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ABSTRACT The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves
and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of
specific substances, and is widely used in non-destructive testing, human security inspections, biological
tissue diagnoses and military detection. In particular, terahertz wave 3D imaging technology can detect
the internal information of the target of detection, and it has become the focus of current research. This
study carried out research on 3D reconstruction and object detection algorithms based on terahertz images.
In view of the problem that the MVS (Multi-ViewStereo) series of 3D reconstruction algorithms ignore
the context information between the cost layers and have unsatisfactory reconstruction effects when used
on complex regions, an improved MVSNet 3D reconstruction algorithm FCTMVSNet(Feature and Cost
Transformer Depth Inference for Unstructured Multi-view Stereo) based on Transformer is proposed here.
A structured object recognition algorithm was designed to provide theoretical support for subsequent
terahertz image-based object detection algorithms.

INDEX TERMS Terahertz imaging, transmission type, FCTMVSNet, three-dimensional reconstruction.

I. INTRODUCTION
Terahertz waves have low energy. The energy of light waves
in the terahertz frequency level is only a few electron volts,
and 1 electron volt is equal to the amount of electron charge
in an element, which is about Joule, so they will not damage
the object to be detected. Terahertz light waves can penetrate
most non-metallic materials, such as ceramics, plastics, foam
and nylon, to detect hidden objects. Therefore, it can replace
traditional X-ray detection methods and be used for security
detection in public areas such as airports, stations and sub-
ways to detect dangerous items such as knives, explosives
and guns and ammunition. Terahertz-based human security
technology can detect objects hidden under clothes, but a
single-view terahertz detection system is limited by the shoot-
ing angle, and some angles cannot obtain the complete feature
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information of the object, and thus the nature of the object
cannot be accurately judged. Therefore, terahertz detection
methods based on multi-view motion reconstruction is worth
studying [1], [2], [3], [4].

Because terahertz three-dimensional imaging technology
can better obtain the internal information of the sample, it has
become a research hotspot. Three-dimensional Terahertz
imaging technologies mainly include terahertz computed
tomography (CT) imaging, terahertz diffraction tomography,
terahertz tomography and terahertz digital holography. Buma
and Zhang [5]. combined the synthetic aperture focusing
technique with the point-by-point imaging technique to con-
struct a 3D image of the target [6]. In addition, they used
a weighted sum algorithm to solve the problem of sidelobe
artifacts in the reconstructed image. Abraham et al. investi-
gated the effect [6] of objects with a large refractive index
on 3D tomography using terahertz pulse imaging. In 2011,
the University of Electronic Science and Technology of
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FIGURE 1. Terahertz imaging principle.

China designed a continuous THz tomography system with
a planar array detector using CO2-pumped CH3OH to gen-
erate THz waves [7]. In 2012, a 0.34 THz superheterodyne
3D imaging radar system was designed by the University
of St. Andrew’s, which was used for display and process-
ing by transmitting co-polarization, receiving co-polarization
and cross-polarization. The project started in 2008, and
through continuous improvement, an imaging frame rate
of 10 frames/s at 20 m was achieved [8], [9]. In 2016,
Tripathi et al. performed CT imaging of plastic objects with
a narrow linewidth, a tunable terahertz parameter source
and terahertz conversion frequency upconversion detection
technology. Because this method converts the terahertz fre-
quency detection to near-infrared band detection, the dynamic
range of detection could reach 90 dB near 1.5 THz. It could
reflect the internal information of the object and the location
of the defects well [10]. In 2017, Zhou et al. success-
fully reconstructed 3D images of ceramic samples by using
a Uni-Traveling-Carrier Photo Diode (UTC-PD) to gener-
ate 90-140 GHz of low-coherence terahertz radiation. These
studies showed that terahertz waves have great practical value
in non-destructive testing [11].
On the basis of analyzing the characteristics of

terahertz imaging, this article proposes an improved
MVSNet 3D reconstruction algorithm based on Transformer
(FCTMVSNet, feature and cost transformer depth inference
for unstructured multi-view stereo) to address the issue
of using convolution as a feature extraction network for
3D reconstruction algorithms such as MVSNet [12] and
PA-MVSNet [13] in theMVS series, which ignore contextual
information between the cost layers and do not achieve
ideal reconstruction results in complex areas. The traditional
convolutional feature extraction network is replaced by the
self-attention mechanism to solve the problem that the fea-
ture extraction network of the traditional 3D reconstruction
algorithm is limited by the spatial location information and
is insensitive to global information. At the same time, the
inter-layer attention mechanism of the cost body is proposed
to improve the accuracy of the network, which provides
a theoretical basis for the engineering applications of the
algorithm. The structural position feature was used to slice
and output the obtained 3D model, and specific object

detection was realized. At the same time, the reconstruction
accuracy of this method has been significantly enhanced,
particularly in complex regions and especially when dealing
with fuzzy textures such as terahertz images. Meanwhile,
in this paper, the combination of FCTMVSNet and FCOD
is proposed to implement the comprehensive recognition
algorithm for multi-view terahertz images and achieve accu-
rate recognition of objects with low terahertz resolution.

II. DESIGN OF THE 3D TERAHERTZ IMAGING SCHEME
A. TERAHERTZ IMAGING PRINCIPLE
In this paper, a multi-view stereo matching algorithm is
employed to accomplish 3D reconstruction of terahertz tar-
gets. This requires multiple cameras to conduct multi-view
imaging around the target. Nevertheless, due to the constraint
of the imaging equipment, the terahertz source and the tera-
hertz receiver are unable to achieve multi-view acquisition
simultaneously. Thus, the target object is rotated to achieve
multi-view imaging during the experiment.

The terahertz three-dimensional imaging system is com-
posed of a terahertz source, a terahertz beam expanding
mirror, a terahertz camera, a measured object, and a rotat-
ing mechanism of the object, as depicted in Figure 1. The
terahertz source transmits the terahertz wave to focus on the
central axis of the target through the terahertz beam expand-
ing mirror and then converges it to the terahertz detector to
achieve single point image acquisition.

B. TERAHERTZ 3D IMAGING ALGORITHM DESIGN
Terahertz imaging is affected by the imaging device, the def-
inition of the collected terahertz image can be low, and there
are often diffraction patterns in the image. At the same time,
in an active terahertz imaging system, when the terahertz light
source passes through the object, a shadow area overlapping
the foreground and background will be formed. The overlap-
ping shadow area will mask the information on the surface
texture of the object, and effective feature matching cannot
be carried out during 3D reconstruction, which affects the
quality of the reconstruction.

The direct use of terahertz images for target recognition
and detection will be affected by factors such as perspective
and the image’s clarity. Effective pre-processing of terahertz

108976 VOLUME 12, 2024



X. Wu et al.: 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm

images is required to make full use of the multi-view 3D
information for reconstruction and recognition of a target.
Therefore, the overall scheme of this study is shown in
Figure 2. The overall scheme is composed of three modules:
the image separation module, the 3D reconstruction module
and the target detection module.

FIGURE 2. Schematic of the design of the target detection algorithm
based on 3D terahertz imaging.

As terahertz imaging utilizes the electromagnetic radiation
characteristics of the terahertz band, it can penetrate many
non-metallic materials (such as plastics, paper, fabrics, etc.)
and has certain transmission and reflection capabilities for
many common non-conductive substances and biological tis-
sues. Therefore, terahertz imaging is also known as terahertz
transmission imaging (plus a terahertz transmission image).

Due to the superposition of the foreground and background
textures in the terahertz transmission image, a feature match-
ing error is generated, and 3D reconstruction of the object
cannot be performed. Therefore, the terahertz image trans-
mission image needs to be separated from the foreground
and background before reconstruction, so that the terahertz
image can meet the standard for reconstruction. Secondly,
on the basis of the traditional 3D reconstruction algorithm
MVSNet, the Transformer is used to replace the convolu-
tional network, so that the network can obtain the related
information between images and retain the feature-related
information between the cost layers. Finally, the terahertz
point cloud images obtained by structuring multiple fixed
angles can completely express the feature information of the
object, thus improving the detection ability of the network for
objects.

III. TERTZ IMAGE 3D RECONSTRUCTION AND TARGET
DETECTION ALGORITHM
A. OVERALL STRUCTURE OF FCTMVSNET NETWORK
Aiming to solve the problem that theMVS series of 3D recon-
struction algorithms ignore the context information between
the cost layers and their reconstruction effect is not ideal for
complex areas, this study proposed an improved 3D recon-
struction algorithm known as FCTMVSNet, which is based

on Transformer, and designed a view-structured target recog-
nition algorithm to realize the 3D reconstruction of targets
based on terahertz images.

The overall network structure of FCTMVSNet is shown
in Figure 3. The entire network is mainly composed of the
feature extraction module, the cost loss body construction
module, the cost interlayer attention mechanism module, the
depthmap estimationmodule and the depthmap optimization
fusion module.

Due to the immaturity of terahertz imaging devices, a ter-
ahertz source with an output power of 150mW @ 2.52THz
(118.8um) from the Chengdu Precision Optical Engineer-
ing Research Center of the Chinese Academy of Nuclear
Physics was selected for the experimental system built in
this article, and the resolution of the Huirui photoelectric
terahertz camera used for collecting the terahertz images was
640 × 480. Due to limitations in the optical path and the
terahertz source’s frequency, the terahertz dataset captured
here was insufficient to support the subsequent experiments,
the experimental system built and the terahertz image data
collected are shown in Figure 4. To verify the feasibility of
our algorithm for terahertz image reconstruction, we used the
terahertz dataset captured by Hongke Electronics Technology
and the nanoelectronics team from the IMS Laboratory of
the University of Bordeaux in France [18]. The equipment
they used was a TeraCascade 1000 high-power terahertz
source (1.3 mW, 2.5 THz output), a dual-mirror galvanome-
ter, a 45◦ off-axis parabolic reflector, a INOmicrocalorimeter
array(288 × 384 pixels) and a TeraLens (F/0.8) lens. Due to
the particularity of terahertz imaging technology, there was a
transmissive imaging effect. If a 2.5 THz frequency terahertz
source was used, a resolution of 250 µm could be achieved.
This was sufficient to verify the effectiveness of the algorithm
proposed in this study.

Firstly, the multi-view terahertz transmission-separated
image was processed through Transformer’s feature extractor
to obtain the corresponding feature vectors. The homography
matrix projected the remaining view feature vectors and cor-
responding camera parameters onto the main view to form
the volume of the cost loss. Then a self-attention mechanism
was used for each cost body layer to extract the contextual
information. Finally, the initial depth map of the main view
was obtained through the encoder and decoder layers.

B. FEATURE EXTRACTION AND 4D COST LOSS VOLUME
In traditional 3D reconstruction algorithms, the convolution
operation uses two important spatial constraints, namely the
weight-sharing mechanism and the translation invariance of
the features extracted by convolution layers, for learning and
extracting visual features. However, this constraint makes the
convolution have poor ability to perceive the global position
of the features and it only cares about whether these decisive
features exist. Due to the nature of the convolution operators,
the feature map of convolution has local sensitivity, that is,
each convolution operation only considers the local informa-
tion of the original data [19], [20], [21], [22].
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FIGURE 3. Diagram of the network structure of the 3D reconstruction algorithm based on multi-view stereo depth of field inference (FCTMVSNet).

These reasons lead to the inductive bias of CNN, which
lacks an overall grasp of the input data itself and can only
extract effective local information, but cannot extract the
long-distance features of the global data [23].

The feature maps extracted by Transformer using its
unique self-attention mechanism are not limited by spatial
information, as in the case of convolution. On the contrary,
it can effectively learn the target area and background infor-
mation, as well as the correlation between images, as shown
in Figure 5. In this study, when constructing the network
of the 3D reconstruction algorithm, the first few layers of
the network used the self-attention mechanism to extract the
features from the terahertz images.

According to the conventions of information retrieval, the
features are grouped into Q values, K values and V values.

The Q values retrieve relevant information from the V values
based on the attention weight obtained by the dot product of
Q and K corresponding to each V. The form of the attention
layer is Attention(Q,K,V)=softmax(QK^T ).

The attention mechanism measures the similarity of the
features between Q and K, and retrieves the information from
V based on the calculated weights.

We constructed the 4D cost loss volume by using the
camera’s parameters and the feature maps extracted by Trans-
former. After deriving the depth map, a cost loss volume was
constructed on the basis of the conical principle of using
the first input photo as the main perspective of the camera.
In 3D reconstruction, the perspective cone principle is used
to describe the representation of the camera’s or observer’s
field of view in 3D space. It is based on the principle of
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FIGURE 4. The terahertz experimental system built by this team and the collected terahertz experimental images: (a)Experimental system used for
3D terahertz imaging. (b)Experimental results of terahertz imaging.

FIGURE 5. Attention mechanism.

perspective projection, which limits the field of view to a
conical area, where the camera’s position is the top of the
cone, and the distance and breadth of the field of view are
determined by the height of the cone and the width of the
bottom. The main perspective image and other perspective
images are extracted through Transformer’s features to obtain
the corresponding feature vectors. Due to the differences in
the images from each perspective, due to their computational
complexity, depth information cannot be extracted from all
views. Therefore, depth information can only be extracted
from the images from the main perspective to obtain a depth
map. Therefore, images from other perspectives need to be
transformed to the perspective of the main perspective image
through homography.

All other viewpoint feature maps are transformed into
the stereo space corresponding to the main viewpoint image
through a homography transformation. The homography

transformation can be performed using Formula (1),

X∼
· Hi (d) · X (1)

H i (d) = KiDi

(
I −

t2 − t1
d

· RT1 · RT2

)
(2)

where ‘‘∼’’ represents depth-equivalent mapping; Hi(d) rep-
resents the depth of the other viewpoint images mapped to the
cone space corresponding to themain viewpoint image; I rep-
resents the reference image;K , R and t represent the camera’s
internal and external parameters and horizontal displacement
corresponding to the feature map; and d represents the depth
information. Deep equivalence mapping is a technique used
to map depth information from one perspective to another.
In 3D reconstruction andmulti-view stereo vision, when there
are depth maps from multiple perspectives, depth equivalent
mapping can convert these depth maps into a shared depth
map for consistent 3D geometric calculations and rendering.

The feature maps of a certain number of the remaining
viewpoints are mapped to form a feature aggregation {Vi}Ni=1,
and then multiple feature aggregations {Vi}Ni=1 are merged
into a cost loss body c. In order to adapt to any number of
viewpoint inputs, a variance-based method of calculating the
loss body was adopted in this study.

V =
W
4

·
H
4

· D · F (3)

where W , H , D and F are the width, height, the number of
visual maps and the number of channels, respectively; and V
represents the volume of the feature map.

The mapping relationship of loss volume is as follows.

c = M (V1, . . . ,VN ) =

∑N
i=1

(
Vi − V̄ι

)2
N

(4)

where V̄ι is the average of all feature aggregations.
In this study, the traditional calculation method was con-

tinued, and c was calculated by pairwise pairing of images
from the main view angle and images from other views.
However, in the process of calculation, the cost loss of the
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main view angle should not be biased when choosing what
to focus on, and each view angle should be treated equally.
The traditional calculation method is to average the loss of
multiple perspectives, which will not provide the network
with the information about the differences in the features.
Therefore, this study used variance to replace the average
value.

C. ESTIMATION AND FUSION OF THE DEPTH MAP
When the surface of the object is blocked and distorted, the
resulting cost loss body usually carries some noise. To solve
this problem, the depth map is constrained by smoothness to
reduce the influence of noise. At the same time, a probabilis-
tic aggregate P is generated on the basis of the cost loss body c
for the inference of the depth map. With multi-scale 3D CNN
being used to regularize the cost loss body, four cost bodies of
different sizes were constructed to aggregate the surrounding
information. At the same time, in order to further reduce
the memory consumption, the cost loss body of 32 channels
was reduced to eight channels after the first 3D convolution,
and the images’ size was reduced in the second and third
layers. The final 3D convolution layer outputted a single
channel polymer, which was then probabilistically unified
using softmax operations in the depth direction. The result
was a probabilistic aggregate, which stored the depth proba-
bility of the main view image in stereoscopic space [25-26].

The easiest way to obtain a depth map from a probabilis-
tic aggregate is a preliminary estimate, which is made by
calculating the expected value of each voxel depth estimate
by Formula (5), taking the learnability of the network into
account.

D =

dmax∑
dmin

d × P (d) (5)

where P(d) is the probability estimate of all voxels at depth d .
For each sample, we constructed a cost loss volume, and

the maximum and minimum values for estimating depth were
different, so we hoped to generate a continuous estimated
value. The output depth map is shown in Figure 6a. Its size
was the same as that of the 2D feature map, which was
reduced by four times compared with the input image. The
probability distribution along the depth direction can also
reflect the quality of the depth map. Although multi-scale
3D CNN has a strong ability to regularize probability into a
single mode of distribution, as shown in Figure 6b, this study
noted that for pixels with matching errors, their probability
distribution in the depth direction was relatively discrete and
could not be concentrated, as shown in Figure 6c.
Based on this observation, we used the average depth d̄ to

replace a small range of the depth probability. At the same
time, the reconstructed boundary of the initial depth map
was sometimes overly smooth due to the large receptive field
during regularization, while the main view angle image in
the natural scene contained boundary information. To solve
this problem, the main view angle image was shrunk by

FIGURE 6. Initial depth map.

one-quarter during processing to make it the same size as the
initial depth map. At the same time, the depth map was nor-
malized to prevent deviation at a certain depth ratio. The two
processed images were channel-stitched. Then the stitched
four-channel image was put into a convolutional network
with a four-layer residual structure for fusion of the infor-
mation. Finally, the single-channel feature map outputted by
the residual network was restored to the interval of the depth
hypothesis (the reverse of the normalization process), and it
was added element by element to the initial depth map, thus
obtaining the optimized depth map.

The depth maps of different viewpoints were fused into a
unified point cloud representation, and the visibility-based
fusion algorithm was used to minimize the influence of
occlusion, illumination and other factors, thus minimizing the
depth occlusion and conflict between different viewpoints.

To further suppress reconstruction noise, the visible view
of each pixel was determined in the filtering step, and the
average of all the reprojected depths was used as the final
depth estimate of the pixel. The fused depth map was pro-
jected directly into space to generate a 3D point cloud.

D. OBJECT DETECTION ALGORITHM FOR THE
STRUCTURED IMAGE OF THE POINT CLOUD
The terahertz images were reconstructed to form a point
cloud, which was a 3D stereoscopic effect. Images taken from
multi-structured fixed angles of interest could express all the
feature information of the point cloud, effectively solving
the problem of traditional object detection, which is limited
by the low recognition accuracy of shooting angles. On this
basis, the focus and CSP (center and scale prediction) based
object detection algorithm (FCOD) was used as the target
detector for the point cloud of structured terahertz images.

The network structure of FCOD consists of four parts:
the feature extraction module, the feature fusion module, the
feature enhancement module and the prediction module. The
network’s structure is shown in Figure 8.
The point cloud of the structured terahertz image was first

extracted by the FCFE feature extraction module, which was
processed by Focus and CSP, the core steps of the FCFE
feature extraction module. As shown in Figure 9, Focus is
similar to the sampling operation, which takes the value of
every other pixel in each input image, so that one image
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FIGURE 7. Schematic diagram of structured feature extraction.

FIGURE 8. Network structure of the FCOD target detection algorithm.

will become four images, and the feature information of
these four images is similar and complementary. This interval
sampling operation does not cause the loss of the feature
information of the original image, and the information on
the width and height of the image will also be projected
onto the channel space. Compared with the original image,
the number of channels is expanded four times. Finally, the
sampled image is extracted by the convolution layer, and the
downsampling feature map of all information of the original
image is obtained.

FIGURE 9. Focus slice processing.

The input image is sliced by the Focus module and then
entered into the CSP module for deep feature extraction.
As shown in Figure 10, the input feature map is divided into

two parts. One part is passed through the CBS layer (con-
volution, layer normalization and SiLU activation) and then
through multiple residual layers, and finally through a convo-
lution layer to extract the features. The other part is directly
entered into the calculation of the convolution layer. The two
parts are stitched, and then undergoBN andLeakyReLU layer
normalization and activation, and finally pass through a CBS
layer to extract the features. This can increase the depth of the
network to extract more fine information on the features, and
can also avoid the problem that the gradient disappears with
an increase in the depth of the network. The feature vector
outputted by the FCFE module is added to itself and inputted
into the encoder for encoding after passing through the CSP
feature fusion module.

FIGURE 10. Diagram CSP network structure.

The algorithm for point-cloud-structured image object
detection directly predicts its final detection results through
the prediction module, outputting the category and location
information of all targets in the current image. The prediction
module is composed of a fully connected neural network,
which is mainly divided into two branches: one for predicting
the category of the target, and the other for predicting the
location of the target.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. TRAINING PROCESS
The training process of the algorithm for 3D THz trans-
mission image reconstruction and object detection can be
decomposed into two interrelated tasks: 3D reconstruction
and object detection.

The network training set contained the terahertz dataset,
the X-ray dataset and the DTU dataset, with each dataset
containing images of different scenes. As shown in Figure 11,
each main view was calculated with images from other per-
spectives to match the scores, and the top 49 images with high
scores were obtained as the input of the network. Meanwhile,
the size of the original images was reduced to 400 × 300,
and images with a 320 × 256 resolution were obtained by
cropping from the center and used as the input dataset for
training, while the camera’s parameters were changed accord-
ingly. The depth intervals refer to areas in the scene where
there were changes in depth or discontinuities, which play
an important role in 3D reconstruction and are crucial for
obtaining accurate depth information and generating realistic
3Dmodels.We set the assumed depth value to 425920.5, with
a depth interval of 2.5 mm (D=192 depth intervals).
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FIGURE 11. Three-dimensional reconstruction of terahertz transmission images and training process of the target
detection algorithm.

The feature of the main view and 48 other views were
extracted by the transformer to obtain 49 feature maps. The
feature maps and the camera’s parameters were transformed
by the homography matrix to form 49 feature cost bodies Vi.
The variance of the points on the same space position of the
49 feature cost bodies was calculated, and Vi was aggregated
into a cost space C . The dimensions of the cost space C
were D, W, H and F, which are the number of depth samples,
the width and height of the input dataset and the number of
feature channels, respectively.

The value of each depth in the cost space was concentrated
into a unimodal distribution. Each point was normalized
using softmax along the direction of depth D to obtain the
depth probability value of each point on D, thus obtaining a
probability space P. Then the probability sum was calculated
once for each four neighborhoods along the depth dimension
of the probability space, and then the maximum probability
sum was obtained along the depth dimension ofD. The depth
value of each point was calculated to obtain the depth map.
The point cloud information was obtained after optimization
of the fusion of 49 depth maps; the fusion process did not
require training.

The task of detecting objects in terahertz images is to use
a single neural network to act on the image, divide the image

into two regions and predict the probability of the boundary
box and each region.

B. EVALUATION OF THE ALGORITHM
Firstly, the 3D reconstruction part was trained for 16 epochs
in total. The loss function of the training process is shown in
Figure 12.

As can be seen from the figure, the loss function showed
a general downward trend, indicating that the model had
good learning ability. After completing the training of the 3D
reconstruction part, the weights of the network were directly
read to test the THz transmission separation images. The
generated depth map is shown in Figure 13.
The depth maps generated from the multi-view terahertz

images were fused and optimized to form a point cloud, and
the results are shown in Figure 14:

After the training of the 3D reconstruction of the terahertz
images was complete, the detection network of the point-
cloud-structured terahertz image of the target was trained.
After the training was complete, the weights were directly
read to test the point clouds of the terahertz images.

The test results are shown in Figure 15. It can be seen from
the figure that the network could recognize and detect the
structured point cloud of the terahertz images.
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FIGURE 12. Change curves during training of the loss function of the algorithm for 3D reconstruction using terahertz
transmission overlap separation: (a) declining curve of the loss in the depth map’s error; (b) declining curve of the
loss of the depth map loss; (c) descending curve of cross-entropy loss; (d) descending curve of total loss.

FIGURE 13. Results of the test of the algorithm for 3D terahertz
transmission reconstruction :(a–f) Depth maps for Viewpoints 1-3.

To validate the superior reconstruction capacity of the FCT-
MVSNet algorithm, this paper compared the reconstruction
accuracy of various algorithms based on the DTU dataset,
as demonstrated in Table 1.

Based on the leaf terahertz image dataset collected
through the experiment, the FCTMVSNet 3D reconstruction

FIGURE 14. Point cloud generated by fusion of the depth map.

FIGURE 15. Results of detection and recognition of the point cloud map
of the terahertz images.

algorithm proposed in this paper is verified, and the recon-
struction effect is presented in Figure 15. It can be observed
from the reconstruction effect diagram that the FCTMVSNet
reconstruction algorithm proposed in this paper enables 3D
reconstruction on the terahertz dataset, and the reconstructed
leaves possess a relatively complete structure. However, due
to the low quality of the images collected in the experiment,
part of the internal texture of the reconstructed leaves is miss-
ing. Subsequently, by adjusting the experimental parameters
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TABLE 1. Comparative analysis of the reconstruction accuracy of
different algorithms based on the DTU dataset.

FIGURE 16. Reconstruction of the Terahertz dataset.

FIGURE 17. Reconstruction of the DTU dataset.

FIGURE 18. Reconstruction of the X-ray dataset.

of terahertz imaging, superior terahertz image data can be
obtained, and the 3D reconstruction effect can be optimized.

At the same time, the FCTMVSNet algorithm proposed
in this paper is also reconstructed on the DTU public
dataset and the X-ray dataset, and can demonstrate an excel-
lent reconstruction effect on both datasets, as depicted in
Figures 17 and 18.

It can be seen from the figure that whether we used the
DTU dataset with the camera’s parameters, or the X-ray and
terahertz datasets with the camera’s parameters calculated by
the shooting angles, FCTMVSNet could reconstruct objects
from multi-angle images and achieve good results.

V. CONCLUSION
In this study, we proposed a Transformer-based 3D recon-
struction algorithm known as FCTMVSNet (feature and
cost transformer depth inference for unstructured multi-view
stereo).We used a self-attentionmechanism to replace the tra-
ditional convolution-based feature extraction network, which
solved the problem that convolution is limited by the infor-
mation on the spatial location and cannot obtain the feature
information between images. At the same time, we proposed
an inter-layer attention mechanism of the cost body to extract
the context information between cost layers and improve
the model’s accuracy. When verified on public databases,

the FCTMVSNet network successfully performed 3D recon-
struction of the processed terahertz images. On the basis of
obtaining the point cloud of the measured object through
terahertz images, we structured the pose angle and parameters
to output the fixed direction of the point cloud of the texture
for target detection. The test results showed that the generated
structured terahertz images met the requirements of target
detection, providing theoretical support for subsequent 3D
terahertz imaging.
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