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ABSTRACT The module with multijunction solar cells (MJSC) is an excellent solution for converting solar
radiation into electrical energy. Several methods are applied to extract the parameters of the multijunction
solar cell. Most of them are analytical and numerical. Metaheuristic algorithms have lately been used for the
parameters’ extraction. In specialized literature, only a few multijunction solar cells have been performed to
extract the parameters. Therefore, two metaheuristic algorithms are proposed in this paper: the Chameleon
SwarmAlgorithm (CSA) and the BlackWidowOptimizationAlgorithm (BWOA). The first algorithm (CSA)
is applied for the first time to estimate the solar cell and panel parameters, and both algorithms (CSA &
BWOA) are employed for the first time for the multijunction solar cell. They are applied considering two
models: the single diode model (SDM) and the double diode model (DDM) for the multijunction solar cell,
and three work temperatures of the multijunction solar cell. Four statistical tests are used to analyze the
performance of the algorithms, the main being root mean square error (RMSE). A comparative study was
performed using the other analytical and metaheuristic algorithm. The obtained RMSE is 8.9120260701E-5
for BWOA and 8.9123932518E-5 for CSA model, respectively, in the case of SDM model and 41.5◦C,
1.0186359636E-4 for BWOA and 1.0088314434E-4 for CSAmodel, respectively, in the case of DDMmodel
and 41.5◦C. In the case of the solar panel the RMSE is 3.62E-3 for BWOA, 3.6250156794E-3 for CSAmodel,
respectively, in the case of SDMmodel and 25◦C. The best root mean square error results are obtained using
the BlackWidow Optimization Algorithm for the single-diode model. The lowest value for root mean square
error is 8.9120260701E-5. The special feature and merits of the proposed algorithms are that they have better
exploration and exploitation ability; thus, they provide the optimal results with reduced computational time.
Further, the performance of the two algorithms (BWOA andCSA) is validated using the dataset of the CTJ
30 panel. The BWOA algorithm has a root mean square error that is two times lower than the one in the
research literature. The computational time is also calculated. It is around 2 s, which is very competitive
for all considered cases. CSA has the lowest computing time for all four cases considered, varying from
1.882829 s to 2.277469 s. Furthermore, variation in the temperature function is studied using the extracted
parameters.

INDEX TERMS Multijunction photovoltaic cells, parameters, algorithms, one and two diode.

I. INTRODUCTION
Solar and wind energy remain the pillars for renewable
energy to reach the net zero emissions target by 2050.
The total installed capacity in 2021 for solar photovoltaic
energy was 175 GWh, more than 26% compared to 2020.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuo Sun.

It accounted for over 50% of all installed renewable energy
in 2021 [1]. A contribution to this achievement was also
brought by new concentrated photovoltaic systems (CPV).
Gielen et al. estimate that by 2050, solar energy will represent
25% of the consumed energy and 3% will be produced by
CPV systems [2].

The trajectory of the installed capacity of CPV systems
is a sinuous one. The installed capacity of CPVs underwent
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a first leap in 2008. It reached 20MWh, and 15 MW of
these are in Spain [3]. The year 2012 was a good one; the
added installed capacity in CPV was 120 MW, and after that,
it reached only 17 MW in 2015 [4]. The installed capacity
in CPV significantly increased in 2021, only in China, up to
67.68 MW [5].
Two technologies were used to achieve the CPV: one

developed by Amonix, based on monocrystalline silicon, and
another developed by Fraunhofer ISE, based onmultijunction
used in CPV systems, achieved by Concentrix Solar [6].
Nowadays, the CPV is dominated by the multijunction solar
cells. Solar cells with triple junctions, as InGaP/InGaAs/Ge,
are used in commercial modules, the efficiency being 39.6%
at 500 suns and 25oC temperature [7]. Research led to the
development of newmultijunction solar cells in the laboratory
with six junctions and an efficiency of 47.1% at 143 suns [8].
Knowledge of the photovoltaic cell parameters is very

important to researchers who aim to improve the performance
of the photovoltaic cell so that module manufacturers can
achieve the best modules and forecast the energy generated
by the photovoltaic modules in different environmental con-
ditions. Themajority of the methods and algorithms to extract
the PV parameters are taken from other domains [9], [10],
and few are developed for the photovoltaic field, such as suc-
cessive discretization algorithm (SDA) [11] or hybridization
HSDA.

In the case of multijunction solar cells, there are two
approaches: the first is to consider the single exponential
model or single diode model (SDM), which is useful for man-
ufacturers to analyze the behavior in different conditions [12],
[13] and forecast the energy production [14] and the second
is important for the researchers who work to improve the
performance of this solar cell. In this case, it is used for each
subcell of the solar cell, the SDM model, and the equivalent
circuit is obtained by connecting in series the three equivalent
circuits of each subcell [15].

The photovoltaic cells’ parameters are extracted using ana-
lytical [16], numerical [17], and metaheuristic algorithms,
which predict the current-voltage characteristic [18], [19].
Several review papers briefly present, analyze, and compare
the methods used to estimate the parameters of photo-
voltaic cells and panels, as well as PV. Thirty-four methods
that allow the estimation from one to five parameters are
analyzed in terms of pros and cons [20]. Humada et al.
reviewed the papers from research literature, using one and
two diodes models, respectively. Additionally, the effect
of irradiance and temperature on the estimated parame-
ters is considered [21]. Li et al. approached metaheuristic
algorithms from the perspective of statistical tests that pro-
vide information about the reliability and robustness of the
algorithm. CPU time is also considered in their work to
analyze the algorithm’s computational resources and time
complexity [22]. Twenty-eight metaheuristic algorithms used
to extract the PV parameters are quantitatively evaluated,
compared, and classified into four categories of algorithms,

based on mathematics, biology, physics, and sociology [23].
Datasets for RTC photovoltaic cells and the PWP 201module
are most commonly used to prove the performance of the
metaheuristic algorithms [24], [25], [26]. The SDM model is
themost widely used to estimate the cell parameters, followed
by the double diode model (DDM) [27], [28]. There are
several other PV cells and panels used in papers, such as:
monocrystalline silicon commercial solar cell, amorphous
silicon solar cell, Sharp ND-R250A5, STM6-40, STM6-
120, PVM 752 GaAs, Leibold solar module LSM 20 and
STE 4/100,1STH-235-WH, HIT-215, S75, ST50, SQ85,
KC200GT, SM255, SX3200N, KD210GH-2PU, and ST40
[19], [29], [30], TITAN-12-50 solar panel [31]. Analytical
methods and metaheuristic algorithms are rarely applied to
multijunction photovoltaic cells [32].

In the following, the state-of-the-art study is focused only
on methods and metaheuristic algorithms that extract the
parameters of the multijunction solar cells.

The five parameters of InGaP/GaAs/Gemultijunction solar
cells were extracted using the Newton–Raphson method and
the SDM model. In the case of non-uniform illumination,
the equivalent circuit for the SDM model is improved with
a term that considers the behavior of the diode avalanche; in
this case, eight parameters are calculated. A statistical test,
least square error, or the predefined number of iterations is
used to end the iterative process. The values for the statistical
test obtained through Newton–Raphson method vary from
1.95E-6 for 350 concentration ratio to 4.8E-6 for 900 respec-
tively [15].
Appelbaum and Peled compare three methods, namely the

Newton-Raphson method, Levenberg–Marquardt method,
and the Genetic algorithm, to extract the multijunction solar
cell parameters using the SDMmodel, for three concentration
ratios: 350, 555, and 750 suns [33]. The statistical test used
for comparison is calculated as a ratio between the sum of
the squared differences between measured and calculated
currents, and the sum of squared measured currents [33].
There is no best method, so for 350 suns, the best results are
given by the Genetic algorithm; for 555 suns, the best is the
Levenberg–Marquardt method; and for 750 suns, the best is
the Newton-Raphson method.

Fernández et al. applied four methods to extract the multi-
junction solar module parameters under concentration lights.
The modules have twenty GaInP/GaInAs/Ge solar cells con-
nected in series [34]. Three of the four methods applied are
analytical and are proposed by Phang et al. [35], Blas et al.
[36], and Khan et al. [37] based on the experimental values
of the short circuit current (Isc), open circuit voltage (Voc),
and the coordinates of the maximum power point (Pmax),
(Vmax and Imax). Also, the first values of the series and
shunt resistance are found in the experimental current-voltage
characteristic. The fourth method is numerical and uses five
current-voltage characteristics for five points with the volt-
age 0, Vmax, Voc, Voc/2, and the average between Vmax and
Voc to obtain a system with five equations. It was developed
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by Almonacid et al. [38]. Two statistical tests are applied to
compare the four methods (Phang, Almonacid, Blas, Khan):
RMSE andmean bias error (MBE). The results for RMSE are:
1.22%, 1.35%, 1.71%, and 3.53%. For MBE, the results are:
−0.46%,−0.40%,−0.66% and−1.81%. The best results are
obtained using Phang’s and Almonacid’s methods.

Romero et al. analyzed the GaInP/GaInAs/Ge multijunc-
tion panel, which consists of 25 cells connected in series,
under 550 suns concentration. The methods used for the
extraction of the parameters are Phang, Blas, and Khan. The
performance of the methods is analyzed using the normalized
RMSE (NRMSE) and MBE. The best method was devel-
oped by Phang, where NRMSE was 1.55%, and MBE was
−0.41% [32].
Two CPV modules, by GaInP/GaInAs/Ge solar cells, are

tested at different concentration rates to analyze the behaviour
of the parameters in function of the irradiance level. The
parameters are extracted using the method developed by
Phang and the SDM model [17]. The analysis shows that
if the irradiance increases, the photogenerated current (Iph)
has a linear increase, the series resistance (Rs) and the shunt
resistance (Rsh) decrease, and reverse saturation current (Io1)
and ideality factor of diode (n) remain almost constant [17].
Three methods to extract the parameters of the multijunc-

tion solar cell (In0.49Ga0.51P/In0.01Ga0.99As/Ge) using the
SDMmodel and for each subcell are compared for two levels
of irradiance, one sun and 350 suns [39]. The first method
used is Blas [36], the second is developed by Xiao et al.
[40], who considered that the shunt resistance is very high
and it can be neglected from the SDM model, and the third
is a Generalized reduced gradient algorithm based on the
tool with the same name from Microsoft Excel [40]. Three
statistical tests are used to compare the methods considered:
mean absolute percentage error, the determination coeffi-
cient, and the absolute error at the maximum power point.
These are applied for each subcell and for the entire cell. The
values obtained are 1.2313, 0.9746 and 8.3527E−12 using
the Blas method and 0.0094, 0.9999 and 2.5899E−07 for
Xiao method [40].

Singh et al. use the Lambert W-function to extract the
parameters of each subcell of themultijunction solar cell [41].
Muhammadsharif developed a new method to extract the
parameters of the CTJ30 multijunction solar cell, using the
SDM model and the new simplified method (SM). It is
an iterative method, and firstly, it calculates the n and Rsh
from the maximum of the function f(n, Rsh) = n(Rsh_max
- Rsh). These values are used to calculate the other three
parameters [42]. The average relative error calculated for the
CTJ30 dataset is 2.86%. This proves a good match between
the dataset values and those calculated using the method,
and only a small deviation appears for the maximum power
point [42].

Rezk and Fathy proposed using theWater Cycle Algorithm
(WCA) to extract parameters for each subcell of the
InGaP/InGaAs/Ge multijunction solar. The current-voltage
characteristics are obtained using Matlab software. It is

considered a solar module with 20 solar cells connected
in series [43]. For this, five metaheuristic algorithms are
applied: WCA, harmony search algorithm (HAS), grey-wolf
optimizer algorithm (GWO), mine blast algorithm (MBA),
and antlion optimizer algorithm (ALO) [43]. The best results
are obtained by the WCA algorithm, proved by statistical
tests applied such as RMSE, MAE and integral time absolute
error, ITAE. The values obtained are 2.347791 for RMSE,
0.974546 for MAE and 0.020506 for ITAE.

Ghani et al. developed a new method to extract the param-
eters of the multijunction solar cell (GaInP1.88/GaInAs1.41/
Ge0.67) with an area of 0.765 cm2 based on the multivariable
Newton-Raphsonmethod. The RMSE calculated for themax-
imum power is compared with that obtained by Almonacid,
Blas and Khan. There is an improvement in the Ghani method
compared with Khan, 56%, and 34% compared to Blas. The
Almonacid method outperforms the Ghandi method with 7%
[44]. Nouri et al. developed a method to extract the five
parameters of the InGaP/GaAs/Ge multijunction solar cell
based on the single diode model [45].
As the state-of-the-art study on extracting the parameters

of the multijunction solar cell shows, there are numerous
analytical and numeric methods, but few metaheuristic ones.
The last ones demonstrate the ability to extract the parameters
of the photovoltaic cells and panels accurately [30], [46]. This
work proposes two powerful and recent metaheuristic algo-
rithms to cover this gap. The algorithms are used to extract the
parameters for the multijunction solar cell manufactured by
SolAero InGaP(1.86eV)/InGaAs(1.40eV)/Ge(0.67eV), area
1 cm2 and to validate the results they are also applied for
CTJ30 solar cell, area 26.5 cm2, for CESI.
Another limitation for the study of themultijunction photo-

voltaic cells or panels is the existence of very few datasets in
research literature, while for the photovoltaic cells with homo
and hetero junctions or for the photovoltaic modules there are
many [26], [47]. Therefore, this paper provides three datasets
for multijunction photovoltaic cells, each corresponding to
different irradiances and temperatures.

To simplify the complexity of the equivalent circuit of
the multijunction and reduce the time required to extract the
parameters, as well as to study the behavior of the cell based
on environmental parameters to forecast energy production,
the SDM model is utilized [12], [48], [49]. This approach is
analyzed in the paper.

The novelty and the significant contributions are:
• Chameleon Swarm Algorithm (CSA) is adapted and
implemented to extract the parameters of the multijunc-
tion solar cell (MJSC) for the first time.

• Black Widow Optimization Algorithm (BWOA) is used
for the first time to extract the parameters of the mul-
tijunction solar cell. It was used with success for other
photovoltaic cells and panels.

• Three data sets aremeasured for InGaP/InGaAs/Gemul-
tijunction solar cell at three different temperatures; The
researchers can use the datasets from the Supplemen-
tary files to achieve comparisons between the results
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obtained in this paper and those will be obtained with
other metaheuristic algorithms or methods.

• The results obtained by the two algorithms are compared
using four statistical tests: the root mean square error
(RMSE), the mean absolute error (MAE), the coefficient
of determination (R2) and the t-statistic (t-stat).

• The algorithms are applied to compare the usual
single-diode model and the double-diode model, deter-
mining which model is more appropriate.

• The two algorithms are applied to a dataset from the
specialized literature for comparison in RMSE and the
comparison with SM method shows the superiority of
the BWOA and CSA algorithms.

• The variation of the parameters calculated for the SDM
model in function of temperature is made.

The second section describes the SDM and DDM models
and the two algorithms. The results are analyzed in the third
section of the paper. The conclusion and future work are
shown in the last section.

II. MODELS AND METHODS
A. MJSC MODELS
Two models are used to analyze the multijunction solar cell
SDM and DDM models. The most model utilized in special-
ized literature is the SDM model due to its simplicity and
ease of implementation in analytical or numerical methods.
Also, these advantages are kept for the implementation of
the metaheuristic algorithms. This model is used in several
papers to extract the parameters of multijunction photovoltaic
cells and analyze their behavior [12], [15], [33]. The equiv-
alent circuit for the SDM is presented in Fig.1a, and the
mathematical model is in (1) [19], [50]. The DDM model is
more complex. Recently, it was successfully applied to many
solar cells and panels. It considers both mechanisms that take
place in solar cells: diffusion, generation, and recombination,
respectively. Fig.1b shows the equivalent circuit for the DDM
model, and (2) describes the mathematical model [19].

I = Iph − Io1

(
e
V+IRs
n1VT − 1

)
−
V + IRs
Rsh

(1)

I = Iph − I01

(
e
V+IRs
n1VT − 1

)
− Io2

(
e
V+IRs
n2VT − 1

)
−
V + IRs
Rsh

(2)

where, VT = kT/q, q = 1.60217646E-19C is the electric
elementary charge, k= 1.3806503E-23J/K is Boltzmann con-
stant, and T represents the temperature of the multijunction
solar cell, the index 1 and 2 shows the mechanisms of diffu-
sion, and generation and recombination respectively.

B. ALGORITHMS
Two algorithms, namely the Black Widow Optimization
Algorithm, and Chameleon Swarm Algorithm, were used to
extract InGaP/GaAs/Ge multijunction solar cell parameters.
The two algorithms are described below.

FIGURE 1. MJSC equivalent circuits: a) Single diode model; b) Double
diodes model.

1) BLACK WIDOW OPTIMIZATION ALGORITHM (BWOA)
Hayyolalam and Kazem 2020 devised a Black Widow Opti-
mization Algorithm with inspiration from Black Widow
Spider Mating Behavior [51]. Peña-Delgado et al. [52]
employed the Black Widow Optimization Algorithm to
selectively eliminate harmonics in a three-phase eleven-
level inverter. Nouri et al. [45] applied the Black Widow
Optimization Algorithm (BWOA) for the calculation of var-
ious PV cell/Panel parameters. The detailed description of
the BWOA algorithm refers to our previously published
paper [53], which describes the workflow and procedure
process depicted as a flowchart in Fig. 2.

The mathematical modelling of the BWOA is as follows:
Movement: The spider’s movements inside the web were

classified as linear and spiral, as shown in (3) [51].

S⃗i (n+ 1) =


S̄best (n) − qS⃗r1 (n)

if rand() ≤ 0.3
S⃗best (n) − cos(2πδ)S⃗i(n)

for other circumstance

(3)

where, S⃗i(n + 1)-the new position of a search agent, q-the
randomly generated float number between

[
0.4, 0.9

]
, S⃗r1 (n)

- position of the r1 search agent with i ̸= r1, S⃗best (n) the
previous iteration best search agent, ‘‘r1 varies between 1 and
the maximum size of search agents generated by a random
integer number, S⃗i(n) - the position of the current search
agent, δ-the randomly generated float number in the interval
[−1.0, 1.0]’’ [53].
The q and δ fluctuates between the range −1.0 ≤ δ ≤

1.0 and 0.4 ≤ q ≤ 0.9 randomly for each iteration. The
value of q and δ underlying reason for the linear and spiral
movement, respectively.

Pheromones: Pheromones play an important role in spider
mating. A female spider having low pheromone rates implies
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FIGURE 2. Workflow and procedure process of BWOA [45].

a starving cannibal spider. Male spiders do not usually choose
female spiders that have low pheromone rates. Another
female spider would be substituted for low pheromone rates,
ratings of 0.3 or lower.

P (i) =

(
fitworst − fit (i)

)(
fitworst − fitbest

) (4)

where fit(i)- the ith search agent’s current fitness value,
fitworst - the current generation best fitness value, fitworst - the
current generation worst fitness value.

The search agent has been updated using the following
formulation.

S⃗i (n) = S⃗best (n) +
1
2

[
S⃗r1 (n) − (−1)γ ∗ S⃗r2 (n)

]
(5)

where γ represents a randomly generated binary number,
γ ∈ {0, 1}, ‘‘r1, and r2 are random integer numbers derived
between 1 and the maximum size of search agents, provided
r1 ̸= r2, S⃗i (n) is the low pheromone rate search agent is going
to be modified, S⃗r1 (n), S⃗best (n) is best past iterations best
search agent, S⃗r2 (n)- r1, r2 chosen search agents’’ [53].
The new fitness value (S⃗new (n)) is a new search agent.

If S⃗new(n) < S⃗best (n) then S⃗new(n) = S⃗best (n) (6)

2) CHAMELEON SWARM ALGORITHM (CSA)
Chameleon Swarm Algorithm is inspired by chameleons’
typical foraging activity and their made progress in foraging
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for food in desert areas and jungles, which was developed
by Braik in 2021 [54]. Both exploration and exploitation
are critical components of every meta-heuristic algorithm’s
effectiveness, algorithms must be efficiently built to achieve
an appropriate balance between exploration and exploitation.
The capacity of optimization algorithms to globally explore
diverse sections of the search space is referred to as explo-
ration. It is thus essential to mitigate the impact of local
optima and the migration out of local optima stagnation.
Exploitation is the ability to look for prospective solutions
locally throughout all important sectors to boost solution
quality.

A systematic way to develop innovative meta-heuristics is
to demonstrate their effectiveness in tackling optimization
issues compared to traditional approaches and other meta-
heuristics. It is essential to emphasize that it is not feasible
to propose an algorithm that can find global solutions to all
types of issues. Chameleons use their globular eyes to scan
a vast radius of search and exploit every available location
in the search zone. During hunting, Chameleons use their
incredibly sticky and lengthy tongues to catch prey quickly
and efficiently. Proposed an adjustable parameter throughout
Chameleon Swarm Algorithm iterations to help Chameleons
better explore the solution space to accomplish an improved
balance of exploration and exploitation for further depend-
able performance.

Chameleons are adapted to climbing and visual hunting
and have remarkable eyesight that allows them to visualize
up to 32 feet ahead of themselves. It thus simplifies the
process of finding prey. Chameleons deploy their capacity to
change colours to fit their circumstances to defend themselves
when an offender is around. In reality, the hunting activity of
chameleons and their successful tactics of locating, chasing,
and catching prey inspired the mathematical models estab-
lished in this study to build CSA and conduct optimization.

The following are the major phases of a chameleon pursu-
ing prey:

1. Locating the prey: Chameleons travel the territory and
forests looking for prey, and their location alters as a response.

2. Chasing prey using its eyes: Both eyesmay exist simulta-
neously to rotate and concentrate on the location of prey at the
same instant. Eyes work together to focus forward, giving a
binocular vision of prey. Thus, it provides chameleonswith an
entire 360◦ viewing area around their bodies with 180 degrees
along each side; they are able to view everything surrounding
them. Then, if a chameleon detects prey, two eyes can focus
on the same location for good aim. It spins and goes to the
prey’s location.

3. Catching the prey: Chameleons mostly eat by capturing
prey with sticky tongues.

3) MATHEMATICAL MODELLING OF CSA
The CSA algorithm is developed from the inspiration of
chameleons locating the prey, chasing the prey, catching prey
behavior, and its mathematical modelling, which are signifi-
cant processes described as follows.

Initialization and function assessment: Every chameleon is
a potential solution to a problem and may be described in a
two-dimensional C matrix with size where, m - chameleon
population, i - search space dimension. The formulation (7)
vector can indicate the chameleon’s location in the solution
space at iteration [54].

Cc
i =

[
Cc
i,1,C

c
i,2,C

c
i,3, ..,C

c
i,x
]

(7)

let = 1, 2,. . . ,m, i denotes the current iteration, x represents
the problem dimension, and Cc

i,x is the location of the cth

chameleon at the x th dimension.
Equation (8) represents the generation of the initial popu-

lation [54].

Cc
= Lx + rn× (Ux − Lx) (8)

In which Cc is the cth chameleon’s beginning vector, Lx and
Ux are the lower and upper boundaries of the exploration
region in the x th dimension, and rn is a uniformly generated
random value between 0 and 1.

Based on a fitness function, the effectiveness of the out-
come is evaluated for each new location of a chameleon. If the
outcome effectiveness of the new location is better than the
outcome effectiveness of the current one, the current location
is updated. Interestingly, the chameleons in the Chameleon
Swarm Algorithm maintain their present place if their out-
come effectiveness is superior to the new location.

a: LOCATING THE PREY
The location update approach may be used to numerically
simulate chameleon movement while hunting [54].

Cc,x
i+1 =


Cc,x
i + u1

(
BLc,xi − GBxi

)
rn2 + u2

(
GBLxi − Cc,x

i

)
rn1rni ≥ Pp

Cc,x
i + α

((
U x

− Lx
)
rn3 + Lxa

)
sgn (rand − 0.5)

rni < Pp

(9)

where Cc,x
i+1 is the cth chameleon’s new location in the

x th dimension in the (i+1)th iteration phase, Cc,x
i is cth

chameleon’s current location in the x th dimension in the
ith iteration phase, BLc,xi is the best location that cth

chameleon obtained yet in the x th dimension at iteration cycle
i, GBLci is any of the chameleon’s global best locations in the
x th dimension determined yet in the ith iteration, u1 =0.25
and u2 =0.50 - both are positive values that govern the abil-
ity to explore, rn1, rn2,rn3- are uniformly obtained random
numbers between 0 and 1, rni- a uniformly obtained random
number at index i between 0 and 1, Pp is the probability
of the chameleon identifying prey = 0.1, sgn(rand – 0.5) is
influences the course of both exploration and exploitation and
may be a value of 1 or−1, α - as observed in formulation (10),
it’s a parameter specified as a function of iterations that
decreases with the number of iterations.

α = µ3e

(
µ1i/I

)µ2

(10)
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where, α is the function of iteration decay with (α), µ1=1,
µ2=3.5, µ3=3 - constant value control exploration and
exploitation.

b: CHASING PREY USING ITS EYES
Chasing prey using its eyes, the following procedures are
suggested.

• Redirect the chameleon’s initial location to the center of
gravity (i.e., the origin).

• Locate the rotation matrix that determines the prey’s
location.

• Update the chameleons’ location using the rotation
matrix at the center of gravity, and lastly.

• Redirect the chameleons returning to their original
location.

The following mathematical formulation can be utilized to
update a chameleon’s new location:

Cc
i+1 = CRci + C̄c

i (11)

were Cc
i+1- following rotation, a chameleon’s new location,

CRci - the center of the chameleon’s current location prior to
rotation, C̄c

i - the chameleon’s rotating centered coordinates
in search space.

CRci = RM × CCc
i (12)

where CCc
i - iteration i centering coordinates, RM - a rotation

matrix corresponding to a chameleon’s rotation.

CCc
i = Cc

i − C̄c
i (13)

where Cc
i -the chameleons’ current location at iteration i.

RM = A
(
ϕ, V⃗k⃗1,k⃗2

)
(14)

where A - rotation matrices in the corresponding axes, φ -
Chameleon rotation angle, V⃗k⃗1,k⃗2 -two orthonormal vectors in
the m-dimensional search space with x × 1 vector size

ϕ = rn4sgn(rand − 0.5) × 180◦ (15)

where rn4- the random number in the range [0, 1] is generated
for establishing a rotation angle ranging from 0 degrees to
180 degrees, sgn(rand – 0.5) - the rotational direction to be
either 1 or 1.

The rotation matrices in tandem with the X and Y axes in
three dimensions are as follows [54]:

RMX
=

 1 0 0
0 cosω − sinω

0 sinω cosω

 (16)

RMY
=

 cos τ 0 sin τ

0 1 0
− sin τ 0 cos τ

 (17)

where ω - the rotational angle pertaining to the X- axis, τ -the
rotational angle pertaining to the Y - axis.

Catching the prey: The chameleon that goes most near to
the prey is meant as the best, as it is optimal. To chase prey,

the chameleon utilizes its tongue. As a result, its location is a
bit modified as it may lower its tongue twice its length.
Using (18), the velocity of a chameleon’s tongue is

computed [54]:

CTV c,x
i+1 = εCTV c,x

i + p1
(
CGBLc,xi − Cc,x

i

)
rp1

+ p2
(
CBLc,xi − Cc,x

i

)
rp2 (18)

where CTV c,x
i+1- the cth chameleon’s new velocity in the

x th dimension at iteration i+1, CTV c,x
i - the cth chameleon’s

current velocity in the x th dimension at iteration i,Cc,x
i -the

cth chameleon’s current location, CBLc,xi -the cth chameleon’s
best-known location, CGBLc,xi - best global location obtained
yet by the chameleons, p1, p2 - constant value equal to
1.75 and 1.75 respectively, it controls the effect ofCBLc,xi and
CGBLc,xi on the chameleon’s tongue dropping, rp1, rp2 -two
random numbers dispersed between 0 and 1, ε - the inertia
weight that decreases linearly with successive iterations as
shown in (19), it enhancing CSA convergence behavior.

ε =

(
1 − i/

I
)( rp

√
i/I

)
(19)

where rp - positive value equal to one, employed to regulate
exploitation ability, i,I - current and maximum number of
iterations.

σ = 2590 ∗ (1 − e− log(i)) (20)

The chameleon’s location, which can be calculated using
the third equation of motion as follow [42],

Cc,x
i+1 = Cc,x

i +

((
CTV c,x

i

)2
−
(
CTV c,x

i−1

)2)/
(2σ). (21)

where, CTV c,x
i−1-the cth chameleon’s previous velocity in the

x th dimension, σ - the rate at which the chameleon’s tongue
projection accelerates, which is defined in (20).

To resemble the hunting habits of chameleons, (9), (11),
and (17) were presented.

4) CSA PROCEDURES
The Chameleon Swarm Algorithm (CSA) procedure process
is as follows,

Procedure 1: Perform the parameter initialization of all
required variables of CSA

Procedure 2: Compute the rotating centered coordinates of
the chameleon using Eq. (12)
Procedure 3: Initialize the chameleon in the search space

using Eq. (8)
Procedure 4: Initialize the velocity of chameleon tongues
Procedure 5: Compute the location of the chameleon
Procedure 6: Compute the Eqs. (10), (19), and (20)
Procedure 7: Locating the prey using Eq. (9)
Procedure 8: Update the new location using Eq. (11)
Procedure 9: Perform the catching the prey process
Procedure 10: Compute the chameleon tongue velocity

using Eq. (18), and location using Eq. (21).
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Procedure 11: Based on the upper and lower bound modi-
fies the chameleon location

Procedure 12: Compute and update the chameleon’s new
location

Figure 3 depicts the workflow and procedural process as
a flowchart. Figure 4 depicts the generalized workflow of
the multijunction solar cell parameters extraction for both
algorithms.

III. RESULTS AND DISCUSSIONS
The InGaP/InGaAs/Ge multijunction solar cell with
1cm/1cm (1 cm2 area) was measured at one sun irradi-
ance at three temperatures 41.5oC, 51.3oC, and 61.6oC.
The measurements were made in natural sunlight using the
RELab system which is described in [55]. The two algo-
rithms use the datasets, voltage current pairs (V,I), for each
temperature to extract the five or seven parameters of the
MJSC considered. The five analytical parameters method,
5P, was implemented [56], in the case of the SDM model,
to extract the parameters of the multijunction solar cell and
to compare the results with those obtained by the BWOA and
CSA algorithms. The performance of the algorithms is ana-
lyzed using four statistical tests, presented by the following
equations 22-26. First is the root mean square error (22):

RMSE =

√∑p
i=1 (Iic − Iim)2

p
(22)

where, p is the number of the V,I pairs, Iic and Iim are
the currents calculated and measured respectively, and X is
the vector of the parameters, with five parameters for the
SDMmodel and seven for the DDMmodel, respectively. The
RMSE must be minimized.

The second is the mean absolute error (23):

MAE =

∑n
i=1 |Iic − Iim|

n
(23)

The third is the coefficient of determination, (24), which
shows the matching between calculated and measured points:

R2 = 1 −

∑n
i=1 (Iic − Iim)2∑n
i=1

(
Iim − Iim

)2 (24)

The fourth is the t-statistic, (25), which shows the perfor-
mance of the algorithm. The smaller the value of t-stat, the
better the algorithm’s performance.

t − stat =

√
(n− 1)MBE2

RMSE2
−MBE2 (25)

where MBE is mean bias error.
To optimize the parameters extraction of the multijunction

solar cells, it is necessary to minimize the errors between the
calculated with the metaheuristic algorithms and the mea-
sured values. The objective function established to check the
consistency of the algorithms is given by (26).

RMSE (v) =

√∑p
i=1 (f (V , I , v))2

p
(26)

TABLE 1. Parameters intervals for both models.

where v represent the parameters vector for each model,
vSDM = (Iph, Io1, n1, Rs, Rsh) and vDDM = (Iph, Io1, Io2, n1, n2
Rs, Rsh)), f(V,I,v) is given for SDM model by (27) and DDM
model by (28).

fSDM (V , I , v) = Iph − Io1

(
e
V+IRs
n1VT − 1

)
−
V + IRs
Rsh

− I

(27)

fSDM (V , I , v) = Iph − I01

(
e
V+IRs
n1VT − 1

)
− Io2

(
e
V+IRs
n2VT − 1

)
−
V + IRs
Rsh

− I (28)

The parameters can vary inside the chosen intervals dur-
ing the algorithm running. These intervals are presented in
Table 1 and are valid for all datasets used.

The number of search agents (population) and iterations
were chosen after some trials, where the number of popula-
tion and iterations varied. The best results are obtained for
250 search agents and 1500 iterations. These numbers are
used for all applications of the two algorithms.

A. MJSC AT 41.5o C
The dataset was measured for MJSC at 41.5◦C temperature,
the current was calculated for the SDM and the DDMmodels,
these values and errors are presented in Table S1 in the case
of the BWOA algorithm and Table S2 for the CSA algorithm,
respectively.

The values for the five or seven parameters obtained with
BWOA and CSA algorithms, and 5P method are presented
in Table 2, and the values for the four statistical tests are in
Table 3 for both models and 5P method. Also, the compu-
tational time is presented. The algorithms and method run
on the computer with the following specifications Intel Core
i9, 3.6 GHz 20 MB; GPU: NVIDIA GeForce RTX 3080Ti
12 GB; RAM: 32 GB.

The best results are obtained when the BWOA algorithm is
used. Variations exist between the extracted parameters using
the BWOA and CSA algorithms for both models used. In the
case of the SDM model, the Iph differs with 0.12%, Io1 with
238%, n1 with 6.6%, Rs with 11.1%, and Rsh with 34%, and
the same behavior is found for the DDM model, except for
two parameters that are specific to the generation recombina-
tion mechanism. The 5P methods give the highest value for
the shunt resistance and the lowest reverse saturation current.
So, the highest difference is between the reverse saturation
currents and the shunt resistance. The stable parameter is the
photogenerated current.
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FIGURE 3. Workflow and procedure process of CSA.

The BWOA algorithm has the best performance in the
extraction of the parameters in both the SDM and DDM
models. The improvement in RMSE for the SDM model is

14.3%, and for the DDM model, it is 13.1%, compared with
the CSA algorithm, and 4.28 times, compared with the 5P
method. The same behavior is observed for the MAE and R2.
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FIGURE 4. Generalized workflow of the multijunction PV cell parameter extraction.
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TABLE 2. Parameters of the MJSC at 41.5◦C.

TABLE 3. Statistical tests for MJSC at 41.5◦C.

The performance of the BWOA algorithm is proven by the
smallest values of the t-stat, which is 25% smaller than that
of the CSA algorithm for the SDM model and 45% for the
DDM model respectively. This shows the overperformance
of the BWOA algorithm for both models in comparison with
the CSA algorithm.

The computational time is short, around 2 seconds. It is
slightly higher for the BWOA algorithm than for the CSA
algorithm in the case of the SDM model, and almost equal
for the two algorithms in the case of DDM model. The
computational time for the 5P method is very low, and it can
be considered 0.

The measured current-voltage characteristics (blue) calcu-
lated using the BWOA algorithm (green), and with the CSA
algorithm (red) are presented in Fig. 5a for the SDM model
and Fig. 5b for the DDM model.
The two characteristics calculated using the BWOA and

CSA algorithms match very well with the measured one
for both models, SDM and DDM. The coefficient of deter-
mination for BWOA exceeds 0.9995 for both models,
demonstrating the matching between the measured and cal-
culated points.

The absolute current errors (ACE) are calculated for each
pair’s current-voltage (V,I) and plotted for both algorithms
and models. See Fig. 6a for SDM and Fig.6b for the DDM
model. BWOA algorithm has lower ACE values for all pairs
in the case of the SDM model and almost the same for the
DDM model, except for four pairs without significance.

B. MJSC AT 51.3◦ C
Tables S3 and S4 show the dataset measured for MJSC at
51.3◦C temperature, the current calculated, and the errors

for both models, SDM and DDM, in the case of the BWOA
algorithm and the CSA algorithm, respectively.

The values for the five or seven parameters obtained with
BWOA and CSA algorithms, and 5P method are presented
in Table 4 and the values for the three statistical tests are in
Table 5. Also, the computational time is presented.
The variations between the extracted parameters using the

BWOA algorithm and the CSA algorithm for the SDMmodel
are: the Iph differs by 0.23%, for Io1 is more than 800 times,
n1 with 11.5%, Rs with 17.5% and Rsh with 60%. These are
higher than in the case of 41.5oC temperature. In the case of
the DDM model, a very small difference is observed for Io1,
Rs, n1 and Iph, but high for Rsh and very high for Io2. The
difference for n2 is 265%. The 5P method overestimates the
values for almost all parameters Io, Rs, Rsh and n.

BWOA algorithm has the best performance in the extrac-
tion of the parameters in the case of the SDMmodel, while the
CSA is the best in the case of DDMmodel. The improvement
in RMSE for SDM models is 7.7%, and for the DDM model
is 9.5%. The method of 5P has the highest values for RMSE
and MAE. The same behavior is observed for the next two
statistical tests. The performance of the BWOA algorithm
is proven by the smallest values of the t-stat, which is 39%
smaller than that of the CSA algorithm for the SDM model
and t-stat of DDM model in the case of CSA algorithm is
very high. This shows the overperformance of the BWOA
algorithm for both models in comparison with the CSA
algorithm.

The computational time is small, around 2 s. The compu-
tational time for the 5P method is the lowest, almost 0. It is
slightly higher for the BWOA algorithm than for the CSA
algorithm, in the case of the SDMmodel, and almost equal for
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FIGURE 5. Current-voltage characteristics were measured and calculated using BWOA and CSA algorithms at 41.5oC
temperature: a) for the SDM model; b) for the DDM model.

TABLE 4. Parameters of the MJSC at 51.3◦C.

the two algorithms in the case of DDMmodel. CSA algorithm
presents a very small increase for the last model.

The measured current-voltage characteristics (blue) calcu-
lated using the BWOA algorithm (green), and with the CSA
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FIGURE 6. Absolute current errors were calculated using BWOA and CSA algorithms: a) for the SDM model;
b) for the DDM model.

TABLE 5. Statistical tests for MJSC at 51.3◦C.

algorithm (red) are presented in Fig. 7a for the SDM model
and Fig. 7b for the DDM model.

The two characteristics calculated using the BWOA and
CSA algorithms perfectly match the measured ones for both
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FIGURE 7. Current-Voltage characteristics were measured and calculated using BWOA and CSA algorithms at 51.3oC temperature:
a) for the SDM model; b) for the DDM model.

models, SDM and DDM, in accordance with the results of the
applied statistical tests.

The coefficient of determination for BWOA exceeds
0.9994 for SDM model and almost 0.999 for DDM model,
demonstrating the matching between the measured and cal-
culated points. These values are slightly smaller than those
for the datasets at 41.5oC. It can be observed that the calcu-
lated pairs with the CSA algorithm have minimal matching
problems around the short circuit current.

The absolute current errors (ACE) are calculated for each
pair’s current-voltage (V, I) and plotted for both algorithms
and models. See Fig. 8a for SDM and Fig. 8b for the DDM
model. BWOA algorithm has lower ACE for almost all pairs,
except for three pairs around the voltage 1V, in the case

of the SDM model. In the case of the DDM model, there
is an oscillation between two ACEs for BWOA and CSA
algorithms.

C. MJSC AT 61.6◦C
Tables S5 and S6 show the dataset measured for MJSC at
61.6◦C temperature, the current calculated and the errors for
the SDM model in the case of both algorithms BWOA and
CSA. In the case of the DDM model, the results are incon-
clusive, and they are not considered, perhaps due to excess
measurement noise [16]. The CSA algorithm encountered the
same problems in extracting the parameters, even the SDM
model, see Fig. 9.
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FIGURE 8. Absolute current errors were calculated using BWOA and CSA algorithms: a) for the SDM model; b)
for the DDM model.

TABLE 6. Parameters of the MJSC at 61.6◦C.

The values for the five parameters obtained with BWOA
and CSA algorithms, as well as for the 5P method, are
presented in Table 6, and the values for the three statis-
tical tests are in Table 7. Also, the computational time is
presented. The extracted parameters by the CSA algorithm
are overestimated as Iph, Io1, and n1 or underestimated as
Rs and Rsh.
RMSE obtained using the BWOA algorithm is six times

lower than the one obtained with CSA and 3.3 with 5P,
respectively. Also, MAE has the same behaviour, and the
coefficient of determination for the CSA algorithm is low
compared to the current voltage characteristic calculated with
the CSA algorithm. It can be observed for the first part of the

current-voltage characteristic until its knee that the current is
overestimated, Fig. 9.

The performance of the BWOA algorithm is proven by the
smallest values of the t-stat, which are very low in comparison
with that of the CSA algorithm for the SDM. This shows the
overperformance of the BWOAalgorithm for the SDMmodel
in comparison with the CSA algorithm.

The computational time is short, around 2 seconds. It is
slightly higher for the BWOA algorithm than for the CSA
algorithm in the case of the SDM model.

The two characteristics calculated using the BWOA and
CSA algorithms match very well with the measured one for
SDM model. The coefficient of determination for BWOA
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TABLE 7. Statistical tests for MJSC at 61.6◦C.

FIGURE 9. Current-Voltage characteristics were measured and calculated using BWOA and CSA algorithms at 61.6oC
temperature for the SDM model.

exceeds 0.9994 for SDM model, while for CSA algorithm it
is 0.982.

The absolute current errors (ACE) are calculated for each
pair (V, I), for both algorithms and the SDM model, and are
plotted in Fig. 10. CSA algorithm has higher ACE values
for almost all pairs, which shows that it remains in a local
minimum due to the measured noisy characteristic.

RMSE increases with the increase of the solar cell tem-
perature, Fig.11. This increase can be due to the noise of
the measured current-voltage characteristics. The increase is
by 8.6% in the case of the 61.6oC temperature compared to
41.5oC.
The best results obtained to extract the parameters of the

multijunction solar cell for three temperatures are obtained
using the BWOA algorithm for the SDM model. This shows
that, for the MJSC using the SDM model, it is enough, and
the computing time is slightly lower.

Using metaheuristic algorithms provides very accurate
parameters for the extraction of solar cells. In this study,
the best solutions are obtained using the BWOA algorithm.
Their behavior in terms of temperature can be analyzed
using the extracted parameters. This dependence for the
five parameters is presented in Fig. 12. Four of the five
dependencies are linear. The reverse saturation current has
an exponential dependence, Fig.12b. The photogenerated
current increases with temperature growth, Fig.12a. The Iph

temperature coefficient is 3E-5A/oC. The series resistance
increases linearly, Fig.12c. The shunt resistance, Fig.12d, and
the ideality factor of the diode decrease, Fig.12e, linearly with
temperature growth.

D. CTJ 30 AT 25oC
The two algorithms, BWOA and CSA, are applied to a dataset
from research literature for comparison [42]. This dataset is
for a multijunction panel with CTJ 30 solar cell [57].

Table S7 shows the dataset that measured the CTJ panel at
25◦ C temperature [42], and the current calculation uses the
SDMmodel in the case of both algorithms BWOA and CSA.

The values for the five parameters obtained with BWOA,
CSA algorithms, 5P method, and the method developed
in [42], SM, are presented in Table 8, and the values for the
three statistical tests are presented in Table 9.

There is a significant variation for the reverse saturation
current from 1.14504835E-14 A for BWOA algorithm to
7.729626E-17 A for 5P method, for series resistance from
0.0746368274� for BWOA algorithm to 0.1227011� for 5P
method and for shut resistance from 1.86963045E+3 � for
BWOA algorithm to 506.3099� for 5P method, respectively.
The extracted parameters for CTJ 30 panel using BWOA
and CSA are closer, but the reverse saturation current and
the shunt resistance vary a lot. The same behavior is for the
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FIGURE 10. Current-voltage characteristics were measured and calculated using BWOA and CSA algorithms at 61.6oC
temperature for the SDM model.

FIGURE 11. Current-voltage behavior RMSE for BWOA algorithm in the function of the temperature.

TABLE 8. Parameters of the CTJ 30 at 25◦C.

parameters extracted using the SM method in comparison
with the ones obtained by the BWOA algorithm.

RMSE obtained using the BWOA is the lowest in com-
parison with those calculated for the other three methods.
The worst RMSE is obtained for the SM method. The same

behavior is for the MAE and R2 statistical tests. The per-
formance of the BWOA algorithm is proven by the smallest
values of the t-stat, which are very low in comparison with
that of the SM and 5P methods for the SDM. The t-stat for
BWOA is lower by almost 7% than the one given by the CSA
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FIGURE 12. The five parameters of dependence vs temperature: a) Iph; b) Io1; c) Rs; d) Rsh; and e) n1.

algorithm. The values obtained for the four statistical tests
show the supremacy of the BWOA and CSA algorithms.

The measured current-voltage characteristics (blue), cal-
culated using the BWOA algorithm (green), and with
the CSA algorithm (red), are presented in Fig. 13 for
the SDM.

The two characteristics calculated using the BWOA and
CSA algorithms perfectly match the measured ones for the
SDM model, in accordance with the results of the applied
statistical tests. The coefficient of determination for BWOA
and CSA exceeds 0.9994 for SDM model, while for SM is
the lowest one, 0.9975.

VOLUME 12, 2024 109651



D. T. Cotfas et al.: Extraction of the MJSC Parameters Using Two Metaheuristic Algorithms

TABLE 9. Statistical tests for CTJ 30 at 25◦C.

FIGURE 13. Current-voltage characteristics measured and calculated using BWOA and CSA algorithms at 25oC temperature
in case of the SDM model.

FIGURE 14. Absolute current errors calculated using BWOA and CSA algorithms for the SDM model.

The absolute current errors (ACE) are calculated for each
pair current-voltage (V, I) and for BWOA and CSA algo-
rithms and are plotted for the SDMmodel, see Fig. 14. In this
case, there is an oscillation between two ACEs for BWOA
and CSA algorithms.

The comparison for time computing for BWOA and CSA
algorithms in the case of the SDM model is shown in Fig.15.

The CSA algorithm has the lower time computing for all
four cases considered in comparison with the one for BWOA.
The variation of the difference in time consuming is from
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FIGURE 15. Time computing calculated for BWOA and CSA algorithms in case of the SDM model.

under 1% to 12%. In the case of 41.5oC for the solar cell
and 25oC for the panel the computing time is practical equal.
The highest difference is obtained for 51.3oC dataset and it is
12%.

IV. CONCLUSION
Two algorithms were applied to extract the parameters of
the multijunction solar cell for two models, SDM and DDM,
respectively. The Chameleon SwarmAlgorithm is redesigned
and implemented for the first time to extract the parameters
of the multijunction solar cell. Also, the Black Widow Opti-
mization Algorithm is applied for the first time to extract the
parameters of the multijunction solar cell. Both algorithms
are applied for two models, SDM and DDM.

Four statistical tests are considered to analyze the perfor-
mance of the two algorithms applied to the three datasets. The
main statistical test is RMSE.

A dataset from the research literature, for CTJ 30 panel,
is considered to validate the performance of the two con-
sidered algorithms. The four statistical tests show that the
BWOA is the best and the second best is the CSA algorithm.
To validate the performance of the algorithms, the RMSE
is compared with one from specialized literature. It varies
from 3.62E-3 for BWOA, to 7.3775783929E-3 for the SM.
The RMSE in the case of CSA is 3.6250156794E-3 close to
the one obtained by the BWOA algorithm. The t-stat used
to prove the performance of the algorithms shows that the
BWOA algorithm is the best.

The BWOA algorithm gives the best results for all cases
studied, except for the DDM model, which is applied for
current-voltage characteristics measured at 51.3oC. All three
values for RMSE calculated with the BWOA algorithm are

lower in the case of SDM than those for the DDMmodel. This
shows that using the SDM model is enough for the MJSC.

The computing time is also calculated for each case con-
sidered. It is around 2s for all cases studied. Comparatively,
in the case of the BWOA algorithm, it is higher for the DDM
model by 7.4% and 16.3% than for the SDMmodel. CSA has
the lowest computing time for all four cases considered, vary-
ing from 1.882829 s to 2.277469 s. The highest difference for
time computing between the CSA and BWOA is obtained for
51.3oC and it is around 12%. Short time computing is a big
advantage for PV manufacturers because it leads to increased
work productivity.

Using the accurately extracted parameters of the multi-
junction solar cell, the dependences in the function of the
temperature are obtained. For four of the parameters, these
dependences are linear, two of them with positive slope, for
Iph and Rs, and for the other two with a negative slope, n1
and Rsh. The fifth, Io1, dependence is exponential. Reducing
complexity, processing time, and optimizing results are the
ultimate benefits of this research endeavour: extracting pre-
cise multijunction solar cells.

Limitations of the proposed algorithm are iterative in
nature.

In future works, the dependence between the five param-
eters of the multijunction solar cell and the irradiance for
concentrated light will be analyzed. The temperature will also
be considered. The computation time-based analysis will be
performed for various PC configurations. The parameters will
be extracted using both algorithms presented in this paper.
Also, the extraction of the parameters for each subcell of the
multijunction solar cell will be achieved using the equivalent
circuit with three SDM models connected in series by both
BWOA and CSA algorithms.

VOLUME 12, 2024 109653



D. T. Cotfas et al.: Extraction of the MJSC Parameters Using Two Metaheuristic Algorithms

REFERENCES
[1] REN2021. (2022). Renewables 2022 Global Status Report. Accessed:

Jan. 20, 2024. [Online]. Available: https://www.ren21.net/wp-
content/uploads/2019/05/GSR2022_Full_Report.pdf

[2] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and
R. Gorini, ‘‘The role of renewable energy in the global energy trans-
formation,’’ Energy Strategy Rev., vol. 24, pp. 38–50, Apr. 2019, doi:
10.1016/j.esr.2019.01.006.

[3] F. J. Gómez-Gil, X. Wang, and A. Barnett, ‘‘Analysis and prediction
of energy production in concentrating photovoltaic (CPV) installations,’’
Energies, vol. 5, no. 3, pp. 770–789, Mar. 2012, doi: 10.3390/en5030770.

[4] S. P. Philipps, A. W. Bett, K. Horowitz, and S. Kurtz, ‘‘Current status
of concentrator photovoltaic (CPV) technology,’’ Fraunhofer ISE/NREL,
Rep. TP-5J00-65130, 2015, doi: 10.2172/1351597.

[5] A. M. Soomar, A. Hakeem, M. Messaoudi, P. Musznicki, A. Iqbal,
and S. Czapp, ‘‘Solar photovoltaic energy optimization and chal-
lenges,’’ Frontiers Energy Res., vol. 10, pp. 1–18, May 2022, doi:
10.3389/fenrg.2022.879985.

[6] M. Steiner, G. Siefer, T. Hornung, G. Peharz, and A. W. Bett, ‘‘YieldOpt,
a model to predict the power output and energy yield for concentrating
photovoltaic modules,’’ Prog. Photovoltaics, Res. Appl., vol. 23, no. 3,
pp. 385–397, Mar. 2015, doi: 10.1002/pip.2458.

[7] R. M. France, J. F. Geisz, T. Song, W. Olavarria, M. Young, A. Kibbler,
and M. A. Steiner, ‘‘Triple-junction solar cells with 39.5% terrestrial and
34.2% space efficiency enabled by thick quantum well superlattices,’’
Joule, vol. 6, no. 5, pp. 1121–1135, May 2022, doi: 10.1016/j.joule.2022.
04.024.

[8] J. F. Geisz, R. M. France, K. L. Schulte, M. A. Steiner, A. G. Norman,
H. L. Guthrey, M. R. Young, T. Song, and T. Moriarty, ‘‘Six-junction
III-V solar cells with 47.1% conversion efficiency under 143 suns con-
centration,’’ Nature Energy, vol. 5, no. 4, pp. 326–335, Apr. 2020, doi:
10.1038/s41560-020-0598-5.

[9] X. Chen, F. Xu, and K. He, ‘‘Multi-region combined heat and power
economic dispatch based on modified group teaching optimization
algorithm,’’ Int. J. Electr. Power Energy Syst., vol. 155, Jan. 2024,
Art. no. 109586, doi: 10.1016/j.ijepes.2023.109586.

[10] X. Chen, S. Fang, and K. Li, ‘‘Reinforcement-learning-based multi-
objective differential evolution algorithm for large-scale combined heat
and power economic emission dispatch,’’ Energies, vol. 16, no. 9, p. 3753,
Apr. 2023, doi: 10.3390/en16093753.

[11] A. M. Deaconu, D. T. Cotfas, and P. A. Cotfas, ‘‘Calculation of seven
photovoltaic cells parameters using parallelized successive discretization
algorithm,’’ Int. J. Photoenergy, vol. 2020, pp. 1–13, Dec. 2020, doi:
10.1155/2020/6669579.

[12] B. R. Uma, S. Krishnan, V. Radhakrishna, and R. Campesato, ‘‘Effect of
space radiation on CTJ new version multijunction solar cells,’’ Radiat.
Effects Defects Solids, vol. 176, nos. 3–4, pp. 382–395, Mar. 2021, doi:
10.1080/10420150.2020.1849214.

[13] E. F. Fernández, J. P. Ferrer-Rodríguez, F. Almonacid, and
P. Pérez-Higueras, ‘‘Current-voltage dynamics of multi-junction CPV
modules under different irradiance levels,’’ Sol. Energy, vol. 155,
pp. 39–50, Oct. 2017, doi: 10.1016/j.solener.2017.06.012.

[14] E. F. Fernández, P. Pérez-Higueras, F. Almonacid, J. A. Ruiz-Arias,
P. Rodrigo, J. I. Fernandez, and I. Luque-Heredia, ‘‘Model for esti-
mating the energy yield of a high concentrator photovoltaic system,’’
Energy, vol. 87, pp. 77–85, Jul. 2015, doi: 10.1016/j.energy.2015.
04.095.

[15] A. Ben Or and J. Appelbaum, ‘‘Estimation of multi-junction solar cell
parameters,’’ Prog. Photovoltaics, Res. Appl., vol. 21, no. 4, pp. 713–723,
Jun. 2013, doi: 10.1002/pip.2158.

[16] A. Mohapatra, B. Nayak, P. Das, and K. B. Mohanty, ‘‘A review
on MPPT techniques of PV system under partial shading condition,’’
Renew. Sustain. Energy Rev., vol. 80, pp. 854–867, Dec. 2017, doi:
10.1016/j.rser.2017.05.083.

[17] N. Rawat, P. Thakur, A. K. Singh, and R. C. Bansal, ‘‘Performance analysis
of solar PV parameter estimation techniques,’’ Optik, vol. 279, May 2023,
Art. no. 170785, doi: 10.1016/j.ijleo.2023.170785.

[18] H. M. Ridha, H. Hizam, S. Mirjalili, M. L. Othman, M. E. Ya’acob,
and L. Abualigah, ‘‘A novel theoretical and practical methodology
for extracting the parameters of the single and double diode photo-
voltaic models,’’ IEEE Access, vol. 10, pp. 11110–11137, 2022, doi:
10.1109/ACCESS.2022.3142779.

[19] R. Venkateswari and N. Rajasekar, ‘‘Review on parameter estimation
techniques of solar photovoltaic systems,’’ Int. Trans. Electr. Energy
Syst., vol. 31, no. 11, Nov. 2021, Art. no. 131132021, doi: 10.1002/2050-
7038.13113.

[20] D. T. Cotfas, P. A. Cotfas, and S. Kaplanis, ‘‘Methods to determine the DC
parameters of solar cells: A critical review,’’ Renew. Sustain. Energy Rev.,
vol. 28, pp. 588–596, Dec. 2013, doi: 10.1016/j.rser.2013.08.017.

[21] A. M. Humada, M. Hojabri, S. Mekhilef, and H. M. Hamada, ‘‘Solar
cell parameters extraction based on single and double-diode models: A
review,’’ Renew. Sustain. Energy Rev., vol. 56, pp. 494–509, Apr. 2016,
doi: 10.1016/j.rser.2015.11.051.

[22] S. Li, W. Gong, and Q. Gu, ‘‘A comprehensive survey on meta-
heuristic algorithms for parameter extraction of photovoltaic models,’’
Renew. Sustain. Energy Rev., vol. 141, May 2021, Art. no. 110828, doi:
10.1016/j.rser.2021.110828.

[23] B. Yang, J. Wang, X. Zhang, T. Yu, W. Yao, H. Shu, F. Zeng, and
L. Sun, ‘‘Comprehensive overview of meta-heuristic algorithm applica-
tions on PV cell parameter identification,’’ Energy Convers. Manage.,
vol. 208, Mar. 2020, Art. no. 112595, doi: 10.1016/j.enconman.2020.
112595.

[24] M. A. Navarro, D. Oliva, A. Ramos-Michel, and E. H. Haro, ‘‘An
analysis on the performance of metaheuristic algorithms for the esti-
mation of parameters in solar cell models,’’ Energy Convers. Manag.,
vol. 276, Jan. 2023, Art. no. 116523, doi: 10.1016/j.enconman.2022.
116523.

[25] X. Chen, S. Wang, and K. He, ‘‘Parameter estimation of various PV
cells and modules using an improved simultaneous heat transfer search
algorithm,’’ J. Comput. Electron., vol. 23, no. 3, pp. 584–599, Jun. 2024,
doi: 10.1007/s10825-024-02153-w.

[26] R. Abbassi, S. Saidi, S. Urooj, B. N. Alhasnawi, M. A. Alawad,
and M. Premkumar, ‘‘An accurate metaheuristic mountain gazelle opti-
mizer for parameter estimation of single- and double-diode photo-
voltaic cell models,’’ Mathematics, vol. 11, no. 22, p. 4565, 2023, doi:
10.3390/math11224565.

[27] P. A. Kumari, C. H. H. Basha, F. Fathima, C. Dhanamjayulu, H. Kotb,
and A. Elrashidi, ‘‘Adaptive RAO ensembled dichotomy technique for the
accurate parameters extraction of solar PV system,’’ Sci. Rep., vol. 14,
no. 1, p. 2920, 2024, doi: 10.1038/s41598-024-63383-3.

[28] R. Abbassi, A. Abbassi, A. A. Heidari, and S. Mirjalili, ‘‘An efficient salp
swarm-inspired algorithm for parameters identification of photovoltaic cell
models,’’ Energy Convers. Manage., vol. 179, pp. 362–372, Jan. 2019, doi:
10.1016/j.enconman.2018.10.069.

[29] H. A. Ramadan, B. Khan, and A. A. Z. Diab, ‘‘Accurate parameters
estimation of three diodemodel of photovoltaic modules using hunter–prey
and wild horse optimizers,’’ IEEE Access, vol. 10, pp. 87435–87453, 2022,
doi: 10.1109/ACCESS.2022.3199001.

[30] D. T. Cotfas, A. M. Deaconu, and P. A. Cotfas, ‘‘Hybrid successive
discretization algorithm used to calculate parameters of the photovoltaic
cells and panels for existing datasets,’’ IET Renew. Power Generat., vol. 15,
no. 15, pp. 3661–3687, Nov. 2021, doi: 10.1049/rpg2.12262.

[31] A. Abbassi, R. Abbassi, A. A. Heidari, D. Oliva, H. Chen, A. Habib,
M. Jemli, and M. Wang, ‘‘Parameters identification of photovoltaic cell
models using enhanced exploratory salp chains-based approach,’’ Energy,
vol. 198, May 2020, Art. no. 117333, doi: 10.1016/j.energy.2020.117333.

[32] J. Montes-Romero, F. Almonacid, M. Theristis, J. de la Casa,
G. E. Georghiou, and E. F. Fernández, ‘‘Comparative analysis of
parameter extraction techniques for the electrical characterization of
multi-junction CPV and m-Si technologies,’’ Sol. Energy, vol. 160,
pp. 275–288, Jan. 2018, doi: 10.1016/j.solener.2017.12.011.

[33] J. Appelbaum and A. Peled, ‘‘Parameters extraction of solar cells—A
comparative examination of three methods,’’ Sol. Energy Mater. Sol. Cells,
vol. 122, pp. 164–173, Mar. 2014, doi: 10.1016/j.solmat.2013.11.011.

[34] E. F. Fernández, J. Montes-Romero, J. de la Casa, P. Rodrigo, and
F. Almonacid, ‘‘Comparative study of methods for the extraction of
concentrator photovoltaic module parameters,’’ Sol. Energy, vol. 137,
pp. 413–423, Nov. 2016, doi: 10.1016/j.solener.2016.08.046.

[35] J. C. H. Phang, D. S. H. Chan, and J. R. Phillips, ‘‘Accurate analytical
method for the extraction of solar cell model parameters,’’ Electron. Lett.,
vol. 20, no. 10, pp. 406–408, 1984, doi: 10.1049/el:19840281.

[36] M. A. de Blas, J. L. Torres, E. Prieto, and A. Garcıa, ‘‘Selecting a suitable
model for characterizing photovoltaic devices,’’ Renew. Energy, vol. 25,
no. 3, pp. 371–380, Mar. 2002, doi: 10.1016/s0960-1481(01)00056-8.

109654 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.esr.2019.01.006
http://dx.doi.org/10.3390/en5030770
http://dx.doi.org/10.2172/1351597
http://dx.doi.org/10.3389/fenrg.2022.879985
http://dx.doi.org/10.1002/pip.2458
http://dx.doi.org/10.1016/j.joule.2022.04.024
http://dx.doi.org/10.1016/j.joule.2022.04.024
http://dx.doi.org/10.1038/s41560-020-0598-5
http://dx.doi.org/10.1016/j.ijepes.2023.109586
http://dx.doi.org/10.3390/en16093753
http://dx.doi.org/10.1155/2020/6669579
http://dx.doi.org/10.1080/10420150.2020.1849214
http://dx.doi.org/10.1016/j.solener.2017.06.012
http://dx.doi.org/10.1016/j.energy.2015.04.095
http://dx.doi.org/10.1016/j.energy.2015.04.095
http://dx.doi.org/10.1002/pip.2158
http://dx.doi.org/10.1016/j.rser.2017.05.083
http://dx.doi.org/10.1016/j.ijleo.2023.170785
http://dx.doi.org/10.1109/ACCESS.2022.3142779
http://dx.doi.org/10.1002/2050-7038.13113
http://dx.doi.org/10.1002/2050-7038.13113
http://dx.doi.org/10.1016/j.rser.2013.08.017
http://dx.doi.org/10.1016/j.rser.2015.11.051
http://dx.doi.org/10.1016/j.rser.2021.110828
http://dx.doi.org/10.1016/j.enconman.2020.112595
http://dx.doi.org/10.1016/j.enconman.2020.112595
http://dx.doi.org/10.1016/j.enconman.2022.116523
http://dx.doi.org/10.1016/j.enconman.2022.116523
http://dx.doi.org/10.1007/s10825-024-02153-w
http://dx.doi.org/10.3390/math11224565
http://dx.doi.org/10.1038/s41598-024-63383-3
http://dx.doi.org/10.1016/j.enconman.2018.10.069
http://dx.doi.org/10.1109/ACCESS.2022.3199001
http://dx.doi.org/10.1049/rpg2.12262
http://dx.doi.org/10.1016/j.energy.2020.117333
http://dx.doi.org/10.1016/j.solener.2017.12.011
http://dx.doi.org/10.1016/j.solmat.2013.11.011
http://dx.doi.org/10.1016/j.solener.2016.08.046
http://dx.doi.org/10.1049/el:19840281
http://dx.doi.org/10.1016/s0960-1481(01)00056-8


D. T. Cotfas et al.: Extraction of the MJSC Parameters Using Two Metaheuristic Algorithms

[37] F. Khan, S.-H. Baek, Y. Park, and J. H. Kim, ‘‘Extraction of diode
parameters of silicon solar cells under high illumination conditions,’’
Energy Convers. Manage., vol. 76, pp. 421–429, Dec. 2013, doi:
10.1016/j.enconman.2013.07.054.

[38] F. Almonacid, P. Rodrigo, and E. F. Fernández, ‘‘Determination of the
current–voltage characteristics of concentrator systems by using differ-
ent adapted conventional techniques,’’ Energy, vol. 101, pp. 146–160,
Apr. 2016, doi: 10.1016/j.energy.2016.01.082.

[39] L. E. P. Chenche, O. S. H. Mendoza, and E. P. B. Filho, ‘‘Compar-
ison of four methods for parameter estimation of mono- and multi-
junction photovoltaic devices using experimental data,’’ Renew. Sustain.
Energy Rev., vol. 81, pp. 2823–2838, Jan. 2018, doi: 10.1016/j.rser.2017.
06.089.

[40] W. Xiao, W. G. Dunford, and A. Capel, ‘‘A novel modeling method for
photovoltaic cells,’’ in Proc. IEEE 35th Annu. Power Electron. Specialists
Conf., Jun. 2004, pp. 1950–1956.

[41] N. S. Singh and A. Kapoor, ‘‘Determining multi-junction solar cell param-
eters using Lambert-W function,’’ Paripex Indian J. Res., vol. 3, no. 5,
pp. 203–206, Jan. 2012, doi: 10.15373/22501991/may2014/62.

[42] F. F. Muhammadsharif, ‘‘A new simplified method for efficient extrac-
tion of solar cells and modules parameters from datasheet information,’’
Silicon, vol. 14, no. 6, pp. 3059–3067, Apr. 2022, doi: 10.1007/s12633-
021-01097-1.

[43] H. Rezk and A. Fathy, ‘‘A novel optimal parameters identification
of triple-junction solar cell based on a recently meta-heuristic water
cycle algorithm,’’ Sol. Energy, vol. 157, pp. 778–791, Nov. 2017, doi:
10.1016/j.solener.2017.08.084.

[44] F. Ghani, E. F. Fernandez, F. Almonacid, and T. S. O’Donovan, ‘‘The
numerical computation of lumped parameter values using the multi-
dimensional Newton–Raphson method for the characterisation of a
multi-junction CPV module using the five-parameter approach,’’ Sol.
Energy, vol. 149, pp. 302–313, Jun. 2017, doi: 10.1016/j.solener.2017.
04.024.

[45] L. Nouri, F. Z. Ihfa, Y. A. Oubella, Z. Sakhi, and M. Bennai,
‘‘Single-diode multi-junction solar cell models five-parameter estimation
method,’’ Indian J. Phys., vol. 98, no. 2, pp. 629–637, Feb. 2024, doi:
10.1007/s12648-023-02823-8.

[46] F. Belabbes, D. T. Cotfas, P. A. Cotfas, and M. Medles, ‘‘Using
the snake optimization metaheuristic algorithms to extract the photo-
voltaic cells parameters,’’ Energy Convers. Manag., vol. 292, Sep. 2023,
Art. no. 117373, doi: 10.1016/j.enconman.2023.117373.

[47] M. Abdel-Basset, D. El-Shahat, R. K. Chakrabortty, and M. Ryan,
‘‘Parameter estimation of photovoltaic models using an improved marine
predators algorithm,’’ Energy Convers. Manage., vol. 227, Jan. 2021,
Art. no. 113491, doi: 10.1016/j.enconman.2020.113491.

[48] W. Skelton, Y. Ji, L. Artzt, C. Spitler, G. Ingrish, K. Islam, D. Codd,
and M. D. Escarra, ‘‘Design and field testing of a sunflower hybrid
concentrator photovoltaic-thermal receiver,’’ Cell Rep. Phys. Sci.,
vol. 3, no. 5, May 2022, Art. no. 100887, doi: 10.1016/j.xcrp.2022.
100887.

[49] A. O. M. Maka and T. S. O’Donovan, ‘‘Effect of thermal load on per-
formance parameters of solar concentrating photovoltaic: High-efficiency
solar cells,’’ Energy Built Environ., vol. 3, no. 2, pp. 201–209, Apr. 2022,
doi: 10.1016/j.enbenv.2021.01.004.

[50] A. Abbassi, R. B. Mehrez, Y. Bensalem, R. Abbassi, M. Kchaou,
M. Jemli, L. Abualigah, and M. Altalhi, ‘‘Improved arithmetic opti-
mization algorithm for parameters extraction of photovoltaic solar cell
single-diodemodel,’’Arabian J. Sci. Eng., vol. 47, no. 8, pp. 10435–10451,
Aug. 2022, doi: 10.1007/s13369-022-06605-y.

[51] V. Hayyolalam andA. A. P. Kazem, ‘‘Blackwidow optimization algorithm:
A novel meta-heuristic approach for solving engineering optimization
problems,’’ Eng. Appl. Artif. Intell., vol. 87, Jan. 2020, Art. no. 103249,
doi: 10.1016/j.engappai.2019.103249.

[52] A. F. Peña-Delgado, H. Peraza-Vázquez, J. H. Almazán-Covarrubias,
N. T. Cruz, P. M. García-Vite, A. B. Morales-Cepeda, and
J. M. Ramirez-Arredondo, ‘‘A novel bio-inspired algorithm applied
to selective harmonic elimination in a three-phase eleven-level
inverter,’’ Math. Problems Eng., vol. 2020, pp. 1–10, Dec. 2020,
doi: 10.1155/2020/8856040.

[53] M. Madhiarasan, D. T. Cotfas, and P. A. Cotfas, ‘‘Black widow opti-
mization algorithm used to extract the parameters of photovoltaic cells
and panels,’’ Mathematics, vol. 11, no. 4, p. 967, Feb. 2023, doi:
10.3390/math11040967.

[54] M. S. Braik, ‘‘Chameleon swarm algorithm: A bio-inspired optimizer
for solving engineering design problems,’’ Expert Syst. Appl., vol. 174,
Jul. 2021, Art. no. 114685, doi: 10.1016/j.eswa.2021.114685.

[55] P. A. Cotfas and D. T. Cotfas, ‘‘Design and implementation of RELab sys-
tem to study the solar andwind energy,’’Measurement, vol. 93, pp. 94–101,
Nov. 2016, doi: 10.1016/j.measurement.2016.06.060.

[56] D. S. H. Chan, J. R. Phillips, and J. C. H. Phang, ‘‘A comparative study
of extraction methods for solar cell model parameters,’’ Solid-State Elec-
tron., vol. 29, no. 3, pp. 329–337, Mar. 1986, doi: 10.1016/0038-1101(86)
90212-1.

[57] CESI. (2020). Thin Triple-Junction Solar Cell for Space Applications.
[Online]. Available: https://www.cesi.it/app/uploads/2020/03/Datasheet-
CTJ30-Thin.pdf

DANIEL T. COTFAS was born in Toplita, Harghita,
Romania, in 1970. He received the B.S. and M.S.
degrees in mathematics and physics from the
Transilvania University of Brasov, Romania, in
1995 and 2001, respectively, the Ph.D. degree,
in 2008, and the Habilitation degree in electronic
engineering, telecommunications and information
technology, in 2019.

In 2002, he joined the Physics Department,
Transilvania University of Brasov, as an Assistant,

where he became a Lecturer, in 2004. In 2011, he joined the Electronics and
Computers Department, Transilvania University of Brasov, where he became
an Associate Professor, in 2015, and a Professor, in 2020. He is the author of
11 books and chapter books, and more than 100 articles. He holds one patent.
His current research interests include renewable energy, energy harvesting,
hybrid systems photovoltaic/thermoelectric/solar collector testing, optoelec-
tronics, virtual instrumentation, and remote engineering.

Dr. Cotfas is a member of the International Association of Online
Engineering (IAOE), the Physics Romanian Society (SRF), the European
Optical Society (EOS), and the Leonardo Virtual Community. He won three
awards at the Graphical System Design Achievement Awards from NIWeek
2013with the Renewable Energy LaboratoryUsingNI ELVIS, NI LabVIEW,
and NI myDAQ, and the Gold Medal from EUROINVENT, Iasi, Roma-
nia, in 2015. He is the guest editor of more journals. He is an Associate
Editor of International Journal of Photoenergy and Frontiers in Energy
Research.

MANOHARAN MADHIARASAN received the
Bachelor of Engineering degree in electrical and
electronics engineering from the Jaya Engineering
College, Thiruninravur, under Anna University,
Tamil Nadu, India, in 2010, the Master of Engi-
neering degree in electrical drives and embedded
control (electrical engineering) from Anna Uni-
versity, Regional Centre, Coimbatore, under Anna
University, in 2013, and the Ph.D. degree in elec-
trical engineering from Anna University, in 2018.

Hewas anAssistant Professor and a Research andDevelopment In-Charge
with the Department of Electrical and Electronics Engineering, Bharat Insti-
tute of Engineering and Technology, Hyderabad, India, from August 2018 to
July 2020. He was a Postdoctoral Fellow with the Department of Computer
Science and Engineering, Indian Institute of Technology Roorkee (IITR),
India, from December 2020 to April 2022. He was a Postdoctoral Fellow
with the Department of Electronics and Computers, Faculty of Electrical
Engineering and Computer Science, Transilvania University of Brasov,

VOLUME 12, 2024 109655

http://dx.doi.org/10.1016/j.enconman.2013.07.054
http://dx.doi.org/10.1016/j.energy.2016.01.082
http://dx.doi.org/10.1016/j.rser.2017.06.089
http://dx.doi.org/10.1016/j.rser.2017.06.089
http://dx.doi.org/10.15373/22501991/may2014/62
http://dx.doi.org/10.1007/s12633-021-01097-1
http://dx.doi.org/10.1007/s12633-021-01097-1
http://dx.doi.org/10.1016/j.solener.2017.08.084
http://dx.doi.org/10.1016/j.solener.2017.04.024
http://dx.doi.org/10.1016/j.solener.2017.04.024
http://dx.doi.org/10.1007/s12648-023-02823-8
http://dx.doi.org/10.1016/j.enconman.2023.117373
http://dx.doi.org/10.1016/j.enconman.2020.113491
http://dx.doi.org/10.1016/j.xcrp.2022.100887
http://dx.doi.org/10.1016/j.xcrp.2022.100887
http://dx.doi.org/10.1016/j.enbenv.2021.01.004
http://dx.doi.org/10.1007/s13369-022-06605-y
http://dx.doi.org/10.1016/j.engappai.2019.103249
http://dx.doi.org/10.1155/2020/8856040
http://dx.doi.org/10.3390/math11040967
http://dx.doi.org/10.1016/j.eswa.2021.114685
http://dx.doi.org/10.1016/j.measurement.2016.06.060
http://dx.doi.org/10.1016/0038-1101(86)90212-1
http://dx.doi.org/10.1016/0038-1101(86)90212-1


D. T. Cotfas et al.: Extraction of the MJSC Parameters Using Two Metaheuristic Algorithms

Romania, from May 2022 to April 2023. He was a Research and Devel-
opment Coordinator and an Associate Professor with the Department of
Electrical and Electronics Engineering, Dhanalakshmi Srinivasan College
of Engineering and Technology, East Coast Road, Mamallapuram, Chennai,
Kanchipuram, Tamil Nadu, from June 2023 to October 2023. His research
interests include electrical engineering, renewable energy systems, power
electronics and control, computer vision, human–computer interface, pattern
recognition, artificial intelligence, neural networks, optimization, machine
learning, deep learning, soft computing, the Internet of Things, and modeling
and simulation.

Dr. Madhiarasan has been a technical program committee member,
an international scientific committee member, and a keynote speaker
at many international conferences. Furthermore, he received the UGC
(RGNF) Fellowship, the prestigious Transilvania Fellowship for Postdoc-
toral Research/Young Researchers, and the Best Researcher Award from
the 10th Edition of Global Research Awards on Artificial Intelligence and
Robotics, in 2023. He presented his research work nationally and internation-
ally. He served as the Publication Chair for the International Conference on
Artificial Intelligence, Big Data and Mechatronics (AIBDM 2021). He acts
as an Editorial Board Member and a Reviewer for many peer-reviewed
international journals, such as Springer, Elsevier, IEEE ACCESS, MDPI, and
Hindawi, and the Lead Guest Editor of Sensors (MDPI), Sustainability
(MDPI), Applied Sciences (MDPI), Thermal Science and Engineering, and
Energy Engineering.

PETRU A. COTFAS (Member, IEEE) received the
B.Sc. degree in mathematics and physics, in 1997,
theM.Sc. degree inmathematics and computer sci-
ence from the Transilvania University of Brasov,
Romania, in 1998, the B.Sc. degree in computer
science, in 2001, and the Ph.D. degree in material
science engineering from the Transilvania Univer-
sity of Brasov, in 2007.

He is currently a Full Professor with the Elec-
tronics and Computers Department, Transilvania

University of Brasov. Having vast experience in the fields of photovoltaics
and hybrid systems characterization and testing, virtual instrumentation, data
acquisition, graphical programming, and remote engineering, he published
ten books or chapter books in national and international publishing houses
and more than 140 papers in international and national journals and confer-
ences proceedings.

Dr. Cotfas is a member of the International Association of Online Engi-
neering and the Romanian Physical Society. He received three awards at the
World Contest Graphical System Design Achievement Award organized by
National Instruments, Austin, TX, USA, in 2013, for the Renewable Energy
Laboratory (RELab) Board Development and the associated case study. The
RELab Board was also awarded a Gold Medal at the International Salon of
Inventions-EUROINVENT 2015, Iasi, Romania.

109656 VOLUME 12, 2024


