
Received 26 June 2024, accepted 26 July 2024, date of publication 6 August 2024, date of current version 19 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3439450

An Empirical Evaluation of the Zero-Shot,
Few-Shot, and Traditional Fine-Tuning
Based Pretrained Language Models
for Sentiment Analysis in
Software Engineering
MD SHAFIKUZZAMAN 1, MD RAKIBUL ISLAM 1, ALEX C. ROLLI2, SHARMIN AKHTER 1,
AND NAEEM SELIYA 2
1Department of Computer Science, Lamar University, Beaumont, TX 77705, USA
2Department of Computer Science, University of Wisconsin–Eau Claire, Eau Claire, WI 54701, USA

Corresponding author: Md Rakibul Islam (mislam108@lamar.edu)

This work was supported in part by the College of Arts and Sciences, Lamar University, Beaumont, TX, USA.

ABSTRACT Recent advances in natural language processing (NLP) have led to the development of
revolutionized pretrained language models (PLMs) impacting various NLP tasks, including sentiment
analysis in software engineering. Choosing the right PLMs is crucial to effectively leverage these advanced
PLMs. This paper presents the largest comparative evaluation of the PLMs for sentiment analysis in
software engineering. Specifically, the study initially quantifies the performances of four traditionally fine-
tuned PLMs, five zero-shot PLMs including GPT-4 and GPT-3 models, and three few-shot PLMs on six
domain-specific datasets. The performances of the selected PLMs are also compared against two software
engineering domain-specific traditionally fine-tuned PLMs and two state-of-the-art tools. The quantitative
analysis reveals varying strengths across the different PLM types. The traditionally fine-tuned domain-
specific PLM seBERT achieves the best results in the larger datasets, whereas the few-shot PLMs, such as
All-DistillRoBERTa, show the best performances in the smaller datasets. A qualitative error analysis
with the help of an Explainable AI technique uncovers existing challenges faced by PLMs in sentiment
analysis for software engineering. The comprehensive quantitative and qualitative experiments significantly
enrich knowledge in sentiment analysis in software engineering through reproducible insights.

INDEX TERMS Sentiment analysis, software engineering, natural language processing, pretrained language
models, GPT-4, zero-shot learning, few-shot learning.

I. INTRODUCTION
Software development, being a collaborative process,
is notably susceptible to the sentiment and emotion of
developers [1], [2], [3], [4], [5]. Consequently, there has
been a growing interest in sentiment analysis (SA) within
the software engineering (SE) domain, aiming to detect
and analyze positive, negative, and neutral sentiments of

The associate editor coordinating the review of this manuscript and

approving it for publication was Loris Belcastro .

developers [1], [2], [3], [6], [7], [8], [9], [10], [11], [12], [13]
to help to understand their impacts in SE.

As software development becomes more decentralized
and collaborative, the ability to computationally under-
stand sentiment in unstructured textual artifacts, such as
comments/posts in developers’ communications and inter-
action platforms, e.g., issue tracking system JIRA, source
code repository GitHub, Q&A forum StackOverflow, and
mailing lists, are growing in use [7], [8], [9], [12],
[14] for SA. Initially, general-purpose SA tools (e.g.,
SentiStrength [15]) were applied for SA from the

109714

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0007-2623-5034
https://orcid.org/0009-0009-9104-874X
https://orcid.org/0009-0005-5372-3688
https://orcid.org/0009-0001-1453-0227
https://orcid.org/0000-0001-6324-8108

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

textual artifacts in SE. However, these tools, designed for
broad applications, were reported to have poor accuracy in
the SE [14], [16], [17]. Thus, researchers develop several
general machine learning (ML) based customized tools, such
as Senti4SD [18], SentiCR [19], and EmoTxt [10] to
overcome the issue.

Recently, the Pretrained Large Language Models (PLMs),
such as BERT [20] and RoBERTa [21] have significantly
advanced various Natural Language Processing (NLP) tasks,
including text summarizing, language translation, and sen-
timent classification - even extending their influences into
SE [22], [23], [24], [25]. Zhang et al. [26] examine the per-
formances of four PLMs, namely BERT [20], RoBERTa [21],
ALBERT [27], and XLNet [28] for SA in SE and find that
these PLMs outperform the existing SE domain-specific ML
and ruled-based tools.

However, the aforementioned PLMs are required to be
fine-tuned using the traditional method, where 70% to 80% of
data is used for fine-tuning. From now on, we will call these
traditionally fine-tuned PLMs as TPLMs. The requirement of
huge training data for fine-tuning is exacerbated in domains,
such as SE, where collecting and labeling sufficient training
data is often expensive, time-consuming, and error-prone.
Moreover, labeling data also requires substantial domain-
specific knowledge. Such challenges have led to a limited
number of datasets with an imbalanced distribution of
sentiment types that may cause low performance for the
TPLMs [24], [29] for SA in SE.
Further advances in NLP have brought us other advanced

technologies, including zero-shot, few-shot, and bigger
PLMs, e.g., GPT-4 [29], [30] that are potential solutions to
these issues. A zero-shot PLM (ZPLM) can classify labels
without prior training [31]. Conversely, a few-shot PLM
(FPLM) aims to classify labels by relying on a small set
of illustrative examples rather than intensive training [32].
Moreover, bigger PLMs trained on massive corpora of texts
and containing many parameters are zero-shot learners as
they can be adapted to a downstream task simply by providing
it with a prompt (a natural language description of a given
task).

Nevertheless, the performance of the ZPLMs, FPLMs, and
bigger PLMs, e.g., GPT-4 (considered as ZPLMs in this
study) remains largely unexplored for SA in SE. Thus, in this
study, we evaluate and compare the performances of ZPLMs
and FPLMs against TPLMs. In particular, we ask the first
research question (RQ1) as follows.

RQ1: How do the ZPLMs and FPLMs perform compared
to the TPLMs in detecting sentiments in the SE domain?

To answer this question, we select five ZPLMs (including
two bigger PLMs: GPT-4 and GPT-3.5), five FPLMs, and
four TPLMs. Then, we apply the selected 14 PLMs on six SE
domain datasets (described in Section III-C) to quantitatively
measure their performances in detecting sentiments. This will
help one to choose the most appropriate PLMs among the
14 selected PLMs for SA in SE.

While all the selected PLMs in RQ1 are domain-
independent, i.e., those PLMs are pretrained with gen-
eral English corpus, the recent development of SE
domain-specific PLMs makes us curious to examine their
performances across diverse datasets. Moreover, we aim to
compare the performances of state-of-the-art tools against the
PLMs in the same settings. Thus, we ask the second research
question (RQ2) as follows.

RQ2: How do the domain-specific PLMs and state-of-the-
art tools perform compared to the domain-independent PLMs
in detecting sentiments in the SE domain?

To answer this question, we select two domain-specific
PLMs and two state-of-the-art tools: one rule-based tool, and
one traditional machine learning-based tool. Then, we apply
those PLMs and tools to the same datasets used for RQ1
to quantitatively measure and compare their performances
against the best performing domain-independent PLMs. Such
comparison provides us with the bigger picture to select the
best options based on different scenarios.

Finally, to supplement our quantitative analysis, we also
conduct a qualitative analysis to determine the dominant
causes of the errors of the best-performing PLMs/tools for
SA in SE. Thus, we ask the third research question (RQ3) as
follows.

RQ3: What are the dominant causes of the errors in
sentiment prediction for the best-performing PLMs/tools?

To answer this question, we employ two human raters
and an Explainable Artificial Intelligence (XAI) tool, namely
SHapley Additive exPlanations (SHAP) [33] to gain a deeper
understanding of the causes of errors. The findings can help
to further improve the performance of the PLMs/tools.
Contributions: The major contributions of this study are

four-fold: (i) We are the first to apply the ZPLMs, including
the GPT-4 and GPT-3 models, and FPLMs, for SA in
the SE domain, (ii) we evaluate the performance of two
domain-specific PLMs in a bigger settings for SA in SE,
(iii) we for the first time conduct an error analysis of the with
the help of an XAI tool to identify the errors for SA in SE, and
(iv) to enable reproducibility, we publicly share the datasets
and scripts used in our experiments [34].

II. BACKGROUND
Here, we describe the terminology that helps a reader to
understand the content of the paper.Traditional Fine-tuning
(TFT) is the most prevalent method to adapt a PLM by
training it on a task-specific dataset with thousands of labeled
examples. It excels in achieving high performance on various
benchmarks. However, it demands a new sizable dataset for
each task and might lack generalization beyond its original
data [29].

To overcome the issues with TFT, Zero-shot Learning
(ZSL) and Few-shot Learning (FSL) methods are devised
that require zero to a limited amount of training data. For
example, ZSL aims to recognize new classes without any
labeled examples. This is achieved by leveraging knowledge

VOLUME 12, 2024 109715

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

transfer between seen and unseen classes using semantic
embeddings, hierarchical relationships, or generative mod-
els [31]. ZSL has recently been adapted to many NLP tasks,
including entity recognition [35], relation extraction [36], and
text classification [37].

Conversely, FSL involves training models using a minimal
amount of labeled data. It is a more supervised approach
compared to ZSL but requires significantly fewer labeled
examples than traditional supervised learning. Models
are trained to generalize from this limited labeled data,
often through meta-learning, metric-based methods, data
augmentation, and transfer learning [32].
Natural Language Inference (NLI) also known as textual

entailment that determines the relationship between a premise
text p and hypothesis text h [38]. The goal is to predict a label
y, where y ∈ {entailment, contradiction, neutral}.

If themeaning of the hypothesis can be inferred or logically
deduced from the premise, it is considered an entailment.
For example, as shown in Table 1, for the given first
premise, ‘‘The cat is sitting on a chair’’, the first hypothesis
- ‘‘The cat is on a piece of furniture’’ - can be logically
inferred. Again, if the meaning of the hypothesis contradicts
or is in direct opposition to the premise, it is considered a
contradiction. Finally, if the relationship between the premise
and the hypothesis is neither entailment nor contradiction,
it is considered neutral. The second and third rows in Table 1
show premises and hypotheses categorized as contradicting
and neutral.

NLI helps capture the complex relationships between
sentences, providing insights into the logical connections,
implications, and contradictions within textual content.
Many NLP applications, such as text classification, question
answering, information extraction, and summarization, must
recognize that a particular target meaning can be inferred
from different text variants. Thus, many PLMs, e.g., BERT,
and RoBERTa that are fined-tuned using NLI datasets, e.g.,
Multi-Genre Natural Language Inference (MNLI) [39] show
superior results in various NLP tasks.

Sentence BERT (SBERT) [40] is a family of the PLMs
that are specifically optimized for generating sentence
embeddings. They are trained onNLI datasets, such asMNLI,
to encode sentences into fixed-sized vectors so that semanti-
cally similar sentences are close together in the embedding
space. This allows using SBERT to efficiently find similar
sentences by computing cosine similarity between the dense
embeddings. The key benefits of SBERT include the ability
to derive high-quality sentence embeddings for downstream
tasks, such as semantic search, text classification, and
clustering. The pretrained contextual representations also
transfer well to new data. There is a Python framework [41]
available that offers an extensive collection of SBERTmodels
fine-tuned using NLI datasets to generate FPLMs, such as
LaBSE [42] and All-MPNET-base-v2 [43], [44].
SetFit [45] works by first fine-tuning a pretrained SBERT

on a small number of text pairs in a contrastive Siamese
manner. The resulting model is then used to generate rich

TABLE 1. Categories of Hypothesis in NLI.

text embeddings, which are used to train a classification head.
This simple framework requires no prompts or verbalizers
and achieves high accuracy with orders of magnitude fewer
parameters than existing techniques.

Self-training [46] provides a simple yet effective
semi-supervised approach to improve the performance of
ZSL for downstream tasks. The self-training process requires
only unlabeled data from the target domain. This technique
can be realized for text classification by leveraging NLI
datasets. Concretely, a labeled NLI corpus, such as MNLI,
is first utilized to train a textual entailment model fθ . This
model is then applied to unlabeled text from a different target
distribution Xt , such as texts from the SE domain. Given
sentences are classified by fθ as entailment or contradiction
with probability exceeding a confidence threshold τ are
added to the training set as pseudo-labeled examples Ŷt :

Ŷ t = fθ (x)|x ∈ Xt ,P(fθ (x)) > τ

The entailment model is retrained on this expanded
dataset (Xt , Ŷt), and the self-training cycle repeats. After
sufficient iterations, the resulting model gains coverage of the
target domain lexicon and linguistic patterns. This enables
zero-shot generalization without reliance on hand-crafted
attributes or semantic lexicons. Empirically, self-training
boosts performance over supervised NLI models according
to prior work [24], [35], [47].

III. METHODOLOGY
In this Section, we briefly describe the PLMs, the state-of-
the-art tools, the datasets, the evaluation metrics, and the
experimental settings used to conduct the experiments.

A. DOMAIN-INDEPENDENT PRETRAINED LARGE
LANGUAGE MODELS
1) TRADITIONAL PLM (TPLM)
In the following, we briefly describe the four domain-
independent and two domain-specific TPLMs used in this
study.
BERT: Bidirectional Encoder Representations from Trans-

formers, aka, BERT is a bidirectional transformer-based
model pretrained using masked language modeling and next
sentence prediction objectives [20]. BERT uses the standard
transformer encoder architecture, consisting of multiple
layers of multi-head self-attention and feedforward layers.
Through its masked language modeling pretraining, BERT
learns deep bidirectional representations from unlabeled
text by randomly masking input tokens and predicting the

109716 VOLUME 12, 2024

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

masked words based on context. In addition to masked
language modeling, BERT is pre-trained on next-sentence
prediction to learn relationships between sentences. For
pretraining, Devlin et al. [20] leveraged the BooksCorpus
dataset (800 million words) as well as English Wikipedia
(2,500 million words). Subword tokenization usesWordPiece
to handle rare and unknown words. With pretrained repre-
sentations encoding substantial language knowledge, BERT
achieves strong performance on sentence-level downstream
tasks with just an additional output layer during fine-tuning.
BERT has two model sizes, BERTbase and BERTlarge, with
110 million and 340 million parameters, respectively. In this
study, we use theBERTbase model as it takes considerably less
time to fine-tune for the downstream tasks.
RoBERTa. Robustly Optimized BERT Pretraining

Approach, i.e., RoBERTa builds on top of the original
BERTmodel by modifying key hyperparameters and training
procedures [21]. Through a comprehensive study exploring
the effects of critical hyperparameters and training data
size, Liu et al. [21] identified improvements to BERT’s
pretraining methodology. Notably, RoBERTa is trained on
larger mini-batches for more iterations over increased data.
Furthermore, the next sentence prediction objective used
during BERT pretraining is removed in RoBERTa, with
the model being trained on longer input sequences instead.
Additionally, RoBERTa incorporates dynamic masking,
generating a new random masking pattern for each input
sequence rather than using a static masked pattern. The
enhanced pretrained representations from modifications to
BERT’s training enable significant performance gains on
downstream tasks through fine-tuning.
XLNET. Transformer-XL Network (XLNET) is a model

that employs a generalized autoregressive pretraining method
to address the pretraining-finetuning discrepancy found in
models, such as BERT. Instead of masking input tokens,
XLNET maximizes the expected likelihood over all per-
mutations of the input sequence factorization order using
Transformer-XL as the backbone model architecture. This
permutation language modeling objective allows XLNET
to learn bidirectional contexts while retaining autoregres-
sive modeling benefits. Additionally, XLNET utilizes the
segment recurrence mechanism from Transformer-XL to
model longer-term dependencies. These innovations enable
XLNET to outperform BERT on various language understand-
ing tasks, including question answering, natural language
inference, and sentiment classification.
ALBERT. This lite version ofBERT incorporates parameter

reduction techniques to lower memory consumption and
increase training speed [27]. ALBERT employs factor-
ized embedding parameterization and cross-layer parameter
sharing to significantly reduce the number of parame-
ters from BERT. In addition, ALBERT is trained with
sentence order prediction loss instead of next sentence
prediction. With fewer parameters and other optimizations
like a unified embedding matrix and repeating layers split
across groups, ALBERT retains or improves upon BERT’s

performance while using substantially fewer resources. For
example, ALBERT-base has 11M parameters compared to
BERT-base’s 110M parameters.

2) ZERO-SHOT PLM (ZPLM)
In the following, we describe the five ZPLMs used in this
study.
BART-large-mnli (BART-mnli) [48]: This is a

ZPLM that applies the pretrained BART (Bidirectional
and Auto-Regressive Transformers) [49] model to natural
language inference tasks by fine-tuning on the MNLI
dataset [39]. BART uses a standard seq2seq transformer
architecture with a bidirectional encoder and autoregressive
decoder. The model is pretrained by reconstructing corrupted
document-level texts, forcing it to learn bidirectional repre-
sentations. BARTlarge is a version of BARTwith over 400mil-
lion parameters. Fine-tuning this pretrained BARTlarge model
on the MNLI dataset provides task-specific adaptations for
textual entailment and inference. MNLI contains sentence
pairs with textual entailment annotations across different
genres of written and spoken English. By leveraging the
bidirectional pretraining of BARTlarge and then fine-tuning it
for inference using the MNLI dataset, BART-large-mnli
achieves strong performance on question answering, textual
entailment, and other natural language understanding tasks
centered around reasoning about entailment relationships.
RoBERTa-large-mnli [50]. This ZPLM is developed

by pretraining the RoBERTa model using the MNLI dataset.
Thus, the architecture of the model is the same as the model
RoBERTa.
DeBERTa-large-mnli-zero-cls (DeBERTa-

mnli) [51]. This is another ZPLM based on the DeBERTa
(Decoding-enhanced BERT with disentangled attention)
architecture [52]. The DeBERTa architecture modifies
BERT by disentangling the concept of self-attention and
relative position encoding, which enables the model to
incorporate absolute positional information better. This
allows DeBERTa to learn more sophisticated syntactical or
semantic relationships within the input text. The large version
of DeBERTa has 24 transformer layers, a hidden size of
1024, and 24 attention heads, comprising over 400 million
parameters in total. It was pretrained on masked language
modeling using a large corpus of text data, then fine-tuned
on the MNLI dataset for natural language inference to
generate the Deberta-large-mnli model. In addi-
tion, the zero-cls variant of Deberta-large-mnli
excludes the classification head during pretraining to avoid
task-specific bias.
GPt-3.5 [53]: The bigger PLM GPT-3.5 is a variant

of OpenAI’s GPT-3 [54] family, designed as a large-scale
language model based on the transformer architecture. While
OpenAI has not publicly disclosed the specific number of
parameters for this model, it can range up to 175 billion
parameters as mentioned elsewhere [29]. The transformer
architecture uses the self-attentionmechanisms, which allows

VOLUME 12, 2024 109717

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

the model to process and generate human-like text by
considering the relationships between all words in a sentence,
regardless of their position. As an autoregressive language
model, GPT-3.5 predicts each subsequent word in a
sequence by considering the words that precede it, making
it capable of generating coherent and contextually relevant
text across a wide range of topics and formats. Its training
involved massive datasets from diverse internet text, enabling
robust performance in natural language understanding and
generation tasks.

GPT-4 [53]. This version of the GPT model was released
by OpenAI in March 2023. It is a multimodal transformer
model, A large-scale language model that accepts image and
text inputs and produces text outputs. The model is trained
using publicly available internet data and data licensed from
third parties and then fine-tuned using Reinforcement Learn-
ing from Human Feedback (RLHF). It was compared with
state-of-the-art models using Measuring Massive Multitask
Language Understanding (MMLU) [55] that covers 57 tasks
in elementary mathematics, US history, computer science,
law, and more and outperformed them all.

3) FEW-SHOT PLM (FPLM)
In the following, we describe the FPLMs used in this study.
All-MiniLM-L6-v2 [56]: This FPLM is a distilled

natural language understanding model based on the MiniLM
architecture, which utilizes a multi-layer transformer net-
work like BERT but with significantly fewer parameters.
All-MiniLM-v2 has six layers, eight attention heads, and
a hidden size 384, resulting in 14 million parameters [56].
This small size enables efficient inference while still achiev-
ing high performance on NLP tasks through knowledge
distillation during pretraining.
All-MPNET-base-v2 (All-MPNET-base) [44]:

This FPLM is developed by fine-tuning the Mpnet-base
model [43] on one billion sentence pairs from several
datasets [44] using contrastive learning objective [57]. The
Mpnet-base (Masked and Permuted Pre-Training) model
includes two new pretraining objectives - Masked Language
Modeling (MLM) and Permuted Language Modeling
(PELM). In MLM, some tokens are randomly masked, and
the model is trained to predict them based on context, similar
to BERT’s masking strategy. In PELM, the order of sentences
is randomly permuted, and the model must predict the
original order, teaching the model about discourse coherence.
By combining MLM and PLM during pre-training, MPNET
can capture both local fluency and global coherence in
text. Experimental results demonstrate that MPNET achieves
state-of-the-art performance on several NLP benchmarks
compared to previous models like BERT and RoBERTa.
All-DistilRoBERTa-v1 (All-DistilRoBERTa)

[58]: This model is a distilled natural language understanding
model based on the DistilRoBERTa architecture, which
compresses RoBERTa into a smaller and faster variant using
knowledge distillation during pretraining [59]. Specifically,

All-DistilRoBERTa-v1 has six layers, 768 hidden
dimensions, and 82 million parameters.
LaBSE [42]: Language-Agnostic BERT Sentence Embed-

ding (LaBSE) is a pretrained multilingual sentence embed-
ding model introduced by Feng et al. [42]. It is based on
distilRoBERTa and trained on over 100 languages using
a translated version of the BookCorpus dataset with only
110million parameters, making it relatively lightweight com-
pared to themonolingualBERTmodel [20] for each language.
LaBSE generates 512-dimensional sentence embeddings
that capture semantic similarity across different languages
and outperforms previous multilingual models, such as
LASER [60] and multilingual BERT [61] on cross-lingual
semantic textual similarity tasks.

B. DOMAIN-SPECIFIC TPLMs AND STATE-OF-THE-ART
TOOLS
1) TPLM
Here, we briefly describe the two domain-specific TPLMs
used in this study.
seBERT [62]: This domain-specific TPLM is designed

specifically for the software engineering (SE) domain.
Unlike domain-independent TPLMs, seBERT is trained
on a substantial corpus of SE-specific data, including
over 119GB data from sources, such as StackOverflow posts,
GitHub issues, Jira issues, and GitHub commit messages.
This targeted pre-training allows seBERT to capture the
unique vocabulary, terminologies, and contextual meanings
prevalent in SE, which general language models often miss.
seBERT has been validated through various SE-specific
tasks, demonstrating superior performance in issue type
prediction, commit intent prediction, and sentiment analysis
within the SE domain.

BERT_SE [63]: This is another SE-specific BERT that is
developed/pretrained using over 456K text items collected
from Stack Stack Overflow posts and user requirements from
38 open-source projects. The assessment of BERT_SE is per-
formed using the software requirements classification task,
demonstrating that this model has an average improvement
rate of 13% compared to the BERT-base model.

Table 2 shows the base architectures, number of parame-
ters, layers, hidden layers, and head of the 15 PLMs used in
this study.

2) STATE-OF-THE-ART TOOLS
Here, we describe the two state-of-the-art tools for SA in SE.
SentiCR [19]: SentiCR leverages the Gradient Boost-

ing Tree (GBT) algorithm to classify two polarities, i.e.,
negative and non-negative. We re-train it on each dataset to
classify three polarities, i.e., positive, neutral, and negative.

SentiStrength-SE: The tool SentistrengthSE [16]
is the first domain-specific tool specially developed for
sentiment analysis in software engineering text. Given piece
of text T , SentiStrength-SE computes a pair ⟨pc, nc⟩ of
integers, where +1 ≤ pc ≤ +5 and −5 ≤ nc ≤ −1. Here, pc

109718 VOLUME 12, 2024

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

TABLE 2. Architectures and specs of the PLMs.

TABLE 3. Summary of the datasets used in this study.

and nc represent the positive and negative sentimental scores
for the given text T .

C. DATASETS
This comparative study uses six publicly available SE
domain-specific datasets with human-annotated polarity
labels. Table 3 summarizes key statistics of the datasets,
including the total number of document items in each dataset
(#doc), and the specific number and percentage of documents
for each sentiment labeled as #sentiment type (%). In the
following, we describe the datasets briefly.

1) GitHub PULL REQUEST AND COMMIT COMMENTS
(GIT) [9]
This dataset was developed by Novielli et al. and contains
7,122 pull requests and commit comments collected from
GitHub. The dataset was annotated by three human raters
where 28% of the comments convey positive sentiment,
29% express negative sentiment, and the remaining 43% are
labeled as neutral.

2) API REVIEWS COMMENTS (ARC) [67]
The benchmark consisted of 4,522 sentences from 1,338
Stack Overflow posts. At least two coders manually labeled
each sentence. In the dataset, the proportion of positive and
negative sentiments are 19.7% and 11%, respectively, while
69.3% sentences are neutral.

3) STACK OVERFLOW POSTS (SOC) [11]
This dataset contains 1,500 sentences obtained from dis-
cussions tagged with Java in the Stack Overflow. Each
sentence was manually classified with sentiment by two

evaluators. The third evaluator was used to resolve any
conflicting ratings. In the dataset, 8.7% sentences are
labeled with positive sentiment, 11.9% sentences express
negative sentiment, and the remaining 79.4% sentences are
sentimentally neutral.

4) MOBILE APP REVIEW COMMENTS (MAC) [11]
To prepare the dataset, Lin et al. [11] randomly selected
341 samples from a collection of 3,000 app review comments
prepared by Villarroel et al. [68]. Similar to the SOC dataset,
two evaluators manually labeled the sentiment of each
selected review, with a third evaluator to resolve any conflicts
between the first two evaluators. Finally, the dataset contains
54.5% and 38.1% comments with positive and negative
sentiment, respectively, while the remaining 7.3% comments
are neutral.

5) JIRA ISSUE COMMENTS (JIC) [11]
This dataset was prepared by Ortu et al. [69] with sentences
labeled with four emotions: love, joy, anger, and sadness.
Later, Lin et al. [11] assigned positive polarity to sentences
labeled with love and joy, and negative polarity to sentences
labeled with anger and sadness. The dataset contains
926 samples with 31.3% positive and 68.7% negative
sentiments.

6) CODE REVIEW COMMENTS (CRC) [19]
Ahmed et al. [19] developed this dataset that contains
1,600 code review comments. Three human annotators
independently labeled each of the comments as positive,
negative, or neutral. However, the positive and neutral
comments were merged into a single non-negative class in
the publicly released version of the dataset. Therefore, for
this current work, we utilize the publicly available version of
the dataset, in which 24.9% of the comments convey negative
sentiment and the remaining 75.1% express non-negative
(neutral and positive) sentiment.

D. EVALUATION METRICS
The performance of each PLM is measured in terms of
precision (p), recall (r), and F-score (F1) metrics for each

VOLUME 12, 2024 109719

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

of the sentimental polarities. Given a set T of texts, precision
(p), recall (r), and F-score F1 for a particular sentimental
polarity e is calculated as follows:

p =
| Te ∩ T ′

e |

| T ′
e |

, r =
| Te ∩ T ′

e |

| Te |
, F1 =

2 × p× r
p+ r

where Te represents the set of texts having sentimental
polarity e, and T ′

e denotes the set of texts that are detected
(by a PLM) to have the sentimental polarity e.

Moreover, to assess the overall performance of a PLM over
a dataset, we compute macro-average for each metric c ∈

p, r,F1 as follows.

M(c) =
1
k

k∑
i=1

ci

In the above equation,M(c) represents the macro-average
of a metric c; ci and ni denote the metric c and number of
texts for the ith sentiment category (i.e., positive, negative,
or neutral), respectively, while k represents the number of
sentiment categories.

E. EXPERIMENTAL SETTING
In the following, we describe the experimental settings of this
study.

1) GENERATING AND USING STRATIFIED 10-FOLD DATASET
To compute the performance of a selected PLMs, we apply
Repeated random sub-sampling cross validation [70]. To do
that, we use the following steps. (i) We randomly split
the original data D into a stratified fold that con-
tains two sets: (a) 80% of the data as training, and
(b) the remaining 20% data for testing. (ii) We repeat
first step k=10 times to create stratified 10-fold using
StratifiedShuffleSplit [71]. (iii) The selected
PLM is fine-tuned on the training set for a selected fold.
(iv) Then, we test the PLM on the selected fold’s test set to
obtain its performance. (v) Steps iii and iv are repeated for
each of the 10 folds. (vi) Finally, we average the performance
metrics (of the ten runs) to get the final performance of the
PLM on the dataset D.

2) FINE-TUNING THE TPLMs
To perform sentiment classification, we add a feed-forward
dense layer and softmax activation function on top of each
TPLM. Then, we fine-tune each of the TPLMs and obtain
their performance results using the cross-validation technique
described above.We use four epochs with a batch size of 16 to
run each TPLM. We set the learning rate to 2e − 5 and use
the AdamW optimizer in the fine-tuning process.

3) FINE-TUNING THE FPLMs
We apply the SetFit [45] technique to fine-tune each FPLM.
Instead of using 80% train data from a fold, for the FPLMs,
we use randomly selected 50 examples from each sentiment
category as the training data. Here, we use 10 epochs with a
batch size of 16 and a learning rate of 2e− 5.

FIGURE 1. Prompt used in this study to instruct GPT models.

4) FINE-TUNING GPT-3.5 WITH FEW-SHOT
We also use the model GPT-3.5 in a few-shot setting.
To do that, we fine-tune the GPT-3.5 model by following
the guidelines established by OpenAI. We employ a random
sampling approach to select 50 data instances from each
sentiment category within a dataset D. Subsequently, we use
the OpenAI API1 to facilitate fine-tuning of the model using
randomly selected data instances. After completing the fine-
tuning process, we obtain the fine-tuned model and name
it as GPT-3.5F. Please note that at the time of this study,
fine-tuningGPT-4was an experimental access program from
OpenAI [92], and no guideline was available for this model.
Thus, we avoid fine-tuning the GPT-4 model.

5) FINE-TUNING THE ZPLMs
While ZPLMs are developed to be used in zero-shot learning
settings, the performance of the ZPLMs can be improved
by fine-tuning them [72]. Thus, we use both the base and
fine-tuned ZPLMs in this study. To fine-tune the ZPLMs,
we use the self-training technique devised by Gera et al. [72].
In contrast to the traditional fine-tuning process, the
self-training technique does require only unlabeled data.

6) FINE-TUNING SentiCR

The state-of-the-art SentiCR is programmed in such a way
that it takes a dataset and randomly creates the ten folds with
training and testing sets in each fold. We have modified the
code of SentiCR to stop its 10-fold data creation and feed
our own created 10-fold training and testing sets for each
dataset. Apart from that, we have used the default settings
to fine-tune it.

7) PROMPTING FOR THE GPT MODELS
We follow the general guidelines provided by OpenAI2 for
prompt engineering. We design a prompt to instruct a GPT
model as a sentiment analysis assistant for our sentiment
classification task on a selected dataset. From a user’s
perspective, we provide the prompt as shown in Figure 1, for

1https://platform.openai.com/docs/api-reference
2https://platform.openai.com/docs/guides/prompt-engineering/strategy-

write-clear-instructions

109720 VOLUME 12, 2024

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

each GPT model to detect the sentiment expressed in given
texts in a dataset. For each dataset, the variable dataset_name
is replaced by the name of the dataset, and the variable
sentiment types is replaced with the available sentiments of a
dataset. We use the default temperature for each GPT model.
Please note that, SentiStrength-SE and zero-shot

GPT-4 and GPT-3.5 do not require any fine-tuning, and
their performances are computed using the test sets of 10-fold
data for each dataset.

F. STATISTICAL TEST
The McNemar’s statistical test [73], also known as the
McNemar’s test, is a widely employed non-parametric
method for evaluating the statistical significance of perfor-
mance differences between two classificationmodels, such as
sentiment classifiers. We employ McNemar’s test to address
this issue to determine whether the observed performance gap
between the two methods is statistically significant. In the
context of sentiment analysis research, the McNemar’s test
is a well-suited statistical method for our purposes as it
does not rely on the assumption of data normality, which is
often violated in sentiment analysis datasets. Furthermore,
the widespread adoption of the McNemar’s test in related
research [16] on sentiment analysis models lends credibility
and consistency to its application in our study.

InMcNemar’s test, each method generates predicted labels
for each sample in the dataset through cross-validation.
To compare method A with method B using McNemar’s
test, one needs to derive the number of samples misclassified
by A but not by B (denoted as n01) and the number of
samples misclassified by B but not by A (denoted as n10)).
Subsequently, the test statistic (|n01−n10|−1)2

n01+n10
is computed,

which follows a chi-square (χ2) distribution with one degree
of freedom. This statistic quantifies the significance of the
performance difference between the two methods, allowing
us to make informed decisions about the superiority of one
approach over the other in the context of sentiment analysis.

IV. RESULTS
Here, we report the performance of the PLMs and SOTA, and
five FPLMs on the six datasets.

A. COMPARISON OF THE DOMAIN-INDEPENDENT PLMs
Table 4 presents the performances (in precision, recall,
and F-score using percentages) of the PLMs in detecting
sentiments over the GIT, ARC, SOC, and MAC datasets.
The macro average for each metric is computed over all the
sentiments presented in the last three columns of the table.
For each dataset, we highlight the best and worst values for
each metric across all the PLMs using blue and red colors,
respectively. We also boldface the best value a PLM achieves
for a metric within its category (e.g., TPLM, ZPLM, and
FPLM). Similarly, Table 5 and 6 show the performances of
the PLMs on the JIC and CRC datasets (that have two labels

instead of three), respectively. In the following, we describe
the results for each dataset.

1) GIT
Overall, the TPLMs achieve the best performance in detecting
sentiments, with macro average F1-scores between 90.4%
and 92.3%. The base ZPLMs perform significantly worse,
with macro average F1-scores around 43.5% to 49.6% with
an exception for the GPTmodels where GPT-4 achieves F1-
score over 76.6%. ZPLMs show improved performances after
fine-tuning them, reaching macro average F1-scores between
71.8% and 74.4%. The FPLMs score between the TPLMs and
ZPLMs, with a macro F1-score of around 86%.

2) ARC
The PLMs display consistent performance patterns across
the GIT and ARC datasets. For example, the TPLMs
and base ZPLMs show the best and worst performances,
respectively, while the FPLMs fit in between. Comparing the
API review results to the GIT dataset, PLMs’ performances
are noticeably higher overall on the GIT dataset. For example,
BERT - being the best performer among the TPLMs in the
ARC dataset - achieves a macro F1 of 82.4% versus 91.5% on
the GIT dataset. This substantial gap suggests the GIT dataset
is cleaner and less noisy for sentiment detection with a more
balanced distribution of sentiment labels.

3) SOC AND MAC
The FPLMs achieve the best performance in SOC and MAC
datasets in contrast to the GIT and ARC datasets. While
the TPLMs show the second-best performance in SOC, they
achieve the worst performance inMAC. The GPT-4 achieves
the best performance among the base and fine-tuned ZPLMs
in both datasets.

4) JIC
Again, in this dataset with two labels, FPLMs perform
best, followed by the TPLMs. However, the performance
gap between these two PLM categories is negligible. For
example, All-DistilRoBERTa - the best performing
PLM from the FPLM category - achieves only 0.2% higher
F1-score than RoBERTa, which is the best performer from
the TPLM category. Surprisingly, the base and fine-tuned
ZPLMs perform significantly better in this dataset, with the
highest macro F1-scores of 93.1% and 93.3% achieved by the
base and fine-tuned RoBERTa-mnli, respectively.

5) CRC
Similar to the JIC dataset, the CRC dataset has two labels
(i.e., non-negative and negative) where the TPLMs perform
the best, followed by the FPLMs.All the PLMs perform better
in detecting non-negative sentiment than negative sentiment.
This better performance on non-negative sentiment can be
attributed to the higher sample number in this category,
which contributes to 75% of the full data. Unlike the JIC
dataset, both the base and fine-tuned ZPLMs (except the

VOLUME 12, 2024 109721

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

TABLE 4. Performances of the PLMs in GIT, ARC, SOC, and MAC datasets.

109722 VOLUME 12, 2024

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

TABLE 5. Performance of the PLMs on the JIC dataset.

TABLE 6. Performance of the PLMs on the CRC dataset.

GPT-4 model) show lower performances in this dataset,
with F1-scores between 56.3% and 63.8%. Notably, the
performance of GPT-3.5F is lower than the GPT-3.5

in this dataset, which is opposite compared to all other
datasets where GPT-3.5F shows better performances than
GPT-3.5.

VOLUME 12, 2024 109723

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

TABLE 7. The best performing PLMs from each category.

TABLE 8. McNemar’s statistical test between the performance of
RoBERTa and All-DistilRoBERTa for each dataset.

6) OVERALL SUMMARY
Table 7 presents the best-performing PLM from each
category for each of the datasets. The best-performing
PLM is decided based on the macro F1-score mentioned in
parenthesis.

a: BEST PLM IN EACH DATASET (ROW-WISE)
For each dataset, the best-performing PLM’s name and its
F1-score are in boldface in the table. We observe that TPLMs
are the top performers in the larger datasets, such as GIT
and ARC. In contrast, the FPLMs show superior results
in the small datasets, such as SOC and MAC. The lower
performance of the TPLMs compared to the FPLMs can
be attributed to the availability of less data to fine-tune the
TPLMs, which hinders their learning of the patterns in the
data.

Although the datasets JIC and CRC are small in size, both
TPLMs and FPLMs show the best performances in those
datasets. Achieving relatively better results in these small
datasets by TPLM can be attributed to having two sentiment
categories (i.e., positive and negative only) in contrast to
the three sentiment categories in SOC and MAC. Having
fewer sentiment categories also increases the proportion
of the samples in each sentiment, which helps TPLMs in
fine-tuning.

b: BEST PERFORMER IN EACH PLM CATEGORY
(COLUMN-WISE)
By looking into the best performer in each PLM category,
we see that among TPLMs, RoBERTa shows the best
performance in five datasets. GPT-4 is the clear winner
among all the base and fine-tuned ZPLMs, as it shows the
best results in all datasets except JIC. Among the FPLMs,
All-Distilroberta achieves the best results in all
datasets except ARC.

7) STATISTICAL SIGNIFICANCE TEST
The empirical results show that TPLM RoBERTa outper-
forms other models on large datasets, while the FPLM

All-DistilRoBERTa excels on small datasets. To assess
the statistical significance of the performance differences
between RoBERTa and All-DistilRoBERTa McNe-
mar’s test is applied. To do that, we formulate the following
null and alternative hypotheses to determine the statistical
significance of performance differences between the PLMs.

a: NULL HYPOTHESIS-1 (H1
0)

There is no significant difference between the performance
of RoBERTa and All-DistilRoBERTa.

b: ALTERNATIVE HYPOTHESIS-1 (H1
A)

There exist significant differences between the performance
of RoBERTa and All-DistilRoBERTa.

The McNemar’s test results are presented in Table 8,
with the p-values displayed in parentheses under the test
statistic values. For all datasets except JIC, McNemar’s test
yields a p-value of 0.000, where p < α (the level of
statistical significance that is set at 0.05). Consequently,
the null hypothesis (H1

0) is rejected for these datasets.
Hence, the alternative hypothesis (H1

a) holds true, i.e.,
there are significant performance differences exist between
RoBERTa and All-DistilRoBERTa in the majority of
cases. Based on our empirical observations and the results of
McNemar’s tests, we now derive the answer to the RQ1 as
follows.

Ans. to RQ1: Performance of the PLMs vary across the
datasets. The size of the datasets and the distributions
of sentiment labels can impact the performance of the
PLMs. For example, TPLMs show the best performances
when a dataset is large with a balanced distribution of
sentiments. Conversely, FPLMs show the best results
when the dataset size is small. In addition, FPLMs show
competitive performances compared to TPLMs in larger
datasets. RoBERTa and All-DistilRoBERTa stand
out as the best-performing PLMs from the TPLM and
FPLM categories in most cases. GPT-4 shows the best
results among the base and fine-tuned ZPLMs.

B. COMPARING THE BEST PERFORMING PLMs AGAINST
THE STATE-OF-THE-ART AND DOMAIN-SPECIFIC TPLM
Here, we compare the performance of the best-performing
PLMs found in RQ1, i.e, RoBERTa and
All-DistilRoBERTa against the two domain-specific

109724 VOLUME 12, 2024

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

TABLE 9. Performance comparison of RoBERTa and All-DistilRoBERTa against the domain-specific PLMs and state-of-the-art tools in GIT, ARC, SOC,
and MAC datasets.

TABLE 10. Performance comparison of RoBERTa and All-DistilRoBERTa against the domain-specific PLMs and state-of-the-art tools in JIC dataset.

TABLE 11. Performance comparison of RoBERTa and All-DistilRoBERTa against the domain-specific PLMs and state-of-the-art tools in CRC dataset.

TABLE 12. The results of the McNemar’s statistical test of RoBERTa, SentiCR, and All-DistilRoBERTa against seBERT for each dataset.

TPLMs seBERT [62] and BERT_SE [63], and the two state-
of-the-art toolsSentiCR [19],SentiStrength-SE [16].

For the above-selected PLMs and tools, Table 9 presents
the results for the GIT, ARC, SOC, and MAC datasets.

VOLUME 12, 2024 109725

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

Tables 10 and 11 report the results for the JIC and CRC
datasets, respectively. The best results are bold-faced for the
metrics in each dataset.

With respect to RQ1, here we see a similar trend in
the performances of the PLMs that depend on the types
of PLMs and the size of the datasets. For example, in the
datasets with three sentiment categories, the RoBERTa and
seBERT perform best in the larger datasets, such as GIT
and ARC, and All-DistilRoBERTa performs best in
smaller datasets, such as SOC and MAC. In the datasets
with two sentiment categories, the RoBERTa, seBERT,
and All-DistilRoBERTa show better results compared
to the other selected PLMs and tools here. For example,
seBERT and All-DistilRoBERTa achieve the same
macro F1 scores (97.6%) in JIC dataset. In CRC dataset,
seBERT achieves the best macro F1 score of 83.4%,
which is 1.8% and 3.4% higher than the RoBERTa and
All-DistilRoBERTa.

We also observe that the domain-specific seBERT always
performs better than the domain-independent RoBERTa.
Despite BERT_SE being a domain-specific BERT model
tailored for software engineering tasks, it exhibits the worst
performance among the evaluated approaches. However, it is
noteworthy that BERT_SE’s performance improves when the
dataset is larger and more balanced, as evidenced by its
third-rank position based on macro F1-score on the GitHub
dataset, which has a total of 7,122 data of balanced sentiment
(28.32% positive, 29.3% negative and 42.2% neutral data).
Conversely, when the dataset is imbalanced and small, such
as in the cases of MAC (54.5% positive, 38.1% negative,
and 7.3% neutral, totaling only 341 data) and CRC (24.9%
negative and 75.1% non-negative, totaling 1,600 data),
BERT_SE’s performance deteriorates. The performance of
SentiStrength-SE falls between that of SentiCR and
BERT_SE.

Statistical Significance Test. After analyzing the results,
we conduct McNemar’s statistical test to test the sig-
nificance of the performance difference of RoBERTa,
All-DistilRoBERTa, and SentiCR against seBERT.
We formulate the following null and alternative hypotheses
for each dataset as follows.

Null Hypothesis-2 (H2
0): There is no significant difference

between the performances of the seBERT and X .
Alternative Hypothesis-2 (H2

a): There exist significant
differences between the performances of the seBERT andX .
In the above two hypotheses, X ∈ {RoBERTa,

All-DistilRoBERTa, and SentiCR}.
The McNemar’s test results are presented in Table 12

where the p-values are displayed in parentheses under the
test statistic values. We see that the seBERT significantly
outperforms the RoBERTa in SOC and MAC datasets.
Again, the seBERT significantly outperforms the SentiCR
in all datasets. The performance differences between the
seBERT and All-DistilRoBERTa are significant in all
datasets except JIC where they achieve the same macro
F1 score.

Hence, we answer the research question RQ2 as follows:

Ans. to RQ2: The domain-specific seBERT model
demonstrates superior performance compared to the PLMs
in sentiment detection tasks within the software engineer-
ing domain, across the majority of the datasets evaluated.
However, in smaller datasets with limited training sam-
ples, the All-DistilRoBERTa model exhibits better
results compared toseBERT. The performance differences
between seBERT and All-DistilRoBERTa are sta-
tistically significant in all datasets, with the exception of
the JIC dataset. While seBERT outperforms RoBERTa,
the significant difference is only observed in the SOC
and MAC datasets. Notably, both seBERT and RoBERTa
surpass the performance of state-of-the-art tools across
all datasets. Furthermore, All-DistilRoBERTa also
outperforms the state-of-the-art tools in all datasets, with
the exception of the ARC dataset.

V. ERROR ANALYSIS
We conduct the error analysis to supplement the quantitative
analysis and gain a deeper understanding of where and
why the PLMs are still limited. To do that, we carry out
the error analysis in two steps. First, we focus on the
errors generated by the domain-independent PLMs. Then,
we conduct seBERT-specific error analysis to identify in
what cases it performs better than the domain-independent
PLMs and vice versa.We select the TPLMs for error analysis,
as they show the best results in the majority of the datasets.
The steps are described as follows.

A. STEP-1: DOMAIN-INDEPENDENT TPLM
1) GOAL
Find out the dominant causes of the errors of the
four domain-independent TPLMs (i.e., BERT, RoBERTa,
XLNeT, and ALBERT) in predicting sentiments.

2) PROCESS
For each selected TPLM, we obtain its predicted sentiment
labels for the fold-1 test set of each dataset used in the
experiments for RQ1. We exclude the CRC dataset as
it combines positive and neutral sentiments into a non-
negative category, making it unsuitable for merging with
other datasets.

Upon comparing the predicted results with ground truth
labels, we find that all four selected PLMs provide incorrect
predictions for 142 comments. Consequently, an in-depth
qualitative analysis is performed on those 142 samples. Two
raters (the first two authors of this paper) jointly evaluate the
samples and categorize the causes of the errors. In the process
of error analysis, they use the XAI tool SHAP [33].

3) FINDINGS
A total of seven error types are identified and presented
in Table 13 that are decreasingly ordered based on their
distributions.

109726 VOLUME 12, 2024

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

a: GENERAL ERRORS
The most dominant cause of errors is general error, account-
ing for 23.9% of errors. These errors occur when models fail
to detect language patterns or missing/misleading word and
emoticon cues. For example, the negatively rated post ‘‘yes i
noticed that after i send this pr -.-’’ mislabeled as neutral as
the PLMs fail to detect the emoticon‘-.-’ cue properly in the
post that a user usually uses to express negative sentiment.

To better understand the issue, we analyze the explanation
of the SHAP tool for the PLM output presented in Figure 2.
After analyzing the SHAPE interpretation, we find that the
emoticon ‘-.-’ is tokenized in three sequential characters -
,., and -. Moreover, the technical word ‘pr’ (pull request)
is unknown to the PLM and is tokenized in two characters.
All these characters are used as features and mislead
the PLM in predicting the ‘LABEL_0’, i.e., neutral as
indicated by the deepest red color. Here, ‘LABEL_1’ and
‘LABEL_2’ represent positive and negative sentiments,
respectively. At the bottom of the figure, the words/characters
in red indicate those that positively contribute to predicting
the selected label, whereas the blue color indicates the
opposite.

FIGURE 2. SHAP explanation of misinterpretation of emoticon.

b: LABELING ERROR
The second dominant cause is human error in labeling. This
error type consists of 21.8% of all mistakes. For example,
the item, ‘‘So best keep max one nullable item per line.’’ - is
obviously a neutral comment but rated as positive in the ARC
dataset. Such labeling errors by humans are also reported
elsewhere [74]. It is notable that 67.67% of such labeling
errors are located in only the ARC dataset.

c: EXPLICIT SENTIMENT
The PLMs misinterpret samples that do not contain explicit
sentimental words, and such errors are liable for 19% of the
total errors. For instance, the negatively rated post ‘‘Also
it doesn’t specify the mode; read Wikipedia’s Block Cipher
Modes of Operation for concerns.’’ - does not have any
sentimental words that mislead the PLMs to interpret it as
neutral.

FIGURE 3. SHAP explanation for a prediction of a polar fact.

d: POLAR FACTS
The comments that report positive or negative facts, i.e., polar
facts, are often mislabeled as sentimental by the PLMs due to
the polarized word cues in those. For instance, the neutrally

rated post ‘‘This is wrong since it works on API 7+’’ simply
conveys a negative fact but is misinterpreted as a negative
comment by the PLMs due to the word ‘wrong’ as evident in
the SHAP’s explanation in Figure 3. Polar facts in sentiment
labeling are the fourth largest cause of misclassifications
at 12.6%

TABLE 13. Distribution of error types in datasets.

e: SUBJECTIVITY IN ANNOTATION
Subjectivity in sentiment labeling has the same proportion
as the polar facts that causes 12.6% of errors. Sentiment
analysis is inherently subjective as people perceive emotions
differently. For example, the comment ‘‘I need all subclasses
to execute CODE_FRAGMENT, but I can’t rely on them doing
it explicitly.’’ is annotated as positive, although the PLMs
detect neutral sentiment in that.

f: POLITENESS
The presence of politeness phrases accounted for 5.6% of
errors. For example, the neutrally rated post ‘‘I appreciate
your help.’’ is misclassified as a positive comment by the
PLMs due to the word ‘‘appreciate’’.

FIGURE 4. SHAP explanation of mislabeling a figurative comment.

g: FIGURATIVE EXPRESSIONS
Figurative, i.e., irony and sarcasm language, remains the
least minor cause, accounting for 4.2% of the errors. For
example, the negatively polarized post ‘‘Congratulations -
you’ve broken the Apache record!’’ is misclassified as having
positive sentiment due to the word ‘congratulation’ in it as
confirmed by the SHAP’s output in Figure 4. However, the
word is used to express irony here.

B. seBERT-SPECIFIC ERROR ANALYSIS
1) GOAL
As we observe from RQ2, the domain-specific model
seBERT outperformsRoBERTa, albeit by aminimalmargin.
Here, we aim to identify the reasons behind seBERT’s
superior performance compared to RoBERTa.

VOLUME 12, 2024 109727

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

FIGURE 5. SHAP explanation of detecting internet slang word by seBERT.

FIGURE 6. SHAP explanation of misinterpretation of internet slang word
by RoBERTa.

2) PROCESS
For the seBERT and RoBERTa, We obtain their predicted
sentiment labels for the fold-1 test set of the GIT dataset used
in the experiments for RQ1. We select the GIT dataset as
it is the largest among the six datasets under consideration,
as well as its balanced nature, consisting of three sentiment
categories: positive, negative, and neutral. Upon reviewing
the predicted results, we identify 51 instances out of the
1,424 test items in the fold-1 test set where seBERT provides
correct predictions, while RoBERTa’s predictions are wrong.
To investigate the underlying causes of this discrepancy, two
raters (the first two authors of this thesis) jointly evaluate
these 51 samples with the help of SHAP tool.

3) FINDINGS
After analyzing the error instances, we find the following
two key reasons for seBERT’s superior performance over
RoBERTa.

a: SEBERT CAN MORE EFFECTIVELY RECOGNIZE INTERNET
SLANG WORDS
. Software developers use frequently use internet slang and
being domain-specific seBERT performs better in detecting
those internet slang. For example, the comment ‘‘Sure,
though I’m sure we’ll only ever have one hehe.?’’ - with
the Internet slang ‘‘hehe’’ that expresses amusement - is
rated with positive sentiment by human raters. seBERT
correctly identifies the slang and detects positive sentiment
in it. In contrast, RoBERTa fails to detect the slang and
erroneously rates the comment with neutral sentiment.

To gain deeper insight into the outputs of the models,
we examine the explanation provided by the SHAP tool.
In Figure 5, we can see that seBERT can detect the word
‘‘hehe’’ and apply proper weight to it to detect the correct
sentiment of the comment. On the other hand, as seen in
Figure 6, ttRoBERTa breaks down the word hehe (first ‘‘he’’
in red and last ‘‘he’’ in blue color) as it is an unknown word to
it and fails to detect the sentiment of the comment correctly.

b: SEBERT CAN MORE ACCURATELY IDENTIFY
DOMAIN-SPECIFIC EXPRESSIONS AND WORDS
seBERT also performs better than RoBERTa in detecting
domain-specific expressions and words in a sentence. For

example, the comment ‘‘quit spamming my notifications,
please, kthxbye’’ is rated with negative sentiment by human
raters. seBERT can detect the sentiment of the comment
correctly for two reasons: (i) it detects the domain-specific
term ‘‘Spamming’’ correctly as seen in Figure 7, whereas,
RoBERTa breaks down the word spamming as in two differ-
ent words’’ ‘‘spa’’ and ‘‘mming’’, (ii) seBERT understand
the domain-specific expression in the comments and applies
proper weights on the words ‘‘Spamming’’ and ‘‘Please’’
and correctly detects the negative sentiment. Note the
word ‘‘Please’’ usually expresses a non-negative sentiment.
In contrast, RoBERTa applies improper weight on the word
‘‘Please’’ that leads it to detect neutral sentiment as seen in
Figure 8.

FIGURE 7. SHAP explanation of detecting domain-specific word by
seBERT.

FIGURE 8. SHAP explanation of not identifying domain-specific word by
RoBERTa.

Hence, we answer the research question RQ3 as follows:

Ans. to RQ3: General errors, labeling errors, explicit
sentiments in comments, subjectivity in annotation, and
figurative expressions are the dominant causes of the errors
for the TPLMs in predicting the sentiments accurately.
Pre-training seBERT with domain-specific corpus helps it
to improve in detecting domain-specific expressions and
words to avoid certain errors.

VI. DISCUSSION
This section describes the lessons learned from our exper-
iments and provides an empirically derived guideline for
selecting a PLM.

Lesson #1: PLMs can achieve reliable results. However,
the dataset size and label distribution can impact the
overall performance. The size and diversity of the training
data play a critical role in the PLMs’ ability to generalize
across various sentiment expressions. In larger datasets with
a balanced distribution of sentiment labels, TPLMs, such
as RoBERTa, have proven to be reliable On the contrary,
FPLMs tend to excel in smaller datasets. This can be
attributed to their fine-tuning of specific tasks, which allows
them to adapt better to limited data scenarios. Nonetheless,
they also show competitive performance in larger datasets,
indicating their versatility.GPT-4 can be used if a fine-tuning
option is not available.

Guideline to select a PLM/tool. Based on this lesson,
we derive a guideline presented in Figure 9 to help a user

109728 VOLUME 12, 2024

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

TABLE 14. Comparative macro average F1 between GPT-4 and
SentiStrength-SE.

TABLE 15. McNemar’s test between the performances of GPT-4 and
SentiStrength-SE for each dataset.

in choosing a PLM based on different scenarios. It starts
by asking if there is any labeled sentiment data available.
If yes, a user can proceed to ask if there are at least
n ≈ 300 samples.3 If yes, a TPLM, such as seBERT and
RoBERTa, can be used by fine-tuning them. An FPLM, such
asAll-DistilRoBERTa, can be used if fewer labeled data
are available.

FIGURE 9. Empirically derived guideline to select a PLM/tool.

In scenarios where no labeled sentiment data is available
for a specific domain, GPT-4 or the SentiStrength-SE
can be two viable approaches, as neither requires
domain-specific labeled data for sentiment analysis. Table 14
presents the macro-averaged F1 scores achieved by GPT-4
and SentiStrength-SE across all datasets. The table
shows that GPT-4 exhibits strong performance in most
datasets, except GIT and JIC. To ascertain whether the
observed performance differences between GPT-4 and
SentiStrength-SE are statistically significant, we con-
duct McNemar’s test. The results of McNemar’s test compar-
ing the predictions of GPT-4 and SentiStrength-SE
are reported in Table 15 where we see the performance
differences are significant. Thus, if a user expects better
results and is able to pay for the service, GPT-4 can be used.
Otherwise, SentiStrength-SE is available at no cost.
Lesson #2: The quality of the gold standard impacts

the classification performance. Novielli et al. [9] find that
the absence of clear guidelines for annotation leads to noisy
gold standards, thus resulting in unreliablemodel training and
testing. Such a scenario is also evident in our study, as the
PLMs show the best performances in GIT and JIC datasets

3The value of n is carefully chosen based on our empirical evaluation
results, where TPLMs show better results in the smaller dataset JIC with
290 positive samples.

that are consistently annotated using a theoretical framework
in contrast to other datasets (e.g., ARC) that are annotated
using ad hoc procedures. The error analysis also identifies
that 58.06% of the total labeling errors originated from the
ARC dataset, which can be attributed to the absence of a clear
guideline to annotate data.

Lesson #3: XAI technique offers a deeper understand-
ing of the causes of errors with increased confidence.
We use the XAI tool SHAP [33] to better understand the
errors that help us to better understand the causes of errors.
For example, using SHAP, we find that unknown technical
terms, e.g., ‘‘pr’’ and emoticons in Figure 2 can create
unnecessary word/character features that mislead a PLM.
The PLMs should be able to identify emoticons properly or
have emoticons be preprocessed, such as replacing them with
tokens related to their meaning (e.g., ‘‘happy’’, ‘‘sad’’) [75].
Moreover, the other errors are identified with increased
confidence with the help of SHAP as shown in Figure 3 and 4.

Lesson #4: Curating datasets with figurative and
politeness expressions and using them to fine-tune the
PLMs can improve their performances. We find that fewer
number comments with figurative and politeness expressions
in the training data is one of the main causes for the PLMs
to detect those inaccurately. One possible solution to that
is to curate a larger and more diverse set of comments
that include figurative language and politeness. Mishra and
Chatterjee [74] also suggested the same to improve emotion
detection from figurative language in SE.

VII. RELATED WORK
In this section, we discuss the related work grouped
into four categories: (i) benchmarking domain-independent
SA tools in SE, (ii) comparing a newly developed SE
domain-specific tool against existing ones, (iii) benchmark-
ing SE domain-specific SA tools, and (iv) comparing PLMs
against existing SA tools.

A. BENCHMARKING DOMAIN-INDEPENDENT SA TOOLS
IN SE
Jongeling et al. [76] compared four domain independent
tools, such as, NLTK [77], Stanford NLP [78],
SentiStrength [15], and Alchemy [79] for SA in SE
text. They found that these tools showed low performances in
predicting sentiment labels and suggested a requirement for
SE domain-specific SA tools.

B. COMPARING A NEWLY DEVELOPED SE
DOMAIN-SPECIFIC TOOL AGAINST EXISTING ONES
Islam and Zibran developed the first SE domain-specific
SA tool, SentiStrength-SE [80], and compared that
against SentiStrength. Ahmed et al. [19] developed the
SE domain-specific tool SentiCR and evaluated that again
seven domain independent sentiment detection techniques
(e.g., NLTK, SentiStrength). Calefato et al. [18]
developed another SE domain-specific tool Senti4SD and
compared its performance against SentiStrength and

VOLUME 12, 2024 109729

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

SentiStrength-SE. Later, Chen et al. [81] introduced
the tool SEntiMoji and compared the performance of
it against Senti4SD, SentiCR, SentiStrength-SE.
Their experimental results showed that SEntiMoji
significantly outperformed the existing SA tools in SE.

C. BENCHMARKING SE DOMAIN-SPECIFIC SA TOOLS
Islam and Zibran [82] presented the first benchmarking
study by evaluating three SE domain-specific SA tools,
i.e.,EmoTxt [10],Senti4SD, andSentiStrength-SE.
Their study found that the individual tools exhibited their best
performance on the dataset they were originally tested at the
time of their release. Subsequently, Novielli et al. [8] com-
pared four tools, i.e., Senti4SD, SentiStrength-SE,
SentiCR, and SentiStrength on four SE domain-
specific datasets. They found that Senti4SD achieved the
highest macro-averaged F1-score for the Stack Overflow
dataset, while SentiCR was the highest for the other three
datasets.

D. COMPARING PLMs AGAINST EXISTING SA TOOLS
Zhang et al. [26] investigated the performance of four PLMs,
namely BERT, RoBERTa, XLNet, and ALBERT, against
five non-PLM tools that include three SE domain-specific
tools - Senti4SD, SentiStrength-SE, and SentiCR,
and two general-purpose tools - Stanford CoreNLP, and
SentiStrength. Their experimental results showed that
the best-performing PLM outperformed the best-performing
non-PLM tool by 6.5% to 35.6% in the macro and
micro-averaged F1 scores.

In the second study, Zhang et al. [84] compared the per-
formance of the aforementioned PLMs and DistilBERT
against Llama 2-Chat [85], Vicuna [86], and
WizardLM [87] what they termed as big large language
models (bLLMs). They found that with limited labeled data
and pronounced class imbalance, prompting bLLMs is a
more effective strategy, outperforming fine-tuning TPLMs.
However, our study finds in RQ1 that FPLMs can perform
better than the GPT-based tools (bLLMs in our study) and
TPLMs in a dataset with limited label data with class
imbalance. We find this result due to our diverse selection
of models, which includes TPLMs, FPLMs, and bLLMs.

In another study, Uddin et al. [83] developed an ensemble
tool called Sentisead where five stand-alone rule-based
and shallow learning SE-specific tools’ (such as Senti4SD,
SentiCR, SentistrengthSE, Opiner, and POME)
predictions are passed to RoBERTa with the Bag of Words
(BoW) features to get the final prediction of each provided
text. They found only a 0.5% increase over a stand-
alone RoBERTa model over six domain-specific datasets.
However, this study, being heavily focused on overall results
across all six datasets, did not analyze the impacts of a dataset
size and class imbalance on the performance of a model.
Thus, unlike our study, this study could not guide what type

of model should be chosen based on the dataset size and
proportion of samples in each sentient label.
Delta Between the Study of Our Work and the Stud-

ies of Zhang et al. and Uddin et al.: As the studies
by Zhang et al. [26], [84] and Uddin et al. [83] are closely
related to our study, we provide the comparison between
these three studies in Table 16 in model selection, robust
experiment design, statistical analysis, and error analysis.

In our study, the selection of the models and tools are
more diverse than the other three studies. For example,
for the first time, we empirically evaluate the recent
advanced techniques, GPT-4, GPT-3.5, and FPLMs with
GPT3.5F to assess their effectiveness for SA in SE against
four domain-independent and two domain-specific TPLMs.
Further, we employ a semi-supervised fine-tuning technique,
namely self-training, to fine-tune the ZPLMs without any
labeled data. Moreover, we conduct an in-depth qualitative
error analysis with the support of an XAI technique, namely
SHAP, to find the areas needing improvement for SA in
SE. Finally, from our in-depth quantitative and qualitative
analyses, we have outlined the lessons learned and derived
a guideline to select the suitable tool based on different
scenarios for SA in SE, which are more accurate than the
other studies.

VIII. THREAT TO VALIDITY
A. CONSTRUCT VALIDITY
We use three metrics: precision, recall, F1-score, and their
macro averages to evaluate the classification performances
of the PLMs. All those metrics have been commonly used in
similar studies in SE [8], [9], [19], [26], [80], [81].

The categorizations of the selected PLMs into TPLM,
FPLM, and ZPLM can be criticized. Note that those
categories are defined and used by the machine learning
community and the developers of the PLMs4,5. In addition,
BERT and RoBERTa are categorized as fine-tuned models
(similar to our TPLM) and GPT 3.5 and GPT 4 as
zero-shot model elsewhere [88]. In our study, GPT-3.5 and
GPT-4 are used as zero-shot models. Later, we have fine-
tuned the GPT-3.5 with the few-shot technique and named
as GPT-3.5F. In addition, the category fine-tuned ZPLM
can be questioned as the base ZPLMs are fine-tuned with
training data. However, unlike the fine-tuning process of
TPLM and FPLM, no label data is required to fine-tune the
base ZPLM. Thus, those fine-tuned ZPLMs are considered
zero-shot PLMs in our study.

B. INTERNAL VALIDITY
The threats to internal validity revolve around internal factors,
particularly concerning hyperparameters utilized to fine-tune
the PLMs on SA datasets. The hyperparameters, such as
the learning rate, number of epochs, and batch size, have

4https://huggingface.co/models?pipeline_tag=zero-shot-
classification&sort=trending

5https://huggingface.co/SetFit

109730 VOLUME 12, 2024

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

TABLE 16. Delta between our study and the studies of Zhang et al. and Uddin et al.

the potential to impact model performance, although the
values employed in this study align with those commonly
used in other studies [26]. The reason why we have not
used a validation set in our experiment is that the sizes
of the several datasets are so small that separating them
into three sets would negatively affect the training and
testing phases, especially for the small datasets. For example,
the sizes of the datasets (except GitHub Pull Request
and Commit Comments and API Reviews Comments) are
between 341 to 1,600, and splitting them to 60% training,
20% validation, and 20% testing would leave a few samples
for training that could cause underfitting. Although we could
use validation sets for the larger datasets, that would result
in an unfair comparison of the tools’ performance in smaller
and larger datasets. We used the hyperparameter settings that
are recommended/used popularly elsewhere [26]. Like our
study, many scientific articles on machine learning and deep
learning used recommended hyperparameter settings and did
not use any validation sets [18], [26], [88], [89], [90], [91] to
conduct their experiments.

However, uncontrolled variations might still exist stem-
ming from hyperparameters. To address potential variations
caused by shuffling training data and stochastic elements
within the optimization algorithm,we used a specific strategy.
Initially, we partitioned each dataset into ten folds, with
each fold comprising 80% training data and 20% test data.
Subsequently, these ten folds were individually employed
to train and test each PLM belonging to both the TPLM
and ZPLM categories. This method allowed us to maintain
consistency in the training and evaluation processes across
different models and datasets, reducing the impact of
randomness.

The prompts and the default temperatures used to measure
the performances of the GPT models can impact their
performances. Given the straightforward nature of sentiment
detection, our objective was to formulate a simple prompt
that includes the dataset name with the task description
and the format of outputs. In the used prompt, the names
of the datasets, such as Mobile App Review Comments
and JIRA issue comments, provide useful information
about the source of the dataset. Moreover, it includes
both the task description (You classify the sentiment) and

output format (sentiment_types, i.e., positive, negative, and
neutral). Despite the provided format of the output, the GPT
models were explaining their classification results. Such an
explanation came with a variable number of sentences and
made it harder to parse the assigned sentiment categories.
After adding the instruction ‘‘No explanation is needed for
the output’’, it stopped adding any explanation. The inclusion
of the dataset name and adding instructions not to explain the
output in the prompt are also used elsewhere [88].

C. EXTERNAL VALIDITY
Threats to external validity are related to the generalizability
of the research and experiments. The benchmark datasets
were collected from widely-used software development
platforms - Stack Overflow for technical Q&A, Jira for
issue tracking, and GitHub for collaborative coding with
version control. Each platform represents a different common
task in the software development workflow. Moreover, given
the combined size and diversity of tasks represented in the
datasets, they represent real communication patterns among
software developers. Overall, the benchmark datasets can
reasonably represent how software developers communicate.
Moreover, to compute the performances of the PLMs,
we have applied cross-validation that ensures more diverse
data is included in the performance computation process.
We have measured the performances of the PLMs on unified
data to test the generalizability of the models. Such designs
in the experiments reduce the threat of external validity.

D. RELIABILITY
The datasets used in this study are publicly available.
Moreover, all the PLMs except the GPT and the state-of-
the-art tools are freely available. To ensure reproducibility,
this study’s experimental settings and scripts have been made
publicly available [34]. Therefore, it should be possible to
replicate this study.

IX. CONCLUSION
This study presents the most comprehensive examinations
to date on the use of Pretrained Language Models (PLMs)
for sentiment analysis in software engineering. By rigorously
analyzing the performance of Zero-shot, Few-shot, and

VOLUME 12, 2024 109731

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

Fine-tuned Transformer models across six diverse datasets,
this work significantly advances our understanding of the
strengths and limitations of these techniques.

The results demonstrate that the choice of optimal PLM
depends on key dataset characteristics. Fine-tuned general-
purpose models, such as seBERT and RoBERTa excel
when trained on large, balanced datasets. In contrast, few-
shot models, such as All-DistilRoBERTa are better
suited for smaller datasets where they can effectively learn
from limited examples. Notably, few-shot PLMs achieve
competitive results even on larger datasets, highlighting their
versatility.

Complementing the quantitative evaluation, a qualitative
error analysis using the SHAP technique uncovers areas
for further improvement in sentiment analysis for software
engineering. The lessons derived from this study, such as the
importance of dataset size, label distribution, and the role of
explainable AI techniques, provide valuable insights to guide
future research endeavors.

In summary, this work makes significant strides in
harnessing the power of advanced language models for
sentiment analysis in the software engineering domain. The
comprehensive quantitative and qualitative findings, along
with the empirically derived guidelines for model selection,
serve as a foundation for researchers and practitioners
to effectively leverage these techniques and drive further
advancements in this field. In the future, we plan to expand
our experiment with open-source large language models,
such as Llama-2 and Vicunia.

REFERENCES
[1] D. Graziotin, X. Wang, and P. Abrahamsson, ‘‘Are happy developers

more productive? The correlation of affective states of software developers
and their self-assessed productivity,’’ in Proc. Int. Conf. Product-Focused
Softw. Process Improvement, 2013, pp. 50–64.

[2] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M.Marchesi, and R. Tonelli,
‘‘Are bullies more productive? Empirical study of affectiveness vs.
Issue fixing time,’’ in Proc. IEEE/ACM 12th Work. Conf. Mining Softw.
Repositories, May 2015, pp. 303–313.

[3] T. Lesiuk, ‘‘The effect of music listening on work performance,’’ Psychol.
Music, vol. 33, no. 2, pp. 173–191, Apr. 2005.

[4] M.Mantyla, B. Adams, G. Destefanis, D. Graziotin, andM. Ortu, ‘‘Mining
Valence, Arousal, and Dominance–possibilities for detecting burnout
and productivity?’’ in Proc. IEEE/ACM 13th Work. Conf. Mining Softw.
Repositories (MSR), May 2016, pp. 247–258.

[5] N. Cassee, F. Zampetti, N. Novielli, A. Serebrenik, andM. Di Penta, ‘‘Self-
admitted technical debt and comments’ polarity: An empirical study,’’
Empirical Softw. Eng., vol. 27, no. 6, pp. 1–20, Nov. 2022.

[6] E. Guzman, D. Azócar, and Y. Li, ‘‘Sentiment analysis of commit
comments in GitHub: An empirical study,’’ in Proc. 11th Work. Conf.
Mining Softw. Repositories, May 2014, pp. 352–355.

[7] M. R. Islam and M. F. Zibran, ‘‘Towards understanding and exploiting
developers’ emotional variations in software engineering,’’ in Proc. IEEE
14th Int. Conf. Softw. Eng. Res., Manage. Appl. (SERA), Jun. 2016,
pp. 185–192.

[8] N. Novielli, D. Girardi, and F. Lanubile, ‘‘A benchmark study on sentiment
analysis for software engineering research,’’ in Proc. IEEE/ACM 15th Int.
Conf. Mining Softw. Repositories (MSR), May 2018, pp. 364–375.

[9] N. Novielli, F. Calefato, D. Dongiovanni, D. Girardi, and F. Lanubile, ‘‘Can
we use SE-specific sentiment analysis tools in a cross-platform setting?’’
in Proc. IEEE/ACM 17th Int. Conf. Mining Softw. Repositories (MSR),
May 2020, pp. 158–168.

[10] F. Calefato, F. Lanubile, and N. Novielli, ‘‘EmoTxt: A toolkit for emotion
recognition from text,’’ in Proc. 7th Int. Conf. Affect. Comput. Intell.
Interact. Workshops Demos (ACIIW), Oct. 2017, pp. 79–80.

[11] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto,
‘‘Sentiment analysis for software engineering: How far can we go?’’
in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng. (ICSE), May 2018,
pp. 94–104.

[12] B. Lin, N. Cassee, A. Serebrenik, G. Bavota, N. Novielli, and M. Lanza,
‘‘Opinion mining for software development: A systematic literature
review,’’ ACM Trans. Softw. Eng. Methodol., vol. 31, no. 3, pp. 1–41,
Jul. 2022.

[13] N. Novielli, F. Calefato, F. Lanubile, and A. Serebrenik, ‘‘Assessment of
off-the-shelf SE-specific sentiment analysis tools: An extended replication
study,’’ Empirical Softw. Eng., vol. 26, no. 4, pp. 1–28, Jul. 2021.

[14] P. Tourani, Y. Jiang, and B. Adams, ‘‘Monitoring sentiment in open source
mailing lists: Exploratory study on the apache ecosystem,’’ in Proc. 24th
Annu. Int. Conf. Comput. Sci. Softw. Eng., 2014, pp. 34–44.

[15] M. Thelwall, K. Buckley, and G. Paltoglou, ‘‘Sentiment strength detection
for the social Web,’’ J. Amer. Soc. Inf. Sci. Technol., vol. 63, no. 1,
pp. 163–173, Jan. 2012.

[16] M. R. Islam and M. F. Zibran, ‘‘SentiStrength-SE: Exploiting domain
specificity for improved sentiment analysis in software engineering text,’’
J. Syst. Softw., vol. 145, pp. 125–146, Nov. 2018.

[17] R. Jongeling, S. Datta, and A. Serebrenik, ‘‘Choosing your weapons: On
sentiment analysis tools for software engineering research,’’ in Proc. IEEE
Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2015, pp. 531–535.

[18] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, ‘‘Sentiment polarity
detection for software development,’’ Empirical Softw. Eng., vol. 23, no. 3,
pp. 1352–1382, Jun. 2018.

[19] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, ‘‘SentiCR: A cus-
tomized sentiment analysis tool for code review interactions,’’ in Proc.
32nd IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Oct. 2017,
pp. 106–111.

[20] J. Devlin, M. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
North Amer. Chapter Assoc. Comput. Linguistics, 2019, pp. 4171–4186.

[21] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘Roberta: A robustly optimized BERT
pretraining approach,’’ 2019, arXiv:1907.11692.

[22] S. Zhou, B. Shen, and H. Zhong, ‘‘Lancer: Your code tell me what you
need,’’ in Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Nov. 2019, pp. 1202–1205.

[23] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, ‘‘Order matters:
Semantic-aware neural networks for binary code similarity detection,’’
Proc. AAAI Conf. Artif. Intell., vol. 34, no. 1, pp. 1145–1152, Apr. 2020.

[24] S. Das, N. Deb, A. Cortesi, and N. Chaki, ‘‘Zero-shot learning for named
entity recognition in software specification documents,’’ in Proc. IEEE
31st Int. Requirements Eng. Conf. (RE), Sep. 2023, pp. 100–110.

[25] G. Colavito, F. Lanubile, and N. Novielli, ‘‘Few-shot learning for issue
report classification,’’ in Proc. IEEE/ACM 2nd Int. Workshop Natural
Language-Based Softw. Eng. (NLBSE), May 2023, pp. 16–19.

[26] T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang, ‘‘Sentiment
analysis for software engineering: How far can pre-trained transformer
models go?’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME),
Sep. 2020, pp. 70–80.

[27] P.-H. Chi, P.-H. Chung, T.-H. Wu, C.-C. Hsieh, Y.-H. Chen, S.-W. Li, and
H.-Y. Lee, ‘‘Audio AlBERT: A lite BERT for self-supervised learning of
audio representation,’’ in Proc. IEEE Spoken Lang. Technol. Workshop
(SLT), Jan. 2021, pp. 1–24.

[28] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. Le,
‘‘XLNet: Generalized autoregressive pretraining for language understand-
ing,’’ in Proc. Neural Inf. Process. Syst., 2019, pp. 5753–5763.

[29] T. Brown et al., ‘‘Language models are few-shot learners,’’ in Proc. Neural
Inf. Process. Syst., vol. 33, 2020, pp. 1877–1901.

[30] J. Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, Z. Zhou,
C. Gong, Y. Shen, J. Zhou, S. Chen, T. Gui, Q. Zhang, and X. Huang,
‘‘A comprehensive capability analysis of GPT-3 and GPT-3.5 series
models,’’ 2023, arXiv:2303.10420.

[31] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, ‘‘Zero-shot learning—A
comprehensive evaluation of the good, the bad and the ugly,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 9, pp. 2251–2265, Sep. 2019.

109732 VOLUME 12, 2024

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

[32] J. Snell, K. Swersky, and R. Zemel, ‘‘Prototypical networks for few-
shot learning,’’ in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4080–4090.

[33] S. M. Lundberg and S.-I. Lee, ‘‘A unified approach to interpreting model
predictions,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4768–4777.

[34] (2024). Replication Package. [Online]. Available:
https://figshare.com/s/f755c96cf9ddca724188

[35] T. Zhang, C. Xia, C.-T. Lu, and P. Yu, ‘‘MZET: Memory augmented zero-
shot fine-grained named entity typing,’’ in Proc. 28th Int. Conf. Comput.
Linguistics, 2020, pp. 171–180.

[36] O. Levy, M. Seo, E. Choi, and L. Zettlemoyer, ‘‘Zero-shot relation
extraction via reading comprehension,’’ 2017, arXiv:1706.04115.

[37] P. Kumar Pushp and M. Mayank Srivastava, ‘‘Train once, test anywhere:
Zero-shot learning for text classification,’’ 2017, arXiv:1712.05972.

[38] S. Kumar and P. Talukdar, ‘‘NILE: Natural language inference with faithful
natural language explanations,’’ in Proc. 58th Annu. Meeting Assoc.
Comput. Linguistics, 2020, pp. 9560–9572.

[39] A. Williams, N. Nangia, and S. Bowman, ‘‘A broad-coverage challenge
corpus for sentence understanding through inference,’’ inProc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., 2018,
pp. 1112–1122.

[40] N. Reimers and I. Gurevych, ‘‘Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,’’ in Proc. Conf. Empirical Methods
Natural Language Process. 9th Int. Joint Conf. Natural Lang. Process.
(EMNLP-IJCNLP), 2019, pp. 3982–3992.

[41] (2023). The SBERT Framework. [Online]. Available: https://sbert.net/
[42] F. Feng, Y. Yang, D. Cer, N. Arivazhagan, and W. Wang, ‘‘Language-

agnostic BERT sentence embedding,’’ in Proc. 60th Annu. Meeting Assoc.
Comput. Linguistics, 2022, pp. 878–891.

[43] K. Song, X. Tan, T. Qin, J. Lu, and T. Liu, ‘‘MpNET:Masked and permuted
pre-training for language understanding,’’ in Proc. NIPS, Apr. 2020,
pp. 16857–16867.

[44] (2023). All-MPNET-Base. [Online]. Available: https://huggingface.
co/sentence-transformers/all-mpnet-base-v2

[45] L. Tunstall, N. Reimers, U. Jo, L. Bates, D. Korat, M. Wasserblat,
and O. Pereg, ‘‘Efficient few-shot learning with sentence transformers,’’
in Proc. Int. Conf. Empirical Methods Natural Lang. Process., 2022,
pp. 4527–4540.

[46] Y. Xian, S. Sharma, B. Schiele, and Z. Akata, ‘‘F-VAEGAN-D2: A feature
generating framework for any-shot learning,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10267–10276.

[47] B. Romera-Paredes and P. Torr, ‘‘An embarrassingly simple approach
to zero-shot learning,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 2152–2161.

[48] (2023). Bart Large MNLI. [Online]. Available: https://huggingface.
co/facebook/bart-large-mnli

[49] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, ‘‘BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,’’ in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics,
2020, pp. 7871–7880.

[50] (2023). RoBERTa Large MNLI. [Online]. Available:
https://huggingface.co/FacebookAI/roberta-large-mnli

[51] (2023). Deberta-Large-MNLI-Zero Cls. [Online]. Available:
https://huggingface.co/Narsil/deberta-large-mnli-zero-cls

[52] P. He, X. Liu, J. Gao, and W. Chen, ‘‘Deberta: Decoding-enhanced BERT
with disentangled attention,’’ in Proc. Int. Conf. Learn. Represent., 2021,
pp. 1–20.

[53] (2024). GPT-4. [Online]. Available: https://platform.openai.com/docs/
models/gpt-4-turbo-and-gpt-4

[54] (2023). Text Davinci 003. [Online]. Available:
https://community.openai.com/t/text-davinci-003-deprecated/582617

[55] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and
J. Steinhardt, ‘‘Measuring massive multitask language understanding,’’
2021, arXiv:2009.03300.

[56] W.Wang, F.Wei, L. Dong, H. Bao, N. Yang, andM. Zhou, ‘‘MiniLM:Deep
self-attention distillation for task-agnostic compression of pre-trained
transformers,’’ 2020, arXiv:2002.10957.

[57] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, ‘‘A simple framework
for contrastive learning of visual representations,’’ in Proc. 37th Int. Conf.
Mach. Learn., vol. 119, 2020, pp. 1597–1607.

[58] (2023). All Distilroberta V1. [Online]. Available:
https://huggingface.co/sentence-transformers/all-distilroberta-v1

[59] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘DistilBERT, a
distilled version of BERT: Smaller, faster, cheaper and lighter,’’ 2019,
arXiv:1910.01108.

[60] K. Heffernan, O. Çelebi, and H. Schwenk, ‘‘Bitext mining using distilled
sentence representations for low-resource languages,’’ in Proc. Findings
Assoc. Comput. Linguistics, EMNLP, 2022, pp. 2101–2112.

[61] T. Pires, E. Schlinger, and D. Garrette, ‘‘How multilingual is multilingual
BERT?’’ in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics, 2019,
pp. 4996–5001.

[62] J. von der Mosel, A. Trautsch, and S. Herbold, ‘‘On the validity
of pre-trained transformers for natural language processing in the
software engineering domain,’’ IEEE Trans. Softw. Eng., vol. 49, no. 4,
pp. 1487–1507, Apr. 2023.

[63] E. Maria De Bortoli Fávero and D. Casanova, ‘‘BERT_SE: A pre-
trained language representation model for software engineering,’’ 2021,
arXiv:2112.00699.

[64] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, ‘‘Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,’’ 2020, arXiv:1910.13461.

[65] (2024). GPT-3.5. [Online]. Available: https://platform.
openai.com/docs/models/gpt-4-turbo-and-gpt-41

[66] (2024). All-MiniLM-L6-v2. [Online]. Available: https://huggingface.
co/sentence-transformers/all-MiniLM-L6-v2

[67] G. Uddin and F. Khomh, ‘‘Automatic mining of opinions expressed
about APIS in stack overflow,’’ IEEE Trans. Softw. Eng., vol. 47, no. 3,
pp. 522–559, Mar. 2021.

[68] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta, ‘‘Release
planning of mobile apps based on user reviews,’’ in Proc. IEEE/ACM 38th
Int. Conf. Softw. Eng. (ICSE), May 2016, pp. 14–24.

[69] M. Ortu, A. Murgia, G. Destefanis, P. Tourani, R. Tonelli, M. Marchesi,
and B. Adams, ‘‘The emotional side of software developers in JIRA,’’
in Proc. IEEE/ACM 13th Work. Conf. Mining Softw. Repositories (MSR),
May 2016, pp. 480–483.

[70] D.-C. Li, Y.-H. Fang, and Y. M. F. Fang, ‘‘The data complexity index
to construct an efficient cross-validation method,’’ Decis. Support Syst.,
vol. 50, no. 1, pp. 93–102, Dec. 2010.

[71] (2024). StratifiedShuffleSplit. [Online]. Available: hhttps://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.
StratifiedShuffleSplit.html

[72] A. Gera, A. Halfon, E. Shnarch, Y. Perlitz, L. Ein-Dor, and N. Slonim,
‘‘Zero-shot text classification with self-training,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process., 2022, pp. 1107–1119.

[73] T. G. Dietterich, ‘‘Approximate statistical tests for comparing supervised
classification learning algorithms,’’ Neural Comput., vol. 10, no. 7,
pp. 1895–1923, Oct. 1998.

[74] S. Mishra and P. Chatterjee, ‘‘Exploring ChatGPT for toxicity detection in
GitHub,’’ inProc. ACM/IEEE 44th Int. Conf. Softw. Eng. New Ideas Emerg.
Results, Apr. 2024, pp. 6–10.

[75] P. Delobelle and B. Berendt, ‘‘Time to take emoji seriously: They vastly
improve casual conversational models,’’ 2019, arXiv:1910.13793.

[76] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, ‘‘On negative results
when using sentiment analysis tools for software engineering research,’’
Empirical Softw. Eng., vol. 22, no. 5, pp. 2543–2584, Oct. 2017.

[77] (2023). NLTK. [Online]. Available: http://www.nltk.org/api/nltk.
sentiment.html

[78] (2023). StanfordCoreNLP. [Online]. Available: https://github.
com/stanfordnlp

[79] (2023). Alchemy. [Online]. Available: https://docs.
alchemy.com/reference/api-overview

[80] M. R. Islam and M. F. Zibran, ‘‘Leveraging automated sentiment analysis
in software engineering,’’ inProc. IEEE/ACM14th Int. Conf.Mining Softw.
Repositories (MSR), May 2017, pp. 203–214.

[81] Z. Chen, Y. Cao, X. Lu, Q. Mei, and X. Liu, ‘‘SEntiMoji: An
emoji-powered learning approach for sentiment analysis in software
engineering,’’ in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., Aug. 2019, pp. 841–852.

[82] M. R. Islam and M. F. Zibran, ‘‘A comparison of software engineering
domain specific sentiment analysis tools,’’ in Proc. IEEE 25th Int. Conf.
Softw. Anal., Evol. Reengineering (SANER), Mar. 2018, pp. 487–491.

VOLUME 12, 2024 109733

M. Shafikuzzaman et al.: Empirical Evaluation of the Zero-Shot, Few-Shot, and TFT Based PLMs

[83] G. Uddin, Y.-G. Guéhénuc, F. Khomh, and C. K. Roy, ‘‘An empirical study
of the effectiveness of an ensemble of stand-alone sentiment detection tools
for software engineering datasets,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 31, no. 3, pp. 1–38, Jul. 2022.

[84] T. Zhang, I. Clairine Irsan, F. Thung, and D. Lo, ‘‘Revisiting sentiment
analysis for software engineering in the era of large language models,’’
2023, arXiv:2310.11113.

[85] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, and D. Jiang,
‘‘WizardLM: Empowering large language models to follow complex
instructions,’’ 2023, arXiv:2304.12244.

[86] (2023). Vicuna. [Online]. Available: https://lmsys.org/blog/2023-03-30-
vicuna/

[87] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, and
D. Jiang, ‘‘Wizardlm: Empowering large language models to follow
complex instructions,’’ 2023, arXiv:2304.122441.

[88] M. Mohammad Imran, P. Chatterjee, and K. Damevski, ‘‘Uncovering the
causes of emotions in software developer communication using zero-shot
LLMs,’’ in Proc. IEEE/ACM 46th Int. Conf. Softw. Eng. (ICSE), Apr. 2024,
pp. 2244–2256.

[89] E. Biswas, M. E. Karabulut, L. Pollock, and K. Vijay-Shanker, ‘‘Achieving
reliable sentiment analysis in the software engineering domain using
BERT,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME),
Sep. 2020, pp. 162–173.

[90] Y. Chae and T. Davidson, ‘‘Large language models for text classification:
From zero-shot learning to fine-tuning,’’Open Sci. Found., vol. 1, pp. 1–15,
Oct. 2023.

[91] M.M. Imran, Y. Jain, P. Chatterjee, and K. Damevski, ‘‘Data augmentation
for improving emotion recognition in software engineering communi-
cation,’’ in Proc. 37th IEEE/ACM Int. Conf. Automated Softw. Eng.,
Oct. 2022, pp. 1–13.

[92] (2024). Fine-Tuning GPT Models. [Online]. Available: https://platform.
openai.com/docs/guides/fine-tuning

MD SHAFIKUZZAMAN received the B.S.
degree in computer science and engineering from
Chittagong University of Science and Technology,
Chattogram, Bangladesh, in 2015. He is currently
pursuing the M.S. degree in computer science
with Lamar University, Beaumont, TX, USA. His
research interests include software engineering,
software security, big data, cloud computing, the
IoT, cyber security, and machine learning.

MD RAKIBUL ISLAM received the Ph.D. degree
from The University of New Orleans, LA, USA,
in 2020. He is currently an Assistant Professor
with the Computer Science Department, Lamar
University, Beaumont, TX, USA. His research
interests include human-aspects in software engi-
neering, software security, source code analysis,
and natural language processing.

ALEX C. ROLLI is currently pursuing the B.S.
degree in computer science with the University
of Wisconsin–Eau Claire, WI, USA. She is
also a Technical Assistant Intern with Jamf and
a Research Assistant Intern with the AI and
Bioinformatics Department, Mayo Clinic. Her
research interests include software engineering,
bioinformatics, and machine learning.

SHARMIN AKHTER received the B.S. degree
in electrical and electronic engineering from
the University of Information Technology and
Sciences (UITS), Dhaka, Bangladesh. She is
currently pursuing the M.S. degree in computer
science with Lamar University, TX, USA. Her
research interests include software engineering,
software security, data science, cloud computing,
and machine learning.

NAEEM (JIM) SELIYA received the M.S. degree
in computer science and the Ph.D. degree in
computer engineering from Florida Atlantic Uni-
versity, Boca Raton, FL, USA. He is an Assistant
Professor of computer science with the University
of Wisconsin–Eau Claire, WI, USA. His research
interests include artificial intelligence, machine
learning, deep learning, social media analytics,
software engineering, cyber security, healthcare
data analytics, and computing sciences education.

109734 VOLUME 12, 2024

