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ABSTRACT In the aerospace field, researchers and engineers have been using attitude simulators to test and
evaluate spacecraft attitude control algorithms, usually developed at the design stage. Moreover, thanks to
the new technological achievements, small satellites can include more complex algorithms in their attitude
determination and control systems. In consequence, the development of an attitude simulator that is able to
perform different control algorithms with high attitude accuracy and stability is in high demand. In this paper,
an automatic balancingmethod, along with amodifiedModel Reference Adaptive Control architecture for an
uncertain dynamical system with unknown perturbation, was developed to address uncertainty suppression
and disturbance rejection for an air-bearing spherical attitude simulator. The main feature of the proposed
scheme consists of obtaining estimates of the offset vector generated by an unbalanced mass system in order
to reduce it by moving small masses along each principal axis, ensuring stability and improving motion
performance with an adaptive controller with input error modification. Simulation results were conducted
according to the parameters for a small satellite 1U-class CubeSat platform inside a spherical structure.

INDEX TERMS Automatic mass balancing, model reference adaptive controller, attitude control, Euler
parameters, spherical testbed.

I. INTRODUCTION
Following the current advances in hardware and software, the
next generation of attitude estimation and control algorithms
used in orbiting small satellites should include more complex
algorithms for improved attitude stabilization and tracking
with higher accuracy and stability. For decades, attitude sim-
ulators have been great resources for testing, verification and
experimental validation of spacecraft attitude determination
and control algorithms. The orbit-like environment offered
by attitude simulators at ground facilities allows researchers,
engineers, and students to test more complex algorithms that
are not allowable to perform in orbit because of the implica-
tions in safety and cost.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bin Xu.

The air-bearing testbed is the most common simulator used
for attitude control verification, where a spacecraft simulator
is suspended in an almost free-torque perturbation. The four
types of disturbance present in the simulator are classified as
the ones arising from the air bearing, the system, platform, the
test system, and the environment [1]. Generally, a disturbance
generated by the gravitational force is the most significant
disturbance for an unbalanced mass system. In practice, this
gravitational torque is hard to eliminate manually due to the
pendulum-like motion of an offset vector generated by the
distance between the Center of Mass (CM) and the Center of
Rotation (CR) of the simulator platform. If this disturbance
is not reduced properly, high torque as control input may be
required to counteract the external disturbance.

In the literature, different methods have been pro-
posed to deal with the unbalanced mass disturbance
torque; for example, Sharifi proposed a mass identification
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characteristic for an automatic mass balancing system using
Leverngerg-Marquardt optimization method [2]. Schwartz
proposed a batch system identification technique for the full
nonlinear equation of motion of the system [3]. Chesi pro-
posed an adaptive nonlinear feedback control method for an
automatic mass balancing system [4]. Kim proposed a batch
least-square method for estimating inertial properties for an
automatic mass balancing system [5]. Kim in [6] presented
an adaptive control law for an automatic balancing method
in a spherical air-bearing simulator where the gravitational
disturbance was determined by the rate of change of the
total momentum in the control moment gyro array. Then,
an adaptive controller, with sufficient excitation, for an online
compensation of the center of gravity offset was adopted.
Between these methods, the most effective and implemented
one are the ones with a batch least-square estimation method
for an automatic mass balancing system.

A comparison between parameter estimation methods and
balancing methods for spacecraft simulators can be found in
the reviewmade by Cardoso [7]. The review presents the pros
and cons of these methods and concludes that the main prob-
lem related to the development of an attitude simulator was
in its calibration. Modenini compared system performance
between some testbeds, aiming to describe design solutions
for developing a dynamic nanosatellite attitude simulator [8].
A control method in presence of nonlinearities, parameter

uncertain, and constraints for an attitude simulator can be
found in Jamshidi [9]. Malekzadeh proposed amodified feed-
back linearization controller using sliding-mode observers to
estimate angular velocity [10].
Hardware implementation of augmented mass balancing

systems can be found in [11], [12], [13], and [14], where
air-bearing testbeds are combined with other systems like
Helmholtz coils and sun sensor simulators, so that, the sim-
ulated environment conditions can meet real orbit scenarios
for testing different attitude estimation and control algorithms
for small satellites.

According to [4], [6], [8], and [15], the disturbance torque
acting on an air-bearing, for a small satellite, must be reduced
to a torque factor below 10−5 N-m for an orbit-like simulation
of the Low Earth Orbit. While this task is hard to achieve,
an approximated and acceptable result can be obtained by
balancing the simulator platform through moving masses and
changing the center of mass of the simulator platform to a
position near the center of rotation of the air-bearing testbed.
The balancing method can be done manually or automati-
cally, being the last one more accurate, faster and with less
effort [7].
According to [16], the goal of balancing the simulator plat-

form is to increase the period of oscillations by considering
the system’s stability. In their research, Young first identified
the mass offset vector, rCM , by using sensor data in an online
estimation method. Then, the process was followed by a
balancingmethod according to three movable masses. In their
results, the reduction of the offset vector achieved the order

of 0.1 mm corresponding to a period of 60 seconds for each
oscillation.

In this paper, two schemes were adopted to reduce the dis-
turbances in a small air-bearing spherical attitude simulator.
The first one consists of the automatic mass balancing of the
attitude simulator where Euler parameters and least-square
batch estimation method were combined together to get a
first estimation of the offset vector (or torque gravity vec-
tor) according to the parameters of a small satellite 1U-
class CubeSat platform. At this stage, only static unbalance
was considered as the main source of perturbation, and the
disturbances coming from moving parts, deformation, and
vibration of structures were neglected because of their order
of magnitude. In practice, the later disturbances have a big
impact on larger structures [6], [17], while for a CubeSat plat-
form, those disturbances can be neglected during the batch
estimation scheme. The second scheme deals with param-
eter uncertainty and external perturbations in the system.
This scheme includes augmenting an adaptive controller to
a feedback control law to improve robustness and attain the
desired performance in an online compensation. Simulation
and analysis of the balancing method along with an adaptive
control architecture, present the feasibility for further imple-
mentation.

Existing results on control of satellites, testbeds, and atti-
tude simulator systems were proposed, for example, on feed-
back [18], proportional-derivative [19], back-stepping [20],
sliding-mode [21], optimal [22], adaptive [23], and model
predictive control [24], while some authors exploit neu-
ral networks within adaptive control approach for uncer-
tainty systems [25]. However, the robustness aspects provided
by control laws based on proportional-derivative, feedback-
linearization, back-stepping, and optimal frameworks are
usually minimal or restricted because of the conservativeness
in the design. Other controllers, such as the sliding-mode
control, offer great robustness, but in practice, the chattering
phenomenon makes it difficult to implement. Model predic-
tive control and neural networks provide acceptable results
for robust controllers except of the drawback of high compu-
tational cost.

In the literature, different approaches using adaptive tech-
niques have been proposed to improve control performance
and increase robustness against parameter uncertainty, exter-
nal perturbation, and actuator/sensor faults. Arabi and Tansel.
generalized a set-theoretic model reference adaptive control
framework to enforce a user-define performance bounds,
which gives the user the flexibility of control performance
in transient and steady-state response inside a close loop sys-
tem [26], [27]. In their research, Dizhi trained recurrent neural
networks to improve system accuracy by transforming an
estimated neural network model into a generalized nonlinear
system without sensor faults terms [28].
For our attitude simulator, the exchange moments are

induced by three reaction wheels (RW) to deliver control
inputs. At first, an error feedback control law was designed to
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introduce a proportional-derivative nominal control law in a
closed-loop trajectory for tracking error dynamics. Since the
inertia of the attitude simulator is unknown, the error feed-
back control law cannot guarantee satisfactory performance
of the tracking trajectory. In consequence, a modular control
architecture was proposed, where the proportional-derivative
control law can be augmented with an alternative control
technique, in this case, with a model reference adaptive con-
trol (MRAC) law, to improve robustness and attain satisfac-
tory performance.

In this scenario, the present paper proposes the following
contributions:
(i) Reduced dynamics equations of motion with Euler

parameters representation
(ii) Automatic mass balancing system for attitude simulator

platform
(iii) Comparison and simulation response for the estimated

offset vector at each testing time
(iv) User-defined error performance for tracking desired

Euler angle command for CubeSat attitude simulator
(v) Improved controller performance by MRAC with input

error modification to counteract parametric uncertainty
and unknown external disturbance

This paper is organized as follows. In section II, the
dynamic model and the automatic balancing system are pre-
sented. In Section III, an overview and a formalizedMRAC is
presented. Section IV presents the proposed control law with
input error modification design. In section V, a description
of the spherical attitude simulator parameters, along with
the simulation setup, is presented. In section VI, numerical
simulation results are discussed. Finally, in section VII, the
conclusion and future works are presented.

II. SYSTEM MODELING
In this section, the attitude motion of a small spacecraft is
described along with the nonlinear model for an attitude sim-
ulator system. Next, the least-square batch estimation method
and automatic mass balancing system for the attitude testbed
simulator are presented.

A. SATELLITE ATTITUDE NONLINEAR MODEL
In this part of the section, the model of the satellite dynamics
is derived from the Newton-Euler formulation (1), where
ωb
ib be the angular velocity of the body frame with respect

to the inertial frame, expressed in the body frame. J be
the moment of inertia of the satellite, h = Jωb

ib be the
angular momentum of the body and Mb

ext be the exter-
nal moment acting on the body composed of both internal
and external torques [29]. The internal torques (such as the
micro-vibrations caused by junctions, rotors, thermal defor-
mations, etc.) can be neglected and considered minimal in
comparison to the external torques [30], [31].(

dh
dt

)
= J ω̇b

ib = −ωb
ib × Jωb

ib +Mext (1)

Considering a small satellite, the group of external torques
Mb

ext acting on the body, (2), can be divided into two groups.
One for the control input torque and the second one for
the disturbance torque τ bd . In our design, the former one is
composed of a set of reaction wheels applying momentum
exchange to the body, τ brw. The latter one is normally com-
posed of a gravity gradient τ bgg, solar radiation τ bsr, aerody-
namic drag τ bad , and parasite magnetic dipole torque τ bpm, (3).

Mext = τ bd + τ brw (2)

τ bd = τ bgg + τ bsr + τ bad + τ bpm (3)

The nonlinear kinematics equations of motion can be rep-
resented by Euler parameters (4) where η be the real part
of the quaternion, ε be the vector part, S (ε) be the skew
symmetric matrix of ε, and ωb

ob be the angular velocity of
the body frame with respect to the orbital frame, expressed in
the body frame [30], [32], [33].

q̇ =

[
η̇

ε̇

]
=

1
2

[
−ε T
η + S(ε)

]
ωb
ob (4)

B. ATTITUDE SIMULATOR NONLINEAR MODEL
Similar to the general equations of motion for an orbit-
ing rigid-body spacecraft (1) (4), the dynamic equations of
motion of an attitude simulator, represented in the body
coordinate frame, can be written considering a gravity vector
torque acting on the body (5). Let Js be the moment of inertia
of the attitude simulator system, ω be the absolute angular
velocity of the body, hs = Jsω be the angular momentum
of the overall system,Mext be the group of external moment
acting on the system (6).Where τ c be the control input torque,
τ d be the external disturbance torque, Ms be the total mass
of the system, g be the acceleration of gravity vector acting
on the body at ground testing level, and rCM be defined as
the offset vector between the CM and the CR, expressed
in the body coordinate frame. (Note that, for simplicity, the
superscripts in the following equations of motion are omitted
since it is assumed that all of them are represented in the body
coordinate frame unless it is told differently).(

dhs
dt

)
= Jsω̇ = −ω × (Jω)+Mext (5)

Mext = τ c + τ d + rCM ×Msg (6)

In this work, we adopted the Euler parameter representa-
tion to describe the equations of motion, hence, let ηs be the
real part of the quaternion, εs be the vector part, and S (εs) be
the skew-symmetric matrix of εs. The nonlinear kinematics
equation of motion of the attitude simulator can be written as:

q̇ =

[
η̇s
ε̇s

]
=

1
2

[
−εTs

ηs + S(εs)

]
ω (7)

It is worth mentioning that the gravitational torque gen-
erated by the vector rCM be the main disturbance which
be estimated by the least squares batch method. Other dis-
turbances are not considered at this stage because of their
order of magnitude τ d≈0. In order to perform the parameter
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estimation method, no control input torque is assumed (τ c =

0) according to the pendulum-like motion produced by the
vector offset rCM .

C. REDUCED EQUATION OF MOTION
To reduce computational complexity, the dynamic equations
of motion of the attitude simulator can be greatly simplified
by considering that the products of the inertia matrix Js and
the angular rates of the body ω are small enough compared
to the other terms [33]. Let

[
rCMx rCMy rCMz

]T be the ele-
ments of the offset vector rCM , diag (Js) =

[
Jxx Jyy Jzz

]
be

the principal diagonal of matrix corresponding to the moment
of inertia Js, Ms be the system mass, and

[
q0 q1 q2 q3

]T be
the elements of the quaternion qs representing the rotation of
the simulator in the body coordinate frame.

Then, by applying the small angle assumption and trans-
forming (5) into the Euler parameter representation, the
dynamic equations of motion can be rewritten as:

ω̇

=


Msg
Jxx

(
−rCMy + rCMz (4q2q3 − 2q1)

)
Msg
Jyy

(
rCMx + rCMz (−2q2 − 4q1q3)

)
Msg
Jzz

(
−rCMx (4q2q3 − 2q1)− rCMy (−2q2 − 4q1q3)

)

(8)

D. LEAST SQUARE BATCH ESTIMATION
Before performing the estimation of the vector offset, first,
we calculated the increment of the angular rate 1ω by per-
forming simple integration over the angular rate of the simu-
lator (8) within a few periods of the pendulum-like motion
(≈3T ) while assuming small time-step 1t (9). Assuming
D be a constant matrix for a given time step, let MD be a
skew-symmetric matrix in the dynamical system with matrix
elements (M32,M13,M21) (10) composed by the current
time-step (t2) and previous time-step (t1) of Euler parameters
representing the motion of the attitude simulator (11).

1ω = ωt2 − ωt1 =
Msg1t

2
J−1MD

 rxry
rz

 = (D) (rCM )

(9)

MD =

 0 −M21 M13
M21 0 −M32

−M13 M32 0


(10)

M13 =
(
4q2t2q3t2 − 2q1t2

)
+
(
4q2t1q3t1 − 2q1t1

)
M21 = 2

M32 =
(
4q1t2q3t2 + 2q2t2

)
+
(
4q1t1q3t1 + 2q2t1

)
(11)

In order to estimate the offset vector r̃CM , we adopted the
least square batch estimation method (12). It can be done by
computing the inverse of matrix D times the increment of the
absolute angular rate 1ω.

r̃CM =

(
D−1

)
(1ω) (12)

Remark 1: we can get a first estimation of the pendulum-
like motion period T̃ by measuring the window-time length
between peak values in the states of the attitude motion of the
system (Euler angles/angular rates).

E. AUTOMATIC MASS BALANCING SYSTEM
To perform the automatic mass balancing system, let rmi be
the travelling distance of the moveable massmi located along
each principal axis of the attitude simulator (i = 1, 2, 3), and
Ms defined as the total mas of the system (13). Then, by let-
ting the movable masses travel along the attitude simulator’s
principal axis at a distance 1rm (14), the offset vector rCM
can be modified and reduced each iteration time [16].

rCM =
1
Ms

∑3

i=1
mirmi (13)

where the travelled distance 1rm be represented by the rela-
tionship between the elements of the current offset vector rCM
and each individual moveable mass mi, as follows:

1rm = −Ms

 rCMx/m1
rCMy/m2
rCMz/m3

 (14)

Remark 2: the vector offset rCM can be especially hard to
reduce when the inertia of the body is particularly small. This
will cause the need for a fine displacement by the moving
masses. Then, in order to get a satisfactory reduction of
the gravity disturbance torque generated by the unbalanced
system, especial care must be addressed in the design of the
displacement of the moving masses.

After performing and identifying all variables in the sys-
tem, the least square batch approximation method can be
applied as many times as required. While some authors
reported that no significant increment in the performance
can be noticed after three iterations [16], in this paper,
we assumed that the system is acceptably balanced after a
pendulum period over 100 seconds and an amplitude of the
angular motion reduced below 0.01 degree for each Euler
angle.

In a system where static unbalance is only considered, the
gravitational torque varies according to the attitude motion
of the simulator. This motion can be represented by a set
of Euler angles. While these angles are inherently linked
together because of the dynamic equations of motion, we can
calculate the amplitude and frequency of oscillations of the
pendulum-like motion to evaluate the effectiveness of the
automatic balancing method. Let Jxx be any of the compo-
nents of the principal diagonal of the inertia matrix Js, g
defined as the acceleration of gravity at ground testing level,
and ∥rCM∥2 be the Euclidian norm of the offset vector rCM .
The period of a simple pendulum in free motion can be
calculated as [34]:

T =
2π√

Msg
Jxx

∥rCM∥2

(15)

114468 VOLUME 12, 2024



J. G. C. Mamani et al.: Automatic Mass Balancing of a Small Spherical Simulator for Attitude Control Verification

TABLE 1. Math notations.

Finally, to validate the automatic balancing mass system
performance, the calculated period (15) can be compared to
the one estimated with the pendulum-like motion in remark 1.

III. MODEL REFERENCE ADAPTIVE CONTROL DESIGN
In this section, an uncertain dynamical system representing
an unbalanced attitude simulator system with unknown per-
turbation is addressed, where the tracking performance can
be guaranteed according to a leakage modification in the
MRAC [26], [27], [49] and the proposed input error modifi-
cation for a dynamical system such as the attitude simulator.

A. MODEL REFERENCE ADAPTIVE CONTROL
Let xp(t) be the measurable state vector of an uncertainty
system, Ap, Bp be the known systemmatrix, and control input
matrix, respectively, with both matrices controllable, u(t) be
the control input. 3 be the unknown control effectiveness
matrix, and δp be the system uncertainty. Then, a dynamical
system with parameter uncertainty and unknown external
perturbation can be written in the following form:

ẋp(t) = Apxp(t) + Bp3u(t) + Bpδp
(
t, xp(t)

)
,

xp(0) = xp0 (16)

Assumption 1: consider a given bounded unknown
weight matrix Wp, where ∥Wp ∥2≤wp for t≥0, has a
bounded time rate of change ∥Ẇp ∥2≤ẇp for t≥0, Let
σp
(
xp
)

= [σp1
(
xp
)
, σp2

(
xp
)
, , . . . , σps

(
xp
)
]T be a known

basis function that includes local Lipschitz elements. Then,
the system uncertainty δp at (16) can be parameterized as [35],
[36], and [37]:

δp
(
t, xp

)
= W T

P (t)σp
(
xp
)

(17)

By definition, the system uncertainty δp(t, xp) is able to
size time-varying changes as, for example, the parameter
uncertainty of a non-rigid spacecraft inertia. Furthermore,
by letting some of the basis function elements be constant
(e.g. σp1(xp) = cte), the uncertainty of the system δp(t, xp)
is able to capture external time-varying disturbances such as
the four types mentioned for the attitude simulator system.

In order to include the command following into the system,
let the state vector be augmented with an integral state xc(t).
Let Ep be a matrix subset following selector, and c(t) be
a piecewise command; hence, the augmented vector can be
defined as x(t)≜

[
xTp (t) x

T
c (t)

]T
where the integral term xc(t)

satisfies (18).

ẋc(t) = Epxp(t) − c(t),

xc(0) = xc0 (18)

In order to acquire the desired command following charac-
teristics taken by the reference model (19), let Ar ≜ A− BK
be Hurwitz to get bounded reference state vector xr, Br ≜[
03×6

−I3×3
]T

be the adaptive control input matrix and
Brc(t) be the nominal control signal. Where A and B be the
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state matrices of an augmented system described at (20).

ẋr(t) = Arxr(t) + Brc(t),

xr(0) = xr0, t≥0 (19)

A ≜

[
Ap 06×3

Ep 03×3

]
, B ≜

[
BTp 03×3 ] (20)

Then, by considering (16), (17), (18), and (19), the aug-
mented system can be written as:

x(t) = Ax(t) + B3u(t) + BW T
P (t)σp

(
xp(t)

)
+ Brc(t),

x(0) = x0, t≥0 (21)

To formulate the feedback control law (22), let ua(t) be the
adaptive control law (24), and un(t) be the nominal control
law (23).

u(t) = un(t) + ua(t), t≥0 (22)

un(t) = −Kx(t), t≥0 (23)

Assuming an unknown weight matrix be W (t) ≜
[3−1W T

p (t)
(
3−1

− I3×3
)
K ]T , a known basis function be

σ (x(t)) ≜
[
σ Tp (x(t)) x

T (t)
]T
, and Ŵ (t) be the estimate

of W (t) for t≥0 satisfying the update law (30), the adaptive
control law can be written as:

ua(t) = −Ŵ T (t)σ (x(t)) , t≥0 (24)

Let xr(t) be the reference state vector which satisfies the
uncertain dynamical system (25) obtained by combining (19),
(21), and (22).

x(t) = Arxr(t) + Brc(t)

+ B3
[
ua(t) +W T (t)σ (x(t))

]
,

x(0) = x0, t≥0 (25)

Let e(t) be defined as the system error, and W̃ (t) be defined
as the weight estimate error, where the system error dynam-
ics (28) can be obtained by combining (19), (24), and (25).

e(t) ≜ x(t) − xr(t), t≥0 (26)

W̃ (t) ≜ W (t) −W (t), t≥0 (27)

ė(t) = Are(t) − B3W̃ T (t)σ (x(t)) ,

e(0) = e0 ≜ x0 − xr0, t≥0 (28)

To define the update law, let R be a symmetric matrix (29),
and P be a solution of the Lyapunov equation given by:

0 = ATr P+ PAr + R (29)

Remark 3: For a standard model reference adaptive con-
troller, by considering a learning rate of adaptation gain γ ,
the update law (30) can be derived by choosing the Lyapunov
function candidate as in (31) with time derivative (32) for a
close loop system trajectory (see remark 2.2 and the derivative
of the parameter adjustment in [23], and [26] respectively).

˙̂W (t) = γ σ (x(t)) eT (t)PB

Ŵ (0) = Ŵ0, t≥0 (30)

V (e,̃W ) = eTPe+ γ−1 tr
[(
W̃31/2

)T (
W̃31/2

)]
(31)

V̇
(
e, W̃

)
= −∥e(t)∥22 − 2γ−1 tr 3W̃ T (t)

∗ (γ σ (x(t)) eT (t)PB−
˙̂W (t)) (32)

Remark 4: In adaptive control, one feature of interest is to
reduce or eliminate the conservativeness of the design. While
for a standard model reference adaptive controller, this con-
servativeness is high because of the upper and lower bounds
on the unknown gains, in practice, it is not possible to adopt
an upper bound in the control signal. In consequence, in this
paper an adaptive controller with barrier Lyapunov function
with leakage modification is adopted to acquire user-defined
error performance.

To stablish the update law, let ϕd (∥z∥p) be defined as a
generalized restricted barrier Lyapunov function on the set
Dϵ ≜ {∥z∥H : ∥z∥H∈[0, ϵ)} where ϵ be a-priori user defined
constant (see the definition of restricted potential functions
in [27], [38], [39], [40], [41], [42], and [43]).

The update law in (30) can be augmented using the
defined restricted potential function resulting in (33), where
ϕd
(
∥e(t)∥p

)
be the error depending learning rate.

˙̂W (t) = γ ϕd
(
∥e(t)∥p

)
eT (t)PB

Ŵ (0) = Ŵ0, t≥0 (33)

Then, considering the system error dynamics defined
in (28), and introducing a leakage term κ [26], [49], the
weight estimation error dynamics be given as:

˙̃W (t) = γ
(
ϕd (∥e(t)∥p)e

T (t)PB− (κŴ T (t))T
)
,

Ŵ (0) = Ŵ0, t≥0 (34)

Next, from a theoretical point of view, the error dynamics
can be strictly bounded by a user-defined given system error
(user-defined worst-case performance) ϵ, (35), by applying
the barrier Lyapunov function, (see Lemma 1 in [40], [42]).

∥e(t)∥p < ϵ, t≥0 (35)

To design the feedback control law (22) with the
user-defined system error performance ϵ, first, let the known
basis function σ (x) be restricted by an upper bound υ,
∥σ (x)∥2 ≤ σ + υ∥x∥2. Hence, the new feedback control
law of the system can be computed as in (36) (For reference,
see theorem 3.2 at [27]).

∥u(t)∥2≤∥−Kx(t)∥2 +

∥∥∥−Ŵ T (t)σ (x(t))
∥∥∥
2

∥u(t)∥2≤∥K∥2∥x(t)∥2 + Ŵmax (σ + υ∥x(t)∥2)

∥u(t)∥2≤
(
∥K∥2 + Ŵmaxυ

)
(∥e(t)∥2 + xr)+ Ŵmaxσ (36)

As the worst-case performance given at (35) depends only
on the user-defined system error performance ϵ, this param-
eter can be designed in the a-priori stage, giving as a result a
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guaranteed system performance written as in (37), and upper
bounded feedback control law as in (38).

∥e(t)∥2 <
ϵ√

λmin(P)
, t≥0 (37)

∥u(t)∥2≤
(
∥K∥2 + Ŵmaxυ

)( ϵ√
λmin(P)

+ xr

)
+ Ŵmaxσ , t≥0 (38)

The stability of the modified MRAC architecture can be
proven by considering the dynamical system (16), subject to
assumption 1, along with the reference model given at (19),
the feedback control law in (22), the nominal control law (23),
the adaptive control law (24), and the update law (34) derived
by choosing the Lyapunov function candidate at (39), and
Lyapunov derivative at (40) [26], [27], where α ≜ λmin(R)

λmax (P)
,

d ≜ 2γ−1w̃ẇ∥3∥p, µ =
1
2αγ

−1
∗ w̃2∥3∥2 + d , w̃ =

Ŵmax + w, ∥W∥F≤w,
∥∥Ẇ∥∥F ≤̇w. getting V̇

(
e(t), Ŵ (t)

)
upper bounded and the system error satisfying the strict
user-defined boundedness ϵ [40], [42].

V
(
e(t), W̃ (t)

)
= ϕ

(
∥e(t)∥p

)
+ γ−1 tr

[(
W̃31/2

)T (
W̃31/2

)]
(39)

V̇
(
e(t), W̃ (t)

)
≤ = −

1
2
αV

(
(t), W̃ (t)

)
+ µ (40)

Note that, in this paper, the system-error learning rate
γ (e) is adopted to achieve a-priori, user-defined performance
guarantees, while a leakage term κ is added into the parameter
adjustment mechanism (34).

IV. CONTROL INPUT DESIGN FOR THE SPHERICAL
ATTITUDE SIMULATOR
A. NOMINAL CONTROL INPUT DESIGN
In this part of the section, a nominal control design is intro-
duced where a traditional PD feedback controller is imple-
mented by considering the dynamics of a rigid-body space-
craft. Let xen be the nominal error state (41), qe = q̃ = [η̃ε̃]T

be the quaternion error feedback, ωe be the body-rate feed-
back, [k, d] be real nonnegative gains, and a nominal torque
input un governed by (42). s (ωe) Jsωe be a term usually
used to counteract a possible gyroscopic coupling torque but
omitted in case of slow rotational maneuvers.

xen =
[
qeωe

]T (41)

un = −s (ωe) Jsωe − kqe − dωe (42)

The nominal controller un in (42) is about minimizing
the error between the desired and current attitude of the
small satellite attitude simulator where the real part of the
quaternion error tends to be one (η̃ → ±1), and the vector
part tends to zero (ε̃ → 0), while the body-rate feedback error
goes to zero (ω̃ → 0).

B. MODIFIED ADAPTIVE CONTROL INPUT DESIGN
As written in (24), the adaptive control law ua(t) is bounded
by a known basis function σ (x(t)), and an estimated unknown
weight matrix Ŵ , in which case in order to counteract
conservativeness, the later one is also bounded by a-priori
user-defined constant (also known as system error perfor-
mance) ϵ (35). Then, as long as the user-defined bound-
ary is accomplished, the adaptive controller stability can be
guaranteed.

While the adopted design of the adaptive control with
leakage modification runs under specified boundaries with
strict user-defined performance given by the system error
performance ϵ, a satellite attitude simulator still demands
high precision, alongwith high stability. Different aspects can
cause the anomaly attitude stability in Fig. 8; one potential
cause is that the adaptive law (30) implements system errors
in the adjustment of the control parameter, usually requiring
persistent excitation (external disturbances) and sufficiently
large amplitude [44].

FIGURE 1. Spherical 1U-CubeSat attitude simulator platform.

Motivated by improving the attitude stability of the attitude
simulator, a variation of the adaptive control law (24) is
proposed in (43) where the controller is not just bounded
by the system error performance ϵ, hence, the unknown
weight matrix W (t), but it be also bounded according to the
nominal controller un(t) (23) which be previously designed
with user-defined performance according to the set of model
reference control specifications (42).

ua(t) =

{
un, ∥ua(t)∥2≥∥un(t)∥2
ua, otherwise

, t≥0 (43)

Now, assuming that the proposed adaptive control law (43)
be bounded by the nominal control law (42), the upper bound
of the feedback control law (22) can be rewritten as:

u(t) =

{
−2∥K∥2∥x(t)∥2, ∥ua(t)∥2≥∥un(t)∥2
−Kx(t) − Ŵ T (t)σ (x(t)) , otherwise,

t≥0 (44)
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Theorem 1: the system control input designed in (44)
guarantees asymptotic stability for the attitude simulator
dynamical system with parameter uncertainty and unknown
disturbances given by (16) subject to assumption one such
that the output states x(t) converge to the reference command
c(t) in finite time. Furthermore, the reference model given
in (19), along with the feedback control law (22), the nominal
control law (42) augmented with the integral term according
to (48), and the new adaptive control law (43), guarantee
asymptotic stability while the nominal error (41), and system
error (26), converge to zero in finite time.
Proof: the stability of the closed-loop system can be proven

with general d and k matrices, where the feedback nominal
gain is given by KPD = ng

[
k d

]
. Assuming that k−1 exists,

ng be a real nonnegative gain and η̃ belongs to the real part
of the composed nominal error set of Euler parameters xen,
we can choose a generalization of the Lyapunov function
candidate [22], [45] given by:

V (xen) =
1
2
ωT (ngk)−1Jω + 2

(
1−̃η

)
(45)

With the Lyapunov time derivative given by:

V (xen) =
1
2
ω̇T (ngk)−1Jω +

1
2
ωT (ngk)−1J̇ω − 2 ˙̂η

V̇ (xen) = ωT (ngk)−1J̇ω − 2 ˙̃η

V (xen) =−ω T
(
ngk

)−1 (ngd)ω+(1 − µ)
(
ngk

)−1s (ω) Jω

(46)

Assuming precise cancellation of the gyroscopic term
µ = 1, the derivative of V can be reduced to:

V̇ (xen) = −ω T
(
ngk

)−1 (ngd)ω (47)

In consequence, global stability can be guaranteed if(
ngk

)−1 (ngd) > 0. Where d be a positive real number.
Finally, the second term in (44) had been proven by the

stability conditions for the adaptive control design (39),
and (40).
Remark 5: in order to implement the integral term into the

proposed control law, let the nominal control law (42) be
augmented into the new nominal control law given at (49)
according to the PID controller gains design in (48) whit
time constant of integral control Ti [46]. Note that in the
proposed model, the feedback reference model at (19) gets
replaced by the error feedback reference model (50), where
the nominal error xen is augmented with the integral term
xc(t) into the reference error state xer(t) =

[
xTen(t) x

T
c (t)

]T .
The asymptotic stability of the controller can be guaranteed
as long as lim

t→∞
xen =

[
01×6

]T
, lim
t→∞

xer =
[
01×9

]T
.

kp = k, ki = k/Ti, kd = d (48)

uen = −KPIDxer, (49)

KPID =
[
k d i

]
ẋr(t) = Axr(t) + Buen,

xr(0) = xr0, t≥0 (50)

V. TESTBED DESCRIPTION AND SIMULATION SETUP
A. SPHERICAL CLASS 1U-CUBESAT PLATFORM
In order to simulate the attitude motion of an orbiting small
satellite (1U-class CubeSat platform) with uncertain inertia
and unknown perturbations in the LEO, the orbital parameters
and the attitude simulator parameters are presented in this part
of the section.

Let h = 500 kmbe the orbit flight altitude in a circular orbit
(eccentricity = 0) around the Earth with orbit inclination
i = 97.4◦, and local ascending node time 10 : 30 am.
Assuming Earth radius R⊕ ≈ 6378 km, and Earth’s mass
M⊕ ≈ 5.974 × 1024kg, results in a circular orbital period of
Tcircular ≈ 94.62 min, with a gravitational parameter µ ≈

398600 km3/s2, and an estimated satellite angular velocity
of ωo ≈ 0.00110678 rad/s (see [47], and [48] for orbital
mechanics, and orbital dynamics equations of motion).

TABLE 2. CubeSat testbed platform parameters.

Assuming a rigid body CubeSat with uniform density in a
10 cm of size by side and 2.56 kg of weight, and acceleration
of gravity at sea level g0 = 9.807m/s2, let the principal diag-
onal of the moment of inertia matrix of the attitude simulator
be given as diag (Js) ≈ [4.26, 4.26, 4.26] × 10−3 kg.m2

[50], [51], [52].
We let the actuator be chosen according to the requirements

of the flight mission for the attitude control system. Hence,
reactionwheels are consideredwell-suited to provide external
torque to the spherical simulator platform. Hence, the main
actuator of the active control input is a set of 3 RW, aligned
with each principal axis of the testbed, able to deliver a
maximum momentum exchange of 0.1 mN·m each second
with nominal speed of 3500 RPM. To this end, the main
parameters of the small satellite 1U-class CubeSat platform
inside a spherical structure, Fig. 1, are listed in Table 2.

B. CONTROL PARAMETERS AND SIMULATION SETUP
To simulate the pendulum-like motion, let the gravity off-
set vector acting on the attitude testbed simulator (8) be
given as rCM = [ − 0.0095; 0.0712; − 0.498 ] × 10−5m,
where according to the proposed scheme, this offset vector
is the one to be estimated by the moving masses mi in
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the automatic balancing method. Other initial conditions,
such as the attitude and angular rate, were set to the origin(
q = [1, 0, 0, 0]T ,ω = [0, 0, 0]T

)
(Note that, to apply the

estimation method during this stage, no control input signals
are acting on the system).

TABLE 3. Simulation and control parameters.

TABLE 4. Offset vector estimation.

TABLE 5. Moving mass position.

Once the static unbalance is handled by the movable
masses and the angular motion is reduced below 0.01 degree
with a pendulum period over 100 seconds, we proceed with
the next part of the scheme, the simulation of the implemented
MRAC, used to counteract the parameter uncertainty and
unknown perturbation so that to improve the system perfor-
mance.

For this part of the scheme, the control parameters, Table 3,
used in the adaptive control architecture were designed
according to the nominal control law and the system error
performance for a strict bounded system error, getting defined
command tracking accuracy and improved attitude stability.

FIGURE 2. Vector offset estimation and moving mass position for each
iteration time.

FIGURE 3. Euler angles, and angular rates response (Initial, and first-time
least square batch estimation).

FIGURE 4. Euler angles, and angular rates response (Second-time least
square batch estimation).

In simulations, it was assumed that the control actuators
were not performing ideally. In consequence, the control
effectiveness be reduced to a 75% of their capacity.
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FIGURE 5. Euler angles, and angular rates response (third-, and
fourth-time least square batch estimation).

FIGURE 6. Euler angles, and angular rates response (Fifth-time least
square batch estimation).

FIGURE 7. Euler angles, and angular rates response (Sixth-time least
square batch estimation).

Consider that in this part of the numerical simulation,
static unbalance due to the offset vector rCM defined in

section III-B, had been counteracted by the moving masses,
keeping a remaining estimated offset vector r̃CM6 (Table 4)
used in the dynamic equations of motion as another external
perturbation according to the gravitational torque defined
in (51). which can be rewritten into (52) by considering the
Euler parameter representation and applying the small angle
assumption.

τ g = Msg

−ry cosφ cos θ + rz sinφ cos θ
rx cosφ cos θ + rz sin θ
−rx sinφ cos θ − ry sin θ

 (51)

τ g = Msg

 −ry + rz (4q2q3 − 2q1)
rx + rz (−2q2 − 4q1q3)

−rx (4q2q3 − 2q1)− ry (−2q2 − 4q1q3)


(52)

Now, in order to simulate space environment conditions
acting on the attitude simulator system, uniform random
signals are introduced as external momentum exchange(
τ d = ± rand

([
0.5 0.5 0.5

]T)
× 10−5N·m

)
.

In addition, the generated gravitational torque is added to
this external uniform random signal to be counted as the total
perturbation acting on the system τ total =

(
τ g + τ d

)
.

TABLE 6. Period estimation vs period response.

Assume that linear equations of motion were considered
for numerical simulations of the attitude simulator with the
MRAC approach (Appendix A) [53].

Parameters, initial conditions, and simulation setup are
taken according to Table 2 and Table 3. In addition, let the
reference command be set by (53), where c(t) =

[
φ θ ψ

]T
are the set of Euler angles in the following command.

c(t) =



[
3.5◦, 5◦, 6.5◦

]T
, 50 > t≥0[

1◦,−1.5◦,−0.5◦
]T
, 100 > t≥50[

2◦, 3◦, 5◦
]T
, 150 > t≥100[

0◦, 0◦, 0◦
]T
, 200 > t≥150[

1.5◦, 2.5◦, 4◦
]T
, 250 > t≥200[

1◦, 2◦, 3◦
]T
, 320 > t≥250

(53)

VI. RESULTS AND DISCUSSION
This section is divided into two parts. The first part shows
simulation results after performing automatic mass balancing
of the attitude simulator in order to reduce the offset vector
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FIGURE 8. Euler angles, and angular rates response to the MRAC with user-defined performance.

FIGURE 9. Control input, weight estimate error, and System error response to the MRAC with user-defined performance.

rCM . The second part shows simulation results of the MRAC
for improved system performance.

A. OFFSET VECTOR ESTIMATION AND MOVING MASS
POSITION
By definition, the travelling distance rmi is in direct rela-
tionship with the offset vector in the automatic mass balanc-
ing method (13). Hence, according to Fig. 2, the changes
in the estimated offset vector r̃CM is varying according to
the position of the moving mass along the principal axis of
the simulator. Estimated values for r̃CM corresponding to the
traveled distance by rmi , at each iteration time (1 to 6) are
presented in Table 4 and Table 5, respectively.
Fig. 3 to Fig. 7 show numerical simulation results after

performing the least square batch estimation of the offset
vector rCM at each iteration time. According to Fig. 3, the
initial response of the pendulum-like motion caused by the
initial offset vector is expressed by the set of Euler angles

20 and set of angular rates ω0 (Time 0). Then, for the
same figure, the first–time response of the automatic trav-
elling distance of the movable masses (distance 1rm) are
according to the first estimation of the offset vector (14), and
it is expressed by the Euler angle 21 and angular rate ω1

(Time 1).
In a similar fashion, the second-time response of the auto-

matic least square batch estimation method can be obtained
by performing new travelling distances by the movable
masses according to the second-time estimation of the vector
offset, but with a peculiar motion behavior, Fig. 4.

This unstable behavior may occur due to the excessive
travelling distance of the movable mass, especially in case
the travelled distance of the movable mass along the z−axis
makes the offset vector rotate in the opposite direction; hence
its change in sign, making the pendulum-like motion of the
system perform as an inverted pendulum-like motion. To this
point it may be required to return the movable masses to a
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FIGURE 10. Euler angles, and angular rates response to the modified adaptive control input design.

FIGURE 11. Control input, weight estimate error, and System error response to the modified adaptive control input design.

previous position before performing the next batch estimation
iteration.

Fig. 5 and Fig. 6 show the motion response for the fol-
lowing batch estimation iterations. Note that each time, the
estimated offset vector ˜rCM is getting close to the real off-
set vector rCM the period of the pendulum-like motion is
increased, while the amplitude of oscillations in the Euler
angles decreases at each iteration time.

Numerical simulation results of the estimated period T̃ ,
remark 1, andmaximum value of amplitude in the oscillations
of the Euler angles, max(Eul), are shown in Table 6 for each
iteration time. A comparison between the estimated period T̃
and the calculated period T , (15), can be conducted to validate
the batch estimation method.

Note that, while a fine offset vector estimation can be
obtained with numerical simulations by implementing the
least square batch estimation method, in real implementation,
it would be hard to achieve such performance. This is due

to the short travelling distance a movable mass should carry
out each iteration time. Since the travelling distance rmi is in
direct relationship with each individual mass mi, a possible
solution is to select smaller travelling masses along the axes.
Especial care must be taken at the moment of selecting and
adopting the mechanical design of an attitude simulator.

B. MRAC WITH USER-DEFINED PERFORMANCE AND
IMPROVED ADAPTIVE INPUT ERROR MODIFICATION
In the last part of this section, simulation results under
user-defined performance MRAC, (Fig. 8, and Fig. 9), and
input error modification (Fig. 10, and Fig. 11) schemes are
presented.

Fig. 8, and Fig. 9 show simulation results of the
adopted MRAC with user-defined performance presented in
Section III. It can be seen that while the attitude accuracy
remains acceptable for a remote sensing small satellite< 0.1◦

(at settling time), the attitude stability reaches its limits with
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an approximate maximum value≈ 0.0325deg/s (considering
that a satellite mission design may constrain this parameter
below 0.05deg/s).

As mentioned in a previous section, this attitude stability
behavior may occur due to the system design itself. Another
possible cause is the selection of the leakage term. Note their
values in Table 3, and consider that for greater values of
this term, the oscillations in the second state are increased as
well. While it may seem that a smaller value of the leakage
term provides a better response, this term is linked to the
weight estimation error dynamics (34), hence, the system
error dynamics (28), hence, the adaptive law (30) (Fig. 9),
in consequence to the robustness and attitude accuracy itself.

Note that while, for bigger values of κ we can get better
results in accuracy, smaller values of it will deliver better
attitude stability in a trade-off condition. Especial care in
choosing a bigger value of the leakage term must be consid-
ered since it may prevent adaptation in the weight estimation
error dynamics (34). In addition, in Fig. 9, we can see that the
system errors reach their boundaries more easily according
to the parameter of the error performance ϵ for bigger values
of κ .
Finally, the results of the proposed MRAC with error input

modification show improved attitude stability while keeping
acceptable attitude accuracy, Fig. 10.

Note in Fig. 11 that for the same simulation conditions
as in previous MRAC scheme, the weight estimation error,
and the system error are one order of magnitude below, while
having smooth control input signals, making it more suitable
for hardware implementation.

VII. CONCLUSION AND FUTURE WORK
A. CONCLUSION
This paper presents a comprehensive approach to enhance
the performance of a small spherical attitude simulator, suit-
able for verification of attitude control algorithms, particu-
larly focusing on small satellites 1U-class CubeSat platform.
The main contributions of this work are centred on devel-
oping an automatic mass balancing system by performing
the least-squares batch estimation method followed by a
modified Model Reference Adaptive Control (MRAC) with
modified architecture to address uncertain suppression and
perturbation rejection. In this research, for the addressed
spherical attitude simulator, we presented a reduced dynami-
cal equation of motion with Euler parameters representation
used in the batch estimation method, reducing significantly
the computational complexity at the moment of performing
the automatic mass balancing of the system. Method which
effectively estimates and mitigates the offset vector caused
by the mass imbalance of the system, where small masses
along the principal axes dynamically adjust their position
to enhance system stability and reduce static unbalance.
Then, a modified MRAC with user-defined performance
architecture with input error modification is incorporated
into the scheme to counteract dynamic unbalance, improving

significantly the performance and attitude stability of the sys-
tem. The adaptive controller effectively counteracts paramet-
ric uncertainties and unknown external disturbances, ensuring
robustness in the attitude control of the simulator. Finally,
the effectiveness of the proposed method is validated with
extensive numerical simulations where the results indicate
that the automatic mass balancing system, combined with
the modified MRAC, provides superior performance in terms
of stability and accuracy, making it suitable for hardware
implementation.

B. FUTURE WORKS
Future research directions will focus on experimental valida-
tion by implementing the proposed method into the physical
spherical attitude simulator to validate the simulation results
with real-time implementation and hardware integration to
enable on-the-fly adjustments and corrections during attitude
control tasks. One point of interest is to investigate the scal-
ability and adaptability of the proposed method for larger
satellites with different types of attitude simulators, ensuring
its adaptability to the different control mission requirements
and environmental conditions. Address advanced disturbance
rejection techniques to further enhance the robustness and
reliability of the attitude control system under challenging
conditions.

APPENDIX A
Nominal state space representation of the attitude simulator
dynamics:[

q̇
ω̇

]
=

[
g (q, ω)

J−1
s f

(
ω, hb

) ]+

[
03
J−1
s

]
ub + τ d

= A+ Bub + τd (A1)

y =

[
q
ω

]+

=
[
I3 03×3

] [ q
ω

]
+
[
03×3

]
ub

= Cx + Dub

x =
[
q ω

]T (A2)

Linearized state space representation:

A =


0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5
f41 0 0 0 0 f46
0 f52 0 0 0 0
0 0 f63 f64 0 0

 (A3)

B =



0 0 0
0 0 0
0 0 0
J−1
11 0 0
0 J−1

22 0
0 0 J−1

33


diag (Js) =

[
J11 J22 J33

]T (A4)

f41 = −8ω2
0K1, f63 = −2ω2

0K3 (A5)
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f46 = ω0 (1 − K1) , f64 = −ω0 (1 − K3) (A6)

f52 = −6ω2
0K2 (A7)

K1 =
(J22 − J33)

J11
, K2 =

(J11 − J33)
J22

,

K3 =
(J22 − J11)

J33
(A8)
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