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ABSTRACT This paper proposed a new one dimensional complex-valued convolution neural network
(1D CVCNN) model to diagnose power switch open-circuit fault of three-phase inverter-fed PMSM system.
The 1D CV convolution operation was defined and the CV rectified linear unit (ReLU) activation function
was chosen. A CV backpropagation algorithm is also proposed for ID CVCNN training. The 1D CVCNN
framework model is built, where 1D inputs and all the weights between the layers are complex numbers.
The Clarke transformation is used to process the three-phase current of the inverter to obtain a complex-
valued signal. The non-overlapping sliding window sampling method is used to obtain CV data set. The fault
classification accuracy of the 1D CVCNN has been verified by experiments, and the experimental results
show that the 1D CVCNN has better feature extraction ability than any other conventional deep learning
method and better robustness to noise.

INDEX TERMS One dimensional complex-valued convolutional neural network (1D CVCNN), fault

diagnosis, open-circuit fault, three-phase inverter.

I. INTRODUCTION

Inverter-fed motor drives are widely used in various industrial
applications, such as electric vehicle, aerospace, and marine
electric propulsion, because of their excellent speed control
and energy savings performance. The principal function of
the inverter is conversion of electric energy and supply of
power to the motor. The health of the inverter has a consider-
able impact on the safety of motor drives. Research shows
that power converters account for approximately 82.5% of
motor drive failures, and power switches are the most fragile
components in power converters [1]. It is also estimated that
about 38% of motor drives in industry are due to power switch
failures [2]. Once faults occur in the inverter, the drive system
will lose its ability to work normally, sometimes even result-
ing in a fatal accident. To improve the reliability of motor
drives in safety critical applications, fault-tolerant control of
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the inverter is an essential requirement [3]. However, the
fault-tolerant control strategy can only be implemented after
isolating the faulty switch. Therefore, inverter fault diagnosis
is valuable and meaningful.

In general, inverter power switch faults can be classified
as short-circuit (SC) faults and open-circuit (OC) faults. As a
destructive fault, SC fault can cause an abnormal overcurrent
and can cause damage to other components. To avoid damage
to the inverter, fast fuses are used to shut the inverter when
SC fault occurred in the inverter [4], [5]. Therefore, the
short-circuit fault will be an open-circuit fault, and OC faults
are considered in the paper only.

Many research papers related to the diagnosis of OC
fault have been published. All these OC fault diagnosis
techniques can be broadly classified into three categories:
model-based, signal-based, data-driven. Model-based tech-
niques must establish a mathematical model of the drive
system, and the observer is used to detect open circuit
faults occurring in the inverter [6], [7], [8]. A sliding mode
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observer is used to detect faulty switches in modular multi-
level converters, faulty switches are isolated by comparing
the observed and measured states [6]. A nonlinear observer
is used to obtain residuals, a directional residual is synthe-
sized, and the faulty switches are isolated [7]. A mixed logic
dynamic model of the motor drive system is used to esti-
mate motor currents, the current residual vector is obtained
by comparing the estimator and plant, and the fault can be
detected [8]. The switched linear model is set up to esti-
mate the state of the system, the error residual between the
estimates and the measured output of the converter is used
to detect and identify arbitrary faults in components and
sensors [9].

Signal-based techniques can be classified as voltage-based
and current-based, according to the signal processed. In [10],
phase currents are processed using Park’s transformation and
normalization, and multiple open switch faults occurring in
back-to-back converters of the double-fed wind power sys-
tem are diagnosed. In [11], the harmonic components of the
three-phase currents are calculated, and the average values
and root mean square (RMS) values of the harmonic compo-
nents are used to isolate the faulty switch.

In [12], the phase voltage is calculated using the mea-
sured pole voltage, the separate residuals for each switch
are defined, and the sectoral average residual is calculated
for the respective switch. The faulty switch is isolated by
the two residuals. In [13], voltage sensors are used to mea-
sure two line voltages, the fault phase is determined by the
magnitude ratio of two line voltages, and the fault switch is
located by the voltage difference. Current-based methods do
not depend on system parameters and do not need additional
hardware. However, these approaches need a longer time to
get better diagnostic results. Voltage-based methods have a
fast fault diagnostic speed, but require voltage sensors, which
may substantially increase the complexity and cost of the
system.

Data-driven-based techniques do not require modeling
or signal processing, so they have been concerned by
many researchers, and many different approaches have been
delivered. In [14], the wavelet transform is used to extract
the fault features, a multiple kernel extreme learning machine
is applied to diagnose the fault of analog circuit. In [15],
a Bayesian network-based data-driven fault diagnosis method
is proposed for three-phase inverters. Fast Fourier trans-
form (FFT) and principal component analysis (PCA) are
used to generate fault features, the Bayesian network (BN)
is employed to isolate the faults. In [16], a PCA-based
fault diagnosis approach and the multiclass relevance vector
machine (mMRVM) are used for cascaded H-bridge multilevel
inverter system. The methodology utilizes PCA to extract
features and use the mRVM model to classify the faulty
switch. In [17], an artificial neural network (ANN)-based
fault diagnosis method is proposed for AC-DC converters.
FFT is used to obtain fault features, and ANN is employed
to isolate a fault switch. In [18], a FFT-based fault diag-
nosis method, relative PCA (RPCA) and support vector
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machine (SVM) is proposed for H-bridge multilevel inverter.
Fault features are extracted using FFT and RPCA, and SVM
is used to classify the faults. In [19], three-phase currents
are used and fault features are generated by learning man-
ifold features. An extreme learning machine (ELM) model
is used to diagnose single and double IGBT open-circuit
faults that occurred in the three-phase inverter. All these con-
ventional data-driven methods need professional knowledge
and an advanced signal processing method to extract fault
features.

As atypical and predominant deep learning method, CNN
was originally designed for image recognition. CNN can
automatically extract features from original images without
manual selection. Many researchers adopted the original two-
dimensional (2D) CNN (2D CNN) for fault diagnosis. In [20],
2D images of current are used to diagnose fault of broken
rotors bars in induction motors. Six CNN architectures were
employed, and the study provides a comparative analysis
of these CNN architectures that show high accuracies and
highlights that it is not always possible to choose the best
architecture based on accuracy alone. In [21], [22], and [23],
the raw time-domain signals are converted into 2-D images,
which are then fed into the 2D CNN model to classify the
bearing fault that occurred. In [24], the one-dimensional (1D)
time series current signal of the inverter is reconstructed into
2D feature maps, 2D feature maps were input into the 2D
CNN for fault diagnosis. In [25], the measured current signal
was processed by FFT, a hybrid CNN composed of 1D and 2D
CNN is applied for fault diagnosis with a three-phase inverter,
but the method needs to extract the fault features manually.

Existing traditional data-driven fault diagnosis methods
need professional knowledge and advanced signal processing
techniques to obtain fault characteristics. The 2D CNN-based
fault diagnosis method has achieved great achievement. How-
ever, in many applications, 1D data should be converted into
a 2D image to perform fault diagnosis. Most signals in prac-
tical industrial applications are 1D. If 1D signals are directly
converted to 2D forms, the spatial correlation in the original
sequence will be destroyed, and the information related to
faults may be missing, resulting in worse performance for
fault diagnosis performance.

Aimed at the problem, some researchers have employed
1D CNN to diagnose fault of inverter, motor and other equip-
ment or device. In [26], phase current was collected and 1D
CNN is used to perform motor fault diagnosis. Only one
phase current was used in the study, fault features included
in other two phase current were neglected. In [27], the vibra-
tion signals of the gear box were measured, 1D CNN was
employed to diagnose eight fault of gear box. In the study,
only the amplitude of vibration signals was considered, the
phase of the signals was disregarded. In [28], phase-a cur-
rent was collected by simulation, an improved 1D CNN was
applied to diagnose OC fault of IGBT in the three-phase
inverter. However, the samples used for network training
and testing were from the simulation, and only single IGBT
OC fault was considered. In [29], three-phase current of the
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inverter was collected with five periods, 1D CNN was used
to diagnose fault of IGBT in the three-level NPC inverter.
However, the 1D data samples constructed from three-phase
current results in a large amount of data, which can cost more
time to train the network.

Due to considering both the phase and amplitude of the
data, complex-valued CNN (CVCNN) has better perfor-
mance than real-valued CNN. Reference [30] used CVCNN
to solve the sleep stage classification. Reference [31] applied
CVCNN for medical image denoising. However, 2D images
were used in these CVCNN, and few studies have applied
CVCNN to solve the problem of fault diagnosis.

Aiming at the defects and deficiencies of existing tech-
niques, the paper constructs a 1D CVCNN model, the
proposed model using 1D complex-valued data as input.
Defining the 1D complex-valued convolution operation,
a complex filter weight matrix, and a complex ReLU acti-
vation function, the complex backpropagation algorithm is
formed. The proposed method requires neither the mathe-
matical model of the inverter drive system nor professional
signal processing methods to obtain fault features, and it can
deal with complex-valued data that traditional real-valued
1D CNN cannot handle. The technique can not only real-
ize the fault diagnosis of a system with complex-valued
signal, but also deal with the fault diagnosis of a system
with real-valued signal. In contrast to the traditional 1D CNN
based fault diagnosis methods, the recognition accuracy has
been greatly improved by 1D CVCNN. Furthermore, com-
pared to real-valued 1D CNN, the proposed method has a
higher fault diagnosis accuracy in the case of noise inter-
ference. The contributions of the paper are summarized as
follows.

1) The 1D complex-valued convolution operation is
defined, and the 1D complex-valued backpropagation
algorithm is proposed. A novel 1D complex-valued
CNN model based fault diagnosis of inverter-fed motor
drives is proposed. To the best of our knowledge, there
is no similar work in the literature.

2) To obtain complex-valued data for training and testing
of the 1D CVCNN model, we use Clarke transforma-
tion to process the three-phase current of the inverter.
The non-overlapping sliding window sampling method
is used to obtain our dataset.

3) Adding white Gaussian noise with different SNR in the
dataset, the model proposed in the paper works well
in noise environment, and it has high accuracy of fault
diagnosis under white Gaussian noise with low SNR
condition.

The remainder of the paper is organized as follows.
Section II briefly introduces the topology of three-phase
inverter systems and defines fault labeling of IGBT open-
circuit faults. Section III describes the preparation of fault
data. Section IV gives the theory and architecture of
IDCVCNN. The experimental results and analysis are then
shown in Section V. Finally, a general conclusion is given
in Section VI.
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Il. INVERTER-FED PMSM DRIVES AND FAULT LABELING
The three-phase PWM inverter fed PMSM drive system is
shown in Figurel. The PWM inverter is composed of six
power switches (IGBT or MOSFET) Vi i =1, 2, ---, 6)
with antiparallel diodes Di i =1, 2, - - -, 6). Power switches
whether or not conduct depend on its gate signals. The power
switch conducts when the gate signal is equal to 1, otherwise,
the power switch does not conduct. The power switch OC
fault that occurred in the inverter means that the power switch
cannot conduct whether the gate signal is equal to 1 or 0.

In practice, there may be a single or double power switch
OC fault in the inverter. Therefore, the paper only considers
single or double power switch OC fault. When all six switches
work normally, the inverter is in a fault-free state, which is
defined as a special fault mode for convenience. When a
single-power switch OC fault occurred in the inverter, there
are six fault modes. When a double power switch OC fault
occurring in the inverter simultaneously, there are 15 fault
modes. As a result, there are a total of 22 fault modes con-
sidered in the paper.

ﬁi sz[ KmE{ /X ps
7; b ;@

E? Kwﬁg K%E? NS

FIGURE 1. Schematic diagram of three-phase PWM inverter-fed PMSM.

Labeling each fault mode according to the location of the
double power switch OC fault occurring in the inverter, the
label of power switch OC fault can be listed in Table 1.
Consequently, the fault diagnosis can be considered as a
multiclassification problem.

TABLE 1. Labeling of inverter oc faults.

Fault modes Label Fault modes Label
No fault 0 V1&VS5 OC fault 11
V1 OC fault 1 V3&V5 OC fault 12
V2 OC fault 2 V4&V6 OC fault 13
V3 OC fault 3 V4&V20C fault 14
V4 OC fault 4 V6&V2 OC fault 15
V5 OC fault 5 V1&V6 OC fault 16
V6 OC fault 6 V1&V?2 OC fault 17
V1&V4 OC fault 7 V3&V4 OC fault 18
V3&V6 OC fault 8 V3&V?2 OC fault 19
V5&V2 OC fault 9 V5&V4 OC fault 20
V1&V3 OC fault 10 V5&V6 OC fault 21

IIl. INVERTER FAULT DATA PREPARATION
When the inverter operates under fault-free condition,
the three-phase currents of the inverter are symmetric
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sinusoidal waves. When power switch OC faults occurred in
the inverter, they became asymmetric. The phase currents
of the motor are shown in Figure 2 under different power
switch OC faults that occurred in the inverter. As shown
in Figure 2, the waveforms of the three-phase current are
different when different power switch OC faults occurred in
the inverter. Therefore, the phase currents contain sufficient
faulty information under different power switch OC fault
conditions.
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FIGURE 2. Motor phase currents under different power switch OC fault
conditions of the power switch. (a) Fault-free condition. (b) Power switch
V4 0OC fault. (c) OC fault of the power switch V1 and V6.

When the inverter-fed PMSM drive runs normally, three-
phase currents of the motor are sinusoidal waves, and the
three-phase currents can be expressed as

ia(t) = I, sin(wt)
ip(t) = I, sin(wt — 27 /3) (1)
ic(t) = I, sin(wt + 27 /3)
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According to the research [32], the current-vector trajectories
composed of the current i, and ig in stationary frame depends
on the location of OC fault of power switch. This shows that
the current i, and ig contain rich fault information. So the
current iy and ig are chosen as the signal of fault.

By using the Clarke transformation, the currents iy and ig
in stationary frame can be obtained as

2., 1. 1.
la=§ lA—ElB—ElC

i—£l—£l ?
P=3\ 2% 2¢

Define the complex-valued parameter i, that is,
i =iy +jig 3)
where j = +/—1 is the imaginary unit. The complex-valued
parameter i is used as input of the 1D CVCNN to train the

network to diagnose the power switch OC fault that occurred
in the inverter.

IV. THEORY OF A 1D COMPLEX-VALUED
CONVOLUTIONAL NEURAL NETWORK

A. FUNDAMENTALS OF 1D CONVOLUTIONAL

NEURAL NETWORK

CNN is a feedforward 2D neural network inspired by the
receptive field of mammalian visual cortex cells and widely
used in image and vision recognition. However, 1D CNN is
a specific type of CNN where the 1D signal, 1D convolution,
and subsampling are used to map features [26], [32]. Similar
to 2D CNN, 1D CNN usually is composed of input layer,
convolution layers, pooling layers, fully connection layers
and an output layer.

The convolution layer is mainly used to extract various
features of the input data by using convolution filters or ker-
nels. The convolution layer contains a number of convolution
filters or kernels, these convolution kernels can be regarded
as a weight matrix. The filters slide along the time series input
in a fixed stride, and the sliding filters can be considered as
a moving window. At each sliding position, the weights of
the filters perform a dot product with the windowed inputs
and then summation. The output of the convolution can be
defined as [33], [34],

Ni—1
k_bk+zwzk * 51 @

where N;_; is the number of kernels at layer /-1, xk is the
input at layer /, bk is the bias of kth neural at layer I sl is
the output of the ith neuron at layer -1, wl is the filter
from the ith neuron in layer /-1 to the kth neuron at layer /.
Passing the input x,i through the activation function, f{.), the

output of the convolutional layer / can be expressed as [33],
e =r1x) )

The pooling layer is also known as the down-sampling
layer. The main function of the pooling layer is to further
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extract the key feature by condensing the signal from the
convolutional layer. The mainly pooling operations include
max pooling and average pooling. Max-pooling is the most
common method used in the pooling layer. After the down-
sampling operation, the dimension of feature vectors and
network parameters are reduced, and training time and mem-
ory requirements are reduced [35].

The fully connected layer is similar to a traditional
multilayer neural network, which can be considered a “clas-
sifier” layer in the entire convolutional neural network [36],
[37], [38]. The classifier is completed using the softmax
function. The output of the fully connected layer is fed to
the softmax function, its output logic value is mapped to a
probability distribution for each class label, and the classifi-
cation is performed. The softmax function can be expressed
as follows:

et
Dy e
where z; (i = 1, 2, ---, n) denotes the output of the fully
connected layer, # is the number of class labels.

(6)

softmax (z;) =

B. ONE-DIMENSIONAL COMPLEX-VALUED
CONVOLUTIONAL NEURAL NETWORK

The proposed 1D complex-valued convolutional neural net-
work is termed 1D CVCNN, the structure of 1D CVCNN is
shown in Figure 3. The structure includes CV convolutional
layer, CV pooling layer and CV fully connected layer.

1) CONVOLUTIONAL LAYER WITH COMPLEX 1D VALUE

In the 1D CV convolution layer, a CV convolution opera-
tion is performed between the 1D CV inputs x and the CV
kernel W. Suppose x = a+jb, W = A+ jB, where a, b, A, B
are all vectors of real value. The CV convolution operation

can be expressed as follows.

W*x = (A*a — B*b) + (B*a + A*D) (7

The schematic diagram of 1D CV convolution in CV con-
volution layers is shown in Figure 5. In the diagram, the CV
kernel is W € C13, input data is x € C'*7, the stride is 1.
When the CV data enter into CV convolution layers, the CV
kernel move along the data in a fixed stride, which can be
considered as a window (also known as local receptive field).
The CV data in the window perform a dot product with the
CV convolutional kernel. All the outputs computed on each
window will be made up of a matrix, which is essentially a
map of the input. The result of the convolution operation can
be shown in Figure 4.

Forward propagation from the previous 1D CV convolu-
tion layer /-1 to the kth neuron in layer /, can be expressed
as follows:

Ni—i
x,lc = bi + Z CVconvlD (wfk_l sf_l)

i=1

®)

where x,’c is the input, bf{ is the bias of the kth neuron in layer /,
sﬁfl is the output of the ith neuron at layer /-1. wﬁ,:l isthe 1D
CV kernel from the ith neuron at layer /-1 to the kth neuron in
layer /. CVconv1D (-) denotes 1D CV convolution operation.
Passing the input )c,lC through the activation function, o (-), the
output of the kth neuron at the convolutional layer / can be
expressed as follows,

y,l( =0 (Re (x,i)) + jo (Im (x,l(
2) COMPLEX-VALUED ACTIVATION FUNCTION

In a convolution neural network, to enhance the ability to
express nonlinearity, the activation function is applied to
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FIGURE 3. The schematic diagram of 1D CV convolution.
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FIGURE 4. The schematic diagram of 1D CV convolution.
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the output of the convolution layer to perform a non-linear
transformation. The Rectified Linear Unit (ReLU) function
is a widely used activation function for real-valued CNN.
To solve the nonlinearity existed in complex-valued data,
complex-valued activation function should be considered in
the 1D CVCNN. Considering the superior performance of the
ReLU in real-valued CNN, the CReLU activation function is
applied in the paper by extending the real-valued ReLU in
the complex-valued field. CReLU simply applies the standard
ReLU activation function to the real and imaginary part of the
input z, which can be defined as follows [39].

CReLU = ReLU (Re (z)) +j ReLU (Im (z)) (10)

where Re(-) and Im(-) denote the real and imaginary parts,
respectively.

3) COMPLEX-VALUED POOLING LAYER

In the real-valued pooling layer, the corresponding feature of
the data is extracted by comparing the data values. However,
there is no rule for directly comparing complex numbers, so it
is necessary to define the rule for the complex-valued pooling
algorithm.

A complex number is composed of the real imaginary
part; the real and imaginary part of the data can be ana-
lyzed and processed respectively when training the network,
so the maximum complex number can be determined after
comparing the size of the real imaginary part of the complex
number, respectively. Maximum pooling and average pooling
for complex numbers are defined as follows.

Xcpr = MaxPooling (Re (Z¢c))+j MaxPooling (Im (Z¢c))
(11
Xcar = AvgPooling (Re (Z¢c)) + j AvgPooling (Im (Z¢c))
(12)

where Z¢c is the output of the convolution layer, Xcpr, Xcar
are output of the maximum pooling and average pooling
layer, respectively.

4) FULLY CONNECTED COMPLEX-VALUED LAYER

Similarly to real-valued ( RV) CNN, CV CNN contains one
or more fully connected layers. The fully connected layers
are the same as a traditional multilayer perception, which are
usually applied to extract features further. The output of the
CV fully connected layer can be described as:

o = (v (1)) < (1)
—Re (Vil—l) +;jIm (Vil_l) (13)

K
viTh=>"wh X b (14)
k=1

where o is the activation function, Wl.lk is the kernel from
the ith neuron in layer /th to the kth neuron at layer  + 1.
bi denotes the bias of the kth neuron at layer /, X, ,i_l denotes
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the kth output of the (/-1)th layer, K is the number of neurons
at layer [-1.

5) MERGING LAYER

After the complex-valued fully connected layer, the merging
layer is followed. The main function of merging layer is to
calculate the magnitude of the kth element of the complex
feature vector in the CV fully-connected layer. The output of
the merging layer can be expressed as follows [31],

o =ats(o) = (s 1) ()

15)

where Oll.‘ ~!is the i th element of the complex feature vector
in CV fully connected layer.

6) DROPOUT LAYER

When training the networks, if the model has too many
parameters and too few training samples, the trained model is
prone to overfitting. The Dropout layer can effectively alle-
viate the problem of overfitting during training and achieve
regularization to a certain extent. Some layers are discarded
randomly after Dropout operation by setting probability coef-
ficients of the Dropout layer.

Because the dropout layer randomly discards some neu-
rons probability, it weakens the forced joint relationship
between neural nodes between layers, thereby enhancing
the network’s generalization ability and making the relation-
ships between neurons in the network more independent.
The dropout layer also reduces the mutual adaptability
between neurons and improves the effectiveness of the fea-
tures extracted by CNN.

7) OUTPUT LAYER

After the RV fully-connected layer, the output layer is usu-
ally followed to predict the classification of the input data.
The LogSoftmax function is used in classification due to
its better numerical performance compared to SoftMax [40].
The LogSoftMax function can convert the feature vector into
a normalized probability distribution. Mathematically, the
output of Logsoftmax classification for the ith element of the
vector can be calculated by the LogSoftmax operation and
can be described as

exp (OF
gi=tog | -S210) (16)

> exp ()
k=1

where g; is the probability belonging to the ith class for one
complex training sample, N is the number of classes.

C. BACK PROPAGATION FOR 1D CVCNN

Backpropagation in CNN with complex number is an exten-
sion of the 1D real-valued counterpart in which the loss
function and activations are required to be differentiable
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by the real and imaginary parts of the complex-valued
parameters [31]. The objective of the BP in 1D CVCNN is
to optimize the network parameters by minimizing the value
of the loss function.

For multiclass classification, the loss function is applied to
evaluate the difference between the predicted value and the
actual value of the model. The cross-entropy loss function
is the most widely used loss function in multiclass classifi-
cation, which is good at learning information and converges
quickly, which can be defined as follows [41],

N
Leg == pilogg (17)
i=1
where N is the number of classes, p; denotes the probability
distribution of the training data, ¢; denotes the probability
distribution generated by the network.

The 1D CVCNN is trained by minimizing the value of
the loss function Lcg, and this can be done using Adam
optimizer [42]. The minimum of the loss function is reached
by adjusting the complex weights and bias iteratively as
follows.

aL
l+1(t +1)= wl+1(t) I+C1E (18)
3 ()
E)LCE
b4+ 1) = bl ) — (19)
ik abf,j‘(t)

where 7 is the learning rate, ¢ is the number of iterations.
The update of weights and bias are similar. Here, only the
update of weights is considered. The complex error gradient
of weights can be obtained as

dLcx dLck dLck
= j
vl oRe (wi) ot (wi)

I+1
oLy ORe (V)
aRe (V/+1) oRe (w}")

oree  0m (V)
otm (V/*1) aRe (wit")

I+1
ooy ORe (Vi )
oRe (V/*1) otm (wi!)

I+1
oree  Om (V)

+

+J

(20)
o1m (/1) a1m (wit!)
According to [36] and [37], (20) can be changed to
dLce dLcE dLcE
awir' | oRe (v}“) o (Vil“)
x (Re (0f) —jm (0}))
=510l 1)
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where
81+1 _ aLCE ] aLCE
oRe (V/*) ot (v/+)

is called the error term, Di = Re (OQ) —jIm (Of() which is
the conjugate of the ith output of the /th layer.

According to (18), (19), and (21), in the process of back-
propagation, the complex weight and bias of each layer can
be obtained by multiplying the error term with the conjugate
of the input of this layer. The detail of error term of different
layer of the CV CNN will be given below.

1) OUTPUT LAYER
The backward error term of the output layer can be calculated
by differentiating both sides of (17) with respect to OiL

N
5k — 3LCE OLcg 9qj Dj
=—2_ = 8ijg — qiqj

Z dq; 90 ;q]’('“ i)

=- ij (85 —ai) = i = pi (22)
where §;; is 1if i is equal to j and 0 otherwise.

2) MERGING LAYER

The backward error term of the merging layer can be cal-
culated by differentiating the loss function from the layer
output OiL =1 the error term can be expressed as follows [41],

sL-1 0LcE _ dLcg j oLcg
k 90L~1 " 9Re(0E™) T 9Im(OE )
_ dLcEg 301,{‘ BLCE 30k
90k 9Re(OF7Y) aoL dtm(0L ™1
_ gRe(Oyh o Im(O;™H
k k
= 8,% cos @ +j8,lg sin ¢ (23)

where ¢ = arctan(Im(Oéfl)/Re(Oifl)), 8,%7] is the com-

plex error term.

3) FULLY CONNECTED COMPLEX-VALUED LAYER

For updating the bias and all weights in the layer, one can
use the chain rule of derivatives by differentiating the loss
function LCE with respect to the CV connection weights and
bias. Suppose that the L-2 layer is output layer of CV fully
connected layer, then the previous layer L-3 is called hidden
layer, and the error 8,% =2 can be expanded as

5?4—1
dLcE dLcE dLcE
= — = J
Vi~ are (Vi) Tamm (Vi)
dLcg  ORe(OF™h) dLcg  dIm(OFh

ORe(0; ) gRe (V4")  9Im(O; ) aRe (V5')
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dRe(OF7 1
om (V5~")
dLcp  Im(OF™h)
-1 _
9m(0; ™) o1m (V")
dRe(OF ™)
oRe (V5™")
dRe(0OF 71

om (Vi)

Lcg
dRe(OF)

+J

dm(0F )
L—1
oRe (V£
dm(OF)
L—1
om (V5~")

= 8,% cos ¢ + sin ¢

+j3,€ cos @ + sin ¢

(24)

where,

(24) can be expressed as,
61+1 6 = (Sk cos @ +]8k sin ¢ (25)
The error term Sf can be deduced as,

dLcg
dIm (0%)

5k = — -
K= T9Re(0F)

On the basis of the chain rule,

JLcE
I _ gl T
8k_ 01 - 8 Wik
k

= > [Re (57") Re (wi") +1m (57 1m (w )]

~

1
. I+1 I+1 I+1 I+1
jgl:l:lm(ﬁl )Re( )~|—Re(8 )Im( wh )]
(26)

where () represents operation of the complex conjugate.

From the process of the deriving the error term of hidden
layers, we can see that the error terms can be derived from
the parameters of upper layers [42], [43], [44]. Similarly, the
error terms of the convolution layer and the pooling layer can
be obtained.

4) ERROR TERM OF THE CONVOLUTIONAL LAYER

AND POOLING LAYER

Similarly, the error term expressions of the convolution layer
and the pooling layer can be obtained. The method for solving
the error item of the convolution layer is the same as the
method for solving the error term of the hidden layer, we get
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the following.
o = B! [Re (5*) + 1m (5+1) ]
+ip [ (81) —Re (s7)] @D

where B is the pooling factor. Similarly, get the error term of
the pooling layer:

5 = Z [Re (517 Re (w4£) +1m (5£+7) 1m ()]

+jl~§ [Im (1) Re (Wi ) +Re (5" tm (w ’“)]
(28)

After obtaining the error terms for each layer, the weights
and bias of each layer are updated.

whH (e + 1) = Wi @) + ps 1ol (29)
bEEN @+ 1) = b @) 4 0ol (30)

The weights and bias are adjusted iteratively until the
loss function is reduced to the minimum while the network
training is completed. The flowchart of the model training is
shown in Figure 5.

V. EXPERIMENT RESULTS

A. DESCRIPTION OF THE EXPERIMENT

The connection diagram of the experimental rig is shown in
Figure 6, the permanent magnet synchronous motor (PMSM)
is coaxially connected with the separately excited DC
machine (SEDM), and the SEDM is used as the load of
the PMSM. The power inverter is composed of six IGBT
(G6ON100BNTD of Fairchild). The computer is used to run
the PLECS software together with the RT Box. The RT
Box is used as a digital controller to send the pulse-width
modulation (PWM) logic signals to the gate drive circuits that
drive the inverter switches. The experimental parameters are
shown in Table 2.

The number of layers and main structural parameters of
the 1D CVCNN proposed in the paper are shown in Table 3.
It should be noted that the hyperparameters of the network
are set as follows: the number of iterations is set to 50,
the optimizer is Adam algorithm, the learning rate is 0.001,
B1 =0.9, B2 = 0.999. The Dropoutis set 0.3. All experiments
are performed in computer with CPU i7-10700 @ 2.9GHz
with eight cores and 16 GB of memory, and NVIDIA GeForce
RTX 2060(6G) GPU, running on a Windows 10 professional
64-bit operating system. Python is chosen as the program-
ming language, Pycharm2020.2 is used for programming.

B. DATA PREPARING

In this paper, the non-overlapping sliding window sampling
method is used to intercept the original three-phase current
signal data to make a sample set, and the moving step is
equal to the sliding window size. As shown in Figure 7,
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updating the internal parameters of
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FIGURE 5. Flowchart of the model training.

take the i, current waveform with inverter under fault-free
condition as an example, each sample has 1024 sampling
points, and the sliding window size is 1024. The sample is
cut from left to right through the non-overlapping sliding
window, and 1.1 x 103 sampling points of current are divided
into 1000 samples. For each type of fault, 800 samples are
taken as the training set and 200 samples are taken as the
testing set. The dataset description of each fault is shown
in Table 3.

The same sampling method is used to process the current
i and ig. After finishing iy, ig current sampling, the train and
test sample sets can be obtained by using expression (3).

C. DETECTION PERFORMANCE EVALUATION
To verify the effectiveness of the 1D CVCNN model, real
motor current data samples are used to train the model.
Figure 9 illustrates the convergence history of the accuracy
and loss function for the training during 50 epochs. When
the number of training is 10, the accuracy and loss function
of the model reaches 95% and 0.2, respectively. The loss
function value tends to zero and the accuracy tends to 1 with
increasing training iteration. The loss value and the accuracy
of the model converge and are stable even after 50 epochs.
To analyze the fault identification performance of the pro-
posed method, the confusion matrix of the 1D CVCNN is
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FIGURE 7. Data preparation with non-overlapping sampling.

TABLE 2. Experimental parameters of PMSM drives.

parameter Value
Rated voltage of PMSM 200V
Rated current of PMSM 6.2A
Rated power of PMSM 1.5kWr
Rated speed of PMSM 1500rpm

Number of pole pairs of PMSM 2
Stator phase resistance of PMSM  1.2Q

d-axis inductance 3.72mH
g-axis inductance 7.28mH
Permanent magnetic flux linkage  0.4534Wb

Load 2Nm
Switching frequency of IGBT 18kHz
Sampling frequency 20kHz

shown in Figure 9. In the figure, the vertical axis indicates
the actual fault label, and the horizontal axis denotes the
predicted fault label. The diagonal number of the matrix
represents the diagnostic precision of each fault. The lowest
diagnostic accuracy of fault 12, 17 reaches 99%, and the
other fault can be isolated with an accuracy of 100%. The
experimental results show that the proposed method has a
good performance in fault diagnosis and has the ability to
accurately classify the faulty power switch. The reason for
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TABLE 3. Dataset description of each fault.

Fault Dataset Fault Dataset
label train/test label train/test
0 800/200 11 800/200
1 800/200 12 800/200
2 800/200 13 800/200
3 800/200 14 800/200
4 800/200 15 800/200
5 800/200 16 800/200
6 800/200 17 800/200
7 800/200 18 800/200
8 800/200 19 800/200
9 800/200 20 800/200
10 800/200 21 800/200

30

sl
E

i

0 , ;

0 10 20 30 40 50
Training iterations
(a)
1.0
0.8
2
04
021
0 10 20 30 20 50

Training iterations

(b)

FIGURE 8. The convergence history. (a) accuracy. (b) loss.

the good performance of the 1D CVCNN model is that
complex-valued current consider both amplitude and phase
simultaneously.

D. COMPARED TO 1D CNN MODELS UNDER SIGNAL
WITH DIFFERENT NOISE

To evaluate the superiority of the anti-noise ability, noises
with different SNR (SNR = 5, 10, 20dB) are added to the
dataset. The diagnostic accuracy of the 1D CVCNN and
the 1D CNN are shown in Figure 10. From the figure,
we can see that the diagnostic accuracy of the 1D CVCNN
i 93.4%, the 1D CNN is 91.6%, when the SNR drops to 5dB.
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FIGURE 9. Fault diagnosis confusion matrix without noise.

The comparison shows that the 1D CVCNN method proposed
in this work performs better than the 1D CNN in the noise
interference environment.

To evaluate more comprehensive performance of the 1D
CVCNN model compared with the other models, the receiver
operating characteristic (ROC) curve at SNR = 5dB is shown
in Figure 11. In the figure, the horizontal ordinate denotes the
false positive rate (FPR), the vertical ordinate denotes the true
positive rate (TPR), and the area under ROC curve (AUC)
are utilized to evaluate the comprehensive detection perfor-
mance. The larger the value of AUC means the better the
performances of the model [41]. From the figure, we can see
that the AUC of the ID CVCNN is 0.99, the 1D CNN is 0.98,
the BP is 0.89, and the DNN is 0.84. The AUC of the 1D
CVCNN is the largest, which means that the method proposed
in the paper is the most effective under noisy environments.

12 BN IDCNN B IDCVONN

0994 0.996

0.990 0.994

L0 o1 0934

0.4 4

0.2 4

0.0 -
5dB 10dB

SNR

FIGURE 10. Average accuracy of 1D CVCNN and 1D CNN with different
SNR noise.

E. TRAINING EFFICIENCY COMPARISON WITH

OTHER METHODS

To further illustrate the training efficiency of the proposed
method, the diagnosis accuracy of the proposed method (1D
CVCNN) is compared with existing conventional methods,
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1.0

0.8 -

e
o
L

True Positive Rate
i
»
.

0z e —— 1DCVCNN (area = 0.99)
: L —— 1DCNN (area = 0.98)
-~ —— BP (area = 0.89)
,” —— DNN (area = 0.84)
0.0 T T T T
0.0 0.2 0.4 0.6 08 10

False Positive Rate

FIGURE 11. ROC curves of different models under signal with SNR = 5dB
noise.

such as 1DCNN, real-valued deep network (DNN), real-
valued BP network (BP) in 50 training epochs. The com-
parison results are shown in Figure 12. From the Figure 14,
it can be seen that the diagnosis accuracy of all four methods
improves as the number of epochs increases.

The diagnostic precision of the 1D CVCNN is 98.4%, and
the 1D CNN is 97.4%, the DNN is 88.6% and BP is only 74%
after ten epochs. The diagnosis accuracy of the 1D CVCNN
is 99.4% and 1D CNN is 98.9%, DNN is 98.6% and BP
is only 82% after 20 epochs. After 40 epochs, the accuracy
of 1D CVCNN,1D CNN and DNN exceeds 99%. However,
from the comparison results, we can see that the accuracy
of ID-CVCNN has reached 99.4% after only 10 epochs.
Therefore, 1D CVCNN has better feature extraction ability
and higher efficiency compared to 1D CNN, BP networks,
and DNNs.

Lty = DNN N DCNN WM IDCVCNN

Lok 0.974 0984 0.986 0.989 0.994 0.992 0.992 0.994 0995 0.996 0.99 0.996 0,996 0,99

0920 0924
0386 0.884

Accuracy
=
g

04t

oo 10 20 0 0 50

Epoch

FIGURE 12. Accuracy of 1D CVCNN and other conventional models.

For further comparison, the training time of the above
algorithm is shown in Table 4. It shows that the proposed
method has a longer training time than other algorithms. The
main reason for the long training time of complex convolution
is that it requires more time than real convolution. However,
the proposed method has more accuracy than other algorithms
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under noise interference conditions. Due to unavoidable envi-
ronmental noise interference, therefore, we think that the
proposed method still has the best result.

TABLE 4. Comparing of train time of different algorithm.

Algorithm Configuration Training
time (s)

BP 1 hidden layer with 1200 nodes 52.95

DNN 3 hidden layers with 1200,500,120 noses,  65.92
respectively

IDCNN 3 convolution, pooling and full connected  46.44
layers, 1 dropout layer,1 softmax layer

IDCVCNN  The same as above 84.64

VI. CONCLUSION

This paper proposed a new 1D complex-valued CNN model
to diagnose the power switch OC fault of the three-phase
inverter-fed PMSM system. The model can automatically
extract the feature from the original phase current. The exper-
iments were carried out on 1D CVNN, 1D CNN, BP and
DNN models with 22 kinds of power switch OC faults occurs
in the inverter. The main contributions of the study are shown
as follows:

1) The complex-valued phase current can directly be used
as the input of the trained 1D CVCNN model. The
power switch OC fault diagnosis can be implemented
with the model.

2) The 1D CVCNN has a higher diagnosis accuracy than
1D CNN and has better feature extraction ability than
other conventional deep learning methods, such as BP
and DNN.

3) The 1D CVCNN model performs better than the 1D
CNN in the noise interference environment. The model
shows more robustness to noise, this makes the 1D
CVCNN model much more applicable in practical
applications.

The 1D CVCNN model can diagnose OC fault accurately
under noisy signals environment and no other noise reduction
needed. The experimental results show that the 1D CVCNN is
more superior to the existing traditional methods. At present,
1D CVCNN is first utilized to diagnose fault of inverter-fed
motor drives. we think that the method does not rely on
system architecture or control methods

The limitation of the proposed model is that the training
time is longer than other methods, the main reason is that
the operation of complex-valued convolution needs more
time. In the future, we will study more on one dimensional
complex-value CNN to reducing training time. The method
may have some other unknown problems. In the future,
we will spend more time to study these unknown problems,
and develop a perfect set of solutions.
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