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ABSTRACT Wireless communication is now a cornerstone of modern society, propelled by the widespread
adoption of IoT devices and sophisticated wireless technologies. As wireless networks grow in complexity,
there is an increasing need for efficient scheduling algorithms that can manage resources and adapt to
evolving conditions effectively. Link scheduling is critical as it optimizes the use of wireless spectrum
and bandwidth, prioritizing high-priority transmissions and minimizing interference. However, traditional
link scheduling algorithms have primarily focused on performance, often overlooking the crucial aspect
of privacy. This oversight poses significant risks in scenarios where privacy is paramount. To address this
issue, we introduce PriLink, a novel link scheduling algorithm that prioritizes privacy without sacrificing
performance. PriLink employs a least privilegemodel, sharing only essential links to protect critical topology
details from potential adversaries. Our comprehensive evaluation shows that PriLink not only matches but
occasionally surpasses the performance of established benchmarks like Greedy Maximal Scheduling and
Local Greedy Scheduling. Moreover, it offers faster execution times and superior privacy protection. These
results highlight PriLink’s effectiveness as a robust solution for efficient, real-time, and privacy-preserving
link scheduling in dynamic wireless networks.

INDEX TERMS Link scheduling, wireless networks, privacy, topology concealment.

I. INTRODUCTION
In recent decades, wireless communication has become a
fundamental and ubiquitous element of modern society. This
growth has been driven by the increasing prevalence of
Internet-of-Things (IoT) devices and thewidespread adoption
of next-generation wireless access points and base stations.
Consequently, the size and complexity of these networks have
significantly expanded.

Given their widespread use, optimizing wireless networks
is now essential in today’s technological landscape. Due to
the increasing complexity and dynamic nature of these net-
works, there is a heightened demand for efficient scheduling
algorithms that can effectively manage network resources
and quickly adapt to changes [1], [2], [3]. Link scheduling
is vital in this regard as it optimizes the use of wireless
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spectrum and bandwidth. It enhances network performance
by prioritizing high-priority transmissions and minimizing
interference, which is essential for maintaining optimal net-
work operations under diverse loads and conditions. Effective
link scheduling coordinates several critical factors, including
link selection, transmission priority, and management of
technical parameters such as power allocation and coding
schemes [4], [5], [6]. This approach is indispensable in
various applications such as Industrial and Agricultural
IoT, smart grids, VANETs, and battlefield communications,
where the efficiency and security of communications are
paramount [7], [8], [9], [10].

Substantial research efforts have focused on developing
efficient link scheduling algorithms for wireless networks.
The optimal approach to link scheduling often involves
solving the challenging NP-Hard Maximum Weighted Inde-
pendent Set (MWIS) problem [11], [12]. However, the
significant computational demands of MWIS solvers have
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led researchers to explore alternative approximate solutions.
Early studies utilized greedy methods for link scheduling [5],
[13], [14]. More recently, the focus has shifted to machine
learning-based techniques, such as Graph Neural Networks
(GNNs), Recurrent Neural Networks (RNNs), and Spatial
Deep Learning [1], [15], [16]. Across these methodologies,
the goal is to compute real-time link schedules in dynamic
networks, enabling high-priority devices to transmit simulta-
neously without causing network interference.

Traditional efforts to improve scheduling performance
have relied on a comprehensive understanding of the entire
network topology [1], [2]. However, this extensive knowledge
introduces significant privacy risks, necessitating protective
measures for both network devices and individuals [17],
[18]. In high-stakes scenarios, such as battlefield operations,
where wireless communication is crucial for coordinating
troops and performing maneuvers, the privacy of the
network topology is paramount [10]. If adversaries were
to access this information, they could easily identify criti-
cal network hotspots and disrupt communications through
targeted attacks like jamming. Concealing the topology
prevents adversaries from formulating such location-based
strategies [19], [20]. Similarly, in civilian contexts such as
Vehicle Ad-Hoc Networks (VANETs), where vehicles rely on
networked communication for trafficmanagement and safety,
revealing the entire topology can lead to significant privacy
breaches. Continuous exposure of topology across scheduling
windows allows adversaries to track vehicles, deducing
travel patterns, destinations, and frequent stops, thereby
compromising individual privacy [21], [22]. By modifying
these networks to conceal their topologies, we can effectively
mitigate these risks, as adversaries will lack the necessary
data to make privacy-sensitive inferences. To address such
challenges, there is a pressing need for the development
of privacy-focused link scheduling algorithms. These algo-
rithms must manage real-time scheduling efficiently without
exposing sensitive network topology information.

In response to the pressing need for privacy protection
in wireless networks, we introduce PriLink, a novel link
scheduling algorithm designed to prioritize the privacy of
network topologies while ensuring high link scheduling
performance and real-time execution. Unlike current greedy
algorithms that rely on complete network topology and
utilize graph-theoretic approaches, PriLink takes a unique
stance by not requiring detailed topology information.
Instead, it computes schedules directly from the links
provided by individual devices. This is achieved through a
‘‘least privilege’’ model, where devices share only essential
links with the scheduler, thus withholding critical topology
details from potential adversaries. PriLink redefines link
scheduling by eliminating the need for a global network
view, which greedy algorithms in the literature rely on for
optimal performance. This innovative approach enhances
privacy and introduces a new paradigm that prioritizes
data protection without sacrificing operational efficiency.
This paper provides a detailed account of PriLink’s design

and implementation, complemented by practical simulations
that demonstrate its performance. Our results show that
PriLink’s scheduling performance is comparable to that of
established benchmarks such as GreedyMaximal Scheduling
(GMS) [5], [23] and Local Greedy Scheduling (LGS) [13],
[24]. Moreover, PriLink incorporates a privacy tolerance
metric, allowing administrators to fine-tune the balance
between performance and privacy. Lower tolerance settings
improve topology concealment at a slight cost to scheduling
performance, whereas higher settings maintain considerable
privacy benefits while closely matching the scheduling
performance of GMS and LGS. We believe that PriLink’s
unique combination of high scheduling efficiency, fast
execution times, and strong privacy protection makes it a
well-suited alternative to existing algorithms, meeting the
increasing demands for both efficient link scheduling and
robust privacy in wireless networks.

Our evaluation of the PriLink algorithm centered on its
efficiency in link scheduling, execution times, and privacy
across a range of simulated wireless network scenarios and
densities. We used the Erdős-Rényi (ER) model [25] in our
simulations to generate network topologies with controlled
variations in size and density. The results indicate that PriLink
is a viable alternative to current link scheduling algorithms,
even in settings where privacy is not the primary concern.
It achieves scheduling performance comparable to that of
Greedy Maximal Scheduling (GMS) and Local Greedy
Scheduling (LGS), coming within 0.05% of the highest
performance benchmarks, while processing schedules nearly
ten times faster than these benchmarks. When focusing
on privacy, PriLink still maintains robust performance,
achieving scheduling results within 3% of LGS in networks
of 50 devices, and within 5.5% for larger networks containing
250 devices. Remarkably, it manages this performance while
concealing up to 70% of the network topology in smaller
networks and as much as 94.5% in larger networks. This
capability demonstrates PriLink’s effectiveness in balancing
high scheduling efficiency with significant privacy protec-
tion, positioning it as a strong contender in the field of
wireless network management.

Our contributions can be summarized as follows.
• We introduce PriLink, a novel link scheduling algorithm
with built-in privacy protections. This represents the first
implementation of a privacy-focused link scheduling
algorithm tailored for dynamic wireless networks.

• We performed a comparative analysis of PriLink against
benchmark algorithms, showing that it matches their
scheduling performance and executes faster. In addition,
it significantly enhances privacy by concealing a sub-
stantial portion of network links in various scenarios.

The structure of our paper is outlined as follows: Section II
examines the issues of link scheduling and privacy in current
algorithms. Section III reviews related research, setting the
context for our study. In Section IV, we detail the design,
implementation, time complexity, and privacy properties of
our PriLink algorithm. Section V presents an evaluation of
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FIGURE 1. An illustration of a wireless network.

PriLink, focusing on its performance in link scheduling,
execution time, and privacy benefits. We conclude our
findings in Section VI.

II. BACKGROUND
A. LINK SCHEDULING FOR WIRELESS NETWORKS
Wireless link scheduling algorithms are designed to opti-
mize the performance of wireless networks by efficiently
allocating resources to maximize link utilization for packet
transmission. By doing so, they effectively reduce inter-
ference, decrease the likelihood of packet collisions, and
minimize the need for retransmissions. These algorithms are
especially valuable in environments where collision-sensing
protocols such as Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) are either not in use or require further
optimization. The coordination between link scheduling
and collision avoidance protocols significantly improves the
utilization of network resources, enhancing overall network
efficiency.

Link scheduling algorithms are utilized across vari-
ous wireless topologies, such as point-to-point, point-to-
multipoint, and multihop networks. The selection of a
particular topology is influenced by the specific require-
ments and challenges of the network. Notably, multihop
networks benefit significantly from link scheduling, which
enhances data transmission efficiency and improves net-
work reliability. Despite these specific advantages, link
scheduling is universally valuable, offering crucial benefits
to all types of networks where it is implemented. In this
paper, our discussion focuses on link scheduling within
wireless networks that use orthogonal frequency-division
multiplexing (OFDM), a technology at the heart of modern
broadband and mobile networks. This technology divides
the communication channel into multiple orthogonal sub-
channels and time slots, optimizing the handling of multiple
data streams simultaneously.

B. ILLUSTRATING LGS LINK SCHEDULING ALGORITHM
This section provides an overview of the Local Greedy
Scheduling (LGS) algorithm to illustrate how current greedy
link scheduling algorithms operate. We chose the LGS
algorithm because previous research [1], [13] has shown that
it generates efficient link schedules that closely approximate
the Maximum Weighted Independent Set (MWIS).

1) CONFLICT GRAPH CONSTRUCTION
A conflict graph is a valuable tool in wireless networks for
assessing interference between wireless devices. It simplifies

FIGURE 2. A conflict graph generated for the illustrated wireless network
in Figure 1.

the computation needed for scheduling links by allowing us
to select a link for the schedule and then safely disregard all
its neighboring links. This is crucial because activating any
neighboring link would result in interference, compromising
network performance.

To demonstrate a conflict graph construction, consider
the wireless network example depicted in Figure 1. In this
example, we represent the network as a graph labeled
G = (V ,E). Here, the vertices V = {D1,D2, . . . ,D7}

symbolize all the devices within the network. The edges
E = {L(D1, D2, W1,2),L(D1, D7, W1,7), . . . ,L(D6, D7,

W6,7)} represent the links that connect these devices, where
Wj,k is the weight of the link between devices Dj and Dk .
These weights, which can be observed in Figure 1 with values
like W1,2 = 8, W1,7 = 4, and W6,7 = 7, are crucial
for scheduling as they dictate the link’s priority. Weight
values are typically determined based on the network’s
scheduling requirements. For instance, links with stronger
signal strengthmight be assigned higherweights because they
are more reliable and less prone to interference. Alternatively,
in networks where Quality of Service (QoS) is a priority, links
handling high-priority or QoS-compliant traffic may receive
higher weights to ensure they are prioritized in the scheduling
process.

From the original graph G, we can create a conflict graph
GC = (VC ,EC ). In this conflict graph GC , each vertex
corresponds to an edge from G. For example, vertices V 1,2

C ,
V 1,7
C , and V 6,7

C in GC represent the edges L(D1,D2,W1,2),
L(D1,D7,W1,7), and L(D6,D7,W6,7) inG, respectively. The
edges EC in the conflict graph signify interference between
these links. For instance, the vertex V 1,2

C has interfering
edges I (V 1,2

C ,V 1,7
C ), I (V 1,2

C ,V 2,3
C ), and I (V 1,2

C ,V 2,4
C ), where I

represents interference. Figure 2 illustrates this conflict graph
for the wireless network shown in Figure 1. Essentially, if a
link between devices D1 and D2 is active, other links such
as L(D1,D7,W1,7), L(D2,D3,W2,3), and L(D2,D4,W2,4)
should not be activated to avoid interference and ensure
effective link scheduling.

2) LOCAL GREEDY SCHEDULING (LGS) OVERVIEW
The LGS algorithm utilizes the conflict graph GC =

(VC ,EC ), which requires complete visibility of the entire
network topology to construct. Initially, we define a set
r of remaining unvisited devices, starting with r = VC
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which includes all devices. The algorithm begins by
sorting r according to device weights. It then selects
the device with the highest weight for inclusion in the
schedule. For example, in our network, the algorithm
first selects V 2,4

C = L(D2,D4,W2,4) because it has the
highest weight of 10. This device and its neighboring
devices are marked as visited and added to the set v,
which tracks visited devices. After the first iteration, v
includes {V 2,4

C ,V 1,2
C ,V 2,3

C ,V 3,4
C ,V 4,5

C }. In the subsequent
iteration, the algorithm continues with the unvisited devices
remaining in r . It next selects V 5,6

C , which has the second-
highest weight of 9. Consequently, v is updated to include
{V 2,4

C ,V 1,2
C ,V 2,3

C ,V 3,4
C ,V 4,5

C ,V 5,6
C ,V 6,7

C }, and r is reduced
to {V 1,7

C }. The process repeats until all devices have been
visited, culminating in the final schedule [V 2,4

C ,V 5,6
C ,V 1,7

C ]
(i.e., [L(D2,D4, 10),L(D5,D6, 9),L(D1,D7, 4)] with a total
weight of 23.

The LGS algorithm’s dependence on the conflict graphGC
enforces full knowledge of the network topology to operate
effectively. This requirement limits its use in environments
where privacy concerns restrict the availability of complete
network information.

III. RELATED WORK
A. EFFORTS ON WIRELESS LINK SCHEDULING
Considerable efforts have been invested in refining link
scheduling algorithms for wireless networks. Initially,
research primarily focused on using graph theory to
approximate optimal link schedules while ensuring real-time
operation. More recently, there has been a shift towards
adopting machine learning techniques. These methods train
models that often outperform traditional approaches in
creating more efficient schedules. Generally, link scheduling
strategies can be categorized into two groups:

1) CENTRALIZED LINK SCHEDULING
This approach to link scheduling involves the use of a
central server that acts as a coordinator. The server collects
detailed information about all devices within the network,
including the weights of their respective links. It then utilizes
this information to calculate the link schedule, employing
either traditional algorithmic methods or machine learning-
based approaches [1], [12], [26]. For example, Leconte et al.
[23] implemented the Greedy Maximal Scheduling (GMS)
algorithm, which demonstrates high scheduling performance
by approximating solutions close to the Maximum Weighted
Independent Set (MWIS). This algorithm prioritizes local
network graph data over global information, thereby achiev-
ing efficient scheduling solutions for wireless networks of
varying sizes. In the realm of machine learning, Graph
Neural Networks (GNNs) have gained attention for their
effectiveness in centralized scheduling solutions. Zhao et al.
[1] illustrate how GNNs, once adequately trained, can offer
significant topological insights about the network, which in
turn leads to more effective scheduling outcomes compared
to those achieved with greedy methods.

2) DISTRIBUTED LINK SCHEDULING
These schemes empower wireless devices to autonomously
compute their own link schedules, thus eliminating the depen-
dence on a central server. Typically, these distributedmethods
utilize iterative processes that involve local interactions
among the vertices of the graph and their immediate neigh-
bors [14], [27], [28]. These approaches can be algorithmic or
based on machine learning techniques, similar to centralized
methods. Several distributed greedy algorithms have been
developed, such as Local Greedy Scheduling (LGS), Local
Greedy Scheduling Enhancement (LGS-E), Local Greedy
Scheduling with Two contention mini-slots (LGS-Two), and
Greedy Coloring [13]. These methods aim to adapt the
principles of the centralized Greedy Maximal Scheduling
(GMS) algorithm for distributed environments, achieving
scheduling outcomes that closely align with those of GMS.
Recent advancements have also brought machine learning
into distributed scheduling solutions. For instance, Zhao et al.
have developed a distributed scheduler for the Maximum
Weighted Independent Set (MWIS) problem using Graph
Neural Networks (GNNs), which facilitates the learning of
node topology to enhance graph information while maintain-
ing generalizability and minimal complexity increase [29].
They have also introduced a delay-oriented distributed sched-
uler that utilizes Graph Convolutional Networks (GCNs)
coupled with deep Q-learning, incorporating insights from
network backlogs and previous scheduling decisions [30].
Additionally, Joo et al. have presented a distributed greedy
approximation for MWIS scheduling in environments with
fading channels, closely approximating the optimal max
weight solutions [14]. Cui et al. have explored a Spatial Deep
Learning approach for efficient link scheduling that leverages
the geographic locations of transmitters and receivers to
optimize network performance [16].

Our motivation stems from a desire to enhance real-time
link scheduling in wireless networks, a goal shared by many
in this field. Like previous algorithms, PriLink is designed
to operate effectively in both centralized and decentralized
settings, ensuring efficient and timely scheduling of net-
work links. However, both centralized and decentralized
approaches rely on having complete access to the network’s
topology. This common practice can lead to privacy concerns,
as it involves extensive data exposure. PriLink sets itself
apart by making privacy a priority and implementing a least
privilegemodel. Furthermore, we have introduced a tolerance
metric parameter that allows administrators to finely adjust
the balance between link scheduling performance and the
preservation of network topology privacy. This focus on
privacy not only differentiates PriLink from conventional
scheduling solutions but also addresses a crucial need in the
management of modern wireless networks.

B. EFFORTS ON PRIVACY IN WIRELESS NETWORKS
In this section, we explore current privacy research within
the wireless networks domain. To the best of our knowledge,
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no existing studies have specifically addressed privacy
concerns in link scheduling. Thus, our discussion focuses on
the general techniques used to protect privacy across other
aspects of wireless networks.

Numerous studies have focused on enhancing privacy
in wireless networks, introducing innovative defensive and
offensive strategies [31], [32]. For example, Wang et al. pro-
posed a probabilistic method to protect source location pri-
vacy in Wireless Sensor Networks (WSNs). Their approach
modifies data packet transmission paths by introducing
phantom nodes, fictitious sources, and weighted adjust-
ments, which significantly reduces the chance of adversaries
intercepting these transmissions [33]. Similarly, Koh et al.
developed a privacy-focused routing algorithm designed to
thwart route inference by global adversaries, whether they
have lossless or lossy observations. They employ Bayesian
maximum-a-posteriori estimation to lower the probability
of detecting transmissions within WSNs [34]. Additionally,
Chakraborty et al. introduced a technique to ensure temporal
differential privacy inWSNs, aimed at preventing adversaries
from learning about the timing of events at specific nodes.
This is accomplished by strategically delaying traffic traces
using differential privacy mechanisms [35].
Additionally, recent research has leveraged advanced

Machine Learning techniques effectively to enhance privacy
protection within wireless networks. For example, Mohamed
et al. introduced a privacy model that employs federated
learning over a wireless channel. This model includes user
sampling and a novel wireless gradient aggregation scheme
to enhance privacy [36]. Similarly, Liu et al. developed a
gated recurrent unit neural network algorithm for accurately
predicting traffic flowwhile preserving privacy. Their method
integrates a federated averaging algorithm with a joint-
announcement protocol in the aggregation process, effec-
tively balancing privacy protection with prediction accuracy
and reducing communication overhead [37]. Furthermore,
Kim et al. investigated adversarial attacks against deep learn-
ing models used for modulation classification in wireless
channels. They also developed a certified defense mechanism
to counteract the effects of these attacks, enhancing the
robustness of wireless communications [38].
Our work stands apart from the studies mentioned above,

both in motivation and methodology. First, our research is
centered on link scheduling, whereas prior studies have pri-
marily addressed different aspects of wireless networks such
as safeguarding communication paths, protecting the timing
of events, and securing processes within federated learning
frameworks. Second, our approach involves disclosing only
essential information tailored to application needs by con-
figuring a tolerance metric value for schedule computation.
Techniques such as differential privacy, network obfuscation,
and noise addition, while effective in some contexts, may not
provide adequate solutions for link scheduling. Differential
privacy, designed to protect individual data points within
a dataset, may not be directly applicable to concealing
a wireless network’s topology because it generally relies

FIGURE 3. An illustrative dense network comprising 15 nodes and edges
between devices able to communicate.

FIGURE 4. The network observed by an attacker when PriLink is
employed at a tolerance value of 1, showing only 12% of the total links
and concealing the rest.

on a large, static dataset for effective noise application–an
unlikely scenario in dynamic networks where topology and
parameters frequently change [1], [2]. Additionally, network
obfuscation and noise addition can introduce overhead and
degrade performance, which is particularly problematic in
wireless networks where efficiency and low latency are
crucial [19], [39]. Moreover, sophisticated adversaries may
be able to reverse engineer obfuscated data or filter out
noise, diminishing the effectiveness of these methods in
critical privacy-sensitive scenarios [40], [41], [42]. Instead,
we enhance privacy by limiting the exposure of information
to potential adversaries, as detailed in Section IV.

IV. PRILINK: ALGORITHM DESIGN
A. SYSTEM MODEL
The PriLink algorithm offers a versatile alternative to
current greedy link scheduling methods, tailored for wireless
networks that need to safeguard their topology privacy.
It is particularly effective in dynamic networks where the
topology changes frequently, requiring adaptive real-time
link scheduling.While PriLink is optimized for such dynamic
environments, it can also perform well in static settings.
However, in static networks, it is important to be aware that
privacy protections may erode over time. This vulnerability
arises because an adversary who can consistently monitor a
static network over time may be able to deduce the network
topology, a capability that is significantly diminished in
dynamic networks where the topology changes frequently.
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PriLink also provides administrators the flexibility to
adjust a privacy tolerance metric for balancing link schedul-
ing performance with the privacy of the network topology.
At a tolerance value of 1, the algorithm provides maximum
privacy protection. Low tolerance settings enhance privacy,
which is vital in sensitive environments, though it may
slightly reduce scheduling efficiency. Conversely, increasing
the tolerance improves scheduling performance but at the
expense of reduced privacy. This streamlined approach sim-
plifies network management, allowing for quick adjustments
without the need for complex strategies or technologies.

Figures 3 and 4 visually illustrate the privacy benefits
of the above model. Figure 3 shows an original dense
network with 15 nodes, where each device is connected to
all its neighboring devices, creating a highly interconnected
topology. In contrast, Figure 4 demonstrates the network
as perceived by the adversary when PriLink is employed
at a tolerance value of 1, concealing approximately 88%
of the network links from the adversary in this graph.
This drastic reduction in visible links underscores PriLink’s
tolerance effectiveness in preserving privacy by limiting the
information available to the adversary. In dynamic networks,
where the topology is continuously evolving, this makes it
exceedingly challenging for an adversary to accurately iden-
tify the network topology, thereby significantly enhancing
overall network privacy. These privacy protection capabilities
are central to the evaluations discussed in Section V, showing
how PriLink balances performance and privacy based on
tolerance settings.

B. ADVERSARY MODEL
We define our adversary as an entity capable of accessing
the information shared by wireless devices for schedule
computation. This adversary could be a passive observer,
either within or outside the network, who can receive certain
messages from devices to deduce the network’s topology.
If the adversary is within the network, they will have access
to the control messages of their neighbors if they are tuned
into the appropriate channel, gaining detailed knowledge
about local network topology. However, they will remain
unaware of the control messages shared in the rest of the
network, severely limiting their ability to deduce the complete
topology. If the adversary is outside the network, they will
not have access to the control messages, thus completely
restricting their ability to discover the topology. Alternatively,
the adversary might take on an active role, such as a scheduler
responsible for computing the network schedule. While we
assume that the scheduler performs its task of scheduling
accurately, its role provides it with access to comprehensive
network data. This ‘honest but curious’ behavior scenario is
concerning because the scheduler, while not deviating from
its assigned tasks, may still analyze or use the sensitive data
it accesses for purposes other than intended.

With access to network topology information, the adver-
sary can carry out various privacy breaches, as previously
discussed in Section I. For example, in the battlefield

scenario mentioned earlier, an adversary would need the
entire network topology to strategically position themselves
for maximum impact through methods such as jamming.
It is important to note that simply knowing the highest-
weighted links does not aid the adversary significantly,
as multiple links within the network may have the same
weight regardless of their position in critical zones or on
the network’s periphery. Therefore, the ability of PriLink
to conceal the network topology is crucial, as it prevents
the adversary from gaining the comprehensive knowledge
necessary to execute a strategic attack. In the context of
Vehicle Ad-Hoc Networks (VANETs), an adversary with
access to regular topology updates could effectively track
vehicles and individuals over time. This detailed tracking
would enable the adversary to deduce travel patterns,
destinations, and frequent stops, posing significant privacy
risks. However, PriLink is designed to counteract this threat
by concealing regular topology updates. Its algorithm ensures
that even if a vehicle consistently has high weight in the
network, and thus transmits more often, the necessary links
to infer its exact location remain concealed. By doing so,
PriLink makes it difficult for adversaries to track targeted
vehicles and individuals consistently, significantly enhancing
privacy and security within VANETs.

Understanding the adversary model is crucial for appre-
ciating the effectiveness of PriLink’s privacy mechanisms,
which we explore next in Section IV-C. By considering the
capabilities and limitations of the adversary, we can better
understand how PriLink’s design addresses these threats,
thereby validating the practical relevance of our privacy and
scheduling performance results.

C. THE PRILINK ALGORITHM
Our development of PriLink was inspired by a key obser-
vation: conventional link scheduling algorithms focus on
identifying the highest-weighted links within a network,
often overlooking other less prominent links. This focus is
logical since the goal is to activate links that maximize the
network’s schedule from all possible combinations of link
schedules. Building on this, we considered an alternative
strategy where devices only reveal their highest-weighted
link for the scheduling process, keeping all other links
private. We hypothesized that this selective disclosure could
still enable effective scheduling, though it might initially
result in lower performance compared to current greedy
algorithms like Local Greedy Scheduling (LGS). To enhance
this approach, we proposed allowing devices to share
additional links as needed, ordered by their importance. This
strategy aims to balance privacy with scheduling efficiency.
The culmination of these ideas led to the development of
the PriLink algorithm, detailed in Algorithm 1. PriLink’s
design inherently improves communication performance by
optimizing link scheduling, thereby minimizing channel
congestion and interference without requiring explicit opti-
mization of channel selection or the communication process.
By prioritizing the most critical links, PriLink ensures that
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FIGURE 5. Breaking down the wireless network shown in Figure 1 into
individual graphs for each device. Each device maintains its respective
link weight information.

the communication channels are used efficiently, leading
to improved overall network performance. This efficiency
is achieved through algorithmic enhancements rather than
changes to the channel selection mechanism. The subsequent
sections will provide further insights into how PriLink
operates and its advantages over existing methods.

1) NETWORK SETUP
In PriLink, we implement a least privilege methodology
to model the network setup. This approach leads to a
decentralized network configuration where each device
maintains its own graph. This graph includes the device
itself and its immediate neighbors as vertices, with edges
representing the connections to these neighbors. Devices can
readily construct this graph based on their knowledge of
local communication patterns. Due to its design, PriLink can
be effectively deployed in both centralized and decentral-
ized configurations. In a centralized configuration, devices
transmit their links to a central scheduler. Conversely, in a
decentralized setup, each device broadcasts its links across
the network. Regardless of the configuration, the fundamental
steps of the algorithm remain consistent, ensuring reliable
operation across different network setups.

The concept of decentralization in our network setup can
be visually understood through the example illustrated in
Figure 1, which displays a wireless network with devices
labeled D1, D2, . . . , D7. The decentralization process
for each device is detailed in Figure 5. For example,
Device D1 maintains its own unique graph denoted as
GD1 = (VD1 ,ED1 ). Here, the vertices VD1 = {D1,D2,D7}

represent Device D1 and its immediate neighbors. The
edges ED1 = {L(D1,D2,W1,2),L(D1,D7,W1,7)} specif-
ically connect Device D1 to these neighbors. Similarly,
Device D3 has its graph GD3 = (VD3 ,ED3 ), with
vertices VD3 = {D2,D3,D4} and edges ED3 =

{L(D2,D3,W2,3),L(D3,D4,W3,4)} linking it to its neigh-
bors. This decentralization is uniformly applied across all
devices, including D2, D4, D5, D6, and D7. Such a setup
allows each device to manage its privacy effectively by
disclosing only the links necessary for the computation of the
schedule while keeping all other connections private.

2) ALGORITHM OVERVIEW
The PriLink algorithm, as detailed in Algorithm 1,
requires two primary inputs: a set of devices denoted as

Algorithm 1 PriLink Link Scheduling Algorithm
1: Inputs: devices← {D1, . . . ,DN }, tolerance (τ ) ∈ R
2: Output: schedule← []
3: links← ∅
4: visited ← ∅
5: for all Di ∈ devices do
6: receivemsg(m = sort(EDi ))[0 : τ ])
7: links← links ∪ {m}
8: end for
9: sorted_links← sort_by_weight(links)

10: for all (Di,Dj,Wi,j) ∈ sorted_links do
11: if !(Di ∈ visited ||Dj ∈ visited) then
12: schedule← schedule+ [(Di,Dj,Wi,j)]
13: visited ← visited ∪ {Di,Dj}
14: end if
15: end for

{D1,D2, . . . ,DN } and a tolerance metric value denoted as τ .
The set of devices provides the scheduler with the necessary
information to anticipate potential links from each device,
facilitating the planning of link schedules. The tolerance
value, τ , specifies the maximum number of links each device
is expected to contribute, which helps in managing the
complexity and breadth of the network data processed during
scheduling (line 1). For example, if the tolerance τ is set
to 1, each device in the network will transmit only its single
highest-weighted link. If τ is increased to 5, each device will
then share its top five highest-weighted links. The algorithm
produces a single output, schedule, which comprises all the
links chosen by the algorithm for transmission during the
current scheduling window (line 2).
The algorithm initiates by creating two sets: links to store

the links received from the devices, and visited to keep track
of all devices that have been processed (lines 3 and 4). The
process of receiving links occurs in lines 5-8. Each device Di
sorts its edgesEDi by linkweight in descending order and then
transmits the top τ links to the scheduler (line 6). These links
are then added to the links set for the next phase of scheduling
(line 7). To ensure there are no duplicates in links, the links
from each device, such as L(Di,Dj,Wi,j), are transmitted in
a manner that ensures i < j to maintain order and prevent
redundancies efficiently.

After gathering all links for a specific contention window,
the algorithm proceeds to sort these links by their weight,
storing the result in a list named sorted_links (line 9). This
sorting is crucial as it ensures that links with higher weights
are prioritized for scheduling over those with lower weights,
following a common practice in scheduling algorithms. In the
subsequent step, the algorithm processes each link from
the sorted_links list individually (line 10). If either of the
devices involved in a link is already marked in the visited
set, indicating prior scheduling, that link is skipped (line 11).
If neither device has been visited, the link is added to the
schedule list (line 12), and both devices are marked as
visited by adding them to the visited set (line 13). This
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FIGURE 6. Visual representation of steps in the PriLink algorithm applied
to the wireless network example in Figure 1.

prevents any further scheduling of links that would conflict
with the previously scheduled ones. After iterating through
all the sorted links (lines 10-15), the final link schedule is
compiled in the schedule list. This finalized schedule is then
disseminated, ensuring that all devices are aware of their
scheduled transmissions.

3) ALGORITHM DEMONSTRATION (τ = 1)
Here, we demonstrate the operation of the PriLink algorithm
using device-based graphs as depicted in Figure 5, following
the steps outlined in Algorithm 1. Initially, we set the
tolerance parameter τ to 1 to illustrate the algorithm’s
behavior. Subsequently, we will increase the tolerance τ to
2 and examine the tolerancemetric’s impact on the scheduling
performance and privacy. A visual representation of the
algorithm’s steps and outputs for these two tolerance settings
is provided in Figure 6.
Setting the tolerance value τ to 1 instructs network devices

to disclose only their highest-weighted link. Accordingly,
in lines 5-8 of Algorithm 1, each device submits just one link
to the scheduler. For example, as shown in the device graphs
from Figure 5, Device D2 transmits L(D2,D4, 10), which is
the highest-weighted link in its graph GD2 . Likewise, Device
D3 sends L(D2,D3, 3), representing the highest-weighted
link in its graph GD3 . It is important to note that Device
D4 transmits L(D2,D4, 10) as well, the same link shared
by D2. Since this link is a duplicate, the algorithm discards
it to avoid redundancy. These links are then stored and
processed in subsequent steps and are visually represented in
the ‘Original Links’ section of Figure 6.
After gathering links from the devices within the specified

contention window, the PriLink algorithm sorts these links
as outlined in line 9 of Algorithm 1. The sorted links are
visually displayed in the ‘Sorted Links’ section of Figure 6.
This sorting operation organizes the links in descending order
of their weights, positioning the highest-weighted links at the

top of the list. This prioritization is crucial as it allows the
algorithm to focus on selecting the most significant links first
in the subsequent scheduling step. In our example, with a
tolerance value of 1, the link L(D2,D4, 10) appears at the top,
being the highest-weighted link, followed by L(D5,D6, 9)
and others in descending order.

After sorting the links, the PriLink algorithm iterates
through each sorted link, as detailed in lines 10-15, to com-
pute the final schedule. In this instance, with a tolerance
value of one and five sorted links, the algorithm executes
five iterations. Initially, no devices have been visited, so the
condition in line 11 is true. The algorithm adds the highest-
weighted link, L(D2,D4, 10), to the schedule list (line 12),
resulting in schedule ← [L(D2,D4, 10)]. It then marks
D2 and D4 as visited (line 13), updating the visited set to
visited ← {D2,D4}. The next highest link, L(D5,D6, 9),
is processed. Since neither D5 nor D6 has been visited,
the link is added to the schedule in line 12, updating the
schedule to schedule ← [L(D2,D4, 10),L(D5,D6, 9)]. The
visited set is expanded to include these devices, becoming
visited ← {D2,D4,D5,D6}. The algorithm then processes
the links L(D1,D2, 8), L(D6,D7, 7), and L(D2,D3, 3). Each
of these iterations fails to add the link to the schedule because
at least one involved device in each link is already in the
visited set. The condition at line 11 is not satisfied for these
links, so they are skipped, resulting in a final schedule of
[L(D2,D4, 10),L(D5,D6, 9)], as no further unvisited links
are available to be added.

4) ALGORITHM DEMONSTRATION (τ = 2)
The schedule computed with a tolerance τ = 1 using PriLink
does not achieve an optimal solution when compared to the
results from the Local Greedy Scheduling (LGS) algorithm
detailed in Section II-B. Specifically, the link L(D1,D7, 4),
included in the LGS schedule, was omitted in the PriLink run.
The omission of this link in the schedule with τ = 1 can be
attributed to the link prioritization by the devices, as evident
in the original links section of Figure 6. Both device D1 and
deviceD7 did not expose the link L(D1,D7, 4) because it was
their second-highest weighted link, and thus was not shared
with the scheduler under the τ = 1 setting.

Executing PriLink with a tolerance value of τ = 2 allows
for the inclusion of previously omitted links in the schedule.
Similar to other greedy algorithms, PriLink prioritizes links
from devices with smaller index values when weights are
equal. For example, deviceD4 has potential second links such
as (D3,D4, 2) and (D4,D5, 2). Given the choice, D4 selects
(D3,D4, 2) because deviceD3 has a smaller index than device
D5. By setting τ to 2, additional links are disclosed, notably
L(D1,D7, 4), L(D3,D4, 2), and L(D4,D5, 2), enhancing
the schedule’s completeness. These additions are visually
documented in the ‘Original Links’ section of Figure 6.

After sorting the links in line 9 with setting τ = 2,
the PriLink algorithm executes eight iterations according to
lines 10-15. The first four links remain the same as with
τ = 1, so the schedule and the set of visited devices
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remain unchanged after the fourth iteration: schedule ←
[L(D2,D4, 10),L(D5,D6, 9)] and visited ← {D2,D4,D5,

D6}. During the fifth iteration, the algorithm processes
L(D1,D7, 4). Since bothD1 andD7 have not yet been visited,
this link is added to the schedule, updating it to schedule←
[L(D2,D4, 10),L(D5,D6, 9),L(D1,D7, 4)]. Both D1 and
D7 are then marked as visited, updating the visited set to
visited ← {D1,D2,D4,D5,D6,D7}. The next three links,
L(D2,D3, 3), L(D3,D4, 2), and L(D4,D5, 2), are not added
to the schedule because at least one involved device in each
is already in the visited set. This results in a final schedule
of schedule ← [L(D2,D4, 10),L(D5,D6, 9),L(D1,D7, 4)],
mirroring the outcome achieved by the Local Greedy
Scheduling (LGS) for this example network.

In the demonstration using a tolerance value of τ = 2, it is
clear that the PriLink algorithm achieves the same scheduling
outcome as the Local Greedy Scheduling (LGS) for our
example network. In the subsequent sections, we will explore
our comprehensive evaluation methodology and results,
which include simulations of PriLink across various sizes
and densities of wireless networks. We will also compare
PriLink’s performance against high-performance benchmark
algorithms such as Greedy Maximal Scheduling (GMS) and
Local Greedy Scheduling (LGS) to highlight its effectiveness
and efficiency.

5) TIME COMPLEXITY
The time complexity of the PriLink algorithm can be analyzed
through its three main operational steps as outlined in the
algorithm’s description. Each step contributes distinctly to the
overall computational load:

1) Sorting Edges on Each Device (Lines 5-8): In this
step, each device sorts its edges. If the number of
edges each device handles is represented as Ê , the
sorting operation has a time complexity of O(Ê log Ê).
This complexity is specific to the edge count of each
individual device, as the edges are processed locally
within the device.

2) Sorting Transmitted Links on the Scheduler (Line 9): In
this step, the scheduler sorts all transmitted links. Each
of the N devices contributes up to τ links, leading to a
total of N × τ links. Therefore, the sorting operation
for these links requires a time complexity ofO((N × τ )
log(N × τ )), accounting for every link transmitted by
each device.

3) Computing the Schedule from the Sorted Links (Lines
10-15): In this step, the algorithm iterates over all the
links. Throughout this iteration, it performs several
constant-time operations, such as set operations, which
each have a time complexity of O(1). Consequently,
the overall time complexity for this step is linear,
amounting to O(N × τ ), directly correlating with every
link transmitted by each device.

In scenarios common to large wireless networks, the
number of edges Ê per device is usually much smaller than
the total number of transmitted links N × τ . As a result, the

sorting of links at the scheduler emerges as the most critical
factor in the complexity analysis. Therefore, the worst-case
time complexity of the PriLink algorithm is predominantly
governed by this sorting step, which has a complexity of
O((N × τ ) log(N × τ )).

6) PRIVACY BENEFITS
In the PriLink algorithm, the privacy tolerance parameter
τ imposes a limit on the maximum number of links that
each device in the network, totaling N devices, is allowed
to transmit to the scheduler. This restriction is applied in
lines 5-8 of the algorithm’s implementation.

a: MAXIMUM LINKS DISCLOSED
The expression N × τ sets the upper limit on the total
number of network links that can be disclosed throughout the
network.

max_disclosed = N × τ

b: EXPECTED LINKS COUNT
The total number of distinct pairs of vertices in a graph with
N vertices is given by the binomial coefficient

(N
2

)
. This

coefficient counts all potential edges in the network, and the

formula for this calculation is
(N
2

)
=

N×(N−1)
2 . According

to the Erdős-Rényi (ER) model [25], which is detailed in
Section V-A, each of these

(N
2

)
possible edges independently

exists with probability p. Thus, the expected number of links
in the network graph is calculated by multiplying the total
possible number of edges by the probability p that any given
edge is included:

links_count = p×
(
N
2

)
= p×

N × (N − 1)
2

c: PRIVACY COST
We define privacy cost as the degree to which sensitive
links in the network topology are disclosed by wireless
devices. This disclosure is quantified by comparing the
maximum number of links that can be disclosed, denoted
as max_disclosed , with the expected total number of links,
denoted as links_count . The formula to calculate the privacy
cost is given by:

privacy_cost =
max_disclosed
links_count

=
N × τ

p×
(N
2

)
which simplifies to:

privacy_cost =
2× τ

p× (N − 1)

d: HIGHEST PRIVACY CONDITION
The minimum privacy cost, indicating maximum privacy,
is achieved when τ = 1. Under this condition, the privacy
cost formula further simplifies to 2

p×(N−1) . This reduced value
represents the highest privacy condition achievable by the
PriLink algorithm, as it minimizes the extent of sensitive
network topology information disclosed by wireless devices.
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TABLE 1. Simulation parameters employed for evaluation.

e: EXAMPLE ILLUSTRATIONS
To exemplify the privacy benefits afforded by the PriLink
algorithm, we present a couple of scenarios demonstrating the
extent of network topology disclosure. Consider a network
with N = 250 devices. Under the highest privacy setting
(τ = 1), and assuming a densely connected graph modeled
by the ER model with a connection probability of p = 0.8,
the privacy cost calculates to 0.01. This indicates that only
1% of the total network links are disclosed, highlighting
significant privacy benefits. If we increase the tolerance to
τ = 10, the privacy cost rises to 0.1, yet this still conceals
about 90% of the network topology. These calculations are
further substantiated in Section V-C4, where simulations in
large dense networks show that disclosure can be as minimal
as 1%, thus effectively safeguarding the network topology
from the adversary with the use of PriLink.

V. PERFORMANCE EVALUATION
A. WIRELESS NETWORKS SIMULATION
1) SIMULATION METHODOLOGY
To simulate wireless networks for our evaluations,
we employed the Erdős-Rényi (ER) model, as described
in [25] and it has been used in previous studies to analyze link
scheduling performance [1], [29]. In this model, we define
the number of nodes as N and the probability of connecting
any two nodes as p. The ER model constructs a network
graph by randomly establishing connections between nodes,
where each edge’s presence is independent of other edges.
This feature allows us to effectively manipulate the network
size (N ) and the probability of connections (p), creating a
variety of network scenarios that mimic real-world conditions
where link availability and network topologies can vary
significantly. By adjusting these parameters, we can explore
a broad spectrum of network densities and complexities,
providing a robust framework for assessing the performance
of our link scheduling algorithms under different conditions.

2) SIMULATION PARAMETERS
For our simulations, we utilized parameters from Table 1
to evaluate our algorithm across a range of graph sizes,
from 10 to 250 devices, including intermediary sizes.
We employed the ER model with probabilities of 0.2, 0.5,
and 0.8. Selecting a probability of 0.2 allows the ER model
to generate sparsely connected networks by connecting a
limited number of devices, which is ideal for evaluating
the algorithms on networks with fewer links. A probability
of 0.5 provides a medium connectivity scenario, offering a
balanced environment that is neither too sparse nor too dense,
which helps in assessing the algorithm’s performance under

moderate connectivity conditions. Conversely, a probability
of 0.8 results in more connections between devices, suitable
for assessing performance in denser network environments.
Our choice of these specific probabilities was strategic,
intended to showcase how PriLink’s link scheduling perfor-
mance, execution time, and privacy protection vary between
sparse, moderately connected, and dense network conditions.
For each graph size and probability combination (e.g.,
(10, 0.2), (100, 0.8), (250, 0.2)), we generated 250 unique
graphs to ensure a thorough analysis of our algorithms and
benchmarks across a spectrum of network sizes and densities.

3) BENCHMARK ALGORITHMS
We selected benchmark algorithms for comparison based
on their robust scheduling performance and operational
efficiency. Algorithms that either underperformed in link
scheduling or exhibited longer execution times were
excluded. For example, Color Greedy Scheduling [13] and
Distributed Greedy Scheduling [11] were not considered
due to their lower scheduling performance compared to
Local Greedy Scheduling (LGS). Furthermore, machine
learning-based methods were excluded because their exten-
sive training periods make them unsuitable for real-time
execution in dynamic wireless networks. We also decided
against implementing algorithms based on the Maximum
Weighted Independent Set (MWIS) [12], [26] due to their
NP-Hard complexity and the practical challenges they
present in experimental settings. Ultimately, we chose the
Greedy Maximal Scheduling (GMS) [5], [23] and Local
Greedy Scheduling (LGS) algorithms for their near-optimal
link scheduling performance and manageable worst-case
complexities of O(|V |) and O(log |V |), respectively, making
them well-suited for real-world applications.

B. EVALUATION METRICS
To assess the performance of the PriLink algorithm compared
to high-performance greedy benchmark algorithms, we uti-
lize the following crucial metrics:

1) LINK SCHEDULING PERFORMANCE
This metric assesses the efficiency of an algorithm in
selecting links for scheduling. We quantify it as a percentage
by comparing the total weight of links chosen by the
algorithm under evaluation (Wa) to the total weight of
links selected by the best-performing benchmark (W ), Local
Greedy Scheduling (LGS), calculated as Wa

W × 100%.
Evaluating scheduling performance is essential as it provides
insights into how well an algorithm optimizes link selection
to manage network resources effectively. We denote the high
scheduling variant of the PriLink algorithm as ‘‘PriLink
(Highest Schedule).’’ In this variant, we adjust the tolerance
value to the maximum integer, exposing all network links.
This adjustment allows us to benchmark PriLink against
other high-performing algorithms in terms of link scheduling
performance when the privacy features of the algorithm are
not utilized.
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2) ALGORITHM EXECUTION TIME
This metric measures the computational efficiency of each
algorithm by timing how long it takes to compute the
link schedule, with results recorded in seconds. Given the
potential for significant variations in execution times across
different algorithms, we use a logarithmic scale to present
these times in our analysis for clearer comparison. It is
important to recognize that although the worst-case time
complexities for Greedy Maximal Scheduling (GMS) and
Local Greedy Scheduling (LGS) are linear and logarithmic
respectively, both algorithms involve a sorting process to
prioritize the highest-weighted links, which can extend their
execution times. Consequently, our evaluation focuses on
the actual execution times of these algorithms in simulated
wireless environments, providing a practical assessment
rather than relying solely on theoretical time complexities.
The implementations and setup of LGS and GMS used in this
study have been derived from Zhao et al. [1].

3) PRIVACY COST
Privacy cost quantifies the extent of sensitive network
topology information disclosed by wireless devices. It is
calculated by taking the ratio of unique links disclosed (Ld )
to the total number of links (L) in the network, expressed
as Ld

L × 100%. A lower percentage signifies better privacy
protection. This metric is important as it directly indicates the
algorithm’s effectiveness in safeguarding network topology
from adversaries. In dynamic networks, where the topology
changes frequently, an attacker would only be able to infer
the topology based on the disclosed links indicated by
this metric. A lower privacy cost makes it much harder
for the attacker to gain a comprehensive understanding of
the network. In our simulations, all benchmark algorithms
and PriLink (Highest Schedule) reveal a privacy cost of
100%, as they access the complete network topology. For
the highest privacy assessment, we designate this variation of
the PriLink algorithm as ‘‘PriLink (Highest Privacy),’’ setting
the tolerance value to 1. This minimal disclosure ensures at
least one link per device is shared, enabling the algorithm to
generate a fair schedule that meets the scheduling needs of all
network devices.

C. EVALUATION RESULTS
In this section, we discuss the results of our simulation
evaluation, conducted according to the methodology detailed
in SectionV-A and using themetrics specified in SectionV-B.

1) LINK SCHEDULING PERFORMANCE
Figure 7 presents an analysis of the link scheduling perfor-
mance of the PriLink algorithm in sparse networks (p =
0.2), comparing it with Local Greedy Scheduling (LGS)
and Greedy Maximal Scheduling (GMS). This comparison is
essential as prior research has primarily focused on improving
scheduling effectiveness. For clarity, the weights in this
analysis have been normalized between 0 and 100, with
100 representing the average weight of the LGS algorithm

FIGURE 7. Performance evaluation of scheduling comparing PriLink with
benchmarks for sparse networks.

for each graph size. The figure shows that the performance of
LGS (blue) and GMS (orange) are nearly identical. Similarly,
PriLink (Highest Schedule) (green) demonstrates comparable
performance, staying within 0.05% of these benchmark
algorithms, suggesting that PriLink is an effective alternative
to current algorithms, even when network topology privacy is
not a primary concern. However, PriLink (Highest Privacy)
(purple) shows a decline in performance as the network
size increases. For instance, at a graph size of 10, the
algorithm achieves about 98% of LGS’s performance. This
figure drops to approximately 85% at a graph size of
50 and further decreases to around 76% for a graph size
of 250. Despite this, in high-privacy scenarios, this setting
can conceal nearly 99% of the network topology for larger
graphs, as detailed in Section V-C4. Yet, if balancing
performance with privacy is the goal, PriLink (Highest
Privacy) might not be ideal due to its reduced scheduling
effectiveness. To address this, adjusting the PriLink tolerance
metric can significantly enhance performance. For example,
setting the tolerance value to 9 (red) results in notable
performance improvements, achieving approximately 99% of
LGS’s scheduling performance for a graph size of 50, and
about 97% for a graph size of 250. This improvement comes
with a slight increase in privacy costs, which we will explore
in detail in the following sections.

Figure 8 introduces the analysis for moderately dense
networks (p = 0.5), providing additional insights into
PriLink’s performance across different network densities.
In these networks, PriLink (Highest Schedule) once again
shows performance levels close to LGS andGMS, confirming
its robustness across varying network densities. Specifically,
PriLink (Highest Privacy) performs at about 80% of LGS’s
performance for a graph size of 50 and about 75% for a graph
size of 250. This performance, while lower than in sparse
networks, is higher than in dense networks, indicating a trend
where network density inversely affects performance when
high privacy is prioritized. By adjusting the tolerance value
to 9, PriLink’s performance improves significantly, achieving
approximately 98% of LGS’s performance for a graph size of
50 and about 96% for a graph size of 250.
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FIGURE 8. Performance evaluation of scheduling comparing PriLink with
benchmarks for moderate networks.

FIGURE 9. Performance evaluation of scheduling comparing PriLink with
benchmarks for dense networks.

Figure 9 shifts our focus to dense networks (p = 0.8)
and explores PriLink’s performance in comparison to LGS
and GMS. The results show that PriLink (Highest Schedule)
continues to perform as efficiently as GMS and LGS.
However, in dense networks with a graph size of 50, PriLink
(Highest Privacy) sees a performance drop, achieving only
77% of LGS’s performance, compared to 85% in sparse
networks. For a graph size of 250, the performance further
declines from 76% in sparse networks to about 73.5% in
dense networks. This reduction highlights the challenges of
maintaining high performance in denser settings. Conversely,
increasing the tolerance value to 9 shows a less pronounced
decrease in performance. In dense networks, it achieves
approximately 97% of LGS’s performance for a graph size
of 50, and about 94.5% for a graph size of 250. These
results suggest that PriLink, with a higher tolerance setting,
remains effective in environments where a balance between
scheduling performance and privacy is necessary.

In addition to the core performance metrics, it is important
to consider the error margins, deviations, and outliers
observed in these analyses. Across different values of p, error
margins are represented by the shaded areas in the Figure 7
to 9, indicating variability in performance measurements.
These margins are generally narrow, suggesting consistent
algorithm performance. Although deviations and outliers

FIGURE 10. Algorithmic execution times of link scheduling comparing
PriLink with benchmark algorithms.

exist, they are more pronounced in larger graph sizes
and higher privacy settings. For instance, in the case of
PriLink (Highest Privacy), variability tends to increase with
graph size, reflecting challenges in maintaining consistent
performance under strict privacy constraints. However, these
variations do not significantly impact the overall performance
of PriLink. The narrow error margins indicate that the
algorithm performs consistently well across different sce-
narios, and observed deviations are within acceptable limits
for practical applications. Even in higher privacy settings,
where variability is slightly more pronounced, PriLink
continues to deliver robust performance. The predictable
nature of these deviations allows for informed adjustments
to tolerance settings, ensuring high performance while
balancing privacy requirements. Consequently, the impact of
these error margins, deviations, and outliers is manageable
and does not undermine the effectiveness of the PriLink
algorithm.

2) ALGORITHM EXECUTION TIME
Figures 10a to 10c present the execution times (in log10 scale)
for the PriLink algorithm relative to benchmark algorithms
in sparse, moderately dense, and dense network conditions.
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These times were recorded during the same experiments
that evaluated scheduling performance. The benchmarks
were conducted using a Dell Latitude desktop computer
featuring 16 CPUs, 16 GB RAM, and an Intel Core i7
processor. From the analysis, we observe that all PriLink
variants—Highest Schedule, Highest Privacy, and tolerance
set to 9—consistently outperform both the Local Greedy
Scheduling (LGS) and Greedy Maximal Scheduling (GMS)
algorithms. The reason PriLink is faster is that it performs
sorting on a much smaller quantity of links compared to LGS
and GMS. For instance, for a graph size N = 250, p = 0.8,
and tolerance τ = 9, LGS and GMS need to sort about
p ×

(N
2

)
= p × N×(N−1)

2 = 0.8 × 250×249
2 = 24900 links.

Meanwhile, PriLink needs to sort only N × τ = 250 × 9 =
2250 links, which is significantly more efficient to sort.

In dense networks (p = 0.8), GMS, while the slowest,
remains effective for real-time applications with execution
times averaging 0.0006 seconds for graph sizes of 10,
increasing to 0.06 seconds for graph sizes of 250. LGS shows
better efficiency, with times ranging from 9.9×10−5 seconds
for graph sizes of 10 up to 0.06 seconds for graph sizes of
250. PriLink significantly outperforms these benchmarks. For
a graph size of 250, PriLink (Highest Schedule) averages only
0.007 seconds—nearly an order of magnitude faster. PriLink
(Highest Privacy) and PriLink with a tolerance of 9 are even
faster, at 0.00025 seconds and 0.00055 seconds, respectively.
In moderately dense networks (p = 0.5), PriLink continues
to demonstrate superior performance. For a graph size of 250,
PriLink (Highest Schedule) records an average execution
time of 0.0035 seconds, markedly faster than both LGS and
GMS. PriLink (Highest Privacy) and PriLink with a tolerance
of 9 exhibit even quicker times, averaging 0.00021 seconds
and 0.00052 seconds, respectively. In sparse networks (p =
0.2), PriLink’s performance is even more impressive. For
a graph size of 250, PriLink (Highest Schedule) averages
0.0018 seconds, PriLink (Highest Privacy) averages 0.00018
seconds, and PriLink with a tolerance of 9 averages 0.00048
seconds. These fast execution times, combined with the high
scheduling performance discussed in Section V-C1, further
validate PriLink’s effectiveness and efficiency. This makes
PriLink an optimal choice for environments where both link
scheduling and privacy are critical.

3) PRIVACY COSTS
This evaluation assesses the impact of varying PriLink
tolerance metric values on privacy costs across different
graph sizes and densities. A lower privacy cost indicates
significantly enhanced privacy, allowing devices to withhold
more network topology information from potential adver-
saries.

In Figure 11a, we evaluate the average privacy costs for
PriLink under various tolerance settings in sparse wireless
networks, characterized by a connectivity probability of
p = 0.2. We analyzed the LGS algorithm and six different
configurations to explore their impact on privacy costs:
PriLink (Highest Privacy), and tolerance values of 3, 6,

FIGURE 11. Comparing the influence of privacy tolerance values on
privacy costs in the PriLink algorithm.

9, and 12, along with PriLink (Highest Schedule). This
range enables a comprehensive examination of the trade-
offs between privacy and link scheduling effectiveness. LGS
requires full knowledge of the network topology, resulting in
a privacy cost of 100% across all densities. This dependence
on complete topology information highlights the advantages
of PriLink in scenarios where privacy is a significant concern.
The findings indicate that with the Highest Privacy setting,
only about 18% of links are disclosed on average for a
network size of 50. This level of privacy improves as the
network size increases to 250, with less than 4% of links
being disclosed. Notably, even with a tolerance setting of
9—which offers scheduling performance comparable to that
of GMS and LGS—the privacy benefits remain substantial.
For instance, at a network size of 250, PriLink reveals only
about 21% of the links, thereby concealing a significant
portion of the network topology.

Figure 11b examines the privacy costs for PriLink in
moderately dense wireless networks with a connection
probability value of p = 0.5. The results reveal a balanced
privacy-performance trade-off in these networks. For the
Highest Privacy setting, approximately 35% of links are
disclosed for a graph size of 10. This percentage decreases
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significantly as the network size increases, with around
4% of links disclosed for a graph size of 250. Even with
a tolerance setting of 9, PriLink still provides substantial
privacy protection. For example, for a graph size of 250, only
about 13% of the links are disclosed, indicating a significant
portion of the network topology is kept private. These
results show that PriLink can effectively balance privacy
and performance in moderately dense networks, making it a
versatile solution for varying network conditions.

Figure 11c presents the privacy costs for PriLink in dense
wireless networks with a connection probability of p =
0.8. Remarkably, privacy costs in dense networks are lower
than in sparse networks, highlighting PriLink’s substantial
privacy benefits in such environments. For instance, under
the Highest Privacy setting, privacy costs for a graph size
of 10 are reduced from 65% in sparse networks to around
20% in dense networks. This improvement is even more
significant in larger networks; privacy costs decrease from
4% in sparse networks to below 1% for a graph size of
250 in dense networks. Additionally, with a tolerance setting
of 9, only about 5.5% of the links are disclosed for a graph
size of 250, ensuring substantial concealment of the network
topology. These findings demonstrate PriLink’s effectiveness
in enhancing privacy protection, making it a well-suited
option for securing the topology of wireless networks in
privacy-sensitive settings.

4) PERFORMANCE IMPACT OF TOLERANCE VALUES
This evaluation examines the impact of various tolerance
values in PriLink on link scheduling performance across
different graph sizes and network densities. The objective
is to assess the influence of these tolerance settings and to
justify the choice of a tolerance value of 9 for comparison
against benchmark algorithms, as discussed in Section V-C1.
These analyses draw on the same simulation experiments
previously used to evaluate privacy costs. We consider six
distinct tolerance configurations for PriLink: the Highest
Privacy setting, tolerance values of 3, 6, 9, and 12, and
the Highest Schedule setting. Performance is quantified
relative to the highest-performing benchmark, Local Greedy
Scheduling, to provide a clear basis for comparing the
effectiveness of each scheduling approach.

In Figures 12a to 12c, we explore how various tolerance
settings affect scheduling performance in sparse (p = 0.2),
moderately dense (p = 0.5), and dense networks (p =
0.8). The graphs demonstrate that scheduling performance
generally improves as the tolerance values increase. This
enhancement is due to the algorithm having access to
a broader array of links, allowing for more optimized
scheduling decisions. For sparse networks (p = 0.2),
the performance leaps between the lower tolerance settings
(such as Highest Privacy and 3) are significant—scheduling
performance jumps by nearly 11% for a graph size of 50 and
approximately 14% for a graph size of 250. The performance
of LGS in these scenarios is used as a benchmark, demonstrat-
ing that PriLink with higher tolerance values (e.g., 9 and 12)

FIGURE 12. Comparing the influence of privacy tolerance values on link
schedule performance in the PriLink algorithm.

can achieve nearly equivalent performance. For moderately
dense networks (p = 0.5), the improvement between the
Highest Privacy setting and a tolerance value of 3 is about
9% for a graph size of 50 and approximately 12% for a
graph size of 250. The LGS performance in these networks
shows that PriLink, with a tolerance setting of 9, can achieve
approximately 95% of LGS’s performance for a graph size of
250, highlighting its effectiveness in balancing privacy and
performance. Dense networks (p = 0.8) exhibit a similar
pattern, with an improvement of about 10% for a graph size
of 50 and approximately 13% for a graph size of 250. The
performance of LGS in dense networks further underscores
that PriLink with higher tolerance settings can closely match
LGS performance. However, with higher tolerance values
of 6, 9, and 12, the increments in scheduling performance
become less marked, showing only about a 3% improvement
for sparse networks and nearly 4% for dense networks for a
graph size of 250. The difference in scheduling performance
between tolerances 9 and 12 is marginal, less than 1%. These
results indicate that performance plateaus beyond a tolerance
value of 9, approaching a high scheduling performance.

Given these observations, we chose tolerance value 9 for
detailed evaluations in Section V-C1 and V-C2 due to its
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optimal balance between high scheduling performance and
acceptable privacy costs. It is important to mention that
the optimal privacy tolerance value will vary depending on
specific network scenarios and privacy needs, which falls
outside the scope of this study.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduce PriLink, a novel link scheduling
algorithm designed specifically for dynamic wireless net-
works. PriLink enhances privacy by limiting the sharing of
link details to only what is essential, effectively concealing
a substantial portion of the network topology. Through
comprehensive network simulations and comparisons with
benchmark algorithms, we demonstrate PriLink’s strong
scheduling performance, rapid execution times, and robust
privacy protection. These attributes confirm PriLink’s suit-
ability for real-world applications in environments that
prioritize scheduling efficiency. Notably, PriLink can conceal
nearly 80% to 95% of a wireless network’s topology, making
it highly reliable for privacy-sensitive applications. Looking
forward, we plan to investigate the integration of Deep
Learning techniques, such as Federated Learning, into link
scheduling to further enhance PriLink’s performance while
adhering to its privacy-preserving principles. Our goal is to
develop models that not only improve scheduling efficacy but
also continue to protect network privacy.
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