
Received 14 June 2024, accepted 30 July 2024, date of publication 6 August 2024, date of current version 15 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3439354

Farthest Agent Selection With Episode-Wise
Observations for Real-Time Multi-Agent
Reinforcement Learning Applications
HYUNSOO LEE 1, GYU SEON KIM 1, MINSEOK CHOI 2, HANKYUL BAEK 1,
AND SOOHYUN PARK 3, (Member, IEEE)
1Department of Electrical and Computer Engineering, Korea University, Seoul 02841, Republic of Korea
2Department of Electronic Engineering, Kyung Hee University, Yongin 02447, Republic of Korea
3Division of Computer Science, Sookmyung Women’s University, Seoul 04310, Republic of Korea

Corresponding authors: Minseok Choi (choims@khu.ac.kr) and Soohyun Park (soohyun.park@sookmyung.ac.kr)

This work was supported by the National Research Foundation under Grant 2022R1A2C2004869.

ABSTRACT Multi-agent reinforcement learning (MARL) algorithms have been widely used for many
applications requiring sequential decision-making to maximize the expected rewards through multi-agent
cooperation. However, MARL faces significant challenges, particularly in resource-limited real-time
computing environments. To tackle this problem, this paper considers the selection of agents for training
which can be beneficial in terms of computation-overhead reduction. For the selection, a farthest agent
selection (FAS) is proposed, inspired by the farthest point sampling for representative sample selection in
3D point cloud processing. The proposed FAS method is able to choose agents based on their episode-
specific observations in real-time. Additionally, the number of selected agents can be determined based on
the real-time variances in the observations of each agent. The proposed FAS method is rigorously evaluated
using the StarCraft Multi-Agent Challenge (SMAC) and Predator-Prey (PP) tasks, demonstrating superior
performance compared to existing MARL algorithms. This research is scalable, and thus, it can contribute
to the development of more efficient MARL training methodologies for various applications such as real-
time strategy games and human-robot cooperation scenarios requiring multi-agent cooperation under partial
observability.

INDEX TERMS Multi-agent reinforcement learning, agent selection, StarCraft multi-agent challenge
(SMAC).

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Reinforcement learning (RL) is a branch of machine
learning where agents learn sequential decision-making
through interactions with their environment. The primary
goal of RL is to maximize cumulative expected rewards
over time, thereby enabling agents to develop strategies
for optimal action sequences. Recent advancements in RL
have demonstrated significant progress in various complex
decision-making tasks in emerging applications [1], [2], [3],
[4], [5]. Particularly in the realm ofmulti-agent reinforcement

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

learning (MARL), which involves complex interactions and
teamwork among agents, e.g., real-time strategy (RTS)
games like StarCraft providing a variety of scenarios. These
scenarios are conducive to evaluating agent performance
across different situations. This approach allows researchers
to analyze results and develop strategies applicable to
real-world settings where agents do not have access to
complete information [6], [7], [8]. Since real-world scenarios
often involve agents operating with incomplete information
or partial observation, a lot of studies utilize platforms
that simulate such complex conditions to explore real-time
learning strategies.

One of the challenging tasks in MARL is cooper-
ation among heterogeneous agents [9], [10], [11]. The

108504

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-1113-9019
https://orcid.org/0000-0002-5559-9749
https://orcid.org/0000-0001-7027-1920
https://orcid.org/0009-0007-4670-6817
https://orcid.org/0000-0002-6556-9746
https://orcid.org/0000-0001-5981-5683

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

FIGURE 1. Concept of farthest agent selection in MARL.

collaboration among agents with different characteristics
reflects the high complexity of real-world systems [12],
[13], [14]. To achieve this goal, a centralized training and
decentralized execution (CTDE) approach is effective as
it facilitates learning from each agent’s partial observa-
tions [15], [16]. However, when the partial observations
among multiple agents are similar, using all agents’ partial
observations for learning can be wasteful and even hinder the
training process from the perspective of the central network.
Therefore, selecting a representative subset of agents and
using their observations only to update the central network
can yield computational benefits relative to where all agents
are involved in the neural network training scheme.

Considerable research has focused on algorithms such
as attention, which enhances overall system efficiency and
performance [17]. This is achieved by prioritizing key infor-
mation from agents and allocating less focus to less important
details, thereby managing the computational resources more
efficiently. The attentionmechanism has also been utilized in
RL under stochastic partial observability, where it has been
employed to solve decentralized coordination problems [18],
[19], [20]. However, to the best of our knowledge, there has
not been any research for controlling the actual number of
agents, which is our main objective.

B. ALGORITHM DESIGN RATIONALE
This paper proposes a control algorithm that adaptively
selects agents for training the central network to reduce the
model size and learning time, as described in Fig. 1. In Fig. 1,
each agent independently observes the partial information of
the entire system, some of which can overlap with those of
nearby agents. The central network for taking global action-
value functions can be trained using the partial observations
of all agents, but the overlapped observations can delay and
even hinder the training process. For example, in Fig. 1, agent
A’s observation overlaps with those of agents B, D, and E,
and there is no overlap with agents C, F, and G. In this

case, it would be beneficial to have agents A, C, F, and G at
least participate in updating the central network to accelerate
the training while maintaining the learning performance. The
selection process involves determining the number of agents
to participate in the current epoch and choosing specific
agents. At first, given the number of agents participating in
each epoch, we propose the farthest agent selection (FAS)
algorithm that selects appropriate agents for updating the
central network, inspired by farthest point sampling (FPS),
where the FPS is widely used in 3D point cloud environments
for downsampling by representing the entire population
with a few representative points; therefore, the union of
partial observations of agents selected by our FAS algorithm
can represent the critical state information for updating
joint action-value functions. Furthermore, the guideline of
determining the number of agents for updating the central
network is presented. Intuitively, a small variance of partial
observations can be measured among agents having large
overlaps within their observations; on the other hand, a large
variance indicates that agents’ observations are exclusive.
Based on this concept, we experimentally demonstrate that
our FAS algorithm can accelerate the training process of
MARL and reduce the model parameters for the joint action
while maintaining the learning performance.

C. CONTRIBUTIONS
The major key contributions of this research can be summa-
rized as follows.
• A novel agent selection algorithm that selects rep-
resentative agents of the entire system states and
utilizes their observations only for updating the mixing
network which estimates the joint action-value function.
This approach accelerates the training of MARL and
effectively reduces the computational complexity of
the neural network while maintaining performance.
Additionally, the number of agents required for training
the mixing network can be adaptively determined based
on the variance of partial observations, allowing the

VOLUME 12, 2024 108505

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

proposed algorithm to be applied in a variety of
environments and time-varying conditions.

• Extensive simulation results demonstrate that the
proposed scheme can achieve comparable learning
performances to the conventional method in which
observations of all agents are used for updating the
mixing network, despite allowing fewer agents to
participate in each epoch.

D. ORGANIZATION
This paper is organized as follows: Sec. II surveys related
research, and Sec. III discusses the necessary background
knowledge. Sec. IV provides the details of the proposed FAS
algorithm, while Sec. V offers an in-depth analysis of the
performance evaluation. Sec. VI concludes this paper.

II. RELATED WORK
A. MARL AND AGENT SELECTION ALGORITHM
In the early days of multi-agent systems, methods to find the
optimal policy by having agents directly learn value functions
or policies are widely studied. However, this methodology,
i.e., independent Q-learning (IQL) ignores the existence of
other agents and processes each agent independently, one
agent’s strategy cannot affect other agents [21]. It makes the
environment unpredictable for agents and makes the learning
process unstable. The communication network (CommNet),
designed to tackle this challenge, facilitates communication
among agents during the training phase. It employs a
centralized network architecture for the dissemination of
information among agents, thereby fostering the development
of a more cooperative multi-agent system [22].
Besides, in the field of MARL, numerous efforts have

been made to solve multi-agent cooperation problems where
each agent has partial observations. To solve these problems,
the QMIX algorithm integrates a collective action-value
function formulated by merging the action-value functions of
individual agents, as indicated in [6].

QTRAN also learns cooperation policies for agents by
transforming the joint action-value function in a way that
allows for efficient and effective optimization [7]. Unlike
typical MARL approaches, QTRAN transforms the joint
action-value function to align it with a factored representa-
tion. Additionally, role-diverse Q-learning for MARL, i.e.,
roles to decompose (RODE) introduces a novel approach
to MARL by incorporating the concept of role diversity
into the learning process [23]. It focuses on learning diverse
roles for agents based on their situational actions and
interactions. However, these MARL algorithms suffer from
large computations and difficulty in learning convergence
as the state/action space and number of agents increase.
Therefore, it is important to reduce the size of the observation
using a selection algorithm such as FPS. In this context,
by using RL and FPS in the point cloud to reduce the number
of points and network size, the combination of RL and FPS
optimized the trajectory of the mobile 3D sensor as quickly
as possible [24].

B. COOPERATIVE MISSION EXECUTION APPLICATION
USING MARL
MARL encourages multiple agents to achieve cooperative
mission performance, such as the system in this paper.
An efficient air transportation service algorithm is proposed
in [25] and [26] in which multiple urban aerial mobilities
(UAMs) cooperate with each other to transport passengers to
target vertiports using CommNetmethod utilizing centralized
training and distributed execution (CTDE). The QMIX finds
application in trajectory optimization for multiple electric
vertical takeoff and landing vehicles (eVTOLs), particularly
in the domain of aerial drone-taxi services, as discussed
in [27].

Additionally, in many multi-agent applications such as
distributed networks, it has been confirmed that agent
networks learn cooperatively, showing the effectiveness of
MARL in distributed systems [28]. By replacing the optimal
resource allocation problemwith distributed decision-making
using autonomous agents, an interaction mechanism was
proposed that maintains a balance between competition and
cooperation to encourage agents [4].

III. PRELIMINARIES
In this section, we aim to provide a brief discussion on
FPS and QMIX to facilitate a better understanding of the
technology we propose. We discuss the key features of FPS
and the fundamental principles of the QMIX algorithm.

A. FARTHEST POINT SAMPLING (FPS)
FPS is a technique commonly used in various fields,
including computer graphics, computational geometry, and
machine learning. Its primary purpose is to efficiently sample
a subset of points from a larger set, ensuring that the sampled
points are spread out evenly across the entire set. This is
particularly useful in applications to reduce the size of a
dataset while maintaining its overall structure and diversity.

The key feature of FPS is its focus on spreading out
the sampled points. The concept of FPS is also illustrated
in Fig. 2. On the left side of the figure, in the beginning
of the algorithm, p1 and p3 are selected randomly. p1 is
chosen randomly, and the red line indicates the distance
between p1 and p3, which is the farthest among all point pairs
originating from p1, as shown in the table next to it. The
table lists the distances between p1 and all other points, with
the farthest distance encircled to indicate it is the maximum.
On the right side, the figure shows p3 and p5 as selected
points, with a blue line connecting them. After p3 is selected,
p5 is the farthest point from p3, so p5 is selected through
the FPS algorithm. FPS algorithm is particularly useful in
scenarios like downsampling a point cloud in 3D modeling
to retain as much of the original shape’s detail as possible
with fewer points or in machine learning for selecting diverse
training samples [29], [30].

B. QMIX
QMIX [6] is inspired by the value decomposition networks
(VDN) [31], which apply a centralized yet factored total

108506 VOLUME 12, 2024

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

FIGURE 2. Farthest point sampling concept.

Q-valueQtot . In QMIX,Qtot is represented as the sum of each
agent’s value function, conditioned only on their individual
observations and actions, enabling agents to greedily choose
actions based on their Q-values Qa. However, VDN has
limitations in that it significantly restricts the complexity
of representable centralized action-value functions and may
ignore possible extra state information during the training.
To overcome these limitations, QMIX does not fully factorize
as VDN does for extracting decentralized policies. Instead,
Qtot in QMIX is divided and represented by individual agent
networks, a mixing network, and a set of hypernetworks.

IV. FARTHEST AGENT SELECTION (FAS) METHOD
A. BACKGROUND
1) DECENTRALIZED PARTIALLY OBSERVABLE MARKOV
DECISION PROCESS
A cooperative multi-agent task can be modeled as a
decentralized partially observable Markov decision process
(Dec-POMDP) [32], consisting of G = ⟨S,A, I ,P, r,O,

Z , n, γ ⟩. Here, s ∈ S represents the true state of the
environment. At time t , each agent i where i ∈ I ≡
{1, · · · , n}, selects an action aN , resulting in a joint action
a ∈ A ≡ Ai. This action causes a transition in
the environment governed by the state transition function
P(st+1|st , at) : S × A× S → [0, 1]. All agents share the
same reward function r(s, a) : S × A → R. Lastly,
γ ∈ [0, 1) denotes a discount factor. Concerning partial
observability, each agent i has its individual observations
o ∈ O, as determined by the corresponding observation
function Z (s, i) : S × I → O. The agents’ respective action-
observation histories τ i ∈ T ≡ (O× A), form the foundation
for conditioning their stochastic policies, expressed as
π i(ai|τ i) : T × A → [0, 1]. These policies cumulatively
induce a joint action-value function:

Qπ (st , at) = Est+1:∞,at+1:∞ [Rt |st , at] (1)

where Rt =
∑
∞

k=0 γ irt+k represents the discounted
accumulated reward. The objective of our proposedmethod is
for identifying the joint optimal policy which can be denoted
as π∗ that satisfies,

Qπ∗ (s, a) ≥ Qπ (s, a) (2)

for every policy π and each pair (s, a) within the Cartesian
product S×A. The Bellman optimality operator is defined as
follows,

T ∗Q(s, a := E[r + γ maxa′ Q(s
′, a′)], (3)

where the expectation is over the next state s′ ∼ P(·|s, a)
and reward r ∼ r(·|s, a). As QMIX is based on Q-learning,
it utilizes samples from the environment to calculate the
expectation in (3), to update their estimates of Q∗. QMIX
estimates the optimal joint action value function Q∗ as
Qtot , which combines the utilities of each agent through the
continuous monotonic function [6].

2) SAMPLING METHOD
The proposed algorithm utilizes FPS-inspired approaches
on top of the MARL framework because it should be able
to select the most representative agents from the entire
population. One possible approach for selecting agents is
uniform sampling, inwhich each data has an equal probability
of being chosen. However, this method may not be able
to perfectly represent the characteristics of the population,
and especially when the population size is small, it can
yield inaccurate results due to overfitting. Methods such as
systematic sampling and stratified sampling are available to
address this. Here, systematic sampling involves the random
selection of the first sample and then determines subsequent
samples. This method has the potential to introduce sample
bias and poses a risk of manipulation with desired data
when setting up the system initially. Additionally, stratified
sampling can be used when there are various types of data.
It involves first dividing the population into strata and then
sampling from each stratum, ensuring the sampled results are
not biased towards one group. This method requires prior
knowledge about the population to classify the strata and can
be subjective as it may incorporate personal opinions in the
stratification process.

B. ALGORITHM DESIGN CONCEPT
In QMIX, the partial observations of all agents were fed
into the mixing network as an input. However, this method
can lead to computational overheads by fully utilizing

VOLUME 12, 2024 108507

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

FIGURE 3. Farthest agent selection through observations.

massive amounts of unnecessary information. We select
agents based on FPS to reduce computational burdens while
employing relatively necessary information for learning,
in a selective way. Typically, the information that an agent
can obtain from its environment is highly diverse. For
example, in the StarCraft Multi-Agent Challenge (SMAC)
[33] environment, agents have partial observations for both
allies and enemies [34]. In SMAC, the observations of agent
i, i.e., oi, include relative position, health, and cooldown time
for its own skills. However, each agent includes the position
and health information of the enemies for those in their field
of vision.

Fig. 3 depicts the concept of the proposed algorithm in the
simulation environment. Based on the partial observations
of each agent, λ number of agents can be selected. The
observations of selected agents at t(oi) and their actions from
the previous time step at−1 are forwarded to each respective
agent network. The mixing network takes the calculated Q-
values as an input, and mixes them to maximize Qtot (not
individual Q-values).

C. FARTHEST AGENT SELECTION FOR MARL
This section proposes a novel QMIX-based MARL approach
with FAS for reducing computational resource usage.
‘‘Farthest agents’’ are defined as the agents with the
most heterogeneous observations, where the heterogenous
observations differ from the physical distances. The reason
why the most heterogeneous agents are considered is that it
can be the most representative for the observations which are
not covered by the other agents.

1) AGENT NETWORK
To deal with the partial observation, each agent i employs a
deep recurrent Q-network (DRQN) with θi to evaluate its own
Q-valueQi(τ i, ait ; θi). TheDRQN-based approach substitutes
the full connection layer in DQN with the gated recurrent
unit (GRU). Therefore, it takes the current observation oit

and the last action ait−1 as input. Then the hidden state of
the agent network hit−1, which demonstrates the memory of
action-observation history τ i, is circularly input and updated.
Then, whole state history can be utilized to fit the Q-value in
place of only adapting the current observation, thus reducing
the adverse effects caused by partially observable conditions.
After obtaining theQ-value of each possible action, ϵ-greedy
is adopted to select action ait of agent i. Finally, the agent
network outputs the value function of the selected action.
Based on this design concept, the agent network Q-value can
be updated as,

Qi(τ i, ait ; θi)← Qi(τ i, ait ; θi)

α

[
r it + γ max

a′
Qi(τ it+1, a

′
; θi)− Qi(τ i, ait ; θi)

]
, (4)

where α is the learning rate, r it is the reward received by agent
i at t , and τ it+1 is agent i’s updated action-observation history.

2) AGENT SELECTION
To accelerate the training process, a subset of agents, denoted
by 9 ⊆ {1, 2, · · · , n}, is selected by FAS to update both
mixing and agent networks. Here, the number of selected
agents is predetermined as |9| = λ and can vary with each
training batch. The computational procedure of our proposed
algorithm is described in Algorithm 1. In our proposed
MARL-based agent selection algorithm, the diversity of
agents’ observations is utilized to select agents. The whole
agent selection process is described in Fig. 4. Our proposed
agent selection algorithm begins with a randomly selected
initial agent i0 and an initial set of selected agents 9 =

{i0}, given the set of the observations of each agent i,
i.e., O = {o1, · · · , oN } from transition τ . Denoting the
Euclidean distance between observation vectors of agents
i and j as d(oi, oj), the agent whose observation has the
furthest distance from the agent i0 is added to 9. Similarly,
we sequentially add agents with observation vectors furthest

108508 VOLUME 12, 2024

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

Algorithm 1 Farthest Agent Selection

1: Input : Set of the normalized observations Õ,
2: Number of samples λ
3: Output : Subset of agents 9 such that |9| = λ
4: Initialize an empty set: 9 ← φ

5: Select an initial agent i0 from I
6: 9 ← {i0}
7: for n = 1 to λ− 1 do
8: Find the agent in ∈ I \9 according to (8)
9: 9 ← 9 ∪ {in}

10: end for
11: return 9

from the previously selected agents to 9 until λ agents
are selected. To fairly consider multiple observations, the
proposed algorithm normalizes the observations component-
wisely via min-max normalization [35], as follows,

õi =
oi(k)− omin(k)

omax(k)− omin(k)+ δ
, (5)

omin(k) = min{o1(k), . . . , oN (k)}, (6)

omax(k) = max{o1(k), . . . , oN (k)}, (7)

where oi(k) is the kth component of the observation vector
oi, i.e., oi = [oi(1), · · · , oi(K)], and δ is a very small
constant. Accordingly, the proposed FAS algorithm fills
9 until |9| becomes λ by sequentially adding the agent
whose normalized observation vector is the most distant from
observations of all selected agents, and it can be described as
follows:

in = argmax
i∈I\9

min
j∈9

d(õi, õj), . (8)

where 9 ← 9 ∪ {in}. However, performing FAS at every
time step requires a significant amount of computation.
To maintain performance while reducing computational load,
after executing FAS for each episode extracted from the
experience buffer, the most frequently selected agents across
mini-batches are identified. In each mini-batch, the top-λ
most frequently selected agents are input into the mixing
network. It’s important to note that only information from
these selected agents is included in the training process,
ensuring that the neural network focuses on the most
representative datawhilemaintaining efficiency. Note that the
weights are not assigned based on the importance of specific
observations to avoid bias in the algorithm.

3) MIXING NETWORK
It is based on QMIX [6] and it satisfies,

argmax
a

Qtot (τ , a) =

argmax

a1
Q1(τ 1, a1)

...

argmax
an

Qn(τ n, an)

 . (9)

However, we dynamically select λ agents based on episodes
sampled from the experience buffer, and the action-value

functions of the selected agents are only used as inputs to
the mixing network which is parameterized by φ. Let 9 =

{i1, · · · , iλ} and the vectors of their trajectories and actions
are denoted as τ9 ≜ [τ i1 , · · · , τ iλ] and a9 ≜ [ai1 , · · · , aiλ],
respectively. Then, our mixing network satisfies,

argmax
a9

Qtot (τ9 , a9) =

argmax

ai1
Qi1 (τ

i1 , ai1)

...

argmax
aiλ

Qiλ (τ
iλ , aiλ)

 , (10)

which represents the partial components of (9). This approach
allows each agent i to participate in decentralized execution
by simply choosing actions greedily based on its own Qi.
There exists a monotonic relationship between each agent’s
Qi and the output of mixing network Qtot , i.e.,

∂Qtot
∂Qi

≥ 0, ∀i ∈ 9. (11)

To satisfy this monotonicity, the weights of the mixing
network are constrained to be non-negative, allowing hyper-
networks to exist independently to generate the weights for
the mixing network. If we update both the agent networks and
mixing networks for many iterations sufficient to select all
agents multiple times to satisfy that their individual argmax
operations on own action-value functions yield the same
result as the global argmax on Qtot (τ , a) as in (9).

4) TRAINING
The parameters of the mixing network and agent network of
selected agents in 9, i.e., φ and θ , are updated as following
equations,

φ← φ − β∇φL(θ), (12)

θ9 ← θ9 − β∇θ9L(θ), (13)

where θ9 = [θi, ∀i ∈ 9], and β is the learning rate. Our
proposed algorithm is trained via the iterative minimization
of the following loss function,

L(θ) =
∑b

i=1
(Oy− Qtot (τ , a, s; θ))2

=

∑b

i=1

(
Oy− F(Q1(τ 1, a1), · · · ,QN (τN , aN))

)2
≈ E9

[∑b

i=1

(
Oy− Qtot (τ9 , a9 , s; θ)

)2]
=

1
Ns

∑Ns

n=1

∑b

i=1

(
Oy− Qtot (τ9n , a9n , s;φ, θ9n)

)2
=

1
Ns

∑Ns

n=1

∑b

i=1

(
Oy− F(Qi1 (τ

i1 , ai1), · · · ,

· · · ,Qiλ (τ
iλ , aiλ))

)2
, (14)

where E9 is the expectation with respect to randomly chosen
9, Ns is the number of mini-batch, i.e.,

ŷ = r + γ max
a′

Qtot (τ ′, a′, s′; θ−), (15)

VOLUME 12, 2024 108509

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

FIGURE 4. FAS-based agent selection in real-time MARL applications such as real-time
strategy games.

TABLE 1. Various scenarios in SMAC for experimental performance
evaluation.

and 9n = {i1, · · · , iλ} is the set of selected agents based on
the n-th episode sampled from experience buffer.

V. EXPERIMENTS
The performance of the proposed algorithm is evaluated on
two widely used partially observable multi-agent cooperative
tasks, i.e., SMAC [33] and the Predator Prey (PP) [36]. The
training process of the proposed FAS method is compared
with that of the full algorithm and other baseline approaches
through a comprehensive performance analysis. We utilize
the two FAS-applied methods, dynamic FAS (DFAS) and
static FAS (SFAS). DFAS refers to experiments where λ is
adjusted for each episode batch based on the corresponding
variance values, while SFAS denotes experiments conducted
with a fixed value of λ. Additionally, the impact of FAS
is assessed both with a fixed number of agents and by
dynamically determining the number of agents to be selected
for each scenario. This approach provides insights into the
adaptability and efficiency of FAS in varying multi-agent
environments.

When determining λ, we focused on the variance of
each component-wise observation among the agents. Since

the observations are normalized between 0 and 1, where a
higher average variance among agents’ partial observations
indicates greater dissimilarity. Therefore, more agents need
to be included as inputs into the mixing network. Conversely,
a lower average variance suggests similarity in the agents’
partial observations, implying that overlapping observations
need not be redundantly input into the mixing network.
In DFAS experiments, the variance for each observation
component is calculated for every episode, with the average
variance being updated continuously after each episode. The
value λ is then determined based on the ratio of the current
observation variance to the cumulative average, relative to the
total number of agents. This approach ensures that λ indicates
the number of agents to be included in batch learning,
adapting to the dynamic nature of the observations across
episodes. Additionally, to prevent DFAS from selecting all
agents, a limit is set to choose up to a maximum of 80% of
the total agents (i.e., up to 6 agents in scenarios with 8 agents,
and up to 4 agents in scenarios with 5 agents).

The research was conducted using Python 3.7.13, PyTorch
1.12.1, StarCraft II version 4.10, and SMAC version 1.0.0.

A. STARCRAFT MULTI-AGENT CHALLENGE (SMAC)
In SMAC, a team consists of a number of agents and
has the objective of defeating an opponent team, which
is governed by the StarCraft built-in AI algorithm. All
of the experiments are evaluated in the level/difficulty
of 7 (i.e., very hard). We selected environments evaluation
under various conditions: symmetric-homogeneous agents
(8m), asymmetric-homogeneous agents (10m_vs_11m),
symmetric-2 heterogeneous agents (3s5z), and symmetric-
3 heterogeneous agents (MMM). The details of the
composition of agents for each environment are presented in
Table 1.
When setting a static λ, the value of λ significantly impacts

the performance. Fig. 5 illustrates the results of selecting

108510 VOLUME 12, 2024

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

FIGURE 5. Performance comparisons on different λ values.

FIGURE 6. Performance comparisons on various SMAC environments.

agents through FAS with varying fixed λ values. Although
there is a clear tendency for performance to improve with
more agents, it is crucial to choose an appropriate λ
considering the trade-off between computational load and
performance. In DFAS experiments in each scenario, the
average λ determined after training is obtained. In the
10m_vs_11m scenario, an average of 5.45 agents were
selected, whereas in the MMM scenario, the number
increased to an average of 7.02 agents. Additionally, DFAS
shows the best performance in Fig. 5-(a), even if fewer
agents are selected on average. It has been experimentally

observed that in scenarios with homogeneous agents, such as
10m_vs_11m, the smaller difference in partial observations
among agents leads to lower variance, which affects the value
of λ.

Fig. 6 describes the test win rate on various SMAC
environments. Additionally, to account for cases where
the full QMIX algorithm can not be used because of the
computational constraint, we have denoted the experiments
that involve inputting only agents with systematic sampling
into the mixing network as ‘‘Systematic.’’ In both the SFAS
and systematic sampling experiments, we only selected

VOLUME 12, 2024 108511

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

FIGURE 7. Performance comparisons on predator prey.

four agents. The proposed DFAS demonstrated performance
nearly equivalent to that of the Full QMIX, and the SFAS,
which selects fewer agents than DFAS, also showed its
potential. In the 8m and 3s5z scenarios, DFAS resulted in the
selection of an average of 5.01 and 5.56 agents, respectively.
These results also statistically confirm that more agents need
to be selected in heterogeneous agent scenarios like 3s5z,
where there is greater variance in the agents’ observations.

B. PREDATOR PREY
In PP, N predators chase and surround to try to capture M
preys. When an agent reaches a goal, it receives a reward of
2.0. If all prey are hunted, the agent receives an additional
reward of 10.0. In cases where all goals are achieved, the
agent receives an additional reward based on the length of
the episode. The baselines include the Full QMIX and VDN.
In our experiments, we set N = 5, M = 15 in 20 × 20 grid
and required that all prey be hunted within a maximum
of 250 steps to proceed to the next episode. In the SFAS
scenario of the PP experiment, only 3 out of the 5 selected
Predators are utilized for training. As shown in Fig. 7, the
proposed DFAS and SFAS show acceptable and relatively
superior performance relative to the Full QMIX, although it
only includes less than 80% of the whole agents. In the DFAS
scenario, an average of 3.7 agents out of the total 5 Predators
were used during the training process.

VI. CONCLUDING REMARKS
This paper introduces a novel control method for the multi-
agent reinforcement learning framework that leverages only
a subset of agents instead of inputting all agents into the
centralized neural network. By normalizing each agent’s
observations, we choose a representative subset of agents
from the population. The cooperation among these selected
agents is operated in the mixing network with a classical
QMIX approach. In order to determine the number of agents
to be selected, the variance among the observation of agents
is considered according to the farthest agent selection (FAS)

approach inspired by FPS. Our data-intensive performance
evaluations with real-time strategy game platforms reveal that
the proposed FAS algorithm can attain results comparable to
those of the conventional method, where observations from
all agents are utilized for updating the mixing network in
QMIX. This is achieved while allowing a fewer number
of agents to participate in each epoch, demonstrating the
scheme’s efficiency in balancing performance with reduced
agent involvement. As future research directions, various
applications of our proposed FAS algorithm can be consider-
able such as multi-drone cooperative mobile Internet access
and autonomous surveillance applications. Furthermore, this
approach can provide motivation for artificial intelligence
research that requires the training with the selected agents
from the diverse pool of entire agents.

ACKNOWLEDGMENT
The authors would like to thank JoongheonKim for his advice
and contribution to research and discussions.

REFERENCES
[1] H. Jin, Y. Wei, Z. Yang, Z. Liu, and G. Fan, ‘‘Multi-intersection manage-

ment for connected autonomous vehicles by reinforcement learning,’’ in
Proc. IEEE 43rd Int. Conf. Distrib. Comput. Syst. (ICDCS), Hong Kong,
Jul. 2023, pp. 649–659.

[2] Y. Xiao, Y. Song, and J. Liu, ‘‘Collaborative multi-agent deep reinforce-
ment learning for energy-efficient resource allocation in heterogeneous
mobile edge computing networks,’’ IEEE Trans. Wireless Commun.,
vol. 23, no. 6, pp. 6653–6668, Jun. 2024.

[3] J. Cui, Y. Liu, and A. Nallanathan, ‘‘Multi-agent reinforcement learning-
based resource allocation for UAV networks,’’ IEEE Trans. Wireless
Commun., vol. 19, no. 2, pp. 729–743, Feb. 2020.

[4] J. Tan, R. Khalili, H. Karl, and A. Hecker, ‘‘Multi-agent distributed
reinforcement learning for making decentralized offloading decisions,’’ in
Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), London, U.K.,
May 2022, pp. 2098–2107.

[5] A. Feriani and E. Hossain, ‘‘Single and multi-agent deep reinforcement
learning for AI-enabled wireless networks: A tutorial,’’ IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1226–1252, 2nd Quart., 2021.

[6] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, ‘‘Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn.,
vol. 80, Stockholm, Sweden, Jul. 2018, pp. 4292–4301.

108512 VOLUME 12, 2024

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

[7] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, ‘‘QTRAN:
Learning to factorize with transformation for cooperative multi-agent
reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., vol. 97, Long
Beach, CA, USA, Jun. 2019, pp. 5887–5896.

[8] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
‘‘Counterfactual multi-agent policy gradients,’’ in Proc. AAAI Conf. Artif.
Intell. (AAAI), vol. 32, New Orleans, LA, USA, Feb. 2018, pp. 2974–2982.

[9] M. Shin, D.-H. Choi, and J. Kim, ‘‘Cooperative management for
PV/ESS-enabled electric vehicle charging stations: A multiagent deep
reinforcement learning approach,’’ IEEE Trans. Ind. Informat., vol. 16,
no. 5, pp. 3493–3503, May 2020.

[10] W. Du, S. Ding, C. Zhang, and Z. Shi, ‘‘Multiagent reinforcement learning
with heterogeneous graph attention network,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 34, no. 10, pp. 6851–6860, Oct. 2023.

[11] Y. Zhong, J. G. Kuba, X. Feng, S. Hu, J. Ji, and Y. Yang, ‘‘Heterogeneous-
agent reinforcement learning,’’ J. Mach. Learn. Res., vol. 25, no. 1,
pp. 1–67, Jan. 2024.

[12] R. R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsella,
‘‘Taming decentralized POMDPs: Towards efficient policy computation
for multiagent settings,’’ in Proc. Int. Joint Conf. Artif. Intell., Acapulco,
Mexico, Aug. 2003, pp. 705–711.

[13] W. J. Yun, D. Mohaisen, S. Jung, J.-K. Kim, and J. Kim, ‘‘Hierarchical
reinforcement learning using Gaussian random trajectory generation in
autonomous furniture assembly,’’ in Proc. 31st ACM Int. Conf. Inf. Knowl.
Manage. New York, NY, USA: Association for Computing Machinery,
Oct. 2022, pp. 3624–3633.

[14] W. J. Yun, S. Park, J. Kim, M. Shin, S. Jung, D. A. Mohaisen, and
J.-H. Kim, ‘‘Cooperative multiagent deep reinforcement learning for
reliable surveillance via autonomous multi-UAV control,’’ IEEE Trans.
Ind. Informat., vol. 18, no. 10, pp. 7086–7096, Oct. 2022.

[15] L. Deng, W. Gong, M. Liwang, L. Li, B. Zhang, and C. Li, ‘‘Towards
intelligent mobile crowdsensing with task state information sharing over
edge-assisted UAV networks,’’ IEEE Trans. Veh. Technol., early access,
Feb. 23, 2024, doi: 10.1109/TVT.2024.3369089.

[16] L. Miuccio, S. Riolo, S. Samarakoon, M. Bennis, and D. Panno,
‘‘On learning generalized wireless MAC communication protocols
via a feasible multi-agent reinforcement learning framework,’’
IEEE Trans. Mach. Learn. Commun. Netw., vol. 2, pp. 298–317,
Feb. 2024.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), vol. 30, Long Beach, CA, USA,
Dec. 2017, pp. 6000–6010.

[18] T. Phan, F. Ritz, P. Altmann, M. Zorn, J. Nüßlein, M. Kölle, T. Gabor,
and C. Linnhoff-Popien, ‘‘Attention-based recurrence for multi-agent
reinforcement learning under stochastic partial observability,’’ in Proc.
Int. Conf. Mach. Learn. (ICML), Honolulu, HI, USA, Jul. 2023,
pp. 27840–27853.

[19] H. Fei, Y. Zhang, Y. Ren, and D. Ji, ‘‘Optimizing attention for sequence
modeling via reinforcement learning,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 33, no. 8, pp. 3612–3621, Aug. 2022.

[20] H. Liu, Y. Liu, X. Wang, and H. Yang, ‘‘Exploring coarse-grained pre-
guided attention to assist fine-grained attention reinforcement learning
agents,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Padua, Italy,
Jul. 2022, pp. 1–7.

[21] M. Tan, ‘‘Multi-agent reinforcement learning: Independent vs. cooperative
agents,’’ in Proc. 10th Int. Conf. Mach. Learn., Amherst, MA, USA,
Jul. 1993, pp. 330–337.

[22] S. Sukhbaatar, A. Szlam, and R. Fergus, ‘‘Learning multiagent communi-
cation with backpropagation,’’ in Proc. 30th Int. Conf. Neural Inf. Process.
Syst., vol. 29, Barcelona, Spain, Dec. 2016, pp. 2244–2252.

[23] T. Wang, T. Gupta, A. Mahajan, B. Peng, S. Whiteson, and C. Zhang,
‘‘RODE: Learning roles to decompose multi-agent tasks,’’ in Proc. Int.
Conf. Learn. Represent. (ICLR), May 2021, pp. 1–24.

[24] M. Rosynski, A. Pop, and L. Buşoniu, ‘‘Active search and coverage
using point-cloud reinforcement learning,’’ in Proc. 27th Int. Conf. Syst.
Theory, Control Comput. (ICSTCC), Timisoara, Romania, Oct. 2023,
pp. 289–296.

[25] C. Park, G. S. Kim, S. Park, S. Jung, and J. Kim, ‘‘Multi-agent
reinforcement learning for cooperative air transportation services in city-
wide autonomous urban air mobility,’’ IEEE Trans. Intell. Vehicles, vol. 8,
no. 8, pp. 4016–4030, Aug. 2023.

[26] C. Park, S. Park, G. S. Kim, S. Jung, J.-H. Kim, and J. Kim, ‘‘Multi-agent
deep reinforcement learning for efficient passenger delivery in urban air
mobility,’’ in Proc. IEEE Int. Conf. Commun., Rome, Italy, May 2023,
pp. 5689–5694.

[27] W. J. Yun, S. Jung, J. Kim, and J.-H. Kim, ‘‘Distributed deep reinforcement
learning for autonomous aerial eVTOL mobility in drone taxi applica-
tions,’’ ICT Exp., vol. 7, no. 1, pp. 1–4, Mar. 2021.

[28] C. Zhang and V. Lesser, ‘‘Coordinated multi-agent reinforcement
learning in networked distributed POMDPs,’’ in Proc. AAAI Conf.
Artif. Intell. (AAAI), vol. 25, San Francisco, CA, USA, Aug. 2011,
pp. 764–770.

[29] X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, ‘‘PointASNL: Robust
point clouds processing using nonlocal neural networks with adaptive
sampling,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Seattle, WA, USA, Jun. 2020, pp. 5588–5597.

[30] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, ‘‘PointNet++: Deep hierarchical
feature learning on point sets in a metric space,’’ in Proc. 31st Int.
Conf. Neural Inf. Process. Syst., Long Beach, CA, USA, Dec. 2017,
pp. 5105–5114.

[31] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, ‘‘Value-decomposition networks for cooperative multi-agent
learning based on team reward,’’ in Proc. ACM Int. Conf. Auto.
Agents MultiAgent Syst. (AAMAS), Stockholm, Sweden, Jul. 2018,
pp. 2085–2087.

[32] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized
POMDPs. Berlin, Germany: Springer, Jul. 2015.

[33] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli,
T. G. J. Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster, and S. Whiteson,
‘‘The StarCraft multi-agent challenge,’’ CoRR, vol. abs/1902.0404,
pp. 2186–2188, Feb. 2019.

[34] W. J. Yun, S. Yi, and J. Kim, ‘‘Multi-agent deep reinforcement learning
using attentive graph neural architectures for real-time strategy games,’’
in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Melbourne, VIC,
Australia, Oct. 2021, pp. 2967–2972.

[35] S. G. K. Patro and K. K. Sahu, ‘‘Normalization: A preprocessing stage,’’
2015, arXiv:1503.06462.

[36] P. Stone and M. Veloso, ‘‘Multiagent systems: A survey from a machine
learning perspective,’’ Auto. Robots, vol. 8, pp. 345–383, Jun. 2000.

HYUNSOO LEE received the B.S. degree from
the School of Electronic Engineering, Soongsil
University, Seoul, Republic of Korea, in 2021.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineer-
ing, Korea University, Seoul.

His research interests include deep learning
algorithms and their applications to mobility and
networking. He was a recipient of the IEEE Vehic-
ular Technology Society (VTS) Seoul Chapter
Award in 2022.

GYU SEON KIM received the B.S. degree
in aerospace engineering from Inha University,
Incheon, Republic of Korea. He is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, Korea
University, Seoul, Republic of Korea.

His research interests include deep reinforce-
ment learning algorithms and their applications
to autonomous mobility systems. He received the
IEEE Seoul Section Student Paper Contest Award
(2023).

VOLUME 12, 2024 108513

http://dx.doi.org/10.1109/TVT.2024.3369089

H. Lee et al.: FAS With Episode-Wise Observations for Real-Time MARL Applications

MINSEOK CHOI received the B.S., M.S., and
Ph.D. degrees from the School of Electrical
Engineering, Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2011, 2013, and 2018, respectively. He was
a Visiting Postdoctoral Researcher of electrical
and computer engineering with the University
of Southern California (USC), Los Angeles,
CA, USA, and a Research Professor of elec-
trical engineering with Korea University, Seoul,

South Korea. He was an Assistant Professor with Jeju National University,
Jeju, South Korea, from 2020 to 2022. He has been with Kyung Hee
University, Yongin, South Korea, since 2022, and he is currently an Assistant
Professor.

HANKYUL BAEK received the B.S. and Ph.D.
degrees in electrical and computer engineering
from Korea University, Seoul, Republic of Korea,
in 2020 and 2024, respectively.

He was with LG Electronics, Seoul, from 2020
to 2021. He was a Visiting Scholar with the
Department of Electrical and Computer Engineer-
ing, The University of Utah, Salt Lake City, UT,
USA, in 2023. He has been a Postdoctoral Scholar
with the Department of Electrical and Computer

Engineering, Korea University, since March 2024. His current research
interests include quantum machine learning and its applications to mobility
and networking. He received the IEEE Seoul Section Student Paper Contest
Award (2023).

SOOHYUN PARK (Member, IEEE) received the
B.S. degree in computer science and engineering
from Chung-Ang University, Seoul, Republic of
Korea, in February 2019, and the Ph.D. degree in
electrical and computer engineering from Korea
University, Seoul, in August 2023.

She was a Postdoctoral Scholar with the
Department of Electrical and Computer Engineer-
ing, Korea University, from September 2023 to
February 2024. She has been an Assistant Pro-

fessor with Sookmyung Women’s University, Seoul, since March 2024.
Her research interests include deep learning theory and network/mobility
applications, quantum neural network (QNN) theory and applications,
QNN software engineering and programming languages, and AI-based
autonomous control for distributed computing systems. She was a recipient
of the ICT Express Best Reviewer Award (2021), the IEEE Seoul
Section Student Paper Contest Award, and the IEEE Vehicular Technology
Society (VTS) Seoul Chapter Award.

108514 VOLUME 12, 2024

