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ABSTRACT Accurate tumor segmentation in PET/CT imaging is essential for the diagnosis and treatment
of cancer, impacting therapeutic outcomes and patient management. Our study introduces a new approach
integrating a Weighted Fusion Transformer Network to enhance the segmentation of tumor volumes.
This method synergizes PET and CT modalities through a Fusion FormerU-Net architecture that employs
convolutional neural networks alongside transformer blocks, aiming to leverage the unique advantages of
each imaging modality. We evaluated the proposed approach using a multi-institutional dataset, applying key
performance metrics such as Dice Similarity Coefficient aggregate, Jaccard Index, Volume Correlation, and
Average Surface Distance to assess segmentation precision. The results indicate that the CT/PET/Fusion
strategy significantly improves tumor delineation, outperforming traditional segmentation methods. The
main findings suggest that this integrative approach could potentially redefine the standard for tumor
segmentation in clinical practice. Lastly, the proposed approach offers a promising direction for enhancing
the accuracy of oncological imaging, with implications for the improvement of patient-specific treatment
strategies.

INDEX TERMS PET/CT imaging, tumor segmentation, weighted fusion transformer, multi-modal imaging,
deep learning, neural networks, clinical oncology.

I. INTRODUCTION

Head and neck cancers (H&N) represent a significant
global health challenge, with rising incidences and complex
treatment pathways [1]. Recent advances in medical imag-
ing, particularly FluoroDeoxyGlucose-Positron Emission
Tomography (FDG-PET) and Computed Tomography (CT),
have revolutionized diagnostic and treatment planning pro-
cesses for these cancers [2]. However, the manual delineation
of tumors and lymph nodes in imaging data remains time-
consuming, subjective, and prone to variability [3], [4], [5],
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[6]. Therefore, there is a critical need for automated systems
that can reliably segment head and neck tumors and predict
patient outcomes [7], [8]. Segmentation of primary tumors
and lymph nodes in head and neck cancer is crucial for
radiation treatment planning and response assessment [9],
[10], [11]. Manual segmentation, while essential, is complex
and time-consuming, requiring expert knowledge [3], [4],
[5]. Deep learning-based architectures in computer vision
have shown state-of-the-art results in various applications,
including medical image segmentation [12]. The adoption
of deep learning for auto-segmentation in head and neck
cancer could enhance both efficiency and accuracy, making
the segmentation process more robust [13], [14], [15].
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Recent efforts, such as the HECKTOR Challenge at
MICCAI 2022 [14], have focused on leveraging machine and
deep learning techniques to automate the segmentation of
primary tumors and metastatic lymph nodes in FDG-PET/
CT images [16]. The automatic segmentation and outcome
prediction tasks pose unique challenges due to the heteroge-
neous nature of H&N tumors, variability in imaging protocols
across different centers, and the need to integrate multimodal
image analysis with clinical data for comprehensive patient
management [16].

Additionally, PET and CT are crucial for diagnosing and
treating H&N cancers [17]. PET imaging, while effective
in early disease detection, presents challenges in automatic
tumor segmentation due to its lack of spatial resolution and
high intrinsic noise level [18]. PET images also show high
metabolic activities from tumor cells but suffer from limited
spatial resolution and signal-to-noise ratio. Fusion of PET
and CT images provides more informative representation for
automated tumor segmentation and target delineation [19],
[20], [21]. In this context, our research aims to contribute
to the ongoing efforts in automatic head and neck tumor
segmentation and outcome prediction. We propose a novel
approach that addresses the complexities of the task,
including the diverse nature of tumor presentation in PET/CT
images, and the challenges of achieving high accuracy and
generalizability across nine different institute datasets. Our
contributions summarized in fourfold: (i) proposing a new
network architecture that integrates PET and CT modalities
through a weighted fusion strategy for improved H&N
tumor segmentation. This architecture likely leverages the
strengths of each imaging modality to enhance segmentation
accuracy; (ii)) The utilization of both transformer blocks
and convolutional neural networks (CNNs) in a unified
framework, taking advantage of the transformers’ ability
to capture global dependencies and the CNNs’ prowess
in extracting local features; (iii) the implementation of a
heuristic approach for initial tumor localization that could
streamline the segmentation process, possibly reducing the
computational load and improving the speed of the analysis.
Lastly, the proposed network’s performance has been vali-
dated on a diverse multi-institutional dataset, underscoring its
robustness and potential for generalizability across different
clinical settings.

The structure of this paper is systematically divided
into five main sections to effectively present our research.
Section II, related work, provides an overview of the existing
studies and developments in the field, setting the stage
for our research. In Section III, methods, and materials,
we detail the techniques and resources utilized in our
study, emphasizing the methodologies specific to PET/CT
tumor segmentation. Section IV, results, and discussion is
dedicated to showcasing the outcomes of our research, along
with a comprehensive analysis and interpretation of these
results in the context of dual PET/CT imaging. The paper
culminates in Section V, conclusion, and future work, where
we summarize our findings, underscore their significance in
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the medical imaging, and suggest potential avenues for future
research.

Il. RELATED WORKS
The increasing interest in automatic analysis of multimodal

images using machine and deep learning techniques is
particularly relevant in oncology [22]. Automation in tumor
and lymph node delineation assists in diagnostic tasks,
staging, quantitative assessment, radiotherapy planning, and
outcome prediction, offering advantages in speed, robustness,
and reproducibility over manual contouring [23], [24], [25],
[26]. Additionally, the integration of multimodal image
analysis with machine learning for patient-level segmentation
and outcome prediction allows for predictive and prognos-
tic modeling. This includes therapy response prediction,
recurrence, and overall survival, combining image-derived
data with clinical information to create decision-support
tools that enhance personalized patient management [27],
[28]. Myronenko [29] utilized SegResNet, a 3D U-Net-
like architecture augmented with an auto-encoder and deep
supervision, built on the MONAI platform and tailored for
specific tasks such as PET/CT analysis and cropping through
the Auto3DSeg system. This system automates parameter
selection, integrating various steps like image normalization,
tumor region detection (a feature specific to HECKTOR
2022), isotropic resampling, and employing 5-fold cross-
validation along with model ensembling. Tumor region detec-
tion in their approach leverages relative anatomical positions,
and training involves random 3D cropping, focusing on
foreground classes with designated probabilities for tumors,
lymph nodes, and background.

Sun et al. [30] adopted a multi-stage, coarse-to-fine
strategy using a series of neural networks for precise tumor
segmentation. The process begins with a 3D U-Net that
identifies the head region in CT scans. Following this, a
nnU-Net performs an initial, rough segmentation of the
primary tumor (GTVp) and nodal tumor (GTVn) areas in
PET/CT images, using the central part of these tumors
as the ground truth. This step yields a smaller, focused
bounding box around the area of interest. The final, detailed
segmentation within this refined bounding box is achieved
through an ensemble of nnU-Nets and nnFormers, further
enhanced by a 3D SE-norm U-Net, resulting in the precise
delineation of GTVp and GTVn regions. Jiang et al. [31] uti-
lized a standard nnU-NET complemented by straightforward
pre-processing and post-processing techniques. The training
process involved cropping images around the primary tumor
(GTVp). For post-processing, they applied outlier removal
based on criteria like minimum volume and spatial prox-
imity between predicted primary and nodal tumor volumes.
Notably, they also integrated their segmentation results into
a web-based platform, which allowed for the visualization
of segmented regions, including Organs at Risk (OAR),
extending beyond the challenge’s primary scope.

Rebaud et al. [32] implemented a simple nnU-Net-based
method, adapting it to the task with specific image resampling
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and training techniques, followed by median filtering to
smooth the masks. Salahuddin et al. [33] developed a 3D
U-Net with channel-wise attention, grid-attention gates, and
specialized residual connections, complemented by outlier
removal in post-processing and non-isotropic resampling for
the input images. Wang et al. [34] introduced a base nnU-Net
enhanced with a Transfiner model to refine segmentation,
particularly focusing on tumor boundaries, employing an
octree decomposition for patch selection. In another study
by Wang et al. [35], they opted for a straightforward
segmentation with nnU-Net, using a dense patch-based
approach and post-processing based on the spatial relation
between primary and nodal tumor volumes. Additionally,
Jain et al. [36] compared several deep learning models
including 2D/3D nnU-Net, MNet, and SwinU-Net, using
resampled images registered to a common reference and
cropped based on skull center location. Three models showed
promise, achieving average Dice Similarity Coefficients
(DSC) of 0.77 for primary tumors and 0.70 for nodes in
task 1 of the HECKTOR?2022 challenge, using 5-fold cross-
validation and ensembling on a hold-out set. Chen and
Martel [37] created an ensemble of three 3D nnU-Nets with
different loss functions, using CT images for initial input
and PET images in post-processing to refine predictions.
Rezaeijo et al. implemented a multi-step approach with
an organ localizer and 3D U-Net for organ segmentation,
followed by a 3D ResU-Net for tumor segmentation, using
a weighted combination of registered PET and CT images.
Meng et al. [38] proposed a new approach combining a
U-Net-based segmentation network with a cascaded survival
network built on a DenseNet architecture. This setup allows
for joint optimization using both segmentation and survival
loss, enabling simultaneous prediction of patient survival risk
scores and tumor region segmentation.

While deep learning models have significantly advanced
the field of head and neck cancer segmentation, there remain
notable limitations. These include challenges in handling
the high variability in tumor shapes and sizes, the need
for large, annotated datasets for training, and the difficulty
in generalizing models across different medical imaging
protocols and equipment. These limitations highlight the
necessity for ongoing research to improve model robustness
and adaptability. The motivation for this study lies in address-
ing these gaps, emphasizing the need for more sophisticated
models that can effectively navigate these complexities,
thereby enhancing the precision and effectiveness of cancer
treatment planning.

Ill. MATERIALS AND METHODS
The overall methodology of the proposed study presented

in this section. Figure 1 presents an integrated pipeline for
the segmentation of tumors in whole-body PET/CT imaging,
leveraging the complementary strengths of both modalities.
The workflow begins with the acquisition of high-resolution
CT images, which provide detailed anatomical structures,
and PET images, which highlight regions of increased
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metabolic activity indicative of potential neoplastic tissue.
A critical preprocessing step is the registration of PET and
CT images to ensure spatial alignment. The registration
process is meticulously executed to facilitate the precise
overlay of metabolic information onto the corresponding
anatomical structures. This alignment is paramount for
accurate tumor localization and subsequent segmentation.
Following registration, the aligned datasets undergo a fusion
process. This fusion is not merely a visual overlay but an
intricate combination of data, optimized to retain critical
information from both imaging modalities. The result is a
single composite image that capitalizes on the high-resolution
anatomical framework of CT and the metabolic landscape
provided by PET, setting the stage for enhanced tumor
detection.

The next phase in the pipeline involves heuristic tumor
localization. This step utilizes a set of predefined rules
or algorithms designed to quickly identify potential tumor
regions within the fused images. While heuristic approaches
may not capture the full complexity of tumor biology, they
serve as an effective means to narrow down the regions
of interest for more sophisticated analysis. Therefore, the
core of our segmentation process is the Fusion Former-
U-Net architecture—a novel neural network design that
builds upon the classic U-Net framework. This architecture
is specifically tailored to manage the fused PET/CT data,
incorporating elements of transformer models to enhance
its pattern recognition capabilities. The transformer’s self-
attention mechanisms are particularly adept at capturing
long-range dependencies, which is crucial when analyzing
the nuanced features of tumor morphology against the
backdrop of whole-body imaging. Finally, the segmented
tumor regions are subjected to shape analysis, an essential
step for quantifying tumor characteristics. Shape analysis can
yield valuable metrics such as volume, sphericity, and surface
irregularity, which are instrumental in clinical decision-
making processes, such as assessing tumor aggressiveness,
planning treatment strategies, and monitoring response to
therapy.

A. DATASET

The dataset for this study was sourced from HECKTOR Chal-
lenge at MICCAI 2022 [16] and acquired from nine different
centers, as detailed in Table 1. It comprises FDG-PET/CT
images from patients diagnosed with head and neck (H&N)
cancer, specifically located in the oropharynx region. This
diverse and multi-center dataset is crucial for ensuring the
robustness and generalizability of the developed models for
tumor segmentation. Table 1 include a comprehensive list of
participating hospital centers from Canada (CA), the United
States (US), Switzerland (CH), and France (FR), along
with their respective case contributions. The total dataset
consists of 524 cases for training and 359 cases for testing.
This tabulation is crucial for understanding the scope and
geographical diversity of the study.
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FIGURE 1. Schematic Representation of the Integrated PET/CT Tumor Segmentation Workflow Utilizing a Weighted Fusion Transformer Network.

TABLE 1. Distribution of PET/CT tumor segmentation multi-center dataset across participating.

No  Center Split #Cases
1 CHUM: Centre Hospitalier de 1’Université de Montréal, Montréal, CA Train 56
2 CHUS: Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, CA  Train 72
3 HGIJ: Hopital Général Juif, Montréal, CA Train 55
4 HMR: Hopital Maisonneuve-Rosemont, Montréal, CA Train 18
5 CHUP: Centre Hospitalier Universitaire Poitiers, FR Train 72
6 CHUV: Centre Hospitalier Universitaire Vaudois, CH Train 53
Total Train 524
7 CHB: Centre Henri Becquerel, FR Test 58
8 USZ: UniversitétsSpital Ziirich, SW Test 101
9 MDA: MD Anderson Cancer Center, US Test 200
Total Test 359

Figure 2 illustrates 2D sagittal slices of fused PET/CT
images from each of the nine participating centers, demon-
strating the variability in fields of view. The images combine
CT data in grayscale (with a Hounsfield unit window of
[—140, 260]) and PET data (with a Standard Uptake Value
(SUV) window of [0, 12]), depicted in a “hot” colormap.
This figure effectively showcases the diversity in imaging
across different centers.

The original annotations for the training and test sets
varied across centers. For example, in CHUV, CHUS,
HGIJ, and HMR, an expert radiation oncologist drew the
GTVp and GTVn contours, with some directly on the
PET/CT scan’s CT images and others on a different
CT scan, later registered to the PET/CT. In CHUP, the
primary tumor’s metabolic volume was initially determined
using FLAB and then manually edited. In MDA, avail-
able radiotherapy contours were refined, while in USZ,
tumors were segmented separately in CT and PET images,
with specific handling of artifacts. CHB involved manual
drawing of GTVp and GTVn by senior nuclear medicine
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physicians using PET VCAR. Expert quality controls were
conducted on all datasets to ensure ground-truth contour
consistency.

For data preparation, experts re-annotated contours to
match the actual tumor volume, which was often smaller
than the initially delineated radiotherapy volumes. A cen-
tralized cloud environment facilitated uniform annotation.
For cases lacking original GTVp or GTVn radiotherapy
contours, experts used PET/CT fusion and N staging data
for annotation. Cases with PET and CT mis-registrations
were excluded. Additionally, detailed annotation guidelines
developed by the expert board were used for this quality con-
trol process. The guidelines for annotating primary tumors
in PET/CT images were provided in [16] to participants
during the challenge, and these were also adhered to in our
paper. These guidelines include specific instructions for the
contouring process, considering both PET and unenhanced
CT acquisitions. They emphasize the importance of accurate
and consistent annotation practices to ensure the reliability of
the tumor segmentation process.
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FIGURE 2. 2D sagittal slices of fused PET/CT images from each of the
nine participating centers, demonstrating the variability in fields of view.
The images combine CT data in grayscale (with a Hounsfield unit window
of [-140, 260]) and PET data (with a Standard Uptake Value (SUV)
window of [0, 12]), depicted in a “hot” colormap.

B. PREPROCESSING

The following preprocessing steps were implemented in
our work. Normalization is a critical preprocessing step
that aims to standardize the intensity distribution across
different patients and imaging modalities. The objective
is to align the dynamic range of the images, making the
data more uniform and thus more amenable to analysis
by computational models. Mathematically, this can involve
z-score normalization, where each voxel intensity Iyy; in a
3D image is transformed as:

Ly, —
/ XyZ
1 xyz — o (D
where Iy, is the normalized intensity, 1 is the mean intensity

across the image volume, and o is the standard deviation of
the intensities. This rescaling brings the dataset to a common
scale with a mean of zero and a standard deviation of one.

Contrast enhancement [39] techniques are applied to each
modality to improve the visibility of critical features. For PET
images, the goal is to accentuate areas of high radiotracer
uptake, which are often indicative of malignancy. In the case
of CT, enhancement algorithms aim to increase the clarity
of anatomical structures. The transformation function for
contrast enhancement can be represented as:

I'=1) (2)

where I is the original voxel intensity and I’ is the enhanced
intensity. The specific form of the function f depends
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on the enhancement technique employed (e.g., logarithmic
mapping, histogram equalization).

Cropping focuses the analysis on the region of interest
(ROI) by removing irrelevant background and reducing
computational load. The process involves selecting a sub-
volume that encapsulates the tumor and adjacent anatomical
landmarks critical for diagnosis and treatment planning. The
cropped image Icrop is defined by spatial boundaries within
the original volume Ioriginal:

Icrop = Ioriginal [Xmin * Xmax» Ymin : Ymax> Zmin * Zmax] ~ (3)

where [Xpuin © Xmax> Ymin © Ymax»> Zmin - Zmax] defines the 3D
bounding box of the ROIL

Voxel spacing homogenization was applied due to the
different resolutions of PET and CT images, voxel spac-
ing homogenization is employed. This process involves
resampling the images to have consistent voxel dimensions,
facilitating accurate image fusion and comparison. The

transformation for homogenization can be represented by:
Lresampled = Resample (I original» dx,dy, dZ) “4)

where I« esampieq 18 the image with homogenized voxel spac-
ing and dX,dY,dZ are the desired uniform voxel dimensions.

Data augmentation is crucial for enhancing the robustness
and generalizability of the segmentation model. Cropping
and flipping are common augmentation techniques that
artificially expand the dataset by introducing variability.
The cropped augmentation laugp, and randomly flipped
augmentation /uu_crop can be expressed as Equation (5) and
Equation (6).

Iaug_crop = Randomcrop (Ioriginal ) (5)
Laug_siip = RandomFlip (Ioriginal ) (6)

where RandomCrop RandomCrop randomly selects a sub-
volume and RandomFlip RandomFlip applies a conditional
mirror transformation across a randomly selected axis. Col-
lectively, these preprocessing steps are indispensable for the
accurate, reproducible, and robust segmentation of tumors.
They address the inherent heterogeneity in multi-modal
imaging datasets and enhance the quality of the input data,
which is critical for the success of downstream machine
learning models used in the segmentation task.

C. PROPOSED MODEL

In Figure 3, we present our comprehensive deep learning
framework tailored for segmenting neoplastic lesions within
PET/CT fusion volumes, leveraging the intrinsic synergies
of multimodal imaging. The architecture encapsulates a
transformative approach by integrating transformer networks
with CNNs, optimizing the processing pipeline for the
complex task of tumor delineation. The starting point is
the multimodal input, where PET images and CT images
are fused. This fusion volume integrates the high-resolution
anatomical data from CT scans with the functional metabolic
data from PET scans, which is critical for identifying areas
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of potential neoplastic activity. Second, the multi-modality
input illustrates the separate channels for the CT and PET
data inputs, along with their fused counterpart. The individual
CT and PET images are processed through separate pathways
to preserve the unique information each modality provides
before fusion. Third, Transformer Network Components: The
process begins with a series of inputs xpi, xp2, ..., xpn,
likely patches extracted from the PET/CT fusion volume.
Each input patch goes through a normalization layer,
followed by a multi-head attention mechanism within the
transformer block. The attention mechanism allows the
model to focus on specific parts of the input data that are most
relevant for tumor segmentation. This is followed by another
normalization layer and a Multi-Layer Perceptron (MLP)
block, which processes the data further. Residual connections
are included, which help preserve the information through
the layers and assist with the training of deep networks by
mitigating the vanishing gradient problem. The transformer
block is repeated ‘n’ times, which suggests that the network
is deep enough to capture complex features required for
accurate segmentation.

After initial processing by the transformer, the data is
reshaped to a form suitable for convolutional processing.
The feature maps are then downsampled through convo-
lutional layers, reducing their dimensions by factors of
172, 1/4, and 1/8, respectively. This downsampling process
helps extract and condense the most relevant features
for segmentation. The output from the transformer blocks
undergoes a series of dimensionality reductions through a
convolutional downsampling strategy. These operations con-
dense the high-dimensional data into more abstract feature
representations, simultaneously reducing spatial resolution
to capture a broader contextual understanding essential for
segmenting complex tumor structures. Subsequently, the
downsampled feature maps are funnelled through a series
of convolutional layers, where each layer serves a distinct
function delineated by colour-coded operations. The blue
blocks perform convolution with a 3 x 3 kernel, introducing
non-linearity via ReLU activation functions, while the yellow
blocks engage in up-sampling through 2 x 2 convolutions,
effectively refining the spatial granularity of the segmentation
maps. The green blocks, consisting of 1 x 1 convolutions fol-
lowed by softmax activation, are instrumental in classifying
each voxel, generating a segmented output highlighting the
tumor’s presence within the PET/CT volume.

The assessment of segmentation performance utilizes the
aggregated Dice Similarity Coefficient (DSCagg), a measure
of volumetric overlap between the algorithm’s predictions
and expert annotations. DSCagg is advantageous for evalu-
ating the segmentation of small regions within large images.
While effective for ranking algorithms, particularly in tumor
segmentation, its limitation is apparent when no ground-truth
volume is present, potentially resulting in a DSC of 0. The
metric is carefully chosen for its suitability in assessing
segmentation accuracy for primary tumors (GTVp) and nodal
tumors (GTVn), despite the inability to measure standard
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deviation across patient data.

DSC ZZZiIAmB,-I
TS A+ 1B

where it calculates the ratio of twice the shared information
between the predicted segmentation (A) and the ground-truth
(B), over the total size of both individual segmentations. The
higher the DSC, the more accurate the prediction is with
the ground truth. This aggregated version of the coefficient
implies a summation over multiple comparisons, providing
an overall effectiveness measure for segmentation across a
dataset rather than for a singular instance.

(N

o Jaccard Index (JI): Also known as the Intersection over
Union (IoU), the Jaccard index is another common met-
ric for evaluating the similarity between the predicted
and actual values. It is defined as:

PN GT|

" |PUGT] ®)

where P represents the predicted segmentation, and GT
is the ground truth.

o Volume Correlation (VC): Volume correlation assesses
the correlation between the volumes of the predicted and
true segmentations, providing insight into the volumetric
accuracy of the model:

VC =p (Vpreda Vtrue) )

where Ve,,.q» is the volume of the predicted segmen-
tation, and Ve is the volume of the ground-truth
segmentation. Average Hausdorff Distance (AHD): The
AHD measures the distance between the surfaces of
the predicted and ground-truth segmentations, offering
a surface distance metric:

AHD — l ZpeP mingecr d(p, &)
2 |P|

deGT minyep d(g, p)
GT] (10)

+

where d(p,g) is the Euclidean distance between points p
and g in the predicted and ground truth segmentations,
respectively.

« Sensitivity: it quantifies the proportion of actual posi-
tives correctly identified and is particularly important in
medical image segmentation:

e TP
Sensitivity = ——— 11
TP + FN
where TP (True Positives) is the number of correctly
identified positives and FN (False Negatives) is the
number of positives not detected by the model.

« Recall: recall measures the proportion of actual tumor
pixels that are correctly identified by the algorithm.
A high recall value indicates that the algorithm can
identify most of the tumor pixels, which is critical in
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FIGURE 3. Architecture of the Weighted Fusion Transformer Network for Enhanced Multi-Modal Segmentation of Head and Neck Tumor Volumes in

PET/CT Imaging.

medical imaging to ensure that no part of the tumor is
missed for diagnosis or treatment planning.

S

Recall = (12)

TP + FN
TP (True Positives) is the number of pixels (or voxels
in 3D imaging) correctly identified as tumor by the
segmentation algorithm. FN (False Negatives) is the
number of pixels that are actually tumor but were not
determined by the segmentation algorithm.

IV. RESULTS AND ANALYSIS

In the results section of our study, we meticulously eval-
uate the performance of our proposed approach with the
CT/PET/Fusion strategy for H&N tumor segmentation. This
strategy integrates the complementary strengths of CT and
PET imaging to facilitate precise delineation of tumor
boundaries. The DSC’s quantitative outcomes offer a robust
measure of the segmentation accuracy against the ground-
truth. We present a detailed examination of the model’s
learning curve over an extensive series of epochs (more
results in the supplementary file), showcasing the evolution of
segmentation capability for both primary tumors and lymph
nodes. This section elucidates the distinct learning behaviors
and performance variances, providing a critical analysis of
the efficacy of the multimodal fusion approach in a clinical
setting.

A. MODEL TRAINING AND PERFORMANCE EVALUATION
ON TUMOR SEGMENTATION

Figure 4 presents the progression of the validation mean
DSC across 100 training epochs for the CT/PET/Fusion
strategy. Graph (a) details the DSC for primary tumor

VOLUME 12, 2024

volumes (GTVp), while graph (b) corresponds to lymph
node volumes (GTVn). In Figure 4 (a), the DSC for GTVp
displays a sharp increase during the early epochs, indicating
that the model quickly assimilates the necessary features
to accurately segment primary tumors from the multimodal
imaging data. After this initial ascent, the graph levels off,
showing a plateau which suggests that the model has achieved
a stable segmentation performance for primary tumors and
further training yields minimal improvements.

Figure 4 (b) reveals a different learning pattern for GTVn.
The DSC climbs more steadily and exhibits more variability
throughout the training process. This behavior suggests that
segmenting lymph nodes presents a more complex challenge,
potentially due to their variable shape, size, and less distinct
boundaries compared to primary tumors. The lack of an
apparent plateau implies that the model continues to refine its
segmentation ability for lymph nodes throughout the training
process.

B. EVALUATION OF FUSION WEIGHT AND IMAGING
MODALITY ON SEGMENTATION PERFORMANCE

In the results subsection of our study, we present a
comprehensive evaluation of the proposed weighted fusion
transformer for dual PET/CT H&N tumor segmentation.
The assessment is quantified using several standard imaging
metrics, which are instrumental in determining the accuracy
and reliability of the segmentation process.

We analyzed these metrics across different modalities
and fusion strategies. The modalities include Computed
Tomography (CT) and Positron Emission Tomography
(PET). Additionally, we explored the impact of weighted
fusion techniques, applying PET weights of 10%, 20%, and
30% in the fusion process Table (2). For CT, the Dice
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FIGURE 4. Our Model Training Progression of the CT/PET/Fusion strategy for Tumor Segmentation. (a) Validation
means (DSC for primary tumor volumes (GTVp) over 100 epochs. (b) Validation mean DSC for lymph node
volumes (GTVn) over the same number of epochs. Both graphs illustrate the model’s learning trajectory and
stabilization in segmentation performance, with GTVp achieving a higher DSC and an earlier plateau than GTVn.

coefficient ranged from 0.447 for overall tumor segmentation
to 0.412 and 0.498 for primary tumor and lymph nodes,
respectively. The Jaccard index and ASD also reflected
similar trends, with ASD values indicating a mean distance
error of approximately 32.929 mm across all tumor regions.
In the PET modality, there was a notable improvement in
most metrics. For instance, the Dice coefficient improved
to 0.630 overall, slightly varying between primary tumor
and lymph nodes. This trend was consistent across other
metrics like Jaccard index and ASD, suggesting enhanced
segmentation accuracy with PET. The implementation of
weighted fusion strategies (10%, 20%, 30% to 90% PET
weight) demonstrated varying degrees of improvement in
segmentation accuracy. For instance, with a 20% PET weight,
the Dice coefficient increased to 0.590 overall, indicating a
more refined segmentation than CT or PET alone. Similarly,
other metrics like Precision and Recall showed progressive
improvement with increased PET weighting, signifying the
effectiveness of the weighted fusion approach in enhancing
tumor delineation.

As PET weighting increases from 40% to 90%, we observe
notable trends in the performance metrics. For instance,
the Dice coefficient and Jaccard index generally exhibit
an improvement, indicating increased similarity between
the segmented tumor and the ground-truth. Specifically,
the Dice coefficient improves significantly at 70% PET
weighting, reaching a value of 0.631 for overall tumor
segmentation, and peaks at 80% PET weighting with a score
of 0.649. The ASD metric, representing the mean surface
distance error, shows a decreasing trend with increased PET
weighting, suggesting improved spatial accuracy in tumor
boundary delineation. For instance, at 90% PET weighting,
ASD significantly drops, reflecting enhanced precision in
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tumor boundary delineation. Additionally, recall, sensitivity,
and specificity metrics remain consistently high across all
weighted fusion configurations. This consistency indicates
reliable detection of tumor regions (high sensitivity) while
maintaining a high rate of correctly identifying non-tumor
areas (high specificity).

The VC metric, reflecting the correlation between the
segmented tumor volume and the actual tumor volume, shows
improvement as PET weighting increases. This improvement
is most notable at 80% and 90% PET weightings, suggesting
enhanced volumetric accuracy in these configurations. Our
results indicate a clear trend of improved segmentation
performance with increased PET weighting in the weighted
fusion transformer as presented in Table 3. The metrics
suggest that higher PET contributions, particularly in the 70%
to 90% range, provide a more accurate and precise delineation
of tumor regions in H&N imaging.

Based on Table 2 and Table 3, the exploration of
various weighted fusion strategies in PET/CT imaging for
tumor segmentation has led to a noteworthy revelation:
the CT/PET/Fusion strategy emerges as the most effective
approach. This conclusion is drawn from a comprehensive
analysis of segmentation performance metrics. The superi-
ority of the CT/PET/Fusion strategy likely stems from the
synergistic integration of the distinct advantages of CT and
PET imaging. CT scans provide detailed anatomical infor-
mation, essential for delineating the precise boundaries and
locations of tumors. PET scans, on the other hand, contribute
metabolic activity data, a crucial factor in identifying active
tumor tissues. By fusing these modalities, the CT/PET/Fusion
approach facilitates a more comprehensive and accurate
tumor segmentation, leveraging the strengths of both imaging
techniques.
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TABLE 2. Performance metrics of the weighted fusion transformer in dual PET/CT Tumor segmentation.

Input Modality Metrics Mean  Primary tumor  Lymph nodes

DSCagg 0.447 0.412 0.498

Jaccard 0.305 0.279 0.349

ASD 32.929 35.188 33.291

CT Precision 0.435 0.401 0.505
Recall 0.556 0.598 0.586

Sensitivity 0.556 0.598 0.586

VC 0.79 0.738 0.779

DSCagg 0.630 0.634 0.578

Jaccard 0.485 0.500 0.436

ASD 30.084 31.459 34.225

PET Precision 0.624 0.600 0.643
Recall 0.724 0.804 0.627

Sensitivity 0.724 0.804 0.627

vC 0.870 0.876 0.805

DSC 4 0.554 0.585 0.479

Jaccard 0.401 0.446 0.340

ASD 52.389 18.612 76.477

Weighted Fusion (WPET = 10%)  Precision 0.556 0.576 0.530
Recall 0.643 0.723 0.544

Sensitivity  0.643 0.723 0.544

vC 0.859 0.850 0.765

DSCagg 0.590 0.628 0.520

Jaccard 0.438 0.493 0.377
ASD 61.168 26.306 85.386

Weighted Fusion (WPET = 20%) Precision 0.578 0.593 0.553
Recall 0.699 0.782 0.616

Sensitivity 0.699 0.782 0.616

vC 0.848 0.866 0.771

DSCagg 0.603 0.640 0.514

Jaccard 0.451 0.505 0.374

ASD 54.938 25.184 88.493

Weighted Fusion (WPET = 30%) Precision 0.639 0.638 0.603
Recall 0.654 0.747 0.546

Sensitivity 0.654 0.747 0.546

vC 0.843 0.883 0.715

This finding has profound implications for clinical
practice. The enhanced accuracy in tumor segmentation
afforded by the CT/PET/Fusion method can significantly
improve diagnostic precision, treatment planning, and patient
outcomes. Accurate segmentation is particularly critical in
oncology, where the precise delineation of tumor margins is
vital for effective treatment planning, including radiotherapy
and surgical interventions.

While the weighted fusion strategies, particularly those
with higher PET weights, showed promising results in certain
aspects of tumor segmentation, they did not consistently
outperform the CT/PET/Fusion approach. This suggests that
while increasing PET weight can improve segmentation in
some scenarios, a balanced integration of CT and PET data,
as seen in the CT/PET/Fusion strategy, provides a more
reliable and universally applicable solution. Figure 5 provides
a comparative visualization of segmentation contours for
head and neck (H&N) tumors within two distinct cases,
labeled as (a) and (b).

Figure 5 show the segmentation results overlaid on axial
slices from medical imaging studies. The green contour
represents the ground-truth, which is the reference stan-
dard for tumor boundaries. The yellow contour delineates
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the segmentation achieved by a PET/CT-based algorithm,
while the blue contour indicates the segmentation from
a PET/CT/Fusion-based approach. The proximity of the
blue PET/CT/Fusion contour to the green ground-truth
contour suggests a higher degree of agreement with
the reference standard than the yellow PET/CT contour.
This implies that the fusion-based strategy provides a
more accurate representation of the tumor extent, likely
due to the integration of both anatomical and func-
tional imaging data, which leverages the high-resolution
detail of CT with the metabolic information from PET
scans.

Figure 6 illustrates the similarity differences between
segmentation outputs obtained from individual and combined
modalities. Each circle represents a pairwise comparison
between methods, where the color intensity indicates the
magnitude of the similarity difference (red indicates higher,
blue lower), and the size of the circle reflects the statistical
significance of the differences. Smaller circles represent
lower p-values, indicating more significant differences (p <
0.05). Larger circles correspond to p-values greater than 0.05,
indicating non-significant differences. The diagonal elements
are excluded from statistical comparison as they represent
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TABLE 3. Performance enhancement of weighted fusion transformer with increased PET weightings.

Input Modality Metrics Mean Primary tumor  Lymph nodes

DSCagg 0.587 0.645 0.526

Jaccard 0.441 0.509 0.383

ASD 59.937 24.023 77.518

Weighted Fusion (WPET = 40%) Precision 0.556 0.601 0.544
Recall 0.735 0.812 0.642

Sensitivity 0.735 0.812 0.642

vC 0.865 0.908 0.776

DSCagg 0.579 0.645 0.501

Jaccard 0.433 0.511 0.362
ASD 76.639 32.231 98.884

Weighted Fusion (WPET = 50%) Precision 0.535 0.601 0.500
Recall 0.747 0.824 0.643

Sensitivity 0.747 0.824 0.643

vC 0.839 0911 0.721

DSCagg 0.583 0.581 0.542

Jaccard 0.440 0.450 0.402

ASD 63.315 66.977 63.343

Weighted Fusion (WPET = 60%) Precision 0.551 0.516 0.596
Recall 0.736 0.836 0.607

Sensitivity 0.736 0.836 0.607

VC 0.847 0.850 0.783

DSCagg 0.631 0.641 0.552

Jaccard 0.484 0.506 0.411
ASD 39.795 35.616 48.029

‘Weighted Fusion (WPET = 70%) Precision 0.612 0.605 0.586
Recall 0.743 0.810 0.623

Sensitivity 0.743 0.810 0.623

vVC 0.891 0.904 0.823

DSCagg 0.644 0.653 0.581

Jaccard 0.498 0.517 0.440
ASD 25.061 30.895 24.504

Weighted Fusion (WPET = 80%) Precision 0.630 0.610 0.629
Recall 0.733 0.817 0.628

Sensitivity 0.733 0.817 0.628

vC 0.900 0.905 0.822

DSCagg 0.649 0.668 0.582

Jaccard 0.504 0.530 0.442
ASD 13.667 12.322 18.059

‘Weighted Fusion (WPET = 90%) Precision 0.641 0.647 0.639
Recall 0.734 0.809 0.637

Sensitivity 0.734 0.809 0.637

vC 0.902 0.913 0.828

DSCagg 0.653 0.671 0.577

Jaccard 0.509 0.540 0.438
ASD 21.106 11.293 28.002

CT/PET Precision 0.644 0.653 0.614
Recall 0.732 0.786 0.640

Sensitivity 0.732 0.786 0.640

vC 0.898 0.888 0.819

DSCagg 0.659 0.678 0.586

Jaccard 0.513 0.542 0.442
ASD 18.885 13.750 25.597

CT/Fusion Precision 0.668 0.672 0.635
Recall 0.718 0.781 0.628

Sensitivity 0.718 0.781 0.628

vC 0914 0.922 0.858

DSCagg 0.652 0.656 0.596

Jaccard 0.505 0.518 0.450
ASD 17.785 11.227 24473

PET/Fusion Precision 0.646 0.639 0.631
Recall 0.727 0.786 0.646

Sensitivity 0.727 0.786 0.646

vC 0.920 0.924 0.855

DSCagg 0.680 0.685 0.591

Jaccard 0.534 0.550 0.452

ASD 14.941 7919 25.831

CT/PET/Fusion Precision 0.678 0.682 0.633
Recall 0.743 0.786 0.640

Sensitivity 0.743 0.786 0.640

vC 0.922 0.935 0.852

comparisons of each method against itself. This visualization other combinations and individual modalities in terms of

highlights the robustness of the CT/PET/Fusion method over segmentation performance.
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FIGURE 5. H&N Segmentation Contours for two different cases (a) and (b) randomly selected. The green color represents the ground-truth,
the yellow corresponds to PET/CT, and the blue corresponds to PET/CT/Fusion. The blue color PET/CT/Fusion is similar to the ground-truth.

C. MODEL ZOO FOR COMPARATIVE PERFORMANCE
ANALYSIS

Figure 7 presents a series of violin plots that detail the
distribution of the Dice Similarity Coefficient (DSC) across a
range of fusion weights in a multimodal tumor segmentation
framework. The fusion weight, expressed in percentage,
indicates the proportion of PET imaging data fused with
CT data, assuming that the remainder is the weight of the
CT data. Each violin plot encapsulates both a kernel density
estimation illustrating the distribution of DSC scores and an
embedded boxplot that marks the interquartile range (IQR)
and the median value of the DSC.

As the fusion weight increases from 10% to 90%, the
DSC distributions show a visible variation. The median DSC
values, central tendencies, and the shape of the distributions
offer insights into the optimal fusion weight for achieving
the best segmentation performance. The figure allows for a
comparison across the different fusion weights to determine
which proportion of PET to CT data fusion results in
the highest segmentation accuracy, as indicated by the
DSC. Notably, some fusion weights result in a broader
distribution of DSC scores, which may suggest variability
in the segmentation performance across different images or
patient datasets. This figure is instrumental in identifying
the fusion weight that maximizes segmentation accuracy
while highlighting the variability inherent in the segmentation
process.

Figure 8 provided presents a series of boxplots that
compare the performance of various input modalities in
H&N tumor segmentation tasks using five key evaluation
metrics. These modalities include individual CT and PET
images, as well as their fused combinations in different con-
figurations: Fusion alone, PET/CT, PET/Fusion, CT/Fusion,
and the integrative PET/CT/Fusion. Figure 8 (a) illustrates
the distribution of DSC values, a statistical measure of the
segmentation accuracy, where 1 indicates perfect overlap
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and O indicates no overlap. The median DSC values for
each modality are represented by the red lines within the
boxes. Higher DSC values denote a better match between
the algorithm’s segmentation and the ground-truth. The
PET/CT/Fusion modality appears to have a relatively higher
median DSC value, suggesting superior segmentation perfor-
mance compared to other modalities. Figure 8 (b) displays
the distribution of the Jaccard Index, another measure of
the similarity between the predicted segmentation and the
ground-truth. Similar to the DSC, higher values indicate
better performance. The PET/CT/Fusion modality again
shows a higher median value, reinforcing the effectiveness
of the integrated approach. Figure 8 (c) represents the
average distance between the surfaces of the predicted
segmentation and the ground-truth. Lower ASD values are
indicative of more accurate segmentations with boundaries
closer to the actual tumor margins. The PET/CT/Fusion
modality demonstrates lower median ASD values, suggesting
its superior boundary delineation capability. Figure 8 (d)
indicates the proportion of true positive findings out of all
positive findings reported by the segmentation algorithm.
Higher precision values suggest fewer false positives in the
segmentation output. The CT/Fusion and PET/CT/Fusion
modalities show higher precision, implying more accurate
identification of tumor tissues. Figure 8 (e) presents the
recall, which measures the proportion of actual positive cases
correctly identified by the segmentation algorithm. Higher
recall values are preferable, as they indicate fewer false
negatives. The PET/CT/Fusion modality exhibits a higher
median recall, which suggests that it is more reliable in
identifying all relevant H&N tumor regions.

Additionally, the boxplots in Figure 8 collectively demon-
strate that the integrated PET/CT/Fusion modality con-
sistently outperforms other modalities across all metrics,
offering a more precise and reliable tumor segmentation. The
different types of data, shown by the spread of the boxes and
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FIGURE 7. Impact of Fusion Weight on Dice Similarity Coefficient for H&N Tumor Segmentation. Violin plots illustrate the distribution of Dice Similarity
Coefficient (DSC) across different fusion weights (ranging from 10% to 90%) applied within a multimodal segmentation framework. Each plot combines
a boxplot, detailing the interquartile range (IQR) and median DSC (central mark), with a kernel density plot that depicts the distribution shape of the
DSC scores. The width of the plots corresponds to the frequency of data points, providing insight into the density of the coefficient distribution at each
fusion weight level.

whiskers, show that the PET/CT/Fusion method works well is invaluable include radiotherapy treatment planning and

in a lot of different situations. volumetric assessment for tumor response evaluation.

1) Radiotherapy Treatment Planning: Accurate tumor
D. APPLICABILITY OF THE PROPOSED METHOD delineation is essential for targeting and dosimetry
Precise segmentation of tumor volumes is indeed critical in in radiotherapy. Our method improves the precision
specific clinical applications that our study aims to support. of segmenting the tumor boundaries, thus enabling
Two primary areas where precise segmentation from PET/CT more effective and tailored radiation treatment, which
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FIGURE 8. Comparative Performance Metrics for Tumor Segmentation Using Various Input Modalities. Boxplots represent the distribution of (a) Dice
Similarity Coefficient, (b) Jaccard Index, (c) Average Surface Distance, (d) Precision, and (e) Recall across different imaging modalities, including CT, PET,
and their fusion combinations. The central red line in each boxplot indicates the median value, while the box boundaries denote the interquartile range

(IQR). Outliers are depicted as individual points outside the whiskers.

is critical for sparing healthy tissue while adequately
targeting tumor masses.

2) Volumetric Assessment for Tumor Response: Moni-
toring how tumors respond to treatment over time
requires precise measurement of tumor volume. Our
segmentation approach provides a reliable method to
quantify changes in tumor size and density, which
are pivotal in assessing the efficacy of the treatment
regimen.

V. CONCLUSION

To conclude, this study has systematically explored the
influence of varying fusion weights on the accuracy of
tumor segmentation within PET/CT imaging, leveraging a
sophisticated Weighted Fusion Transformer Network. Our
findings reveal that the integrative approach of PET/CT
fusion, underpinned by the proposed Fusion FormerU-Net
architecture, significantly enhances the precision of tumor
delineation. The optimal fusion weight, which balances
PET’s metabolic detail with CT’s anatomical clarity, has
been identified through rigorous quantitative analysis using
metrics such as the Dice Similarity Coefficient, Jaccard
Index, Average Surface Distance, Precision, and Recall.
The investigation demonstrates that a higher weighting
towards PET data, specifically in the 80-90% range, yields
superior segmentation performance for primary tumors.
However, our study also highlights the nuanced complexity
of lymph node segmentation, where a more balanced PET/CT
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weighting emerges as advantageous, underscoring the unique
challenges presented by different tumor characteristics and
locations. The variability in segmentation performance,
indicated by the broader distribution of DSC scores at certain
fusion weights, underscores the importance of personalized
approaches in the fusion process, tailored to the specific
imaging properties of individual tumors. The study, how-
ever, is not without its limitations. The CT/PET/Fusion
strategy, while effective, may require further optimization
to tailor its application to specific types of tumors or
individual patient characteristics. Additionally, the compu-
tational requirements and technical complexities involved
in effectively fusing CT and PET data warrant further
investigation.

Based on our findings, adopting the CT/PET/Fusion
strategy could revolutionize clinical workflows, offering
enhanced decision-making capabilities for oncological treat-
ment planning. Future research should aim to refine this
segmentation approach further, exploring its applicability
to a broader range of tumor types and clinical scenarios.
Therefore, our future research direction also predicting the
clinical H&N outcome based on our proposed segmentation
approach.
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