using our
proposed method can be closer to the details and textures of
real images (GT).

E. ABLATION EXPERIMENTS

In order to verify the necessity of each part of the proposed
model, the corresponding ablation experiments are conducted
in this section. Given that the model proposed in this paper is
based on the SPSR, two algorithms are designed for compar-
ison. One algorithm (EAGCL-SR no L) did not use gradient
correlation loss during training, but applied the EA network
module in the network. Another algorithm (EAGCL-SR) is
the complete model proposed in this article, which combines
enhanced attention machines with gradient correlation loss.
The experimental results are shown in Table 3.

From TABLE 3, it can be seen that compared with the
SPSR, the performance of network with the EA module will
have an improvement over the original network. In addition,
it can be seen that EA performs well on PSNR. On this basis,
the gradient correlation loss is added into the model, and the
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TABLE 3. Comparison of different models under the ablation experiment.

Dataset Metric SPSR EAGCL- EAGCL-SR
SRno L
PSNR 28.44 28.64 28.89
SetS SSIM 0.8241 0.8124 0.8386
LPIPS 0.0870 0.0862 0.0802
PSNRS  24.75 24.72 24.89
Setl4 SIM 0.6960 0.6916 0.7025
LPIPS 0.1062 0.1047 0.0972
PSNR 24.21 24.43 24.58
]130S(]))S SSIM 0.6554 0.6347 0.6584
LPIPS 0.1197 0.1152 0.1125

proposed EAGCL-SR model is obtained. The experimental
results show that EAGCL-SR can effectively improve the
quality of image reconstruction. Therefore, the effectiveness
of the method proposed in this paper is verified. As shown in
Fig.7, the reconstructed image obtained using the algorithm
proposed in this paper has fewer blurry areas, resulting in a
clearer pattern of the sepals.

IV. SUMMARY

For SR tasks with high visual quality requirements, this paper
proposes an image super-resolution reconstruction model
based on enhanced attention mechanism and gradient correla-
tion loss. The purpose of this model is to solve the problems of
information loss and edge blurring in image super-resolution
reconstruction. The enhanced attention mechanisms is incor-
porated into the model to effectively focuses on important
details in low resolution images, which can improve the
quality of reconstructed images. At the same time, the
gradient correlation loss function is used to make the gen-
erated image more realistic and maintain the consistency
of the edge structure. The experimental results show that
the proposed model achieves certain improvement in PSNR,
SSIM and LPIPS, thus verifying the effectiveness of the
model. In future work, more effective model architectures
and training strategies will be explored to improve the qual-
ity of reconstruction results and reduce the computational
cost.
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