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ABSTRACT Data sources are the raw information that is required for analysis and modeling in data
sciences. They assist data scientists in making proper conclusions, proving hypotheses, and making rational
decisions. It is always preferable if analytical results can be obtained from multiple reliable sources. Thus,
it is essential to assess such data sources in data sciences about various critical characteristics and factors.
Nevertheless, the application of all-inclusivemulti-attribute decision-makingmethodologies for the selection
of data sources for integration has not received adequate attention in the existing literature and research.
Thus, this article explains a new multi-attribute decision-making method through the model of the complex
hesitant fuzzy rough set, which is the complex hesitant fuzzy rough multi-attribute decision-making method.
This methodology would handle the evaluated values of attributes that have uncertainty, hesitancy, and
roughness altogether. Besides, this study introduces several properties of complex hesitant fuzzy rough
sets and develops several aggregation operators in the framework of complex hesitant fuzzy rough set and
their properties. Subsequently, a case study of data source selection in data science is explained to explain
the relevance of the developed multi-attribute decision-making framework in data sciences. Finally, the
comparison of the devised theory with prevailing theories is interpreted.

INDEX TERMS Data sciences, data source, complex hesitant fuzzy set, multi-attribute decision-making
methodology.

I. INTRODUCTION
Data integration is also a significant process in data science
since it determines the quality and accuracy of analytics
results. It is crucial to select the proper data source for
the integration; These sources can be raw data from social
media or IoT devices, and organized databases from various
industries. In the integration procedure, every source has its
potential and threats that are unlike the other sources. Because
they are a form of SQL-based question languages, conven-
tional knowledge assets which include relational databases
and spreadsheets are frequently easier to merge while there
are large datasets or data from a couple of assets disparate
values are integrating them is challenging. In such cases, the
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data pretreatment and normalization strategies are crucial to
maintain uniformity and precision in the consolidated dataset.
It is not uncommon to encounter barriers to unstructured or
semi-established data assets, which are text, pictures, and
video. These sources uncover other superior methods such as
sign processing, picture processing, and language processing.
Moreover, the absence of a default schema for unstruc-
tured records assets often poses challenges to integration and
requires additional measures for data transformation and data
cleaning.

External data sources alongside open datasets or
third-party APIs may be hard to incorporate. Even though
these websites are considered to be records, there can be
limitations to access, poor quality data, and untrustworthy.
To make sure that outside records are suitable for eval-
uation and to reduce the possibility of bias or mistakes,
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strict procedures of validation and integrity need to be
followed in its integration. In recent years, there has also
been an increased use of warehouses To ensure data quality
and uniformity in such environments, records integration
often includes information feed pipelines, data cleansing
methods, and data management procedures. The theoretical
perspective of data integration was studied by Lenzerini [1].
The teenage years of data integration were investigated by
Halevy et al. [2]. In 2009, Dong et al. [3] analyzed the uncer-
tainty and ambiguity of data integration. Voukelatou et al. [4]
discussed the objective measuring and well-being of sub-
jective related data sources and Haas et al. [5] analyzed a
system for data integrated within data sources. The chal-
lenges and issues in biological data sources were devised by
Davidson et al. [6]. Zipkin et al. [7] addressed issues related
to data integration.

A mathematical assembly that goes beyond the traditional
concept of a set is referred to as a fuzzy set (FS). A detail
in classical set idea is unambiguously either a factor of a
set or now not. Representing ambiguity or vagueness, but,
is probably useful whilst dealing with subjective or faulty
information. The solution to this issue is FS theory, invented
by Zadeh [8] in 1965. Elements aren’t actually in or out of
a set; rather, they could belong to a set to a point according
to FS’s idea. A detail’s degree of membership is indicated
through quite a number between 0 and 1, wherein zero
denotes the overall absence of membership inside the set,
1 denotes complete membership, and numbers in among
indicate exceptional degrees of partial membership. The core
idea of FS theory is the degree of membership. Every detail
in the commonplace set is given a membership value that
represents howmuch the detail belongs to the FS. This makes
it possible to describe obscure or nebulous thoughts, like
‘‘tall’’ or ‘‘hot,’’ in which membership is a continuum instead
of a binary categorization. Abdulghafour et al. [9] investi-
gated data integration based on fuzzy logic. The role of fuzzy
decision-making (DM) approaches in data integration was
devised by Wang et al. [10]. A modification of the FS con-
cept, a hesitant FS (HFS) [11] offers circumstances wherein
there could be doubt or reluctance concerning an element’s
membership in a set. Instead of genuinely one membership
value, an HFS assigns many membership values to signify
diverse feasible ranges of membership. HFSs are designed to
symbolize the uncertainty or reluctance that arises all through
DM processes when the element or object may be placed to
a set in various degrees of membership and may not have
a single, definitive value of membership. Decision-makers
are better capable of expressing their hesitancy or doubt as
a result. A complex fuzzy set (CFS) is the modification of
typical FS, first devised by Ramot et al. [12], where they
transformed the unit interval to a unit disc in a complex
plane. This structure is in the model of the polar form of
a complex number. After a few years, another model of
CFS was deduced by Tamir et al. [13] and that structure is
in the Cartesian framework of complex numbers and the
range is a unit square instead of a unit disc. Based on these

ideas, in 2021, Mahmood et al. [14] devised complex hes-
itant FS (CHFS) by considering the polar form of a CFS.
Luqman et al. [15] devised the theory of hypergraphs within
complex fuzzy information.

A. RESEARCH PROBLEM AND MOTIVATION
In today’s society, the importance of data as a source for inte-
gration in data sciences cannot be overstated. A significant
amount of diverse data has been produced via the digital-
ization of many areas of our lives, consisting of commercial
enterprise, healthcare, finance, and different fields. For data
scientists and analysts, this wealth of data is important
because it allows them to get important insights, make smart
judgments, and create predictive models. A complete knowl-
edge of complex events is made feasible by the integration of
data from numerous resources, which captures the linkages
and interdependencies among and inside distinct datasets.
Additionally, the incorporation of several data resources
improves the robustness and dependability of evaluation,
main to extra unique forecasts and useful outcomes. The
capacity to seamlessly integrate data from diverse resources
is critical for unleashing the whole ability of data sciences in
addressing actual global problems and fostering innovation,
in particular for companies seeking to benefit from a com-
petitive area and make records-pushed picks. Further, to offer
seamless collaboration and evaluation throughout numerous
data resources, the records integration marketplace plays a
critical role. The market’s growth indicates how important it
is to use unified data to make educated decisions and obtain a
competitive advantage in the contemporary digital landscape.
To achieve the intended result, the American English lan-
guage with its vocabulary and expressions should be utilized.
The market size of data integration from 2022 to 2032 is
devised in Figure 1.
That’s why these days, data integration is more impor-

tant than ever, therefore choosing the right data sources is
essential. Choosing a data source is a multi-attribute decision-
making(MADM) problem that involves various attributes.
Previous research has evaluated and chosen data sources
using various MADM methods. Unfortunately, none of
these methods take into account the hesitancy, ambiguity,
or roughness of evaluation values, which leads to imprecise
information and incomplete data. A MADM approach that
can take these considerations into account is therefore desper-
ately needed. As of right now, no mathematical framework or
tool exists in the literature that can describe roughness, hesi-
tation, and uncertainty all at once. For processing such data,
conventional models such as RS, FS, FRS, HFS, HFRS, CFS,
and the polar model of CHFS are inadequate. In this paper,
we suggest a solution to this problem by including uncer-
tainty, hesitation, and roughness in the MADM framework.

B. CONTRIBUTION
In light of the above research problem and motivation,
this article interprets a novel method of MADM for the
assessment and selection of data sources for integration in
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FIGURE 1. The market size of data integration.

data science. This MADM method deals with information
that is roughness, uncertainty, and hesitancy and extra fuzzy
information separately or simultaneously For this MADM
method, this article first explains a new mathematical model
complex hesitant fuzzy rough set (CHFRS) which is the
modification of rough set, fuzzy set, fuzzy rough set, hesitant
fuzzy set, hesitant fuzzy rough set, complex fuzzy set, and
polar form of complex hesitant fuzzy set and deal with uncer-
tainty, roughness and hesitancy and extra fuzzy information
at once. The main contributions of this article are interpreted
as follows

• To address the MADM dilemma of data source for
integration in data science.

• To interpret a novel mathematical model with the name
of CHFRS.

• To devise basic operational laws that complement,
union, and intersection for the newly devised CHFRS.

• To deduce algebraic operational laws and score and
accuracy function for CHFRS.

• To establish certain AOs along with their associated
properties within the structure of CHFRS to aggregate
complex hesitant fuzzy rough information.

• To illustrate a numerical example related to the data
source selection for integration in data science to reveal
the applicability of the proposed theory and MADM
method in data sciences.

• To compare the devised work with certain prevailing
theories to reveal the advantages and supremacy of the
initiated theory.

C. CORE NOVELTY
Based on the above contribution, we have the underlying core
novelty of this article.

• Construction of a novel mathematical structure
‘‘CHFRS’’ along with its basic operations.

• Construction of averaging and geometric AOs in the
framework of CHFRS.

• Construction of MADM method for coping with
MADM dilemma, particularly, the dilemma related to
data source selection in data sciences.

D. CONSTRUCTION OF ARTICLE
In section, II we discuss, MADM and fuzzy MADM tech-
niques. In section III, we state a problem that we need to
handle in this script. In section IV, we review some prevailing
concepts. In section V, we devise a novel concept of CHFRS
and for that, we deduce CHFS in Cartesian form and complex
hesitant fuzzy relation. We also analyze various operators
of CHFS and CHFRS in section V. Further, in section V,
we anticipate average/geometric AOs within the structure
of CHFRS. In section VI, we anticipate an approach of
MADM within CHFRS by utilizing the invented AOs and
solving the considered problem in this section. Section VII
contains the comparative analysis and section VIII contains
the concluding remarks of this article.

II. LITERATURE REVIEW
Here, we discuss MADM and fuzzy MADM techniques.

A. MADM METHOD
MADM is a systematic procedure of evaluating and ranking
the options with the help of many attributes or qualities.
It is applied in many fields such as environmental science,
business, engineering, and economics to decide on problems
with multiple objectives or criteria. MADM methods help
decision-makers to make quantitative assessments on options
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by attributes, which makes more objective and informed
decisions essential to MADM’s characteristic of providing
a systematic framework for decision-making when it should
take into consideration many factors. Such an environment
required a more sophisticated approach to decision-making
than the simple subjective evaluation or ranking of the
options. Decision-makers can use MADM methods to ana-
lyze numerous trait traits in the 19th century. For instance,
when choosing a supplier in the business world, the deci-
sion makers may be required to weigh such factors as price,
quality, delivery time, etc. By applying MADM techniques,
the decision-makers can evaluate the significance of each
factor and come up with methods of evaluating the efficiency
of the general board performance. Moreover, the weights
assigned to the available resources are also clear in the
MADM, which makes the decision-making process more
transparent and traceable Transparency has two advantages:
increased accountability and the internal reduction of bias or
influence of opinion. Thus, MADM methods can also assist
stakeholders with conflicting viewpoints and objectives to
find a common ground Since MADM methods enable the
comparison of various strategies and the evaluation of the
problem from various angles, it fosters stakeholder cooper-
ation and the establishment of shared goals and objectives.
An issue relying on the selection of MADM was devised
by Fishburn [16] and the theory of multi-attribute decision
was investigated by Roldan et al. [17]. Aruldoss et al. [18]
devised the MADM approach and its applications. For
data integration, the multi-criteria DM was analyzed by
Peng et al. [19].

B. FUZZY MADM METHOD
FuzzyMADM is a decision-making method that incorporates
fuzzy logic concepts into traditional MADM systems. When
making decisions involving multiple criteria or attributes,
each with different importance and ambiguity, this process
can be used Fuzzy logic effectively handles uncertainty and
uncertainty by membership maximum allowed, instead of
using absolute mathematical values to express preferences
and decision-makers, in a fuzzyMADM, decisionmakers can
use linguistic terms. This is especially helpful in real complex
situations when it may be difficult to quantify parameters
or uncertainty in the decision process Fuzzy MADM meth-
ods handle this uncertainty and accuracy through fuzzy sets
and fuzzy logic operations, providing decision-makers with
flexible and useful tools Able to represent and manage
existing ambiguities and uncertainties. Fuzzy MADM pro-
vides an approach to these challenges where decision-makers
in industries such as engineering, finance, environmental
management, and health are often confronted with multiple
mutually exclusive value counts and inaccuracies and draw
well-informed, uncertain conclusions. Furthermore, the use
of fuzzy MADM methods gives decision-makers the advan-
tage of including qualitative factors in decision-making that
traditional quantitative methods may miss Fuzzy MADM

methods make decisions more transparent and easier for
decision-makers allowing them to communicate their pri-
orities and research in natural language. Better stakeholder
contribution, larger acceptance of choices, and eventually
more successful strategy implementation can come from
this. In 1979, Efstathiou [20] devised MADM by employ-
ing the theory of FS in his doctoral dissertation. Chen and
Hwang [21] devised various fuzzy MADM approaches and
Tzeng and Huang [22] discussed various applications.

III. PROBLEM STATEMENT
In the field of data sciences, the relevance, completeness, and
accuracy of analyses and models depend on the choice of
the best data sources to integrate. When presented with sev-
eral possible data sources, each with different attributes, the
MADM dilemma occurs. The goal is to create a framework
for making decisions that efficiently assesses and ranks these
data sources according to their attributes, finally determining
the best combination that maximizes the integrated dataset’s
overall performance or utility for the intended analytical
or modeling uses. Choosing a reliable and well-informed
data source requires managing trade-offs between compet-
ing attributes, handling uncertainties, and taking stakeholder
preferences into account. In this problem, the attributes and
alternatives are described in Tables 1 and 2 respectively.

IV. PRELIMINARIES
Here, we revise the basic notion of HFS, CFS, and RS.

Tora [11] devised the notion of HFS, which is revealed as
follows
Definition 1 [11]: The HFS over Z is a mapping µTHFS :

Z → P [0, 1], where P [0, 1] is a power set of [0, 1].
After that, Alcantud and Torra [30] devised the theory of
uniform HFS as A uniform HFS over Z would be devised
as

THFS =
{
σ,
(
µTHFS−j (σ )

)
: σ ∈ Z, j = 1, 2, . . . , n

}
Noted that µTHFS (σ ) is a degree of membership of σ ∈ Z.
Definition 2 [13]: The CFS would be devised as

TCFS =

{
σ,
(
µR

TCFS
(σ ) + ιµI

TCFS
(σ )

)
: σ ∈ Z

}
Noted that µR

TCFS
(σ ) and µI

TCFS
(σ ) signifies the degrees of

membership and non-membership lie in a unit square of a
complex plane.

A relation EER ⊆ Z × Z is devised as an equivalence
relation if it is reflexive, symmetric, and transitive. An equiv-
alence class concerning α is devised as

[α] = {β ∈ Z : β is related to α}

Definition 3 [29]: Let EER ⊆ Z × Z is an equivalence
relation on Z. Then (Z,ECHFR) would develop an approxi-
mation space. A ∅ ̸= T⊂Z will be interpreted as definable
if T can be written in the union of a few equivalence classes
of Z. If this is not the case, then T will be interpreted as not
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TABLE 1. The attributes and their explanation.

definable. Then,T will be written in definable subsets devised
as lower and upper approximations.

ELER (T) =
{(

σ ∈ Z : [σ ]EER ⊆ A
)}

EUER (T) =
{(

T ∈ Z : [σ ]EER ∩ A ̸= ∅
)}

Then, the set
(
ELER (T) ,EUER (T)

)
would be devised as RS,

where ELER (T) ̸= EUER (T)

V. COMPLEX HESITANT FUZZY ROUGHS SET
Here, we devise a novel concept of CHFRS and for that,
we deduce CHFS in Cartesian form and complex hesitant
fuzzy relation. We also analyze various operators of CHFS

TABLE 2. The alternatives and their explanation.

and CHFRS. Further, here, we anticipate average/geometric
AOs within the structure of CHFRS. Z would be utilized as a
universal set.
Definition 4: The CHFS would be devised as

TCHFS =
{
σ,
(
µTCHFS (σ )

)
: σ ∈ Z

}
=

{
σ,
(
µR

TCHFS
(σ ) + ιµI

TCHFS
(σ )

)
: σ ∈ Z

}
Noted that, µTCHFS (σ ) = µR

TCHFS
(σ ) + ιµI

TCHFS
(σ )

is a set of values in a complex plane’s unit square
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that is µTCHFS (σ ) = µR
TCHFS

(σ ) + ιµI
TCHFS

(σ ) ={
µR

TCHFS−j
(σ ) + ιµI

TCHFS−j
(σ ) , j = 1, 2, 3, .., n

}
, identify-

ing the degree of membership of an element σ ∈ Z

and µR
TCHFS

(σ ) and µI
TCHFS

(σ ) are real and unreal parts
of the degrees of membership. TCHFS =

(
µTCHFS

)
=(

µR
TCHFS

+ ιµI
TCHFS

)
will be imagined as a CHF element

(CHFE).
Also, the CHFS can be devised as

T =
{
σ,
(
µTj (σ )

)
: σ ∈ Z, j = 1, 2, . . . , n

}
=

{
σ,
(
µR

Tj
(σ ) + ιµI

Tj
(σ )

)
: σ ∈ Z, j = 1, 2, . . . , n

}
Noted that, µTj (σ ) is a degree of belongingness which con-
tains real µR

Tj
(σ ) and unreal µI

Tj
(σ ) terms for every σ ∈ Z.

The µTj (σ ) is located in a complex plane’s unit disc that
is µTj : Z → [0, 1] + ι [0, 1]. The gathering of all
CHFS would be identified by CHF (Z). The second defini-
tion can also be stated as a complex uniform hesitant fuzzy
set.
Definition 5: Suppose TCHFS−1 =

(
µTCHFS−1

)
=(

µR
TCHFS−1

+ ιµI
TCHFS−1

)
, and TCHFS−2 =

(
µTCHFS−2

)
=(

µR
TCHFS−2

+ ιµI
TCHFS−2

)
be two CHFEs, then

1. The complement of TCHFS−1 is identified and deduced
as

(TCHFS−1)
c
=
(
µTCHFS−1

)c
=

 ⋃
y ∈ µCHFS−1

{(
1 − yR

)
+ ι

(
1 − yI

)}
2. The union of TCHFS−1 and TCHFS−2 is identified and

deduced as

TCHFS−1 ∪ TCHFS−2

=

 ⋃
y1∈µCHFS−1,y2∈µCHFS−2

 max
(
yR1 , yR2

)
+ιmax

(
yI1, y

I
2

)


3. The intersection of TCHFS−1 and TCHFS−2 is identified
and deduced as

TCHFS−1 ∩ TCHFS−2

=

 ⋃
y1∈µCHFS−1,y2∈µCHFS−2

 min
(
yR1 , yR2

)
+ιmin

(
yI1, y

I
2

)


Definition 6: A CHF subset of Z × Z would be deduced
as CHF relation (CHFR) ECHFR over Z. Mathematically,

ECHFR =
{(

(σ1, σ2) , µTCHFR (σ1, σ2)
)

: (σ1, σ2 ∈ Z × Z)
}

=

{(
(σ1, σ2) ,

(
µR

TCHFR
(σ1, σ2)+ιµI

TCHFR
(σ1, σ2)

))
: (σ1, σ2 ∈ Z × Z)}

Noted that µTCHFR (σ1, σ2) =

(
µR

TCHFR
(σ1, σ2) +

ιµI
TCHFR

(σ1, σ2)
)
is any subset of the complex plane’s unit

square which identifies the degree of belongingness of the
association between σ1 and σ2.
Definition 7: Suppose ECHFR is a CHFR over Z and

(Z,ECHFR) is a complex hesitant fuzzy approximation
space (CHFAS), then ∀ TCHFS ∈ CHF (Z), the lower and
upper approximation concerning (Z,ECHFR) is identified and
devised as

EL (TCHFS) =
{
σ,
(
µEL (TCHFS )

(σ )
)

: σ ∈ Z
}

EU (TCHFS) =
{
σ,
(
µEU (TCHFS )

(σ )
)

: σ ∈ Z
}

Which are CHFSs. Where,

µEL (TCHFS )
(σ ) = µR

EL (TCHFS )
(σ ) + ι µI

EL (TCHFS )
(σ )

=

∧
y ∈ Z

{(
µR
CHFR (σ, y)

)c
∨µR

CHFS (y)
}

+ ι
∧
y ∈ Z

{(
µI
CHFR (σ, y)

)c
∨µI

CHFS (y)
}

µEU (TCHFS )
(σ ) = µR

EU (TCHFS )
(σ ) + ι µI

EU (TCHFS )
(σ )

=

∨
y ∈ Z

{
µR
CHFR (σ, y) ∧µR

CHFS (y)
}

+ ι
∨
y ∈ Z

{
µI
CHFR (σ, y) ∧µI

CHFS (y)
}

If EL (TCHFS) ̸= EU (TCHFS), then the pair ECHFRS =(
EL (TCHFS) ,EU (TCHFS)

)
would devised as CHFRS con-

cerning (Z,ECHFR). For easiness, the complex hesitant
fuzzy rough element (CHFRE) would be identified as
ECHFRS =

(
EL (TCHFS) ,EU (TCHFS)

)
=
((
ELR + ιELI

)
,(

EUR + ιEUI
))
, where ELR =

∧
y ∈ Z

{(
µR
CHFR (σ, y)

)c
∨

µR
CHFS (y)

}
, ELI =

∧
y ∈ Z

{(
µI
CHFR (σ, y)

)c
∨µI

CHFS (y)
}
,

EUR =
∨

y ∈ Z

{
µR
CHFR (σ, y) ∧µR

CHFS (y)
}
, and EUI =∨

y ∈ Z

{
µI
CHFR (σ, y) ∧µI

CHFS (y)
}
.

Definition 8: The complement, union, and intersec-
tion among two CHFRE ECHFRS−1 =

(
EL1 (TCHFS) ,

EU1 (TCHFS)
)

=
((
ELR1 + ιELI1

)
,
(
EUR1 + ιEUI1

))
and

ECHFRS−2 =
(
EL2 (TCHFS) ,EU2 (TCHFS)

)
=
((
ELR2 + ιELI2

)
,(

EUR2 + ιEUI2

))
will be anticipated

as

1.

(ECHFRS−1)
c

=


(⋃

EL ∈ EL1 (TCHFS )

{ (
1 − ELR

)
+ι
(
1 − ELI

)}) ,(⋃
EU ∈ EU1 (TCHFS )

{ (
1 − EUR

)
+ι
(
1 − EUI

)})

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2.

ECHFRS−1 ∪ ECHFRS−2

=


⋃

EL1 ∈ EL1 (TCHFS ),EL2 ∈ EL2 (TCHFS )

 max
(
ELR1 ,ELR2

)
+ιmax

(
ELI1 ,ELI2

)

 ,

⋃
EU1 ∈ EU1 (TCHFS ),EU2 ∈ EU2 (TCHFS )

 max
(
EUR1 ,EUR2

)
+ιmax

(
EUI1 ,EUI2

)




3.

ECHFRS−1 ∩ ECHFRS−2

=


⋃

EL1 ∈ EL1 (TCHFS ),EL2 ∈ EL2 (TCHFS )

 min
(
ELR1 ,ELR2

)
+ιmin

(
ELI1 ,ELI2

)

 ,

⋃
EU1 ∈ EU1 (TCHFS ),EU2 ∈ EU2 (TCHFS )

 min
(
EUR1 ,EUR2

)
+ιmin

(
EUI1 ,EUI2

)




Definition 9: For two CHFREs ECHFRS−1 =(
EL1 (TCHFS) ,EU1 (TCHFS)

)
=
((
ELR1 +ιELI1

)
,
(
EUR1 +ιEUI1

))
and ECHFRS−2 =

(
EL2 (TCHFS) ,EU2 (TCHFS)

)
=((

ELR2 + ιELI2
)
,
(
EUR2 + ιEUI2

))
, with the operational laws

are anticipated as
1.

ECHFRS−1⊕ECHFRS−2

=


⋃

EL1 ∈ EL1
(
TCHFS

)
,EL2 ∈EL2

(
TCHFS

)
 ELR1 +ELR2 −ELR1 ELR2

+ι
(
ELI1 + ELI2 − ELI1 ELI2

)

 ,

⋃
EU1 ∈EU1

(
TCHFS

)
,EU2 ∈EU2

(
TCHFS

)
 EUR1 + EUR2 − EUR1 EUR2

+ι
(
EUI1 + EUI2 − EUI1 EUI2

)




2.

ECHFRS−1⊗ECHFRS−2

=


(⋃

EL1 ∈ EL1
(
TCHFS

)
,EL2 ∈ EL2

(
TCHFS

) {ELR1 ELR2 + ι
(
ELI1 ELI2

)})
,

(⋃
EU1 ∈ EU1

(
TCHFS

)
,EU2 ∈ EU2

(
TCHFS

) {EUR1 EUR2 + ι
(
EUI1 EUI2

)})


3.

(ECHFRS−1)

=



⋃
EL1 ∈ EL1 (TCHFS )

 1 −
(
1 − ELR1

)
+ι
(
1 −

(
1 − ELI1

) )

 ,⋃

EU1 ∈ EU1 (TCHFS )

 1 −
(
1 − EUR1

)
+ι
(
1 −

(
1 − EUI1

) )




4.

(ECHFRS−1)

=

((⋃
EL1 ∈ EL1 (TCHFS )

{(
ELR1

)
+ ι
(
ELI1

) })
,(⋃

EU1 ∈ EU1 (TCHFS )

{(
EUR1

)
+ ι
(
EUI1

) }))

Definition 10: Take a CHFRE ECHFRS =(
EL (TCHFS) ,EU (TCHFS)

)
=
((
ELR+ιELI

)
,
(
EUR+ιEUI

))
,

its score values would be anticipated as

S (ECHFRS) =
1
ℓ

ℓ∑
j=1

ELRj + E IRj + EURj + E IRj
4

where ℓ is the length of CHFRE.

A. AOs WITHIN COMPLEX HESITANT FUZZY ROUGH
STRUCTURE
In this part of the script, we are going to develop some AOs
within CHFRS that is CHFRWA, CHFROWA, CHFRWG,
and CHFROWG operators.
Definition 11: Let ECHFRS−k =

(
ELk (TCHFS) ,

EUk (TCHFS)
)

=
((
ELRk +ιELIk

)
,
(
EURk +ιEUIk

))
, k =

1, 2, . . . , n be a group of CHFREs and =
(

−1 ,
−2, . . . , −n

)
be a weight vector that holds that

−k ∈ [0, 1], and
∑n

k=1 −k = 1. Then the CHFRWA
operator is instigated as

CHFRWA (ECHFRS−1,ECHFRS−2, . . . ,ECHFRS−n)

=
n
⊕

k = 1

−kECHFRS−k

Theorem 1: Let ECHFRS−k =
(
ELk (TCHFS) ,

EUk (TCHFS)
)

=
((
ELRk + ιELIk

) (
EURk + ιEUIk

))
, k =

1, 2, . . . , n be a group of CHFREs. Then the aggregated result
will be a CHFRE after utilizing the CHFRWA operator, as
shown at the bottom of the next page.
Proposition 1: Let ECHFRS−k =

(
ELk (TCHFS) ,

EUk (TCHFS)
)

=
((
ELRk + ιELIk

)
,
(
EURk + ιEUIk

))
, k =

1, 2, . . . , n be a group of CHFREs. If ∀ k , ECHFRS−k =

ECHFRS that is ELRk = ELR, ELIk = ELI , EURk = EUR, and
EUIk = EUI , then

CHFRWA (ECHFRS−1,ECHFRS−2, . . . ,ECHFRS−n) = ECHFRS

This is devised as the idempotency of the CHFRWA
operator.
Proposition 2: Let ECHFRS−k =

(
ELk (TCHFS) ,

EUk (TCHFS)
)

=
((
ELRk + ιELIk

)
,
(
EURk + ιEUIk

))
and

E∗
CHFRS−k =

(
EL∗
k (TCHFS) ,EU∗

k (TCHFS)
)

=((
ELR∗
k + ιELI∗k

)
,
(
EUR∗

k + ιEUI∗k

))
, k = 1, 2, . . . , n be two

groups of CHFREs. If ∀ k , ECHFRS−k≤E∗
CHFRS−k that is

ELRk ≤ELR∗
k , ELIk ≤ELI∗k , EURk ≤EUR∗

k , and EUIk ≤EUI∗k , then

CHFRWA (ECHFRS−1,ECHFRS−2, . . . ,ECHFRS−n)

≤ CHFRWA
(
E∗

CHFRS−1,E
∗

CHFRS−2, . . . ,E
∗
CHFRS−n

)
This is devised as the monotonicity of the CHFRWA
operator.
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Proposition 3: Let ECHFRS−k =
(
ELk (TCHFS) ,

EUk (TCHFS)
)

=
((
ELRk + ιELIk

)
,
(
EURk + ιEUIk

))
, k =

1, 2, . . . , n be a group of CHFREs. If

(ECHFRS)− =


(
min
k

{
ELRk

}
+ ιmin

k

{
ELIk

})
,(

min
k

{
EURk

}
+ ιmin

k

{
EURk

})
 ,

and

(ECHFRS)+ =


(
max
k

{
ELRk

}
+ ιmax

k

{
ELIk

})
,(

max
k

{
EURk

}
+ ιmax

k

{
EURk

})
 ,

ten

(ECHFRS)−≤CHFRWA

 ECHFRS−1,

ECHFRS−2, . . . ,

ECHFRS−n

 = (ECHFRS)+

This is devised as the boundedness of the CHFRWA operator.
Definition 12: Let ECHFRS−k =

(
ELk (TCHFS) ,

EUk (TCHFS)
)

=
((
ELRk + ιELIk

)
,
(
EURk + ιEUIk

))
, k =

1, 2, . . . , n be a group of CHFREs, =
(

−1 ,
−2, . . . , −n

)
be a weight vector that holds that

−k ∈ [0, 1], and
∑n

k=1 −k = 1 and (F(1), F(2) ,
F(3), . . . ,F(n)) is a permutation of (1, 2, .., n) such that
ECHFRS−F(k−1) ≥ ECHFRS−F(k) ∀ k . Then the CHFROWA
operator is instigated, as shown at the bottom of the next
page.
Definition 13: Let ECHFRS−k =

(
ELk (TCHFS) ,

EUk (TCHFS)
)

=
((
ELRk + ιELIk

)
,
(
EURk + ιEUIk

))
, k =

1, 2, . . . , n be a group of CHFREs and =
(

−1 ,
−2, . . . , −n

)
be a weight vector that holds that

−k ∈ [0, 1], and
∑n

k=1 −k = 1. Then the CHFRWG
operator is instigated as

CHFRWG (ECHFRS−1,ECHFRS−2, . . . ,ECHFRS−n)

=
n
⊗

k = 1

(ECHFRS−k) −k

Theorem 2: Let ECHFRS−k =
(
ELk (TCHFS) ,

EUk (TCHFS)
)

=
((
ELRk + ιELIk

)
,
(
EURk + ιEUIk

))
, k =

1, 2, . . . , n be a group of CHFREs. Then the aggregated result
will be a CHFRE after utilizing the CHFRWG operator, as
shown at the bottom of the next page.
Definition 14: Let ECHFRS−k =

(
ELk (TCHFS) ,

EUk (TCHFS)
)

=
((
ELRk + ιELIk

)
,
(
EURk + ιEUIk

))
, k =

1, 2, . . . , n be a group of CHFREs, =
(

−1 ,
−2, . . . , −n

)
be a weight vector that holds that

−k ∈ [0, 1], and
∑n

k=1 −k = 1 and (F(1), F(2) ,
F(3), . . . ,F(n)) is a permutation of (1, 2, .., n) such that
ECHFRS−F(k−1) ≥ ECHFRS−F(k) ∀ k . Then the CHFROWG
operator is instigated, as shown at the bottom of the next page.
Remark 1: The initiated CHFROWA, CHFRWG, and

CHFROWG operators also hold idempotency, boundedness,
and monotonicity properties.

VI. MULTI-ATTRIBUTE DECISION-MAKING APPROACH
UNDER CHFRS
Let there be n alternatives that are
{Xalt−1, Xalt−2, . . . ,Xalt−n} and m attributes that are
{Aart−1, Aart−2, . . . ,Aart−m} in a MADM dilemma. This
MADM dilemma aims to find the finest alternative by assess-
ing the considered attributes. The decision expert would
assess these alternatives and provide their evaluation values in
the model of CHFRNs which is ECHFRS−kj =

(
EL (TCHFS) ,

EU (TCHFS)
)

=

((
ELRkj + ιELIkj

)
,
(
EURkj + ιEUIkj

))
. As

every attribute can have significance in the view of
the decision expert, thus the decision expert would
provide the weight y̆ =

(
y̆1, y̆1, , ..y̆m

)T such that
y̆l ∈ [0,1] for all j and

∑m
j=1 y̆j= 1 to the attributes.

To solve this dilemma of MADM, we have the following
algorithm.

A. ALGORITHM OF THE MADM APPROACH
We have the underlying step in the algorithm of the MADM
approach.

Step 1: Use the interpreted evaluation values of the deci-
sion expert and develop a complex hesitant fuzzy rough
decision matrix D, where each entry contains a CHFRN.

CHFRWA (ECHFRS−1,ECHFRS−2, . . . ,ECHFRS−n) =



⋃
EL1 ∈ EL1 (TCHFS ),...,ELn ∈ ELn (TCHFS )



(
1 −

n∏
k=1

(
1 − ELRk

)
−k

)

+ι

(
1 −

n∏
k=1

(
1 − ELIk

)
−k

)
 ,

⋃
EU1 ∈ EU1 (TCHFS ),...,EUn ∈ EUn (TCHFS )



(
1 −

n∏
k=1

(
1 − EURk

)
−k

)

+ι

(
1 −

n∏
k=1

(
1 − EUIk

)
−k

)




VOLUME 12, 2024 110153



M. Albaity et al.: Data Source Selection for Integration in Data Sciences

Step 2: There are two kinds of attributes (benefit and cost
kinds) involved in the MADM problem. Thus, normalization
is required which will be performed by the formula.

DN

=


((
ELRkj + ιELIkj

)
,
(
EURkj + ιEUIkj

))
for benefit kind(((

ELRkj + ιELIkj
)

,
(
EURkj + ιEUIkj

)))c
for cost kind

Step 3: The normalized matrix DN would be aggregated
by employing any of the deduced AOs to get the aggregated
outcomes of the alternatives.

Step 4: The score values or accuracy values of the aggre-
gated outcomes of the alternative would be anticipated in this
step.

Step 5: With the assistance of score values or
accuracy values, the ranking of alternatives would be
portrayed.

CHFROWA (ECHFRS−1,ECHFRS−2, . . . ,ECHFRS−n) =
n
⊕

k = 1

−kECHFRS−F(k)

=



⋃
EL1 ∈ EL1 (TCHFS ),...,ELn ∈ ELn (TCHFS )



(
1−

n∏
k=1

(
1−ELRF(k)

)
−k

)

+ι

(
1−

n∏
k=1

(
1−ELIF(k)

)
−k

)
 ,

⋃
EU1 ∈ EU1 (TCHFS ),...,EUn ∈ EUn (TCHFS )



(
1−

n∏
k=1

(
1−EURF(k)

)
−k

)

+ι

(
1−

n∏
k=1

(
1−EUIF(k)

)
−k

)




CHFRWG (ECHFRS−1,ECHFRS−2, . . . ,ECHFRS−n) =



⋃
EL1 ∈ EL1 (TCHFS ),...,ELn ∈ ELn (TCHFS )



(
n∏

k=1

(
ELRk

)
−k

)

+ι

(
n∏

k=1

(
ELIk

)
−k

)
 ,

⋃
EU1 ∈ EU1 (TCHFS ),...,EUn ∈ EUn (TCHFS )



(
n∏

k=1

(
EURk

)
−k

)

+ι

(
n∏

k=1

(
EUIk

)
−k

)




CHFROWG (ECHFRS−1,ECHFRS−2, . . . ,ECHFRS−n) =
n
⊗

k = 1

(
ECHFRS−F(k)

)
−k

=



⋃
EL1 ∈ EL1 (TCHFS ),...,ELn ∈ ELn (TCHFS )



(
n∏

k=1

(
ELRF(k)

)
−k

)

+ι

(
n∏

k=1

(
ELIF(k)

)
−k

)
 ,

⋃
EU1 ∈ EU1 (TCHFS ),...,EUn ∈ EUn (TCHFS )



(
n∏

k=1

(
EURF(k)

)
−k

)

+ι

(
n∏

k=1

(
EUIF(k)

)
−k

)



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FIGURE 2. The flowchart of the introduced MADM method within BHFRS.

The flowchart of the devised MADM approach is revealed
in Figure 2

B. ILLUSTRATIVE EXAMPLE
Here, we will show the applicability of the proposed work by
investigating an example and solving the problem mentioned
in Section III.

1) SOLVING THE PROBLEM
The decision expert would evaluate the data sources portrayed
in Table 2, based on the attributes displayed in Table 1 to find
out the finest data sources and would provide the evaluation
values of these data sources in the model of complex hesitant
fuzzy rough numbers. Further, as every attribute can have sig-
nificance in the view of the decision expert, thus the decision
expert would provide the weight (0.2, 0.25, 0.3, 0.25) to the
attributes. Now to tackle this MADM dilemma, the proposed
algorithm would be utilized as follows

Step 1: The complex hesitant fuzzy rough deci-
sion matrix consisting of evaluation values of the
data sources based on the attributes is devised in
Table 3.

FIGURE 3. The score values of data sources where the information is
aggregated by CHFRWA operator.

FIGURE 4. The score values of data sources where the information is
aggregated by CHFROWA operator.

Step 2:As in this dilemma, the attributes are benefit kinds,
so even after normalization, we would get the same decision
matrix. Therefore, we escape this step.

Step 3:The aggregated results of data sources with the help
of invented operators are anticipated in Table 4.

Step 4: The score values of data sources are devised in
Table 5.

Step 5:With the assistance of score values of data sources,
the ranking of data sources is devised in Table 6.

The score values and ranking of the data sources reveal
that Xalt−1(Internal Database) is the finest data source for
integrating in data sciences. The graphical interpretation of
score values of presented data sources by using deduced
operators is displayed in Figures 3, 4, 5, and 6.

VII. COMPARATIVE STUDY
Here, the comparison of the initiated theory with underneath
considered prevailing theories would be performed.

• The theory of hesitant fuzzy AOs and group
decision-making (DM), was developed byXia et al. [23].
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TABLE 3. The evaluation values of the data sources are given by the expert.

FIGURE 5. The score values of data sources where the information is
aggregated by CHFRWG operator.

• Hesitant fuzzy power AOs and group DM under HFS,
initiated by Zhang [24].

• The concept of HFS in MADM was devised by Lalotra
and Singh [25].

FIGURE 6. The score values of data sources where the information is
aggregated by CHFROWG operator.

• The notion of MADM under a complex fuzzy envi-
ronment, based on probability AOs, was devised by
Rehman [26].

• Arithmetic AOs within the polar structure of CFS,
devised by Bi et al. [27]
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TABLE 4. The aggregated values of the data sources after employing deduced operators.

TABLE 5. The score values of the data sources for integration in data
sciences.

TABLE 6. The ranking of the data sources for integration in data sciences.

• Geometric AOs within the polar model of CFS, devised
by Bi et al. [28].

The above-mentioned prevailing works are in the model of
HFS, polar, and Cartesian model of CFS and we would try
to solve the MADM dilemma (the stated problem) by using
these concepts. For that, we would consider the information
in Table 3 and the required result is devised in Table 7 and
Table 8.
Tables 7 and 8 elucidate that prevailing concepts can’t over-

come this dilemma of MADM due to various reasons. The
theory of HFS can’t manage it because its AOs and DM tech-
niques neither consider roughness nor the second dimension
(extra hesitant fuzzy information). Thus, prevailing theories
and ideas within HFS cannot solve and manage the consid-
ered problem. Also, the Cartesian structure of CFS misses
both roughness and hesitancy, therefore it cannot manage the
MADM problems containing hesitancy and roughness. Any
MADM technique operator under the model of the Cartesian
form of CFS will fail to overcome this sort of data. As for the
polar model of CFS, it can’t manage either roughness, hesi-
tancy, or Cartesian CFS, hence it can’t overcome the problem
either. Furthermore, other than devised work, no structure
in the literature can simulate roughness, hesitation, and the
second dimension simultaneously. Advanced works that can
manage and generalize all of the data included in these
structures include FS, CFS, HFS, CHFS, and HFRS.
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TABLE 7. The comparison of the revealing and invented work.

TABLE 8. The comparison of the revealing and invented work.

VIII. CONCLUSION
In this article, we tackled a problem that is a selection of
the finest data source for integration in data sciences as
in the existing literature no model or tool can carry the
hesitancy, extra fuzzy information, and roughness of the
attributes of the data sources for integration in data sources.
Therefore, to solve this dilemma, in this article, we first
devised the notion of CHFS, CHFR, and CHFRS by using
CHFR. We also discussed certain properties of the devel-
oped CHFRS. Then, we anticipated averaging/geometric
AOs in the setting of CHFRS that is complex hesitant
fuzzy rough weighted averaging, complex hesitant fuzzy
rough ordered weighted averaging, complex hesitant fuzzy
rough weighted geometric, and complex hesitant fuzzy rough
ordered weighted geometric operators. Secondly, we ana-
lyzed a MADM approach that is a complex hesitant fuzzy
rough MADM approach for tackling MADM dilemmas.
After developing these theories, we solved the considered
example by employing the invented MADM approach within
CHFRS and got the finest data source for integration in data
sciences. In solving this problem, the loss of data or informa-
tion was very minimal because of the structure of CHFRS.
In the end, we reveal the supremacy and dominance of the
anticipated approach by comparing it with certain existing
approaches.

In the future, we would try to solve more problems by
employing some other mathematical models such as bipolar
complex fuzzy set [31], bipolar complex fuzzy soft set [32],
bipolar complex fuzzy linguistic set [33], and complex spher-
ical fuzzy set [34], etc.
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