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ABSTRACT Conditional generative adversarial networks (cGANs) have demonstrated remarkable success
due to their class-wise controllability and superior quality for complex generation tasks. Typical cGANs
solve the joint distribution matching problem by decomposing two easier sub-problems: marginal matching
and conditional matching. In this paper, we proposes a simple but effective training methodology, selective
focusing learning, which enforces the discriminator and generator to learn easy samples of each class rapidly
while maintaining diversity. Our key idea is to selectively apply conditional and joint matching for the data
in each mini-batch.Specifically, we first select the samples with the highest scores when sorted using the
conditional term of the discriminator outputs (real and generated samples). Then we optimize the model
using the selected samples with only conditional matching and the other samples with joint matching. From
our toy experiments, we found that it is the best to apply only conditional matching to certain samples due to
the content-aware optimization of the discriminator. We conducted experiments on ImageNet (64 × 64 and
128 × 128), CIFAR-10, CIFAR-100 datasets, and Mixture of Gaussian, noisy label settings to demonstrate
that the proposed method can substantially (up to 35.18% in terms of FID) improve all indicators with
10 independent trials. Code is available at https://github.com/pnu-cvsp/Enhancing-Stability-in-Training-
Conditional-GAN-via-Selective-Data-Matching.

INDEX TERMS Conditional GAN, content optimization, distribution matching, diversity, prioritization.

I. INTRODUCTION
Generative Adversarial Network (GAN) [1] and Convolu-
tional Neural Network (CNN) has demonstrated remarkable
success in variable tasks, including image synthesis [2],
[3], data augmentation [4], [5], style transfer [6], [7], Gait
analysis [8] and anomaly detection [9], [10]. The most
distinctive feature of GANs is the discriminator D(x) that
evaluates the divergence between the generative distribution

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose .

pg(x) and the target distribution pdata(x) [1], [11]. However,
real data have a multimodal distribution [12], [13]; therefore,
GANs often train on data distributions, completely missing
several modes (called mode collapse) [14]. For example,
the generative distribution omits one of ten digits for
MNIST [15].

The conditional GAN (cGAN) [16] has gained wide
attention due to its class-wise controllability [17], [18]
and superior performance for complex generation tasks [2],
[19], [20]. Among them, class cGAN [21], [22], [23],
conditioned on auxiliary label information, typically solves

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 119647

https://orcid.org/0000-0002-1135-7502
https://orcid.org/0000-0002-4809-956X
https://orcid.org/0000-0002-2109-7871


K. Kong et al.: Enhancing Stability in Training cGANs via Selective Data Matching

FIGURE 1. Overview of marginal matching, conditional matching, joint
matching, and selective focusing learning.

the joint matching problem by decomposing it into two
easier sub-problems: marginal matching

(
pdata(x), pg(x)

)
and

conditional matching
(
pdata(y|x), pg(y|x)

)
[24].

The goal of marginal matching is to estimate the generative
distribution for the entire target distribution. Since it is
similar to the unconditional GAN, the generator focuses
on a subset of modes, thereby excluding other parts of
the target distribution [see Fig. 1(a)]. On the other hand,
conditional matching decomposes the target distribution into
smaller sub-distributions using labels and estimates each
sub-distribution more easily through the generator. However,
the generator tends to focus on high fidelity samples (easy
to classify samples) [see Fig. 1(b)]. Applying both marginal
and conditional matching for all samples can alleviate the
mode collapse issue. However, the joint matching focuses
less on high fidelity samples than conditional matching
[see Fig. 1(c)]. For simplicity, we denote cGANs as those
conditioned on class labels throughout the paper.

This paper proposes a novel training methodology,
Selective Focusing Learning (SFL), which enforces the
discriminator and generator to learn the easy samples rapidly
while maintaining diversity. As illustrated in Fig. 1(d), our
key idea is to selectively apply conditional and joint matching
for the data in mini-batches. Specifically, we first select
the samples with the highest scores when sorted using
the conditional term of the discriminator outputs (real and
generated samples). Then we optimize the model using
the selected samples with only conditional matching and
the other samples with joint matching. The precision of the
easy sample selection depends on discriminator performance;
thus, a proportion applying conditional matching gradually
increases as the training step progresses until the certain
ratio. Overall, by applying only conditional matching (by
freeing the marginal matching) to easy samples, the generator
can make samples with high fidelity. By applying the joint
matching to the remaining samples, diversity can also be
maintained.

Recently, many techniques have been proposed to improve
GAN training [25], [26], [27], [28], [29]. Top-k training of
GANs [26] is a simple modification to the GAN training
algorithm which improves performance by throwing away
bad samples. Instance selection for GANs [25] analyzes the
use of instance selection [30] in the conditional generative
setting. The proposed SFL and these techniques share similar
spirit in that utilizing ‘realistic (or easy)’ samples can help

GAN training. However, the methodology and direction are
entirely different. While both recent techniques remove bad
samples, SFL focuses on good samples maintaining entire
samples in training. Specifically, top-k training zeros out
the gradient contributions from the ‘least realistic’ generated
samples. Instance selection for the GAN removes low density
regions (hard samples) from the data manifold prior to model
optimization (the dataset curation step). In contrast, SFL
focuses on easy samples to make a strong discriminator
and generator by utilizing content-aware optimization of the
discriminator (i.e., training the samples with the most com-
mon patterns for each class through conditional matching).
In addition, instance selection for GANs improves the overall
image sample quality in exchange for reduction in diversity.
However, SFL learns the easy samples of each class rapidly
without sacrificing diversity by applying joint matching to the
remaining samples.

An advantage of SFL is the flexibility regarding collabo-
ration with other orthogonal studies, which improves GAN
training (instance selection [25], top-k [26]) because it only
needs a simple modification in the gradient descent step.
We demonstrate the compatibility of the proposed method
with these techniques in Section IV-E. In addition, despite
the remarkable performance of GANs, there is a significant
gap in quality and diversity between class-conditional
GANs trained on labeled data and unconditional GANs
trained without any labels in a fully unsupervised setting.
It is because class-conditional GANs alleviate the mode
collapse problem by enforcing labels to include all semantic
categories. However, there is a limitation that labels are
necessary in the training dataset. Recently, a self-conditional
GAN, which can train the class-conditional GAN without the
label through clustering technique, is recently being actively
studied. Therefore, the proposed method can be used not
only in class-conditional GAN such as BigGAN or SA-GAN
but also in the unconditional GAN such as StyleGAN or
PG-GAN with self-conditional methodology.

Our contributions can be summarized as follows:
• The proposed method can be effectively applied to
any cGAN variants with negligible additional time
complexity and requires only a few lines to implement.

• We conducted experiments on ImageNet (64 × 64 and
128 × 128), CIFAR-10, CIFAR-100 datasets, and
Mixture of Gaussian, noisy label settings to demonstrate
that the proposed method can substantially improve all
indicators.

• The proposed SFL is flexible for the collaboration with
other orthogonal studies (Instance Selection [25] and
Top-k [26]) because it only needs a simple modification
in the gradient descent step.

II. RELATED WORK
A. REWEIGHTING SAMPLING
The discriminators learned in GANs can be utilized to
reweight generated samples [31]. This includes methods like
rejection sampling [27], importance sampling [31], [32],
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and Markov chain Monte Carlo [33], which are typically
applied after the training is complete. Instead of filtering
samples post-training, some approaches integrate this process
into the training itself. For instance, Latent Optimization
for Generative Adversarial Networks (LOGAN) [29] refines
latent samples in each iteration, though this requires an
additional forward and backward pass. The top-k training
method for GANs [26] demonstrates that gradients from
low-quality generated samples can mislead the model away
from the nearest mode. Therefore, ignoring the gradients
from the worst samples during each training iteration can
enhance the quality of the generated outputs.

B. CURRICULUM LEARNING
Inspired by the human behavioral perspective, curriculum
learning is a learning paradigm that starts learning with easier
examples, and gradually takes more complex examples [34],
and it is similar to the principle of human teaching [35].
Curriculum learning has been well studied in computer
vision [36], [37], natural language processing [38], rein-
forcement learning [39], [40], and multitask learning [41].
The self-paced learning algorithm [42] that incorporates cur-
riculum learning into the model optimization was proposed
to measure easiness accurately. This method defines the
ease measured by the loss value for each sample by adding
a regularization term. Many studies have further adopted
self-paced learning in their tasks to avoid becoming stuck
in bad local minima and improve the generalization of their
models [43], [44], [45]. The proposed SFL is similar to
self-paced learning in that it selects and learns samples that
are easy to classify to make a strong discriminator and
generator. However, our method has the difference that it
utilizes all samples in the mini-batch during training, but uses
a different match for each sample.

III. SELECTIVE FOCUSING LEARNING
In this section, we first observe the effect of marginal
and conditional matching. Then, based on our observation,
we propose a new learning method that enforces the
discriminator and generator to learn the easy samples rapidly
while maintaining diversity.

A. BACKGROUND
Given a pair of data x and label y, {xi, yi}ni=1 ⊆ X × Y
sampled from the joint distribution (xi, yi) ∼ pdata(x, y), the
goal of the cGAN is to estimate a conditional distribution
pdata(x|y) by approximating a generative distribution pg(x|y).
We let pg(x|y) denote the conditional distribution specified
by a generator function G : (z, y) −→ x that maps a pair
of a latent z and a label y to real data x. Instead of directly
modeling pg(x|y), cGAN trains a G(z, y) to minimize the
Jensen-Shannon Divergence (JSD) between pdata(x, y) and
pg(x, y):

min
G

max
D

E
(x,y)∼pdata(x,y)

[logD(x, y)]

+ E
z∼pz,y∼py

[log(1− D(G(z, y), y))], (1)

where D is a discriminator and y is the class label, i.e.,Y =
{1, . . . ,K }.

To improve the image generation performance, typical
cGANs [21], [22], [23] solve the joint distribution matching
problem by decomposing two easier sub-problems: marginal
and conditional matchings [24]. In other words, D(x, y) can
be decomposed into a sum of two log likelihood ratios:

D(x, y) = log
pdata(y|x)
pg(y|x)︸ ︷︷ ︸

conditional D(y|x):=Dc

+ log
pdata(x)
pg(x)︸ ︷︷ ︸

marginal D(x):=Dm

, (2)

whereD(y|x) := Dc is conditional matching andD(x) := Dm
is marginal matching.

B. SELECTIVE CONDITIONAL MATCHING
We propose SFL: a simple modification for the GAN training
procedure to focus training on samples that are easy to
classify. Our key idea is to utilize conditional matching
characteristics for typical cGAN training through subset
selection methodology. The insight of our algorithm is sim-
ple. The goal of typical cGAN training is to estimate the joint
distribution by approximating a target distribution. However,
because of insufficient training data or multi-modality of real
data, it is hard to estimate the joint distribution stably. Our
simple tweaking algorithm selects the easy samples using
the discriminator scores and trains selected samples using
only conditional matching. This tweaking helps to obtain
high fidelity for easy samples during the cGAN training.
In addition, by applying the joint matching rather than
conditional matching to the remaining samples, diversity can
be maintained as in conventional cGAN. In the next section,
we elaborate on why this technique is effective.

C. INSIGHT ON SFL: EMPIRICAL ANALYSIS
We first checked the effect of marginal, conditional, and
joint matching of the cGAN through toy experiments. Then,
we verified the effectiveness of SFL when the estimation of
the joint distribution is unstable.

1) MARGINAL, CONDITIONAL, AND JOINT MATCHINGS
Following [25], we conducted on the ImageNet dataset with
a resolution of 64 × 64 using the SA-GAN [46]. To observe
the results of the initial training, we only trained 100k out
of 500k iterations. Fig. 2 shows the results of each matching
(marginal only, conditional only, joint, and the proposed
SFL). In Fig. 3 (a) and (b), we describe the quantitative results
using the Inception Scores (IS) per samples (fidelity), Recall
(diversity) and the Fréchet Inception Distance (FID) (both
fidelity and diversity). Note that samples with high IS mean
that they have high confidence (are easy to classify) with
the pretrained ImageNet classifier. When the network was
trained using onlymarginalmatching, as also reported in [14],
the generated samples had low IS and Recall values because
of mode collapse [see Fig. 3(a)]. When joint matching
(both marginal and conditional matching) is applied, the
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FIGURE 2. Example samples generated by conventional methods of marginal matching, conditional matching, joint matching, and selective
focusing learning.

FIGURE 3. Quantitative results for each matching trained on ImageNet (64 × 64) with SA-GAN. The SFL has a high variant of the discriminator
score compared to joint matching because of content-aware optimization.

TABLE 1. Comparison for fine and coarse label datasets. The evaluation
indicators P, R, D, and C mean Precision, Recall, Diversity, and Coverage,
respectively.

Recall increased significantly, and the IS per sample also
increased compared to marginal matching because joint
matching can alleviate mode collapse [47]. When only con-
ditional matching was applied, although it has low diversity,
samples with high IS were generated compared to joint
matching.

Why does this phenomenon happen? In classification
tasks, deep neural network (DNN) optimization is content-
aware, taking advantage of patterns shared by multiple
training examples [48]. In other words, the DNNs learn easy
samples with simple patterns first. Since the discriminator of
the cGAN plays the role of a classifier, conditional matching
generates samples that are easy to classify (samples with high
IS) in the initial training stage [see Fig. 2(b)] compared to
joint matching [see Fig. 2(c)]. Previous studies [22], [23],
[49] also reported that strong classifier leads generators
to learn samples that are easy to classify. Whereas they
attempt to alleviate this property, the proposed SFL uses

this property intuitively to generate easy samples rapidly
while maintaining diversity. Applying conditional matching
to easy samples and joint matching to the remaining samples
can simultaneously achieve the advantages of conditional
matching for samples with high IS and joint matching
for maintaining high Recall1 [see Fig. 3(a)]. In addition,
by liberating easy samples from marginal matching, this
method can accelerate the content-aware optimization of the
discriminator compared to joint matching [see Fig. 3(c);
increasing variance of conditional term of discriminator
output]. As a result, the proposed SFL can generate various
high-quality images [see Fig. 2(d)] and achieve the lowest
FID score [see Fig. 3(b)].

2) FINE VS COARSE LABELS
Recall that the goal of the proposed SFL is also the same as
conventional cGAN’s in that it estimates a joint distribution
by approximating a target distribution. In addition, typical
cGANs solve the joint distribution matching problem by
decomposing two easier sub-problems: marginal matching
and conditional matching. Therefore, conditional matching is
also a sub-problem of joint distribution matching. However,

1In our toy experiments, Recall of the SFL is also slightly increased
compared to joint matching. It is presumed that the discriminator was
accelerated through conditional matching in initial training. After training
is finished (500k iterations), the joint matching and the SFL have similar
Recall (Section IV-A).
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FIGURE 4. Update procedure of the discriminator parameters on a
mini-batch of real and generated samples.

Algorithm 1 Selective Focus Learning
Input: θD, θG, epoch Ek and Emax , random latent vectors z,
batch size B, conditional loss LDc , total loss LD, decay factor
γ , maximum focusing rate ν
for e = 1, 2,. . . , Emax do
F = min(1− γ e, ν), k = ⌊B ∗ F⌋
for n = 1,. . . , Nmax do
Fetch X = {(xi, yi) ∼ pdata(x, y), i = 1, . . . ,B}
Fetch Z =

{
(G(zi, yi), yi) ∼ pg(x, y), i = 1, . . . ,B

}
Obtain XDc = maxk Dc(X ), ZDc = maxk Dc(Z)
# XDc = DescentSort(Dc(X ))[:k], ZDc = DescentSort(Dc(Z))[:k]

Obtain XD = maxkDc(X ), ZD = maxkDc(Z)
# XD = DescentSort(Dc(X ))[k:], ZD = DescentSort(Dc(Z))[k:]

Update θD←θD+(
∑

XDc ,ZDc
∇θDLDc+

∑
XD,ZD

∇θDLD)

Update θG← θG − (
∑
ZDc

∇θGLDc +
∑
ZD

∇θGLD)

end for
end for

in general, cGAN with insufficient training data and coarse
label are difficult to accurately estimate the joint distribution.
In these cases we guess that the proposed SFL can help the
joint matching more stably through performing conditional
matching on selected easy samples.

To verify this assumption, we exploited CIFAR-100 dataset
which is either categorized into one hundred ‘‘fine’’ classes
or twenty ‘‘coarse’’ classes. In Table 1, the proposed SFL
can improve the overall performance for both fine and coarse
labels. Especially, the proposed SFL was more effective
in cases with coarse label than those with fine label (FID
improvement (fine vs coarse): 0.5 vs 1.26). This means that
when joint matching is unstable, conditional matching for
easy samples can significantly help the estimation of high
fidelity samples and induce stable training of cGAN. Next,
we will describe the algorithm in detail.

D. ALGORITHM DESCRIPTION
As in Fig. 4, when we update the discriminator parameters
on a mini-batch of real and generated samples, we applied

conditional matching to the elements with the highest
scores on the conditional term of the discriminator output
and applied joint matching to the remaining elements.
Likewise, generator parameters were updated by apply-
ing conditional matching to generated samples with the
highest scores on the conditional term of the discrimina-
tor output and applying joint matching to the remaining
elements. When we denote the largest k elements from
a set A as maxk{A}, the remaining elements as maxk{A},
X = {(xi, yi) ∼ pdata(x, y), i = 1, . . . ,B}, and Z ={
(G(zi, yi), yi) ∼ pg(x, y), i = 1, . . . ,B

}
, we can modify the

update step of the discriminator and generator as follows:

θD = θD + αD

 ∑
XDc ,ZDc

∇θDLDc +
∑

XD,ZD

∇θDLD

 , (3)

θG = θG − αG

∑
ZDc

∇θGLDc +
∑
ZD

∇θGLD

 , (4)

where

XDc = max
k

Dc(X ), ZDc = max
k

Dc(Z), (5)

XD = maxkDc(X ), ZD = maxkDc(Z), (6)

LDc and Dc(·) are the conditional term of the loss and
discriminator output, and LD and D(·) is the total loss and
discriminator output, respectively. By performing the SFL
on the discriminator predictions, we enforce the generator to
learn class-dependent samples while maintaining diversity.
The overall procedure of SFL is described in Algorithm 1.
The proposed method is easy to implement with few lines
(blue comments indicate pseudo-code).

E. EXTRACTING CONDITIONAL TERM FROM JOINT
DISTRIBUTION
Conditional term can be expressed in various forms depend-
ing on the discriminator type. This paper focuses on
evaluating the projection discriminator [22] used as the
baseline of the most recent cGANs [2], [29], [46], [50], [51],
[52], [53], [54]. Our main idea applies to most types of
discriminators of cGANs in which marginal and conditional
terms can be divided [21], [55], [56].

The output of the projection discriminator can be repre-
sented by a sum of two parametric functions as follows:

D(x, y) = Dc + Dm := yTVφ(x; θ8)+ ψ(φ(x; θ8); θ9 ),

(7)

where V is the embedding matrix of y, φ(·; θ8) is a vector
output function of x, and ψ(·, θ9 ) is a scalar function of
the same φ(x; θ8) that appears in the first term. The learned
parameters θ = {V , θ8, θ9} are trained to optimize the
adversarial loss. Among the two parametric functions, we can
simply assume Dc as follows:

Dc ≈ D̃c := yTVφ(x; θ8). (8)
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To derive the exact Dc, we would like to elaborate
on how [22] can arrive at the two parametric forms. If
y is a categorical variable taking a value in {1, · · · ,C}
and pdata(y|x) is obtained using the softmax function, log
pdata(y = c|x) is represented by the following:

log pdata(y = c|x) := (vpc)
Tφ(x; θ8)− logZp(φ(x; θ8)),

(9)

where Zp(φ(x; θ8)) :=
(∑C

j=1 exp
(
(vpj )

Tφ(x; θ8)
))

is the
normalization constant and is input into the final layer of
the network model. If we parametrize the target distribution
pg(y = c|x) in this form with the same choice of φ, the log
likelihood ratio D(y|x) takes the following form:

log
pdata(y = c|x)
pg(y = c|x)

= (vpc − v
g
c)

Tφ(x; θ8)

− (logZp(φ(x; θ8))− logZg(φ(x; θ8))). (10)

Then, if y denotes a one-hot vector of the label y and V p and
V g denote the embedding matrices consisting of row vectors
vpc and v

g
c , we can rewrite the above equation as follows:

Dc := yT(V p
− V g)φ(x; θ8)

− (logZp(φ(x; θ8))− logZg(φ(x; θ8)))︸ ︷︷ ︸
normalization constant

. (11)

For efficient computation, the original projection discrim-
inator [22] integrates (V p

− V g) into a single embedding
matrix V because it can put the normalization constant
(logZp(φ(x; θ8)) − logZg(φ(x; θ8))) and marginal term
Dm together into one expression ψ(φ(x; θ8); θ9 ). However,
because SFL exploits only the conditional term to focus on
easy samples, the normalization constant should be separated
from the marginal term, and two embedding matrices are
necessary. In Section IV-A, we demonstrate that D̃c (Approx.
SFL) has performance similar toDc (exact SFL) with smaller
computational overhead.

F. FOCUSING RATE
In the early stages of training, the discriminator may not be
a reliable scoring function for self-diagnosing the generator.
To help the network estimate class-dependent distribution
well, we need to increase the focusing rate F quickly at
the initial epochs through a concave function which has
zero initial point (see Algorithm 1; line 5). We set F =
min(1 − γ e, ν) and set γ as a convex function as follows:
γ = (1 − ν)(1/Emax ), where e and Emax are the current
and maximum epoch, respectively, and ν is the maximum
focusing rate. At the end of training, e will become Emax ,
so, γ e = γ Emax = (1 − ν) and the focusing rate F also
will become F = ν. In Section IV-A, the effect of ν is
demonstrated empirically.

G. SFL+: GUIDANCE WITH THE PRETRAINED MODEL
Before the GAN model training occurs, we can predict in
advance which samples are easy to classify for the real data

using the pretrained classification model. This information
can guide the SFL better than unstable discriminator output
without additional computational cost. However, because
scores are obtained for each class, the score difference
between inter-class samples is meaningless. Therefore,
instead of using the scores directly, we exploited the ranking
of samples per class. The notion of ranking is formalized as
follows.
Definition 1: Let X = {x1, · · · , xN } be a set with

cardinality N . Then, the ranking operator, κ(·), takes the
elements of X as the input and output of the indices
π (1), · · · , π(N ) satisfying xπ (1) ≤ · · · ≤ xπ (N ) such that

[π (1), · · · , π(N )] = κ(X ). (12)

We define the ranking-based SFL as SFL+. The ranking is
only exploited for the real sample selection, and the remain-
ing steps (including generated samples selection) of SFL+
are the same as those for SFL. In Section IV-A, we describe
the effect of SFL+ with the pretrained classification model.

IV. EXPERIMENTS
In this section, we review evaluation metrics and analyze the
impact of SFL for cGANs. We used a variety of evaluation
metrics to diagnose the effect of SFL, including the (i) IS
[15], (ii) FID [57], (iii) Precision and Recall [58], and (iv)
Density and Coverage [59]. Because the FID cannot be used
to analyze fidelity and diversity separately, we also used
precision, recall, density, and coverage.

A. IMAGENET 64 × 64
ImageNet [60] is a large-scale image dataset consisting
of over 1.2 million images from 1,000 different classes.
To verify the effectiveness of SFL reliably, we conducted all
experiments using this benchmark at a resolution of 64 ×
64 for 500k iterations. We use single GPU (RTX 2080ti)
on ImageNet 64 × 64. For all experiments except for the
hyper-parameters under consideration, we set the maximum
FR ν to 50% (γ = (1−ν)(1/Emax )). The remaining parameters
are as follows:

SN-GAN: bs = 64, ch = 64, G_attn = 0, D_attn = 0,
G_lr = 2e−4, D_lr = 2e−4, G_step = 1, D_step = 5, and
num_iters = 500000.

SA-GAN: bs = 128, ch = 32, G_attn = 32, D_attn = 32,
G_lr = 1e−4, D_lr = 4e−4, G_step = 1, D_step = 1, and
num_iters = 500000.

BigGAN: bs = 128, ch = 64, G_attn = 64, D_attn = 64,
dim_z = 120, shared_dim = 128, G_lr = 1e−4, D_lr =
4e−4, G_step = 1, D_step = 1, and num_iters = 500000.

1) QUANTITATIVE RESULTS
In Table 2, we list the performance of various SFLs.
‘‘Approx.’’ uses a conditional term as the D̃c, and ‘‘Exact’’
uses a conditional term as theDc as described in Section III-E.
In addition, SFL uses a discriminator-based selection of real
data, and SFL+ uses a ranking-based selection of real data
through the pretrained classification model, as described in
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TABLE 2. Performance of various SFLs with SA-GAN in ImageNet 64 × 64.

TABLE 3. Training time comparison before and after adding SFL on RTX
2080ti GPU.

FIGURE 5. Comparison of distinguish power between joint matching and
SFL.

Section III-G. In the experiments, Approx. SFL and Approx.
SFL+ exhibited improved performance compared to the
baseline results (without applying SFL) in all metrics. In par-
ticular, Approx. SFL+ reduced the FID by 3.03 compared
to the baseline, with improvements in both IS (fidelity) and
recall (diversity). Lastly, Exact SFL+ achieved slightly better
performance except for the recall value compared to the
approximated method.

2) VISUALIZATION OF THE SFL TRAINING PROCESS
We first visualization of baseline and SFL training process,
and then analyzed the effect of applying SFL to real and
generated data, respectively. In Fig. 6, when the discriminator
was learned by applying SFL only to the real data, the
performance of the IS and FID degraded. This is because the
discriminator easily wins the minimax game. However, when
the discriminator is learned by applying SFL to both the real
and generated samples, the fidelity and diversity are improved
compared to the baseline. This is because content-aware
optimization is accelerated by playing a minimax game using
real samples that the discriminator distinguishes well and
the generated samples that the generator produces well in
terms of conditional matching. This phenomenon is similarly
observed in Fig. 3(c) through increasing variance of Dc
scores of the proposed SFL. Finally, when SFL is applied
to the generator, we can achieve additional performance
improvement.

3) COMPUTATIONAL COST
To evaluate the computational overhead of SFL, we compared
the running time of the baseline SA-GAN [46] and SFL
variant on ImageNet datasets in Table 3. After training 500k
iterations, Approx. SFL+ and Exact SFL+ took 0.3% and
33.1% more time, respectively, than the baseline. Exact
SFL+ took more time than the baseline because this method
requires two embedding parts in the discriminator to consider
the normalization constants as in (11). Therefore, it makes
sense to use Approx. SFL+ in terms of performance and
computational cost. Unless specified otherwise, we abbrevi-
ate ‘‘Approx. SFL’’ to ‘‘SFL’’ in the remaining experiments.

4) DOES SFL WORK AS INTENDED?
To compare the differences between joint matching and
SFL in detail, we observed which matching is the focus of
the discriminator. For this, we calculated the distinguishing
power of the discriminator in the similar way to [61].
Distinguish power corresponding to marginal matching (blue
color) is calculated byMean(Dm(x, y)−Dm(G(z, y), y)), and
distinguish power corresponding to conditional matching
(red color) is calculated by Mean(Dc(x, y) − Dc(G(z, y), y)).
Overall distinguish power is calculated by Mean(D(x, y) −
D(G(z, y), y)) where D(x, y) = Dc(x, y) + Dm(x, y). Results
are obtained by trained SA-GAN on ImageNet (64× 64) for
100k out of the total 500k iterations. In Fig. 5, conventional
joint matching divides the distinguishing power at a similar
rate for the marginal or conditional matching regardless
of whether it was selected or not using the conditional
term. In contrast, SFL uses all of the distinguish power for
conditional matching for selected samples while maintaining
joint matching similar to conventional method for the
remaining samples. This means that the discriminator and the
generator play the minimax game, focusing on conditional
matching for the selected samples. In addition, diversity is
maintained because the minimax game is also performed
through joint matching for the remaining samples.

5) QUALITATIVE RESULTS
To verify the effectiveness of enforcing the conditional
terms for an easy sample, we randomly generated image
samples for a certain class, and sorted the samples using the
pre-trained ImageNet classifier (top: easy samples, bottom:
hard samples). In Fig. 7, (a) and (b) are fully generated
samples with and without SFL+. As illustrated in the red
box, SFL+ learns the easy sample well compared to the
baseline. Overall, SFL+ generated diverse image samples
like the baseline. In (c) and (f), we compared the samples
corresponding to the red box for other class and obtained
similar results.

6) GAN VARIANT ARCHITECTURES
We applied SFL to various sophisticated GANs to demon-
strate the effectiveness of the proposed method (Table 4).
The FQ-Half‡ and FQ-Full‡ were trained using 50 and
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FIGURE 6. Visualization of the SFL training process.

TABLE 4. The is and FID on the ImageNet dataset for various GAN
architectures.

100 epochs, respectively, with a 512 batch size, as quoted
from FQ-GAN [62]. The rest of the experiments were
conducted with a 128 batch size for 50 epochs. In SN-
GAN [50] and BigGAN [2] with hinge loss, our method
outperformed the baseline by a good margin. In particular,
SFL+ in BigGAN outperformed Feature Quantization Full
(FQ-Full) [62], the current state-of-the-art model for the task
of 64 × 64 ImageNet generation. Despite using 2× fewer
epochs and a 4× smaller batch size, our SFL+ achieved a
better FID by 1.38. Moreover, SFL+ also outperformed the
baseline in the SA-GAN with different losses (DC loss).

7) EFFECT OF BATCH SIZE
Recent works [2], [28] suggest that GANs benefit from large
batch sizes. To verify the effectiveness of SFL in different
batch sizes, we increased batch size B from 64 to 256. SFL+
(ν = 50) is applied to SA-GAN on ImageNet 64 × 64 and
is effective for different batch sizes for GAN training. In

TABLE 5. Effect of batch size (B).

TABLE 6. Effect of the maximum focusing rate.

Table 5, the baseline performance gradually improved as the
batch size increased, and SFL+ outperformed the baseline
model by a significant margin regardless of the batch size.

8) EFFECT OF MAXIMUM FOCUSING RATE
Our SFL has only one hyper-parameter; the maximum
focusing rate ν. SFL+ is applied to an SA-GAN on ImageNet
64 × 64 with different ν. In Table 6, if we use a too large
value of ν, it degrades the performance (especially diversity)
by enforcing too many samples as conditional matching.
Otherwise, using a too small value for ν degrades the
performance because the effectiveness of SFL+ is reduced.
In all cases except ν = 99, SFL+ performed better than the
baseline (IS: 17.77, FID: 17.23).
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FIGURE 7. Comparison of the generated samples with and without SFL+ on ImageNet 64 × 64. (a), (b) Full generated samples sorted by easy to
hard using the scoring function in [25]. (c)-(f) Samples corresponding to the red box for classes 243, 374.

9) VARIANT EMBEDDING FUNCTIONS
To verify the importance of the embedding function,
we compared several different model embeddings that have
been trained on different datasets: InceptionV3 [63] trained
on ImageNet, ResNet50 [64] trained on Places365 [65],
ImageNet, andwith SwAVunsupervised pretraining [66], and
ResNeXt-101 32× 8d [67] trained with weak supervision on
Instagram 1B [68]. We also compared a randomly initialized
InceptionV3 with no pretraining as a random initialization.
For all architectures, features were extracted after the global
average pooling layer.

From the experiment results, we found that all feature
embeddings improved performance of SFL, except for
the randomly initialized network. These results show that
an embedding function can guide the SFL better than
unstable discriminator output. Also, SFL+ with random
embedding achieved performance similar to baseline because

it is the same as random selection. Interestingly, the
Instagram 1B pretrained ResNeXt-101 embedding per-
formed the best overall. This means that the proposed
SFL+ is still effective with well-defined feature embed-
ding even if this embedding is not used for evaluation
metrics.

10) LEARNING WITH NOISY LABEL
We also verify effectiveness of our SFL for noisy vs clean
labels. Since ImageNet dataset is clean, following [69],
we need to corrupt this dataset manually using the noise
transition matrix Q, where Qji = p(ỹ = j|y = i),
given that noisy is flipped from clean. Among the various
noise transition matrices, we used symmetry flipping, which
is the case where the true labels of a single class are
corrupted by the labels of the other classes for the same
ratio.We conducted experiments based on various noise rates:
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TABLE 7. Comparison of embeddings of different models trained on
different datasets.

TABLE 8. Comparison of noisy and clean label datasets.

TABLE 9. Comparison on ImageNet 128 × 128. Baseline‡ and FQ-256k‡
were trained for 256K iterations with a 1024 batch size, as quoted in
FQ-GAN [62].

ε = {0%, 20%, 50%}. In Table 8, the effectiveness of the
proposed SFL decreased as the ratio of noise labels increased.
This is because the labels were inaccurate at high noise
ratio, so the conditional matching was conducted with low
accuracy. Nevertheless, the proposed SFL achieved better
performance than the baseline for all cases.

B. IMAGENET 128 × 128
To examine the impact of SFL on high resolution, we con-
ducted all experiments using this benchmark at a resolution
of 128 × 128. We use quad GPU (RTX 3090) on ImageNet
128× 128. Due to the limited hardware resources, compared
with the full-version BigGAN, we made the following
modifications: bs = 2048 → bs = 256, ch = 96 →
ch = 64 and num_iters = 500000. The remaining parameters
are the same as for ImageNet (64× 64). In Table 9, because
we used a smaller batch size (256 vs. 1024) than for FQ-
GAN [62], our baseline achieves worse performance than the
baseline‡ even when training more iterations (500k vs. 256k).
Despite using 4× a smaller batch size, the SFL+ achieves the
best performance for all metrics.

C. MIXTURE OF GAUSSIAN
Following [23], we draw samples from 2D Mixture of Gaus-
sian (MoG) distribution with three Gaussian components,

TABLE 10. Comparison on 2D Mixture of Gaussian distribution with three
Gaussian components; class 1, class 2, and class 3.

TABLE 11. Comparison using CIFAR-100.

labeled as class 1, class 2, and class 3, respectively. The
standard deviations of the three components are fixed to
σ1 = 1, σ2 = 2, and σ3 = 3. The means were set to
µ1 = 0, µ2 = 3, and µ3 = 6. We conducted experiments on
a simple MLP network with a projection discriminator [22].
We trained 40 epochs with the batch size of 256.We evaluated
the Maximum Mean Discrepancy (MMD) [70], a metric of
the distance between the real data and the generated data.
Here, models were trained using the cross-entropy loss. The
proposed SFL achieved lower MMD values than the baseline
for each class distribution. This means that the proposed
SFL estimates the center of each class distribution well,
and it seems reasonable because the proposed SFL focuses
on class-dependent samples. In addition, the proposed SFL
achieved a lower MMD value than the baseline for overall
distribution.

D. CIFAR-100
We set the maximum FR of ν to 70%. The remaining
parameters are the same as for CIFAR-10. In Table 11, the
SFL BigGAN outperformed the baseline BigGAN in all
metrics.

E. CONNECTION TO GAN TRAINING TECHNIQUES
We examined the compatibility of the proposed method with
recent training methods for GANs. The experiments were
conducted with the datasets that each method mainly used
(ImageNet 64× 64 and CIFAR-10).
Instance selection for GANs [25] analyzed instance

selection [30] in the conditional generative setting. This
method removed low density regions from the data manifold
prior to model optimization. It improved the overall image
sample quality in exchange for reducing diversity with a
small model capacity and training time. By redefining target
distribution through instance selection, SFL can be applied
to easy target distribution. In this case, the proposed SFL
is still effective because there are easy and hard samples in
the new target distribution. We applied SFL and SFL+ to
the dataset after instance selection. In Table 12, RR and FR
are the retention ratio (percentage of remaining dataset after
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TABLE 12. Performance on instance selected ImageNet 64 × 64 with the
SA-GAN [46]. ‡ is quoted from [25].

TABLE 13. Comparison to the top-k training of GANs on CIFAR-10. ‡ is
quoted from [62].

instance selection) and maximum focusing ratio (maximum
focusing rate of the remaining datasets), respectively. SFL+
outperformed the baseline for almost all metrics. Because the
goal of instance selection is to remove low density regions,
it is reasonable to say that the effectiveness of SFL reduced
as the retention ratio (RR) reduced. Nevertheless, our SFL+
achieved a value that is 0.36 lower than the best FID in
instance selection.

The top-k training of GANs is a simple modification
to the GAN training algorithm, improving performance
by removing bad samples [26]. Since SFL also generates
bad samples during the training, top-k can improve the
performance of SFL. In Table 13, the top-k BigGAN
outperformed the baseline BigGAN in all metrics except
for precision and density. Further, SFL achieved better
performance than top-k, and we can achieve state-of-the-art
performance by applying both methods.

V. CONCLUSION
In this paper, we proposed SFL, which enforces the
discriminator and generator to learn easy samples rapidly
while maintaining diversity. The proposed method can easily
be applied to any cGAN variant and requires only a few
lines to implement. The experiment results showed that
image quality of easy samples can be significantly improved
without sacrificing diversity by the selective focusing on easy
samples.

Furthermore, this work provides a unique perspective on
a promising field: GAN training. Improvements to image
generation results can be adjusted to improve photo editing
efficiency and generate more realistic simulations for robot
training. Nevertheless, GANs can also jeopardize personal

identity by generating fake images of people’s faces (e.g.,
deepfakes). We hope that future work will address this issue
through deep fake detection and contribute to the positive
social development of the technology.
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