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ABSTRACT Speech Emotion Recognition (SER) is crucial for enabling computers to understand the
emotions conveyed in human communication. With recent advancements in Deep Learning (DL), the
performance of SER models has significantly improved. However, designing an optimal DL architecture
requires specialised knowledge and experimental assessments. Fortunately, Neural Architecture Search
(NAS) provides a potential solution for automatically determining the best DL model. The Differentiable
Architecture Search (DARTS) is a particularly efficient method for discovering optimal models. This study
presents emoDARTS, a DARTS-optimised joint CNN and Sequential Neural Network (SeqNN: LSTM,
RNN) architecture that enhances SER performance. The literature supports the selection of CNN and
LSTM coupling to improve performance. While DARTS has previously been used to choose CNN and
LSTM operations independently, our technique adds a novel mechanism for selecting CNN and SeqNN
operations in conjunction using DARTS. Unlike earlier work, we do not impose limits on the layer order
of the CNN. Instead, we let DARTS choose the best layer order inside the DARTS cell. We demonstrate
that emoDARTS outperforms conventionally designed CNN-LSTM models and surpasses the best-reported
SER results achieved through DARTS on CNN-LSTM by evaluating our approach on the IEMOCAP, MSP-
IMPROV, and MSP-Podcast datasets.

INDEX TERMS Speech emotion recognition, neural architecture search, deep learning, DARTS.

I. INTRODUCTION
Recognising the emotional nuances embedded in speech is a
fundamental, yet complex challenge. Over the last decade, the
field of Speech Emotion Recognition (SER) has experienced
significant strides, predominantly driven by the exponential
growth of deep learning [1], [2], [3], [4]. A key breakthrough
facilitated by deep learning is its capability to automatically
learn features, departing from the traditional reliance on
manually crafted features shaped by human perceptions
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of speech signals. Nevertheless, determining the optimal
deep-learning architecture for SER remains a challenging
task that warrants attention. Conventional approaches involve
iterative modifications and recursive training of models until
an optimal configuration is found. However, this approach
becomes prohibitively time-consuming due to the extensive
training and testing required for numerous configurations.

An alternative to the conventional approach is the ‘‘Neural
Architecture Search’’ (NAS), which can help discover
optimal neural networks for a given task. The idea is to find
the models’ architecture to minimise the loss. In NAS, search
is done over a discrete set of candidate operations, which
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FIGURE 1. The proposed architecture of emoDARTS passes the input
features to the CNN component through the SeqNN component and
finally to a dense layer. The optimum CNN and SeqNN operations are
selected by DARTS jointly.

requires the model to be trained on a specific configuration
before moving on to the next configuration. Nevertheless, this
approach demands considerable time and resources.

The Differentiable Architecture Search (DARTS) is a
method that has been developed to optimise the search for
a neural network architecture. It allows for the relaxation of
the discrete set of candidate operations, making the space
continuous and reducing the computation time significantly,
from 2,000 GPU days to just 2-3 GPU days. This is a major
improvement from the previous methods of reinforcement
learning or evolution algorithm, which required 2,000 and
3,150 GPU days, respectively. Additionally, through network
optimisation DARTS has the potential to offer significantly
high SER accuracy, which is currently quite low and needs
improvement. These two points serve as motivation to use
DARTS for SER.

Additionally, previous studies have shown that a
multi-temporal Convolutional Neural Network (CNN)
stacked on a Long Short-Term Memory Network (LSTM)
can capture contextual information at multiple temporal
resolutions, complementing LSTM for modelling long-term
contextual information, thus offering improved perfor-
mance [5], [6], [7], [8]. Sequential Neural Networks (SeqNN)
like Recurrent Neural Networks (RNN) or LSTM can easily
identify the patterns of a sequential stream of data. This paper
takes a pioneering step by leveraging DARTS for a novel
joint CNN–SeqNN configuration, named ‘‘emoDARTS’’,
as depicted in Figure 1, with an attention network seamlessly
integrated into the SeqNN component to further elevate its
performance.

The investigation of DARTS within the SER domain is
minimal and invites further inquiry to uncover the potential
for improving SER performance. DARTS has only recently
been employed in SER tasks to improve models, as recently
as 2022 [9], [10], wherein the researchers havemostly applied
DARTS separately on CNNs and RNNs [11], [12], [13].
Hence, the viability of utilising DARTS jointly for CNN
and SeqNN requires exploration. While there is a lone study
that explores the joint optimisation of CNN and LSTM [10],
it imposes constraints on the layer order for the CNN within
the DARTS component, thereby limiting the full potential of
DARTS. In response to this limitation, our paper takes on the
challenge of optimising this joint configuration without such

constraints. The contributions of this paper are summarised
as follows.

1) This paper proposes a novel DARTS-optimised joint
CNN and SeqNN architecture, emoDARTS, achieving
greater autonomy to DARTS in selecting optimal
network configurations.

2) We demonstrate the robust generalisation capabilities
of the proposed emoDARTS model by testing it on
three widely used datasets: IEMOCAP,MSP-IMPROV,
and MSP-Podcast.

3) Experimental results demonstrate that emoDARTS
achieves considerably higher SER accuracy than
humans designing the CNN-LSTM configuration.
It also outperforms the best-reported SER results
achieved using DARTS on CNN-LSTM.

II. RELATED WORK
This section delves into the existing literature on using
DARTS and NAS for SER. Notably, our exploration reveals
a limited number of papers in this space. We therefore extend
our review to encompass relevant papers in related fields
to provide a comprehensive perspective. For completeness,
we also include studies employing CNNs, LSTM networks,
and their joint utilisation for SER.

A. SPEECH EMOTION RECOGNITION
USING CNN AND LSTM
One of the earliest uses of CNN networks in SER is
reported by Zheng et al. in 2015 [14]. The authors introduced
a spectrum generated from an audio signal to a CNN
network and output the recognised emotion. The authors
report that they can surpass the SVM-based classification
performance and reach 40% classification accuracy for a
five-class classification using the IEMOCAP dataset.

The earliest work combining CNN and LSTM for SER
is by Trigeorgis et al. in 2016 [15]. The authors show an
impressive improvement by a fully self-learnt representation
over traditional expert-crafted features on dimensional emo-
tion recognition.

Zhaoa et al. [1] show that using CNN and LSTM networks
combined in the same SERmodel produces better results than
using only CNN. Using the IEMOCAP dataset, they obtained
a speaker-independent accuracy of 52% by using a log-Mel
spectrogram as the input feature. Their SER approach utilises
an LSTM layer to learn contextual dependencies in local
features, while a CNN-based layer learns the local features.

B. APPLICATION OF NAS AND DARTS IN SER AND
RELATED FIELDS
The first paper suggesting NAS in SER was by Zhang et al.
in 2018 [16]. The authors employ a controller network that
shapes the architecture by the number of layers and nodes
per layer and the hyperparameter activation function of a
child network by reinforcement learning. They show an
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TABLE 1. Summary and focus on the literature on NAS, DARTS, and speech emotion recognition.

improvement over human-designed architectures and random
searches of these.

Zoph and Le [17] use reinforcement learning to optimise an
RNN network that develops model architectures to maximise
the resulting accuracy of the generated model. As a result,
they develop outstanding models for the CIFAR-10 and Penn
Treebank datasets. They were able to develop a convolutional
network architecture for the CIFAR-10 dataset which has a
3.65 error rate and a recurrent network architecture for Penn
Treebank with 62.4 perplexity.

Even though NAS is primarily used to find optimised
architecture for complex and large models, researchers have
also studied the possibility of using NAS to design smaller
deep neural network models. Liberis et al. [18] develop
a NAS system called µNAS to design smaller neural
architectures that can run on microcontroller units. They
improve the top-1 accuracy by 4.8% in image classification
problemswhile reducing thememory footprint up to 13 times.
Similarly, Gong et al. [19] study the feasibility of using
NAS for reducing deep learning models to deploy on
resource-constrained edge devices.

Traditional NAS consumes much computational power
and time to achieve the optimal model for a given problem.
In 2018, Liu et al. [20] came up with a differentiable
approach to solving the optimisation by continuous relax-
ation of the architecture representation. This approach is
more compute efficient and high performing as the search
space is not discrete and non-differentiable. They produce
high-performing CNN and RNN architectures for tasks
such as image recognition and language modelling within
a fraction of the search cost of traditional NAS algorithms.
DARTS has been popular in the past three years with
many studies carried on for extending and improving the
algorithm [11], [21], [22], [23], [24], [25].
Wu et al. [10] proposed a uniform path dropout strategy

to optimise candidate architecture. They use SER as their
DARTS application and the IEMOCAP dataset to develop
an SER model with an accuracy of 56.28% for a four-class
classification problem using discrete Fourier transform
spectrograms extracted from audio as input. In their work, the
authors specify layer order as two convolution layers at first,

followed by a max-pooling layer, a convolution layer. They
use DARTS to select the optimum parameters for each layer.
We, on the other hand, do not specify the layer sequence and
instead enable DARTS to select the ideal design with minimal
interference.

EmotionNAS is a two-branch NAS strategy introduced by
Sun et al. [9] in 2023. The authors use DARTS to optimise
their two models in two branches, the CNN model and
RNN model, which use a spectrogram and a waveform as
inputs, respectively. They obtained an unweighted accuracy
of 72.1% from the combined model for the IEMOCAP
dataset. They also report the performance of 63.2% in the
spectrogram branch, which only uses a CNN component.
The main difference between our approach and the study by
Sun et al. [9] is that we use a SeqNN component coupled in
series with the CNN layer as in Figure 2 while Sun et al. [9]
use an RNN layer in parallel to the CNN layer in a different
branch.

We conducted preliminary research to determine the
feasibility of utilising DARTS for SER in a CNN-LSTM
architecture, where we only optimised the CNN network
using DARTS [26]. This paper extends the idea of using
DARTS in SER but with more relaxation in the SeqNN
component by jointly optimising the whole architecture.

In recent years, the literature has highlighted the use of
attention networks in SER, which has provided superior
outcomes [27], [28]. We added an attention network com-
ponent to the DARTS search scope to discover whether it
improves performance. Zou et. al. [29] have introduced a
concept called ‘co-attention’ where many separate inputs
from multimodal inputs are fused by co-attention. They used
three sets of features MFCC, spectrogram, and Wav2Vec2
features from the IEMOCAP dataset and obtained 72.70%
accuracy. Liu et al. [30] have utilised an attention-based
bi-directional LSTM followed by a CNN layer for a SER
problem. They have achieved a significant performance of
66.27% for the IEMOCAP Dataset. Their idea of ‘CNN
- LSTM attention’ paved the foundation for our model
architecture.

In Table 1, we briefly compare the existing studies with
emoDARTS. The comparison clearly shows that,
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FIGURE 2. The emoDARTS architecture comprises input features
processed through CNN, SeqNN, and Dense layers and it utilises DARTS
for jointly optimising the CNN and SeqNN components.

1) While some studies employ NAS for SER, the utilisa-
tion of DARTS in SER is notably limited.

2) Singularly, one study has explored the concept of
jointly optimising CNN and SeqNN using DARTS for
SER, in which the researchers specified the layer order.
However, in our study, we let DARTS determine the
optimal network from a relaxed search scope which
enables it to select any operation in search space at the
optimum layer.

3) Most existing studies primarily focus on the IEMOCAP
dataset. In contrast, our study uniquely incorporates
three widely recognised SER datasets: IEMOCAP,
MSP-IMPROV, and MSP-Podcast to demonstrate the
generalisation power of emoDARTS.

III. emoDARTS FRAMEWORK
The proposed ‘emoDARTS’ uses DARTS to improve SER
using a CNN-SeqNN network, which was motivated by
studies that showed increased SER performance when
CNN and LSTM layers were combined [5], [7], [8], [30].
We represent our network as a multi-component DARTS
network, with the input fed into a CNN component and the
output features from the CNN component fed into a SeqNN
component, but all components are optimised jointly during
the architecture search phase under a single compute graph,
delivering an optimal architecture (Figure 2).
DARTS uses a differentiable approach to network opti-

misation. A computation cell is the DARTS algorithm’s
fundamental unit. It aims to optimise the cell so that the
architecture can function to its maximum performance.
A DARTS cell is described as a directed graph, with
each node representing a feature (representation) and each
edge representing an operation that can be performed to a
representation. One unique feature of this network is that each
node is connected to all of its previous nodes by an edge,
as seen in Figure 3 (a). If the output of the node j is x(j) and
the operation ‘o’ on the edge connecting the nodes i and j is
o(i,j), x(j) can be obtained by the Equation 1:

x(j) =

∑
i<j

o(i,j)(x(i)) (1)

In the beginning, the candidate search space is generated
by combining each node of the DARTS cell with all the
candidate operations (with multiple links between nodes),
as illustrated in Figure 3 (b). Equation 1 incorporates a
weight parameter α to identify the optimal edge (operation)
connecting two nodes, i and j, from the candidate search space
of all operations. Equation 2 describes how the node’s output
be represented.

x(j) =

∑
i<j

α(i,j)o(i,j)(x(i)) (2)

Then, the continuous relaxation of the search space updates
the weights (αi,j) of the edges. The final architecture can be
obtained by selecting the operation between two nodes with
the highest weight (o(i,j)∗) by using Equation 3.

o(i,j)∗ = argmaxo(α
(i,j)) (3)

The searched discrete cell architecture is shown in
Figure 3 (d).
The number of cells (C orN ) in a component is a parameter

for the DARTS algorithm that specifies how many DARTS
cells are stacked to form a component in the model. Each cell
takes the last two cells’ output as input. If the output from
each cell t is yt and the function within the cell is f , then yt
can be represented as;

yt = f (yt−1, yt−2) (4)

DARTS’ CNN component has two types of CNN cells:
‘normal’ and ‘reduction’ cells. It sets the stride to one in
normal cells and two in reduction cells, resulting in a down-
sampled output in the reduction cells. This downsampling
allows the model to eliminate the duplication of intermediate
characteristics, reducing complexity.

We decided to jointly optimise the CNN and SeqNN
components rather than individually since it is important
for downstream components (in this case, the CNN com-
ponent) to understand the behaviour of upstream compo-
nents (SeqNN). Joint optimisation in a multiple-component
network improves architecture search in various ways,
including: 1. the back-propagation of loss minimisation
flows through all the components in a single compute
graph; and 2. it reduces the time required in the search
phase by searching the architecture of the whole network at
once.

IV. EXPERIMENTAL SETUP
A. DATASET AND FEATURE SELECTION
Weuse thewidely used IEMOCAP [31],MSP-IMPROV [32],
and MSP-Podcast [33] datasets for our experiments. Our
study takes the improvised subset of IEMOCAP and the
four categorical labels, happiness, sadness, anger, and neutral
as classes from the datasets. We employ five-fold cross-
validation with at least one speaker out in our training and
evaluations. At each fold, the training dataset is divided into
two subsets, ‘search’, and ‘training’, by a 70/30 fraction. The
‘search’ set is used in the architecture search; the ‘training’
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FIGURE 3. DARTS employs steps (a) to (d) to search cell architectures: (a) initialises the graph, (b) forms a search space,
(c) updates edge weights, and (d) determines the final cell structure. Nodes signify representations, edges represent operations,
with light-coloured edges indicating weaker and dark-coloured edges representing stronger operations.

set is used in optimising the searched architecture, and the
remaining testing dataset is used to infer and obtain the testing
performance of the searched and optimised model. This way,
we manage to split the dataset into three sets in each cross-
validation session. The IEMOCAP dataset has five sessions
with ten actors and two unique speakers in each. We use one
session for the testing dataset and four sessions for the search
and training datasets. Similarly, MSP-Improv comprises six
sessions including twelve actors. We take one session in the
testing dataset and the remaining five sessions in the search
and training dataset. MSP-Podcast includes a speaker ID with
each audio utterance, and we group the entire dataset by the
speaker and divide it by the 70/30 rule.

In this research, we use Mel Frequency Cepstral Coeffi-
cients (MFCC) as input features to the model. MFCC has
been used as the input feature in many SER studies in the
literature [34], [35] and has proven to obtain promising
results. Some machine learning research uses the Mel
Filter bank as an input feature when the algorithm is not
vulnerable to strongly correlated data. We picked the MFCC
for this study since the deep learning model is produced
automatically and we do not want to infer the model’s
sensitivity to correlated input. We extract 128 MFCCs from
each 8-second audio utterance from the dataset. If the audio
utterance length is less than 8 seconds, we added paddingwith
zeros while the lengthier utterances are truncated. TheMFCC
extraction from the Librosa python library [36] outputs a
shape 128 × 512, downsampled with max pooling, to create
a spectrogram of the shape 128 × 128.

B. BASELINE MODELS
We compare the performance of emoDARTS for SER with
three models developed without DARTS (w/o DARTS):
1) CNN, 2) CNN+ LSTM, and 3) CNN+LSTM with

FIGURE 4. Visualisation of the CNN+LSTM attention baseline model. The
parameters of the CNN layer are: kernel size (k)=2, stride (s)=2 and,
padding (p)=2 and the parameters of the Max-pooling layer are: kernel
size (k)=2 and stride (s)=2 and the LSTM layer has 128 units.

attention as baseline models. The CNN baseline model
consists of a CNN layer (kernel size=2, stride=2, and
padding=2) followed by a Max-Pooling layer (kernel size=2
and stride=2). Two dense layers then processes the output
from the Max-Pooling layer after applying a dropout of
0.3. Finally, the last dense layer has four output units
resembling the four emotion classes, and the model outputs
the probability estimation of each emotion for a given input
by a Softmax function.

The CNN+LSTM baseline model is built, including an
additional bi-directional LSTM layer of 128 units after the
Max-Pooling layer. An attention layer is added to the LSTM
layer in the ‘CNN+LSTMattention’ baselinemodel. Figure 4
shows the architecture of the CNN+LSTM attention baseline
model.

C. DARTS CONFIGURATION
We divide the cell search space operations into the two
separate parts CNN and SeqNN based on the components
they apply. Table 2 lists the type of operations used in each
component. The cell search space of the CNN component
consists of pooling operations such as 3 × 3 max pooling
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TABLE 2. Type of DARTS operations used in each component. ‘‘i ’’
represents the kernel size in CNN while ‘‘j ’’ represents the number of
layers in the SeqNN component.

(i = 3) and 3 × 3 average pooling (i = 3), convolutional
operations such as 3 × 3 and 5 × 5 separable convolutions
(i = 3, 5), 3× 3 and 5× 5 dilated convolution (i = 3, 5), 7×

1−1×7 factorised convolution (i = 7), identity connections,
and no connections while the SeqNN component consists
of operations such as RNN of layers 1 through 4 (j =

1, 2, 3, 4), RNN of layers 1 and 2 with attention (j = 1, 2),
LSTM of layers 1 through 4 (j = 1, 2, 3, 4), LSTM of
layers 1 and 2 with attention (j = 1, 2), identity connections
and no connections.

We use stochastic gradient descent with a learning rate
from 0.025 to 0.001 using a cosine annealing schedule as
the optimiser to optimise the weights of the operations. The
search is run for 300 epochs.

In our experiments, we use four DARTS cells (C = 4)
for the CNN component following the work of Liu et al. [20]
and two DARTS cells (N = 2) for the SeqNN component.
The intuition of using N = 2 for the SeqNN component
is discussed in section VI-B. As defined in [20], we apply
reduction cells at every 1

3C
th and 2

3C
th position of the layers

in CNN component. We randomly initialise α values and the
DARTS search algorithm optimises α values related to each
operation. The output from the CNN component is flattened
to a vector before passing to the SeqNN component to adjust
the input dimension of the RNN and LSTM layers.

Once the search operation completes, it outputs the
architecture of DARTS cells, which is called ‘‘genome’’.
We create a deep learning model with the CNN component
having four CNN cells and the SeqNN component having two
SeqNN cells. This model is trained for 300 epochs with the
training set of the datasets to minimise the loss.

We use the popular deep learning library PyTorch [37] for
model development and training. The experiments are run on
an NVIDIA A100 GPU with 40GB of VRAM.We published
the source code related to our research in a dedicated GitHub
repository, allowing for smooth replication of our research
findings.1

1https://github.com/iot-health/emoDARTS

V. EVALUATION
We report the results using the Unweighted Accuracy (UA%),
calculated by dividing the total of all classes’ recall by
their number. This is recognised to depict unbalanced data
workloads intrinsic to SER accurately. We additionally
provide the Weighted Accuracy (WA%) mainly to compare
our results with relevant studies [9], [10]. Last but not least,
we also report the number of parameters of the model as an
indication of the model’s complexity, calculated by adding all
trainable parameters in the created model.

A. CNN ONLY MODEL
We initially assess the performance of the CNN-only model
generated by DARTS (CNN – DARTS) compared to our
benchmark model, specifically CNN – w/o DARTS, using
the IEMOCAP dataset. The results, detailed in Table 3,
reveal that the DARTS-generated CNN model outperforms
the performance of the baseline SER model. Additionally,
Table 3 illustrates the performance of the DARTS-generated
model with eight cells (C = 8), showing a lower performance
compared to its counterpart with C = 4. This decline in
performance with an increased number of cells indicates a
rise in the model’s complexity, leading to overfitting and
subsequent accuracy reduction.

We further examine the results from the CNN branch of
Sun et al.’s EmotionNAS model [9] to highlight performance
enhancements. For a direct and clear comparison of per-
formance, we specifically utilise the ‘Spectrogram Branch’
of EmotionNAS, contrasting it with our ‘CNN – DARTS’
model. This focused comparison is chosen to ensure a fair
evaluation since both models share a similar architecture.
We see that the performance of our CNN – DARTS
models surpasses the performance of the CNN branch of
EmotionNAS by at least 5%. It is worth noting that the
‘whole model’ of EmotionNAS has a different architecture,
employing a branched structure, while emoDARTS utilises a
stacked architecture.

TABLE 3. Performance comparison between the DARTS generated CNN
model (CNN – DARTS) and a CNN SER model developed without DARTS
(CNN – w/o DARTS) for the IEMOCAP dataset. The number of parameters
is in thousands.

B. emoDARTS MODEL
We analyse the performance of the CNN-SeqNN model
generated by DARTS (emoDARTS) in contrast to the
SER models optimised without DARTS (w/o DARTS) and
visualise this in Figure 5 and Table 4. The graph shows
that the NAS-generated SER model performs better than the
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FIGURE 5. Comparison of UA% between the datasets the NAS generated
(emoDARTS) and CNN+LSTM attention models developed without DARTS
(w/o DARTS).

TABLE 4. Unweighted Accuracy (UA%) of the CNN+LSTM attention model
developed without DARTS (w/o DARTS), Unweighted Accuracy (UA%), and
Weighted Accuracy (WA%) of the emoDARTS model for each Dataset.

TABLE 5. Accuracy of SER models published by related studies compared
with our study for the improvised subset in the IEMOCAP dataset.

baseline SER model developed without DARTS for the three
datasets.

We also compare the performance of the SER model
generated by our approach with the most related studies,
‘EmotionNAS’ of Sun H.ẽt al., and the ‘CNN_RNN_att’
system of Wu X.ẽt al. in Table 5. It is visible that the
SERmodel generated by our methodology for the IEMOCAP
dataset outperforms the SER models generated by DARTS in
the related literature.

It is further worthwhile to investigate the rationale for
increased performance when compared to the results of
Wu et al.’s ‘CNN RNN att’ [10] system. We suggest
the improved performance is due to the relaxed candidate
operations order rather than the pre-defined layer order.
In Wu et al.’s study [10], for example, the initial layers are
pre-defined to be convolutional layers. TheDARTS algorithm
must select the best convolutional layer from a pool of
just CNN layers. In contrast, our technique allows DARTS
to choose among many operations such as convolutions,

pooling, and skip connections. Figure 6 shows one such use
scenario, in which the DARTS searched architecture consists
of pooling layers in the initial segments.

Figure 6 shows a visualisation of the architecture for each
type of cell (normal (a) and reduction (b) cell of the CNN
component, and cell in the SeqNN component (c)) searched
by DARTS for the emoDARTS model. It is visible that
DARTS has selected three LSTM based operations for the
SeqNN component and only one of them contains attention.
This shows that jointly optimising the emoDARTS model
has enabled the DARTS framework to choose optimum
operations rather than blindly choosing layers with ‘attention’
for all the operations.

C. RESTRICTING THE SEARCH SCOPE
We study the impact on the performance of the searched
model by restricting the search scope for the SeqNN
component. We divide the search scope into five segments
namely ‘LSTM Only’, ‘LSTM-Att. Only’, ‘RNN Only’, and
‘RNN-Att. Only’. Table 6 shows the DARTS operations
allowed as the candidate operations in the SeqNN component
during the search phase.

Table 7 shows the performance and number of parameters
of the searched model when the candidate search operations
are restricted. Here, we study the effect on the performance
of the searched architecture when the search algorithm was
only given a restricted set of operations. For example, the
‘LSTM Only’ study only allowed to use operations from
lstm_1, lstm_2, lstm_3, and lstm_4. We try to identify the
most important types of genome operations that we can use
in the search algorithm. This approach allows to use of only
the important operations in the search scope and optimises
the memory utilisation in the search phase.

TABLE 6. DARTS operations allowed as the candidate operations in the
SeqNN component during the search phase.

Comparing the trials ‘emoDARTS’ and ‘LSTM Only’ in
the IEMOCAP dataset, we can observe that even though
the number of parameters has tripled in the ‘LSTM Only’
scenario, the performance (UA%) has not increased. This
indicates that increasing the number of parameters just by
increasing the complexity of the model does not tend to give
better performance, but the model components should be
compatible with each other.

Notably, models using ‘RNN Only’ genomic opera-
tions achieve the second-highest accuracy despite having
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FIGURE 6. DARTS searched t th cell structure for the CNN Normal Cell (a), CNN Reduction Cell (b), and SeqNN cell (c) for the emoDARTS model.

TABLE 7. Performance (UA%, WA%) and number of parameters (Param.) of each generated model when the candidate search operations are restricted.

FIGURE 7. Visualisation of results for the studies restricting the search space for the three datasets: IEMOCAP, MSP-IMPROV, and MSP-Podcast. The
vertical axis is the mean UA% and the horizontal axis is the standard deviation of UA%. The size of the marker depicts the size (number of
parameters) of the generated model. The best performing model can be found at the top-left most position of the figure which has the highest mean
UA% and lowest standard deviation of UA%.

much fewer trainable parameters. Figure 8 depicts the cell
architecture, which consists mostly of pooling layers and
skip connection operations that do not have any training
parameters and hence do not contribute to the total number
of trainable parameters.

We provide in Table 7 results as well as a scatter plot for
better visualisation in Figure 7, where the mean UA% in the
vertical axis, standard deviation of UA% in the horizontal axis
and size of the markers indicates the number of parameters.
The plots indicate which model gives better performance in
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FIGURE 8. DARTS searched cell structure for CNN and SeqNN cells when
the SeqNN search space has only RNN operations (RNN Only) for the
IEMOCAP dataset.

terms of the mean accuracy and its standard deviation. The
best performing model can be found in the top left corner
of the plot where the highest UA% and lowest Standard
deviation of UA% are present. According to the figure, the
best performing model for all three datasets is given by
‘emoDARTS’where all the candidate operations are available
in the search scope.

VI. DISCUSSION
Throughout this study, we encountered various challenges.
In this section, we report the key challenges and our strategies
for overcoming them. The three primary challenges we faced
were:

1) Optimising the GPU Memory utilisation
2) Converging to a local minima
3) High Standard Deviation of the results

A. OPTIMIZING THE GPU MEMORY UTILIZATION
The DARTS algorithm conceptualises the search problem
as a network graph, establishing multiple edges between
each node. The quantity of edges corresponds to the defined
candidate operations. These operations encompass various
possibilities, ranging from simple CNN, pooling, and RNN
layers to intricate modules like an LSTM-attention module.
In the search phase, a super-neural network is constructed,
resulting in multiple instances of neural network layers or
modules within this overarching structure.

Figure 9 shows an example of a graph inside a DARTS
cell that has four nodes and the candidate operations are
‘‘lstm_1’’, ‘‘lstm_2’’, and ‘‘lstm_att_1’’, where ‘‘lstm_1’’
is a single layer LSTM component, ‘‘lstm_2’’ is a double
layer LSTM component, and ‘‘lstm_att_1’’ is an attention
induced single layer LSTM component. According to the
example, a single DARTS cell should initiate 6×lstm_1
layers, 6×lstm_2 layers, and 6×lstm_att_1 layers. If the
search configuration has 4 cells, we have to initialise

FIGURE 9. Example graph of a DARTS cell which has four nodes and
candidate operations are ‘‘lstm_1’’, ‘‘lstm_2’’, and ‘‘lstm_att_1’’. The same
edge colour denotes the same type of operation.

4 instances of cells where all the weight and bias parameters
have to be initialised in the computing device. This will
increase the GPU memory utilisation.

Providing a higher number of nodes in a cell, a higher
number of cells, and expanding the array of candidate
operations will increase the amount of GPU memory
utilisation and eventually will exhaust the GPU memory
capacity failing the search operation.

To optimise the GPU memory utilisation, we recommend
conducting an assessment to determine the set of possible
search operations and hyperparameters such as the number of
layers, cells, and nodes inside the cell considering the GPU
resources available.

On the other hand, based on the results of Table 7,
we should not be restricted only to a single type of
network but rather should consist of a variety of network
architectures. We selected the set of candidate operations
indicated in Table 6 under ‘emoDARTS’ based on GPU
resource availability and on the premise that all sorts of
candidate operations should be available in the search space.

B. CONVERGING TO A LOCAL MINIMA
Throughout the course of our experiments, we attempted
various configurations for the number of cells and nodes.
We observed that the SeqNN module converges to a local
minimum when the number of cells and number of nodes
is greater than 3. The output of the searched genome for
the SeqNN module contained all ‘‘skip_connect’’ which
indicates identity operations are used instead of any RNN
or LSTM operations. Figure 10 shows one such instance
DARTS SeqNN genome.

We were able to address the challenge by reducing the
complexity of the candidate search graph by reducing the
number of cells and the number of nodes inside a cell. More
research is, however, needed to manage a more complex
search network.

C. HIGH STANDARD DEVIATION IN THE RESULTS
An important observation derived from our results is the
high standard deviation. This can be attributed to the
dataset-splitting method we employed. Specifically, we adopt
speaker-independent dataset splitting, where the training and
validation sets are segregated based on the speaker. In this
configuration, any audio utterance from a particular speaker
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FIGURE 10. DARTS genome of the SeqNN module where the search
algorithm selected the identity operation as all the operations.

in the validation set remains unseen by the model during
training. Consequently, the DARTS-optimised model is not
trained to handle the data distribution of the validation set.
To tackle this challenge, potential solutions include dataset
poisoning and enhancing the generalisation capabilities of the
SER model by incorporating dropout layers.

VII. CONCLUSION
In conclusion, this paper introduced an innovative approach
to enhancing speech emotion recognition (SER) using
differentiable architecture search (DARTS). Our primary
focus was on tailoring DARTS for a joint configuration of
a Convolutional Neural Network (CNN) and a Sequential
Neural Network, deviating from previous studies by allowing
DARTS to autonomously determine the optimal layer order
for the CNN within the DARTS cell without imposing
constraints.

A comprehensive evaluation was conducted, comparing
our proposed method with baseline models developed
without DARTS and various genome operations, including
LSTM only, LSTM with attention only, RNN only, and RNN
with attention only. The detailed assessments consistently
demonstrate the superior performance of our proposed
method. Contrasting with existing studies further validates
the effectiveness and superiority of our approach, considering
parameter size and accuracy as essential dimensions for
comparison.

Notably, our study extends beyond the confines of the com-
monly used IEMOCAP dataset, incorporating two additional
datasets, MSP-IMPROV and MSP-Podcast. This extension
showcases the superior performance of our proposed method
across diverse datasets, affirming its generalisation capability.

Furthermore, we shared valuable insights gained from
our experiences, addressing challenges related to GPU
exhaustion and converging to local minima. These insights
serve as practical guidance for researchers, helping them
navigate potential pitfalls and optimise the application of
DARTS in SER.

Future efforts will need to deal with neural architecture
for further modern architectures such as transformers and
translating the made findings beyond the targeted field of
application.
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