
Received 27 June 2024, accepted 25 July 2024, date of publication 6 August 2024, date of current version 16 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3439442

The Essentials: A Comprehensive Survey to Get
Started in Augmented Reality
FAYAZ MOHAMED HANEEFA 1,2, ABDULHADI SHOUFAN 1,2, (Member, IEEE),
AND ERNESTO DAMIANI 1,3, (Senior Member, IEEE)
1Center for Cyber-Physical Systems (C2PS), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
2Department of Computer and Information Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
3Department of Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Corresponding author: Fayaz Mohamed Haneefa (fayaz.haneefa@ku.ac.ae)

This work was supported by the Center for Cyber-Physical Systems at Khalifa University of Science and Technology.

ABSTRACT Augmented Reality (AR) has experienced a significant resurgence in popularity and interest
in recent years. Despite numerous surveys and reviews in the field, information remains scattered and
challenging to consolidate for newcomers. This paper addresses this gap with a comprehensive study of
AR’s state of the art. We begin with an introduction to AR and related terminologies. We then describe
three enabling of AR and four enhancing technologies. A survey then covers different types of commercial
AR hardware with detailed specifications and elaborations. We then address AR software and discuss its
basic and advanced features, mapping them to software with feature matrices. Based on a thematic literature
analysis, we extract a comprehensive set of guidelines for developing AR solutions into seven themes, from
ideation to best practices for implementation and deployment. Finally, we explore some essential challenges
in the field of AR. This paper serves as an essential resource for those looking to understand what AR is, what
is needed to get started, how to approach development, and what the future holds for AR. By consolidating
essential information and providing a solid foundation, this paper aims to help researchers and developers
capitalize on the current cycle of interest in AR.

INDEX TERMS Augmented reality (AR), survey, tutorial.

I. TABLE OF ABBREVIATIONS
• AR: Augmented Reality.
• AV: Augmented Virtuality.
• CGI: Computer Generated Imagery.
• DCC: Digital Content Creation.
• DOF: Degree Of Freedom.
• DOM: Document Object Model.
• ECS: Entity-Component System.
• EIS: Electronic Image Stabilization.
• EPnP: Efficient Perspective-n-Point.
• FOV: Field Of View.
• GPS: Global Positioning System.
• HMD: Head Mounted Display.
• HUD: Heads-Up Display.

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

• HVS: Human Visual System.
• IMU: Inertial Measurement Unit.
• IPD: Inter-Pupillary Distance.
• LFC: Lightform Compute.
• LiDAR: Light Detection And Ranging.
• MAR: Mobile AR.
• MR: Mixed Reality.
• MRTK: Mixed Reality Toolkit.
• NFT: Natural Feature Tracking.
• NLP: Natural Language Processing.
• OSC: Open Sound Control.
• OST: Optical See Through.
• PBR: Physically Based Rendering.
• PnP: Perspective-n-Point.
• POI: Points of Interest.
• PPD: Pixels Per Degree.
• PWA: Progressive Web App.

109012

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0002-8873-182X
https://orcid.org/0000-0002-3968-8637
https://orcid.org/0000-0002-9557-6496
https://orcid.org/0000-0003-3181-4480

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

• RF: Radio Frequency.
• SaaS: Software-as-a-Service.
• SAR: Spatial AR.
• SDK: Software Development Kit.
• SLAM: Simultaneous Localization and Mapping.
• SMART: Seamless AR Tracking.
• ToF: Time-of-Flight.
• UE: Unreal Engine.
• URP: Universal Render Pipeline.
• UX: User Experience.
• VPS: Visual Positioning System.
• VR: Virtual Reality.
• VSLAM: Visual SLAM.
• VST: Video See Through.
• W3C: World Wide Web Consortium.
• XR: eXtended Reality, AR/VR.

II. MOTIVATION AND CONTRIBUTION
This paper aims to provide a comprehensive perspective on
the state of the art in Augmented Reality (AR). The aim
is to help beginners understand the landscape of this tech-
nology, including hardware, software, design guidelines, and
challenges. Advanced users and developers can also benefit
from the comparative description of various enabling and
facilitating technologies, including hardware and software,
as well as from the design guidelines.

Hundreds of surveys and reviews on AR are available
in the literature. However, these reviews primarily dedicate
themselves to the use of AR in specific fields, including
education [1], [2], [3], medicine [4], [5], engineering [6], [7],
[8], [9], agriculture [10], tourism [11], and museums [12].
Most of these reviews aim to address AR validity, efficacy,
and effectiveness [13], [14], [15], usability, user experience
and emotions [16], [17], [18], [19], and opportunities and
challenges [20], [21]. A few review papers touched on
the hardware and software systems used by researchers on
augmented reality [22], [23].

Thus, despite recent literature, understanding AR, the
underlying technologies, the state of AR, and available
commercial solutions is difficult and time-consuming. At this
point, the holistic approach of two particular surveys on AR
inspired us. Reference [24], published in 1997, still provides
an excellent introduction to AR despite its age. It opened the
narrative on AR, establishing the main concepts and their
relations. Fourteen years later, another paper [25] provided
a complete survey of the state-of-the-art of AR technology,
systems, and applications. It described a more mature field
populated by many industrial and academic research groups
and the challenges of its time. The primary goal of this paper
is to set a third act to these two narrations ([24] and [25]),
describing how some of the critical questions have been
answered and providing an extensive and up-to-date starting
point for researchers and practitioners. This paper is divided
into the following sections:

1) Introduction to AR

2) Enabling Technologies
3) Enhancing Technologies
4) AR Hardware
5) AR Software
6) Guidelines for AR Development
7) Current Challenges in AR

The major contributions of this paper are as follows:

1) We have classified technologies associated with AR
into enabling and enhancing technologies. Enabling
technologies have further been classified into three
building blocks of AR.

2) At the time of writing, we believe our paper has
the most extensive collection of AR Hardware and
Software ever listed in any AR survey. We have
meticulously verified and listed the source of every
feature and capability we could find.

3) We have included a list of features found in AR
software with descriptions. Our descriptions will allow
the reader to understand the capabilities of various
software at a glance, using our feature matrices
(Tables 3 and 4). The text maps the features of AR
software to our descriptions for easier identification.

4) To our knowledge, this would also be the first paper to
mention guidelines for AR development. This section
is effectively the result of an informal thematic analysis
(see Section XIV: Guidelines for AR Development).
We have collated guidelines into groups according to
the typical order of the development workflow.

5) We have also developed a ‘‘litmus test’’ to gauge AR
applications worth pursuing.

We believe all this, coupledwith sections on the fundamentals
of AR, underlying technologies, and challenges of AR,
should provide the best start to the field of AR.

III. INTRODUCTION TO AR
This section aims to introduce AR through definitions and
associated terminologies.

A. THE DEFINITION OF AR
The most widely cited definition of AR comes from Ronald
T. Azuma’s seminal survey [24]. AR can be seen as a
variation of Virtual Reality (VR). In VR, the user is completely
immersed in a virtual world. However, with AR, virtual
elements are superimposed upon or composited with the real
world. In other words, AR ‘‘augments’’ reality, overlaying
digital content onto the real world, while VR ‘‘replaces’’
reality.

Therefore, the first characteristic of AR is the ability to
combine the real and virtual. This is why AR falls under
the category of Mixed Reality (see Section III-B: Reality-
Virtuality Continuum). However, combining the real and
virtual is not limited to AR. Many feature-length films
these days combine ‘‘real’’ live-action footage with ‘‘virtual’’
Computer Generated Imagery (CGI).

VOLUME 12, 2024 109013

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 1. Various combinations of real and virtual content can be
classified by the (simplified) reality-virtuality continuum defined in [28].

This leads to the second characteristic of AR: AR is
interactive in real-time. Movies and videos that utilize CGI
with live-action do not possess this characteristic. Therefore,
one cannot classify them as AR. But what about live videos
with virtual 2D overlays? Examples of such overlays would
be those found on news broadcasts and are interactive in real-
time.

This leads to the third and final characteristic of AR: AR
is registered in 3D. The virtual objects must be registered in
the 3D space of the real world. These three characteristics
differentiate AR from other systems that combine the real and
virtual.

In summary, AR can be defined as a system with the
following three characteristics [24]:

• Combines virtual elements with reality
• Interactive in real time
• Registered in 3D

These characteristics define AR without constraining it
to specific technologies, such as Head Mounted Displays
(HMDs) [24]. This is important because the idea of what is
real and virtual depends on the context (see Section III-B:
Reality-Virtuality Continuum). Furthermore, AR is not
necessarily restricted to augmenting visuals. It may very well
be possible to expand AR to all senses [24]. Attempts have
already been made to augment touch and hearing through
haptic interfaces [26] and spatial audio [27], respectively.
Unless explicitly mentioned otherwise, this paper’s discus-
sion will primarily revolve around visual augmentation.

B. REALITY-VIRTUALITY CONTINUUM
In the previous section, we described AR as a system that
combines virtual (digital) elements with reality. The converse
is also possible, i.e., combining real elements into a virtual
reality. This is referred to as ‘‘Augmented Virtuality’’ (AV).
Taking VR as one extreme and reality as another, it is possible
to place AR and AV on a spectrum, as shown in Fig. 1.
This spectrum is often called the Virtuality Continuum. Since
AR and AV combine the real and virtual, they fall under the
broader category of ‘‘Mixed Reality’’ (MR) [28].
This classification, while simple enough, is not without

issues. As seen with the characteristics of AR, classification
based on how the real and virtual are mixed is not enough.
Furthermore, AR and AV are differentiated by whether
they are predominantly real or virtual. But what if this is
impossible to distinguish, i.e., the experience is equally real

and virtual? The terms AR or AV cannot be used in this case,
but it can still be classified under the umbrella term MR.

There is still the problem of clearly defining the terms
‘‘real’’ and ‘‘virtual.’’ In VR, anything generated by the
computer is considered virtual. This gets more complicated
in MR. For example, if we saw our arms with our own
eyes, we would say our arms are real. But if we were to
see our arm through a screen displaying our arm in real-
time, we would also consider that to be ‘‘real’’. However,
in the second example, our arm is nothing but a digital
object generated by a computer. This creates an inconsistency
concerning the definition of ‘‘virtual’’ that we gave earlier
for VR. To prevent this inconsistency, we adopt the following
revised definition [28]:

• Real: Anything with an actual objective existence
• Virtual: Anything that exists in essence or effect but
without actuality

This distinction relies on the key terms actual, objective, and
actuality, thus requiring these terms to be carefully defined.
When the adjective ‘‘actual’’ refers to an entity, it signifies
the state of its existence in reality. In a broader sense,
however, ‘‘actual’’ can also relate to the true (genuine) nature
of something as opposed to what is possible, hypothetical,
or appears to be. Here, we consider the word ‘‘actual’’ in the
latter sense. In turn, the word ‘‘actuality’’ refers to the fact of
existing in reality. Finally, ‘‘objective’’ refers to the quality of
being based on fact, not opinion.

Thus, ‘‘real’’ is any object that truly exists in reality,
while ‘‘virtual’’ is anything that does not. A practical way
to distinguish between them would be to ask if the object
in question would exist without the AR system. Since they
do not exist, virtual objects must always be generated by the
system and cannot exist outside of it [28].

A more formal taxonomy for Mixed Reality displays is
defined in [28]. The taxonomy is based on three dimensions,
namely [28]:

• Extent of World Knowledge: It refers to the amount of
known information about the real-world environment
being displayed. This dimension ranges from com-
pletely unknown to completely known.

• Reproduction Fidelity: It refers to the realism of
the display. This dimension ranges from completely
unrealistic to completely realistic. It applies to both real
and virtual elements.

• Extent of Presence Metaphor: It refers to the degree
to which the viewer feels as if they are present within
the displayed environment. This dimension ranges from
completely outside looking in to completely inside the
environment.

C. OTHER DEFINITIONS AND TAXONOMIES
Another definition of interest is eXtended Reality (XR). XR is
an umbrella term for AR and VR together. It also refers to
technologies that support AR and VR capabilities. For this
reason, the ‘‘X’’ in XR is also considered as the conventional

109014 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

name for a variable instead of Extended and can be replaced
with A or V for the context. Today, collectively experienced
VR is often called aMetaversewhere users interact within an
entirely virtual environment.

There are more definitions and taxonomies regarding AR
and other immersive technologies. They will be discussed as
the need arises. This is to reduce confusion that arises from
the number of definitions (see Section XV: Current Chal-
lenges in AR). For our current purposes, the characteristics of
AR by [24], the Virtuality Continuum by [28], and the term
XR are sufficient to understand AR.

IV. ENABLING TECHNOLOGIES
This section will discuss the enabling technologies of AR
and provide the necessary insight into its inner workings.
Enabling technologies can be classified into three groups as
follows:

• Registration
• Display
• Input

For easier reference, Fig. 2 provides a visual breakdown of
the discussion structure in this section.

A. REGISTRATION
For AR to be effective, the real and virtual objects in the
world must be correctly aligned with each other. Otherwise,
it breaks the illusion that the real and virtual coexist simul-
taneously. This problem of the need to align real and virtual
objects with each other is called registration. Even as far back
as 1997, registration was identified as one of the primary
problems to be solved for AR to succeed [24]. Accurate
registration is also necessary for specific applications, such
as those used in medical procedures [24].
To solve the registration problem, keeping track of the

position and orientation in the real world becomes necessary.
Tracking systems can be implemented with Inertial Mea-
surement Units (IMUs), Global Positioning Systems (GPS),
Radio Frequency (RF) Signals, or even Acoustics. However,
such systems can be vulnerable to signal degradation and
interference. Active tracking systems also require sensors to
be placed in the environment and be calibrated for use [29].
While this is possible, it may not always be practical. One
reason is that this will constrain the user to a specific
environment [29]. However, there is a more important reason
for not relying on these methods for AR. Using information
solely from the tracking system leads to the issue of having an
‘‘open-loop’’ controller [24]. While the system may be able
to provide information about the real world, it cannot know
whether the real and the virtual match. There is no feedback
for correcting any issues with alignment. In addition, the
sensors themselves can be prone to errors. IMUs, for instance,
suffer from the problem of drift. The reported values drift over
time due to accumulated errors.

It is, therefore, better to have a ‘‘closed-loop’’ controller
where there is some form of feedback in the system [24]. This

led to the use of video-based approaches to aid in registration.
It becomes possible to detect features in the environment
using image processing or computer vision techniques, which
are used to enforce registration. In many cases, multiple
cameras are used to increase the available information and
gain a better perspective of the environment. A few visual-
based techniques of interest are discussed below. This will
provide adequate insight into some of the techniques utilized
to allow AR systems to understand their environment. The
following techniques need not be used in isolation; they can
be combined and used with each other. Since the systems
for registration ultimately involve tracking the environment
or something in it, these techniques can also be utilized
to provide certain features in modern AR software. These
features can be seen in this paper’s sections for Basic and
Advanced Features.

Before we begin, registration in vision-based AR can be
considered as a pose-estimation problem [29], [30]. This can
be better understood through how the real and virtual objects
are combined in AR. A transform of an object contains its
translation (position), rotation, and scale. On the real side,
the world can be given an origin point of our choice. The
camera capturing the real has a transform relative to the world
origin. Similarly, there exists a virtual world with its origin
and a virtual camera with its transform. AR is achieved by
matching the transforms of both worlds and cameras. This
allows the system to display the virtual objects correctly
over the real world by matching the transform of the real
and virtual cameras [30]. Since both cameras operate on the
same scale, the scale can be ignored. Thus, the challenge is
estimating just the position and rotation/orientation, called
the pose [29].

1) PERSPECTIVE-N-POINT (PNP)
As discussed above, we are dealing with a pose estimation
problem, trying to match orientation and position in 3 dimen-
sions. However, cameras typically only return 2D images,
which adds to the problem. PnP is one method that can be
used in this situation. PnP works by taking an image of an
object/scene and identifying the coordinates of some key
points on this object. It then compares the coordinates of
these points from the image to a 3D model of the object.
By finding the correspondence between the key points in
the 2D image and 3D model, the object’s pose can be
estimated [30].

It should be noted that PnP is the name of the problem, not
the solution. There are different approaches to solving a PnP
problem. One is P3P, where three key points are utilized for
pose estimation. Another is Efficient PnP (EPnP), which is
used for solving problems where the number of key points
(n) is greater than or equal to 4.

PnP requires 3D models of real-world objects to function.
Thus, when considering PnP, onemust consider how to obtain
these models. It also requires key points on the objects,
without which the correspondence between 2D and 3D

VOLUME 12, 2024 109015

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 2. A visual breakdown of the section ‘‘Enabling Technologies’’. Primary topics are at the
top (gray) and go from left to right.

cannot be established. In other words, PnP requires ‘‘natural
or intentionally placed features (fiducials) whose positions
are known a priori’’ [29].

2) MARKERLESS MODEL-BASED TRACKING
The premise of Markerless model-based tracking is to track
the pose of an object without the need for markers in the scene
or key points on the object. This method works by extracting
features such as the edges and contours of the object from
the image. It then attempts to match the identified features
with that of the object. The pose is estimated by aligning the
features [30]. As with PnP, this technique also requires a 3D
model of the object to function.

3) NATURAL FEATURE TRACKING (NFT)
For a visual registration system, dependence on known
feature points can pose the following challenges [29]:

• Limit operation to regions where at least three known
features can be seen unobstructed

• Reduced pose estimation stability with fewer visible
features

• The known features do not always correspond with the
desired points

NFT is one method that can overcome the challenges
mentioned above. It identifies natural features (points and
regions) in the environment, which are used to estimate the
camera’s pose. Since it can automatically identify features
within the environment, it does not suffer from the challenges
above. As it does not need to rely on known points, the system
can estimate pose beyond known areas or in scenarios where
known feature points go out of view [29].

4) TEMPLATE MATCHING
Template Matching attempts to embed the pose estimation
into image processing itself. The system uses a reference
image, called a template, that effectively acts as a 2D model.
The pose is estimated by comparing the current image with
the reference image and accounting for the motion and
warping for the image seen in the camera feed [30].

5) HOMOGRAPHY
Any two images of the same planar surface in space are said to
be related by what is called homography. Similar to PnP, this
method works by utilizing correspondences between points.
However, the correspondence is between two images of the
points on the same planar surface. The correspondence can
be used to calculate what is called a homography matrix. This
homography can then be used to calculate the pose [30].

This is a simple and efficient method for determining the
pose of a camera in relation to a planar surface, as it only
needs to solve for the camera’s translation and rotation with
respect to the plane. However, it has some limitations. It is
sensitive to noise and outliers and can only work for planar
scenes.

6) SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM)
So far, we have seen two techniques that require 3D models
to function. However, 3D models are not always available.
Practicality is, therefore, limited by constraining the system
to specific scenarios and environments where 3D models are
available. While some methods do not require them, there
is a case to be made for using 3D models. The registration
problem ultimately arises from the need to maintain the
immersion between real and virtual. By having a 3Dmodel of

109016 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

the real-world environment, we can make the virtual objects
interact with the real world in realistic ways.

For example, let us say we were to throw a real ball
into a room with furniture. It would bounce off the walls,
destroy a lamp, go out of view behind some furniture, come
rolling out into view, and finally stop. A 3D model of the
environment makes it possible to simulate the same physical
interaction for a virtual ball thrown into the environment.
In 3D, systems replicating real-world physical interactions
are called physics engines/libraries. From here on, the word
physics in the context of a virtual object refers to simulated
physical interaction and related physical properties of the
virtual object. Since the system has a 3D environment model,
it can calculate physics even in spaces that cannot be seen, like
the region behind furniture. Outside of the virtual ball being
incapable of breaking a lamp in the real world, this system
will still provide a great sense of realism and immersion.

So, we would like to have 3D models without having the
availability of premade models constraining the system. This
is where we can utilize SLAM [30]. Like PnP, SLAM is
the name of the computational problem. SLAM originated
in robotics. The problem lies in mapping an unknown
environment while simultaneously trying to track the location
of the entity moving through it. This leads to a conundrum.
One would need a map of the environment to identify one’s
position. However, one needs to keep track of one’s position
to map the environment.

Nevertheless, SLAM does have solutions and they have
been implemented in many practical applications. Com-
mercial systems often refer to this by the name of spatial
mapping. There are many variations of SLAM, utilizing
different sensors, sensor configurations, and SLAM algo-
rithms while providing maps of various formats. Discussing
them all would require a survey of its own. However, when
considering sensors, two methods of note are Visual SLAM
(VSLAM) and Light Detection And Ranging SLAM (LiDAR
SLAM). Visual SLAM utilizes images from cameras and
other image sensors. LiDAR SLAM utilizes a LiDAR system
that uses lasers to measure distances with high precision.
These variants are important as the sensors they need are
readily available in modern hardware (see Section VI: AR
Hardware).

B. DISPLAY
With the problem of registration solved, the next step would
be to figure out how the virtual objects can be displayed. But
before discussing displays, it would be helpful to understand a
few important properties of the Human Visual System (HVS)
relevant to AR.

Let us first refresh how the HVS functions. The first
requirement for visual perception is light in the correct
wavelength range (from 390 to 750 nm). Light enters the
human eye through the pupil and is focused on the retina at
the back of the eye by the lens. The retina has light-sensitive
receptors, namely rods and cones. These receptors respond
to light and send signals to the brain, resulting in vision.

The rods are more sensitive to light, contribute little to color
perception, and react slowly to changes in light conditions.
The cones are responsible for color vision and respond faster
to help us perceive finer details [31].
The first important property of the HVS is that the retina

does not have a uniform distribution of rods and cones. The
retina has a small area called the macula that is used to
perceive a sharp image. There is a smaller area called the
fovea that has the sharpest vision. Therefore, the resolution
of the human eye is not uniform. Second, since the cones are
not distributed equally, color sensitivity is also not uniform
across the human eye [31].
Third, the HVS has a visual field or Field of View (FOV),

a limited area in which it can perceive. The vertical FOV
extends 50◦ to 60◦ up and down the horizon, while the overall
horizontal FOV can go up to 180◦. The FOV is known to
decrease with age. Fourth, the HVS can perceive latency and
flicker but only up to a limit. The perception of latency and
flicker needs to be reduced for a smooth experience and can
be done so by coming closer to the limits [31].
Finally, the HVS supports depth perception, allowing us

to perceive the position and sizes of objects. The HVS
has accommodation mechanisms to keep objects at various
distances in focus. This is further supported by vergence.
Vergence is the movement by both eyes that allows for
binocular vision. Vergence supports depth perception by
triangulating the positions of objects in each eye with the
Inter-Pupillary Distance (IPD), which is a fixed distance
between the eyes. The IPD is variable from person to person.
In the physical world, objects are hidden/occluded by other
opaque objects placed in front. This is called occlusion.
Occlusions contribute significantly to depth perception as
a visual cue by showing where objects lie relative to each
other [31]. The HVS has more properties of interest, but
the five listed points are more than adequate to understand
what AR systems should address for an excellent visual
experience.

There are many approaches to AR displays, but they can
be categorized into three groups [31]:

• Video See Through (VST) displays
• Optical See Through (OST) displays
• Spatial AR (SAR)/Projection Mapping

1) VIDEO SEE THROUGH (VST) DISPLAYS
VST displays, also called Pass-Through Displays, use a
camera to capture the real world through video. This video
is overlaid with virtual objects and then displayed (or passed
through) to a screen. The real world is seen indirectly by the
user through the screen. As discussed before, the advantages
of video-based registration led to its adoption in practical use.
As such, the cameras needed for VST displays are already
present in many systems.

A ubiquitous and accessible example of a VST display
would be a smartphone or tablet. However, there are a few
practical issues. It does not leave the hands of the users free

VOLUME 12, 2024 109017

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

for other tasks. The field of view is also minimal, constrained
to their relatively small displays. HMDs address these issues.
As the display is worn on the head, the display will always
follow the head’s orientation, leading to a more immersive
experience. In addition, AR headsets can free up a user’s
hands, making AR more practical for specific applications.
However, the need for the headsets to be light, ergonomic,
and mobile adds many constraints.

2) OPTICAL SEE THROUGH (OST) DISPLAYS
OST displays consist of a transparent display through which
the user can see the real world. The virtual images are then
superimposed into the user’s view. The exact means by which
the combination is done may vary. Still, it typically involves
a light source (to project the virtual image) and a system
to adjust the projected image (such as lenses or mirrors).
The optical combiner is the system that combines real-world
light with the projected virtual light. The displays may be
made reflective to improve the perception of virtual objects.
Such displays would appear semi-transparent as if looking
at the world through sunglasses. Examples of OST displays
are Heads Up Displays (HUDs) and Head Mounted Displays
(OST-HMDs).

HUDs originated outside of AR; back then, they could
be seen as AR without registration. It was simply a means
to overlay additional information over the real world. It is
commonly used in aircraft, allowing pilots to view crucial
information without having to take their eyes away from the
view of the world outside. They usually consist of a flat piece
of glass that acts as the display.

OST-HMDs retain the mobility and freedom that can be
found in VST-HMDs. However, unlike VST displays, the
user can see the real world in full detail with OST. It is not
dependent on the resolution of a pass-through camera. In this
regard, OST-HMDs are more akin to spectacles. However, the
visual fidelity of virtual objects is usually the trade-off that
needs to be made with these systems.

3) SPATIAL AR (SAR)
The final method of display we consider is SAR. Projectors
are utilized to display the virtual objects in the real
environment directly. The user is not required to hold or wear
a display system. The system is usually static and confined
to an environment. Since the graphics are directly projected
onto the real world, the visual fidelity of the virtual objects is
affected by the inability to control the appearance of the real
world [31], [32]. Additionally, as the user may come between
the projector and the display surface, there are challenges
to interactivity. SAR has one possible advantage over other
solutions. Since the experience is directly projected onto the
environment, it is independent of the user. This allows for
a shared session without the need to sync between multiple
devices. It also removes the need for every user to have an
individual device to join the experience.

The display technique used here is called Projection
Mapping [31]. The term is often interchangeably used with
Spatial AR. However, plenty of applications utilize projection
mapping without being interactive. As such, it is best to
reserve the term projection mapping for the display technique
rather than an AR system.

4) OST VS VST HMDs
One advantage of OST over VST is the resolution of the real
world. With VST, the resolution of both real and virtual is
limited to the resolution of the camera and the display [24].
The resolution of most displays is far less than the natural
resolution of the human eye. While OST displays cannot
match the resolution of human eyes for virtual objects, it does
not degrade the view of the real world [24], [31]. Furthermore,
with VST, the cameras act as the eyes of the user. However,
these cameras are not located at the exact position of the eyes.
Even the distance separating the cameras may not match the
IPD. The result is that the camera’s view does not match the
user’s normal vision. Thus, the images must be adjusted with
VST [24].

The transparent nature of OST displays can provide minor
advantages in certain scenarios. Maintaining eye contact and
reading other people’s facial expressions is possible since the
display is transparent. This may be of importance in social
settings [31]. Additionally, if the power cuts out, the user
can still see in the case of an OST-HMD [24]. However,
this is not too much of an issue, as today’s more ergonomic
HMDs can be easily removed. Such a feature may become
more important in scenarios where visibility is critical
to safety.

VST has multiple advantages over OST because it displays
a digital stream of the real world. One basic obstacle with
OST is that the virtual objects cannot occlude real objects.
As discussed before, occlusion is a very important perceptual
cue. It allows users to understand the general depth of a
scene and, thus, the positioning of objects (both real and
virtual) in 3D space. The optical combiners in OST allow
light from both real and virtual sources. For proper occlusion
by virtual objects, blocking out the light from a real source
is necessary. Without it, the virtual objects will perpetually
appear semi-transparent [24], [31]. While solutions exist,
we could only find one commercial OST solution at the time
of writing (see Section VI-B2: Magic Leap 2, under AR
Hardware: HMDs). Their complexity makes them difficult
to implement. With VST, both real and virtual images are
available in digital form. Both images can be composited to
include the real, the virtual, or something in between. The
transparency of the virtual objects can easily be controlled,
allowing for occlusion. This also enables VST displays to
match better the brightness, color, and contrast between the
real and virtual [24], [31].

OST displays can provide an instantaneous view of the
real world, unlike VST displays. While this may seem like
an advantage for OST, it is advantageous for VST. The
system requires some time for registration and rendering.

109018 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

As such, the virtual image stream can be slightly delayed
compared to the instantaneous real-world view. This creates
a temporal mismatch, as the real and virtual objects do not
align with time. Since VST controls both the real and virtual
image streams, it can delay the real stream to sync with
the virtual stream [24]. Thus, VST displays can, in theory,
achieve visual coherence to a better extent than OST displays.
This is despite the real-world resolution issue of VST
displays.

Furthermore, OST displays rely on optical principles.
Thus, they must correct any distortions with the image
optically rather than digitally. HMDs need to be simple,
cheap, and lightweight for practical use. These constraints
limit what can be done optically with OST displays and
leave them with a reduced field of view. On the other hand,
VST displays can correct any image distortions digitally [24].
It may be computationally intensive, but this is less of an issue
with today’s computational advances.

C. INPUT
The user requires some form of input to interact with an
AR system. Theoretically, any form of input that the system
can recognize can be utilized. This could be the typical
input method used by a platform. For example, touchscreen
displays are available for hand-held devices, and a keyboard
and trackpad combo is available for laptops. Hand-held
controllers like those used in VR could also be utilized in
the case of AR headsets. However, such input systems do
not leave the hands of the users free. It can also reduce the
level of immersion in some scenarios, particularly with AR
headsets. Therefore, these headsets often come with different
inputs that are more suited to meet these demands.

1) HAND TRACKING
Hand tracking is utilized in AR to provide a more natural
way to interact with the system. Many interactions in real
life include the use of hands. They are used to interact with
the physical world by manipulating real-world objects. They
can also be a means of communication through gestures. Our
hands provide a natural and significant way of interacting
with the world around us [33]. Since AR aims to combine
the real and virtual, utilizing the same means of interaction
for both real and virtual objects is intuitive.

It is possible to simplify the challenge of hand tracking by
utilizing certain techniques from the field of motion capture.
One method would be to use sensors that can be worn on
the hand. IMUs, for instance, could be utilized to calculate
the orientation of the fingers and the palms. Yet another
method would be to place markers on a hand that cameras can
track. However, these methods can burden the user and lead
to unnatural movements. They also require calibration and
setup to obtain precisemeasurements [33]. Thesemethods are
suited for scenarios where the environment can be controlled,
and the calibration and setup are worth the time spent.
An example would be a motion capture studio. However,

AR systems, particularly commercial headsets, must be used
in various environments. Time spent on calibration and setup
can affect the usability and practicality of the AR system.
These same issues apply to registration when utilizing such
tracking systems.

Considering this, markerless vision-based techniques
would be the best option for AR. It is possible to track
the motion of the hand through image alone (similar to
registration). However, there are significant challenges to this
approach. Visual tracking techniques, in general, are affected
by the quality of the image. A lack of contrast between the
hand and the environment can make it difficult to distinguish
the hand. The hand is also particularly prone to occlusion
issues as the fingers can be hidden behind other fingers or
the palm. A human hand is also quite complex to track
due to amount of joints and the possible rotations for those
joints. In addition, interactions can involve manipulating a
real object. This can complicate the tracking further through
occlusions [33].

The power, size, and weight constraints of HMDs add
to this problem. There is a limit to the number of cameras
and where they can be positioned on the HMD. In many
commercial AR headsets, the system can only track hands in a
limited area in front of the user. Considering these challenges,
most systems implement a gesture system. The user’s hands
are compared to those in a gesture library. Depending on the
gesture, a certain function will be activated. For example,
users could pinch their hands to grab a virtual object. Once
the system recognizes the gesture, it identifies the virtual
object the user has ‘‘grabbed’’ and ties its position to the
user’s hand. The system tracks the user’s hand as it moves
and updates the position of the virtual object to match. Thus,
the system creates the illusion of the user grabbing and
moving around a virtual object. Using this system reduces
the complexity of the tracking problem. Interestingly, while
this system limits the natural interactions of the user, it can
also make the system easier to use. As the library of gestures
is limited, the user has less to learn regarding interactions.
More importantly, using the same gesture library ensures that
users can use the same gestures in different AR applications
and expect the same behavior.

2) SPEECH RECOGNITION
There will be certain scenarios where the user’s hands cannot
be used for interaction. Perhaps the AR application assists
the user with a physical tool that requires both hands. The
user thus requires a different mode of input where they can
keep working without taking their hands off the task. Speech
recognition is one solution for such scenarios. The system can
act as a digital assistant, performing the actions on the user’s
behalf upon request.

3) GAZE TRACKING
Speech recognition is not always a viable option. Perhaps the
environmental sounds are too loud, or there is a requirement
to remain silent. This is a bigger problem if hand tracking is

VOLUME 12, 2024 109019

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

also not possible. While the potential means of interaction
have been greatly reduced, head and eye tracking can still
provide some input. The idea here is to utilize the user’s gaze
as input. The orientation information from registration can be
combined with the orientation of the head or the eyes. Thus,
the system can determine the virtual object under the user’s
gaze. Hence, we can collectively refer to such a form of input
as gaze tracking.

It is possible to simulate gaze tracking on handheld
devices. By assuming the device to be the ‘‘head’’ and the rear
cameras as the ‘‘eyes,’’ we can take the device’s orientation as
the direction in which it gazes. In theory, further refining the
tracking may be possible by implementing eye tracking with
the front cameras. Since the user must observe the screen in
such devices, the front cameras could be used to track which
object the user views on the screen.

A limitation of this mode of input is that the only variable
the user can control here is the orientation of the gaze. If gaze
tracking is the only available input, it creates a problem.
Since the gaze is used to identify a target object, there is no
form of input left to interact with said object. This can be
counteracted bymaking any remaining interactions automatic
and context or object-specific. For example, an object can
be selected by maintaining the user’s gaze on it for a certain
amount of time, with the timer managed by the application.
As another example, the system can automatically scroll text
on a virtual screen depending on whether the user’s gaze is on
the upper or lower bound of the screen [34]. Gaze is best used
with voice commands or other input modalities where gaze
provides the user’s intent [34]. Finally, with greater precision
than head tracking, eye tracking can be used for text entry
with a visual keyboard, especially if other input modalities
are unavailable [34].

4) USER POSITION
The position of the user can be used as a form of input. With
an HMD, the user’s position corresponds with the device’s.
With a handheld, the system has to assume the position of
the handheld as that of the user. Like gaze, user position
is limited in a standalone scenario, but it could be useful
as supplemental input for other modalities. The position
can be processed into additional information, like motion or
proximity. AR content can then react according to the user’s
motion or proximity to the content. For instance, a virtual
flower could only bloom if the user approaches it. Or a virtual
character’s gaze could be made to follow the user as they
move around.

V. ENHANCING TECHNOLOGIES
This section discusses other technologies of interest. They
are horizontal technologies as they have applications in
various fields and, thus, are not developed with AR in mind.
Nevertheless, they can significantly enhance the capabilities
of any AR system, and attention must be paid to their
advancements and challenges.

A. ARTIFICIAL INTELLIGENCE
There is a need in AR for systems that can better comprehend
their surroundings and the user’s actions. This need can
be seen in the discussion of enabling technologies. If an
AR system could understand the environment it sees, it can
lead to better tracking and registration. If the system could
understand the motion of the user’s hands or their speech,
it could lead to a more natural means of input. AI can help
in this regard massively.

Various methods and techniques in AI have already found
their way into AR. The techniques previously discussed for
vision-based registration fall under Computer Vision, a sub-
field in AI. SLAM, in particular, has found applications
outside of AR in autonomous machines that navigate
environments. AI can improve registration through scene
semantics (see Section IX: Advanced Features). AI can also
be applied in AR through Speech Recognition and Natural
Language Processing (NLP). This can add the capabilities of
a virtual assistant to any AR system. Finally, AI can also be
used in motion tracking to predict the motion of a tracked
body when it goes out of view. This could have potential
applications in improving hand tracking. As discussed before,
the hand is particularly prone to occlusion issues. AI may
not be able to solve this issue entirely, but it can provide
improvements. Since AI is a horizontal technology, its
inclusion with AR need not be limited to improving just
registration and input.

Some challenges need to be addressed when using AI.
Training an AI can be significant, constrained by available
data and computing resources. They can be computationally
intensive to run. AI models can also be black boxes with
unknown reasoning for the provided output. Social challenges
also apply. AI has applications in multiple fields, but legal
regulation has not caught up with the advancements. The
massive amount of data that has enabled the rise of AI also
leads to arguments on user privacy.

B. REMOTE COMPUTING
Themassive growth of smartphones, tablets, and othermobile
devices has made AR accessible to the masses. They possess
computing power, cameras, and various sensors that make
AR possible. In conjunction with headsets, these devices
constitute what is classified as Mobile AR (MAR). The three
characteristics of AR define MAR, but with an additional
condition that the AR application runs or is displayed on a
mobile device [35], [36]. MAR has seen a lot of attention
from both industry and academia. This is partly due to the
accessibility (affordability) of such devices and advances
in their computing power. Another reason is that mobile
devices allow AR applications to follow the user and be more
immersive. But this source of strength is also its weakness.
The need to be mobile adds constraints to the weight and
volume of amobile device. A device that is too heavy or bulky
to be carried around is too impractical to be a mobile device.
Trade-offs need to be made with mobile devices. Consider

109020 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

the battery, for instance. Constraints on size and weight limit
the size of the battery. This limits the total available power,
limiting the unit’s computational power and operational time.
There are other constraints to be considered as well. Increased
computational power can also mean an increased thermal
output. The small form factor adds challenges to possible
cooling solutions. Additionally, since mobile devices are to
be held or worn with AR, the devices should also be kept cool
enough for continued human contact.

The constraints of mobile devices lead to a design with
limited computing power. However, there are reasons why
increased computing power is still desirable. An AR system
can provide a more immersive experience if it has the
increased computing power to support it. As discussed in
the previous section, AI is a good example. Additionally,
increased computing power allows the system to render
more complex virtual objects with greater detail. Additional
computing power also ensures that the necessary frames are
generated on time, even after all the processing and rendering.

Improvements in hardware and software can help over-
come the limitations of limited computing power. However,
another solution to this problem, especially if such power
is needed right now, is to utilize remote computing. The
idea is to offload the heavier computational tasks to another
computer, which will then return the results to the MAR
device. It essentially removes the limitation on how much
computing power a mobile device can have. This can also
remove the need for powerful hardware on the device itself,
reducing the cost and complexity of AR devices and making
them more accessible to a wider range of users. Another
advantage of remote computing for AR is the ability to
access data and resources from anywhere with an internet
connection. This allows users to access these resources
remotely rather than storing them locally on the device.
Finally, remote computing can help to improve the scalability
and reliability of AR applications. By using cloud-based
resources, AR applications can be designed to handle
large numbers of users and fluctuations in demand without
additional hardware or infrastructure. This can help to ensure
that AR applications are always available and perform well,
even under heavy load.

Remote computing need not be constrained to the Cloud
or the Edge. Even local devices could be used to raise the
available resources for a mobile system. It is even possible
to combine them to obtain hybrid architectures [36]. Each
setup can have its unique challenges. However, the common
trade-off between them is a new set of challenges concerning
the network between the mobile device and the remote
computer (see Section V-C: Computer Networks).

C. COMPUTER NETWORKS
The ability to communicate between two separate devices
is a major factor in their viability of functioning together.
There are two primary considerations for networks when
incorporating remote computing with AR: bandwidth and
latency. A higher bandwidth will allow the transfer of larger

volumes of data. A remote computer could render extremely
high-resolution images for a display, but it does not matter
if it is too much to be sent to an AR device in time. AR is
also a real-time system. There is already a delay in systems
from input to output. Utilizing remote computing can add
to this delay, which will appear as latency. It is important
to maintain low latency to avoid issues such as temporal
mismatch. The specific challenges with computer networks
relating to bandwidth and latency will depend on the remote
computing architecture used [36].

D. HAPTICS
‘‘Haptic devices enable human-computer interaction through
touch and external forces’’ [26]. Such technology allows
users to experience tactile and kinesthetic sensations. Tactile
refers to sensations of touch or the skin. Kinesthetic or
proprioceptive perception is the sense of awareness of the
body’s state. This includes the position, velocity, and force
supplied by the muscles [26]. By expanding to another set
of senses beyond the audio and visual, such technology can
further add to the immersion and realism of AR. Users can
touch and feel virtual objects by providing appropriate haptic
feedback. Haptic feedback can also be used with or as an
alternative to other forms of feedback. For example, it can be
used with GUI interactions in addition to the visual feedback
of the UI. It can also be used as an alternative with visually
impaired people, who may struggle with visual means of
feedback [26].
Haptic devices can be classified into two types according

to the specific sensation they activate [26]:

• Tactile/Cutaneous
• Kinesthetic/Proprioceptive/Force

The devices can be further classified according to their
underlying technology or form factor. For simplicity, this
paper will stick to the umbrella term of haptics. While there
are many commercial solutions for haptics, they are not
necessarily for AR. Thus, integrating such solutions into
an AR project may require additional effort, resources, and
developer support. The most accessible solution would be
through smartphones or similar handheld devices. Haptics
have become a standard in such devices, and the devices have
become ubiquitous. Controllers such as gamepads, racing
wheels, or those of XR devices can also come with haptics
built in.

The previous devices have haptics as a secondary feature
to enhance their overall function/experience. However, there
are commercial solutions built with the primary goal of
delivering haptic feedback. One class of devices is meant for
teleoperation or similar scenarios. They are desktop-based
(thus immobile/static), with the device delivering haptic
feedback for the user’s interactions on a screen. Touch and
Touch X by 3D systems [37] and Desktop 6D by Haption [38]
are examples of such devices. They are typically used
for manipulating and feeling on-screen 3D objects, which
are useful for applications such as 3D modeling. Another

VOLUME 12, 2024 109021

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

interesting example would be the Novint Falcon. It is a game
controller focusing on haptic feedback for greater immersion.
For example, the attachable pistol grip could allow players
to experience recoil for a gun fired in a game [39]. Novint
Technologies appears to be defunct [40], but the Falcon
controller can still be found for sale [41].
One drawback with the devices covered so far is that

they occupy the user’s hand and do not leave them free
for the user to manipulate the real world. This can be
addressed with wearable or mid-air haptic devices. Many
wearable solutions can be found in the field of VR. The
Senso glove [42], TactGlove [43], and HaptX G1 Gloves [44]
are some examples of haptic gloves. It should be noted
that HaptX G1 utilizes air and requires an ‘‘Airpack’’ that
can be placed or carried on a user’s back [44]. The Senso
Suit [42] and the TactSuit Series from bHaptics [43] are some
examples of wearable devices for the torso. bHaptics also
provide solutions for other sections of the body, such as the
TactVisor for the face and Tactosy for feet, arms, and hands
(excluding fingers) [43]. Similar to hand tracking, a particular
challenge of wearable haptic devices is that they can restrict
the user’s ability to interact with the real world naturally.
A bulky haptic glove, for instance, could make it hard to feel
or grasp a physical object. Mid-air/contactless haptic devices
can provide haptic feedbackwithout contact. The user is freed
from having to wear any device. However, mid-air haptic
devices have a limited workspace, constraining the user to
remain near the device. No commercial solutions could be
found, but Ultraleap is working on a product using an array
of ultrasonic speakers [45].
The industry has been moving towards implementing

high-fidelity haptic feedback into devices where haptics have
traditionally taken a backseat. This trend has been referred
to as HD haptics and attempts to deliver more distinct and
detailed haptic feedback on devices rather than a simple
buzz or vibration [46]. Interhaptics is a tool developed to
help aid the integration of such haptics into projects. It is a
cross-platform solution, providing a common foundation to
design, test, and deploy haptics across a range of devices. It is
available as an SDK, with integrations for Unreal Engine and
Unity [47].

VI. AR HARDWARE
This section will cover some popular hardware solutions
available for AR applications. Solutions available for com-
mercial use or general consumers, ideally with publicly
available software for development, were preferred for this
section. The hardware in the market can be divided into three
categories:

• Smartphones and Tablets
• Head Mounted Displays (HMDs)
• Spatial AR (SAR)

HMDs have been further divided into a subcategory of ‘‘AR
Glasses’’. For easier reference, Fig. 3 provides a visual
breakdown of the discussion structure in this section.

A. SMARTPHONES AND TABLETS
The wide array of sensors, cameras, and improvements in
computing power make these mobile devices even more
suitable for AR. AR here is always implemented as VST
displays. Unless transparent phones or other such devices
become a reality, OST displays are not possible with this
class of devices. As discussed previously, these devices limit
the user’s movement and have a limited field of view (see
Section IV-B: Display under Enabling Technologies). The
primary reason to consider this category would be their
widespread adoption. Any AR application developed for
these devices can be distributed to a large market of users.

Care should be taken, however, to ensure that applications
can run on the various combinations of operating systems
and hardware. Devices can have different capabilities when it
comes to sensing or processing. To account for this, Software
Development Kits (SDKs) provide means to identify the
device, its OS, and its hardware capabilities. Any feature that
the device cannot support can be disabled through software.

This category can be divided into two groups based
on the OS: iOS and Android. While there are more
operating systems, these two have the largest market share.
More importantly, they both possess their own AR SDK,
simplifying development.

1) iOS DEVICES
One advantage that iOS enjoys over Android is the compara-
tively limited set of devices it needs to support. iOS is better
attuned to its hardware as a result. LiDAR sensors have also
been added to Apple’s more recent offerings. This provides
their devices with depth information, significantly improving
registration. AR applications can be built for these devices
with the ARKit SDK. At a minimum, ARKit requires iOS
11.0 and an iOS device with an A9 processor to function [48].
The exact list of supported features will vary by model.
To learn more, see ARKit under Section: AR Software.

2) ANDROID DEVICES
Unlike iOS, Android needs to support a far greater variety
of systems. Supported AR capabilities can easily vary
from device to device. Applications can be made using
the ARCore SDK, which Google maintains and develops.
ARCore maintains a list of supported devices [49]. To see
the AR features of this SDK, see ARCore under Section: AR
Software Frameworks.

B. HEAD MOUNTED DISPLAYS (HMDs)
The ‘‘Sword of Damocles’’ by Ivan Sutherland is an HMD
often cited as the first demonstration of AR [31]. This is
debatable, as claims of similar systems predate Sutherland’s
device. ‘‘The ultimate display,’’ as Sutherland termed it,
is also often cited as the first VR headset. Nevertheless,
HMDs have been a significant aspect of AR. It even led to
AR being defined solely on HMDs, a problem addressed
by Azuma’s definition of AR [24]. The possibility to

109022 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 3. A visual breakdown of the section ‘‘AR Hardware’’. Primary topics are at the top (gray) and go from left to right.

look around, move around, and experience AR in various
environments were the likely factors that led to the appeal of
HMDs. Both OST and VST displays have been considered
for HMD-based AR systems. For the pros and cons between
them, see Displays: OST vs VST displays in Section:
Enabling Technologies. Refer to Table 10 (see Appendix)
to easily compare the specs between the HMDs listed in
this section. Refer to the respective sections for more details
on the specifications marked with an asterisk. For easier
reference, the specifications from the table have been marked
in bold in the text.

1) MICROSOFT HOLOLENS 2
The Microsoft HoloLens 2 is a standalone OST HMD. The
name HoloLens likely comes from the word ‘‘hologram’’,
which Microsoft uses to refer to the virtual objects displayed
by this HMD [50]. This is partly due to the OST display,
resulting in semi-transparent objects. Thus, they appear like
the holograms portrayed in fictional media, as see-through
3D objects displayed in 3D space. The HoloLens 2 has an
FOV of 43◦ horizontal and 29◦ vertical, which gives 52◦

diagonally. The resolution per eye is 1440 × 936 [51].
The refresh rate of the HoloLens 2 is complicated.

It is missing in the official specifications [52]. The refresh
rates from third-party sources vary greatly, reported as
60Hz, 75Hz, 90Hz, or 120Hz. Microsoft documentation
mentions both 120Hz and 60Hz [53], [54]. The display
resolution is specified as 120Hz under HoloLens 2 Display
Troubleshooting [53]. However, 60Hz is listed as the refresh
rate under ‘‘hologram’’ stability [54]. It is best to settle
on 60Hz as the refresh rate, as Microsoft recommends
targeting 60 FPS for the stability of virtual objects. It helps

minimize the overall latency, maintain consistent latency, and
reduce judder to maintain a smooth user experience [54].

The HoloLens 2 has a suite of sensors to support
registration and tracking. It has 4 visible light cameras for
6 Degree of Freedom (DoF) head tracking along with an
IMU. This, combined with a 1-MP Time-of-Flight (ToF)
sensor, allows the headset to perform Spatial Mapping.
The HMD can create a real-time rough 3D model (mesh)
of the environment. This allows for more immersive AR
applications (see Section IV-A6: SLAM under Enabling
Technologies: Registration). The HMD also supports hand
tracking with a two-handed, fully articulated model. 2 IR
cameras provide real-time eye tracking. They also provide
security with iris recognition. Finally, the HoloLens 2 also has
an 8-MP RGB camera, capable of 1080p video at 30 FPS.
This is useful for capturing the real environment that the user
can see. For audio, it has a 5-channel microphone array
and built-in speakers for spatial audio. Voice commands
are possible with the standalone HMD, with NLP requiring
internet connectivity [52].

The headset is powered by the Snapdragon 850 mobile
compute platform with passive cooling. It has 4GB DRAM
and 64GB for storage. For connectivity, it supports Wi-Fi
5 (802.11ac 2 × 2) and Bluetooth 5.0, with a USB Type-
C port for physical connections and charging. Under active
use, it has a maximum battery life of 3 hours. As for
ergonomics, the HMD can fit over the user’s eyewear and
weighs 556g [52]. The HMD is single-size, but the headband
can be adjusted to fit your comfort. The visor can also be tilted
to accommodate eyewear better. An overhead strap can also
be optionally used, providing more comfort over long periods
of use [55].

VOLUME 12, 2024 109023

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

The HoloLens 2 predates many of the HMDs listed in
this paper and is often outclassed by them on hardware,
particularly on FOV and compute. But thanks to its maturity,
the HoloLens 2 has a rich software ecosystem to support it.
The HMD runs on Windows Holographic OS and supports
various applications and services from Microsoft like:

• Microsoft Edge: Web browser, also supports WebXR
(see Section X-B: WebXR under AR Standards)

• Dynamics 365 Remote Assist: Real-time remote collab-
oration and assistance

• Dynamics 365 Guides: Application to build AR instruc-
tional guides

Some HoloLens 2 features are provided through
Microsoft’s cloud computing platform, Azure. Azure Mixed
Reality Services provide remote rendering and persistent
real-world anchor points for virtual objects. Applications
for the HoloLens 2 can be built using Unity, Unreal Engine
(UE), JavaScript (throughWebXR), or natively with a custom
engine utilizing OpenXR. Microsoft has also published
the Mixed Reality Toolkit for Unity and UE to help with
development (see Section XI: AR Frameworks, Platforms,
and SDKs). For the price, the HoloLens 2 starts at $3500 for
the base model, with additional charges for certain Microsoft
applications and cloud services.

2) MAGIC LEAP 2
Magic Leap 2 isMagic Leap’s response to theHoloLens 2 and
is a standalone OST HMD. However, the Magic Leap 2 has
three major design differences compared to the HoloLens
2. First, the HMD does not support user eyewear like the
HoloLens 2. Its form factor resembles that of traditional
eyewear. Second, Magic Leap 2 implements segmented
computing. The headset is tethered to an external compute
pack that can be worn. The headset has a processor for
low latency tasks, while intensive tasks are offloaded to the
compute pack [56]. Third, Magic Leap 2 has controllers as an
alternative mode of input. The Magic Leap 2 has a resolution
per eye of 1440×1760 and an FOV of 44.6◦ horizontal and
53.6◦ vertical, to give approximately 70◦ diagonally [57].
The display has a refresh rate of 120Hz [56]. Magic Leap
recommends a minimum of 60 FPS to avoid discomfort and
aiming for 120 FPS to reduce motion sickness [58]. Magic
Leap 2 also comes with Dynamic Dimming TechnologyTM.
The display can remove up to 99.7% of the ambient light
while retaining the brightness of the virtual content. It also
supports Segmented DimmingTM, where only select parts
of the display are dimmed. Ambient light sensors on the
headset support adjusting the dimming and brightness [56].
To our knowledge, this is the only commercial OST HMD
that has implemented a solution for the transparency problem
with OST displays.

Concerning sensors, the HMD has a ToF depth sensor
with a resolution of 544× 480 and anFOV of 75◦ horizontal
and 70◦ vertical. As with the Hololens, this allows the
Magic Leap 2 to create spatial maps of the environment [59].

There are 3 Wide FOV ‘‘world’’ cameras [56] that assist
in determining the head pose, refining the spatial map,
and identifying hand gestures for hand tracking [60]. The
HMD is capable of hand tracking at 30 FPS and with
26 keypoints tracked per hand [56]. Technically, the API
lists 28 keypoints per hand [61], but the API seems to
ignore two keypoints (Wrist Ulnar and Wrist Radial) in its
calculation [62]. Real-time eye tracking is provided at 90
FPS by 4 Eye Tracking cameras (2 cameras per eye) [56].
Iris recognition (Iris ID) for authentication is enabled only
for certain licenses [63]. Finally, the Magic Leap 2 has a
12.6MP RGB camera capable of 4k video at 30FPS or
1920 × 1080 at 60FPS. For audio, it has 2 built-in stereo
speakers and a 4 microphone array [56]. Voice commands
can be processed locally on the device [60].

For the CPU, the Magic Leap 2 sports an AMD
Zen 2 Quad Core x86 processor (8 threads) and a custom
CVIP (Computer Vision) Engine with 14 cores. It also
has a GPU based on AMD’s RDNA 2 GPU architecture.
It has 16GB of DRAM and 256GB of storage. The
Qualcomm FastConnect 6900 System provides wireless
connectivity [64] and supports Wi-Fi 6 and Bluetooth
5.0 [56]. Under active use, it has amaximum battery life of
3.5 hours. All these components for compute and networking
are placed within the compute pack [64]. The compute pack
is a compromise between mobile and remote computing.
It allows the processing to take place outside the HMD,
allowing for a smaller and lighter HMD. The HMD itself
onlyweighs 260g [56], [64], 296g lighter than a HoloLens 2.
This design also allows for higher compute specs, freed from
the very constraining form factor of an HMD. However, the
limitations of being a mobile platform are still reflected in the
battery life.

The headset is single size [56] but comes with a kit of
assorted nose and forehead pads to customize the fit [64].
An optional overhead strap is included for comfort over
long periods of use. The Compute Pack can be clipped
onto waistbands or pockets or be carried using the included
shoulder strap [64]. As the headset cannot support other
user eyewear, there is an option for swappable prescription
lens inserts (sold separately). The supported optical power for
this insert is +5 to -10 Diopter. Magic Leap also provides
a hand-held controller with optical tracking, IMU, and
infrared to enable 6DOF tracking of the controller. Additional
input devices can be supported over Bluetooth [56].

The headset runs on Magic Leap OS, based on the
Android OS [56]. The Magic Leap SDK allows application
development with Unity or natively (with Android Stu-
dio) [65]. It also supports OpenXR [66] and WebXR [67].
An SDK is available for Unreal Engine 5, but it is currently
in preview [68]. Magic Leap also provides support to
integrate third-party tools like MRTK into development [69].
Applications can be developed without the headset using the
Magic Leap App Simulator [70]. Magic Leap also provides
ARCloud, a remote computing service for large-scale spatial
data. This service can be deployed locally or with the

109024 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

supported list of Cloud Service Providers [71]. The Magic
Leap 2 is available for $3299, with developer and enterprise
editions priced $4099 and $4999 respectively. All models
have the same hardware configuration. The difference lies in
licensing and additional services from Magic Leap [63].

3) META QUEST PRO
The Meta Quest Pro is a standalone VST HMD. It is
intended to be a VR headset that supports MR with a
passthrough display. Meta first introduced video passthrough
for MR with the Passthrough API for the Meta Quest 2 [72].
However, the Quest 2 was limited to grayscale passthrough
as it was implemented through the tracking cameras [73]. The
Quest Pro improves on this by offering full-color stereoscopic
passthrough [74]. The display has 2 LCD panels with local
dimming backlight and a resolution of 1800×1920 per eye.
It offers an FOV of 106o¯ horizontal and 96o¯ vertical [74].
The refresh rate is not listed in the tech specs, but sources
claim a rate of 90Hz [73]. A detailed list of sensors is not
provided, but there are ten in total. Five thereof are infrared
sensors for eye and face tracking with a 120◦ field of view
each. The remaining five sensors support 6DOF inside-out
SLAM tracking and mixed reality [74]. These inside-out
tracking sensors can also perform hand tracking [75]. For
audio, there are 4 integrated speakers with spatial audio
support, a 3 microphone array, and two 3.5mm audio
jacks (left/right) [74].

The Quest Pro is powered by the Snapdragon XR2+
platform for the compute. It has 12GB of DRAM and
256GB of storage. The headset supports Wi-Fi 6E and
Bluetooth 5.2 for wireless connectivity. It has an average
battery life of 2.5 hours under general use. The headset
weighs 722g [74]. The headset is single-size but adjustable.
The headset can support user eyewear, as the distance
between the eyes and the lenses can be adjusted. The distance
between the lenses, the (IPD), can be adjusted from 55-
75mm [74], [76]. There are also partial light blockers that
can be attached to reduce ambient light since this headset
has a VST display [76]. A full light blocker can be bought
separately [77]. The headset also comes with two controllers
for input. Each controller has a Qualcomm Snapdragon
662 processor and three camera sensors. The three sensors
help with controller tracking through SLAM [74].

The headset OS is based on Android [73]. Applications
can be developed using game engines like Unity and
Unreal Engine. Browser-based applications can be built
using WebXR or Progressive Web Apps (PWAs) for 2D
applications. Applications can also be developed natively,
with SDKs provided forMobile and PC [78]. TheMeta Quest
Pro is available starting at $999.99 [74].

4) META QUEST 3
Meta Quest 3 is the successor to the Meta Quest 2 and a
consumer-oriented derivation of the Meta Quest Pro. It is a
standalone VST HMD [79]. It has a resolution of 2064 ×

2208 pixels per eyewith anFOVof 110◦ horizontal and 96◦

vertical. The possible refresh rates are 72Hz, 80Hz, 90Hz,
or 120Hz [79], [80]. The passthrough for AR is provided
by 2 RGB cameras and a depth projector. Hand tracking
is supported by 4 IR cameras and the two RGB cameras
mentioned earlier [79]. The Quest 3 does not support eye or
face tracking like the Quest Pro [80]. For audio, the Quest
3 has integrated stereo speakers with spatial audio with a
3.5mmaudio jack [79]. The configuration of themicrophone
is unknown as it is not listed in official sources.

For the compute, the Quest 3 is powered by the Snap-
dragon XR2 Gen 2 SoC. It has 8GB of DRAM and 128GB
or 512GB of storage depending on the variant [79], [80].
For connectivity,Wi-Fi 6E and Bluetooth are available [79].
Bluetooth is not explicitly listed in the specifications but is
mentioned in battery life. The Qualcomm SoC is capable of
both Bluetooth 5.2 and 5.3 [81].We assume it to beBluetooth
5.2 to be aligned with the Quest Pro. Meta claims a battery
life of up to 2.2 hours of usage on average. Weighing 515g,
the Quest 3 is lighter than the Quest Pro. The headset is
single-size but adjustable [79]. While the Quest 3 can be
used with eyewear, it is possible to get prescription lenses for
the HMD [82]. The IPD can be adjusted from 53-75mm.
The HMD also comes with 2 haptic-enabled controllers for
input [79].

The software stack and development for the Quest 3 is
similar to the Quest Pro. Applications can be built with Unity,
Unreal Engine, OpenXR, or WebXR [83]. The Quest 3 is
priced at $499.99 for 128GB and $649.99 for 512GB [79].

5) HTC VIVE XR ELITE
The VIVE XR Elite by HTC is a standalone XR headset
with a VST display. The display has a resolution of
1920 × 1920 per eye (3840 × 1920 combined) with a
refresh rate of 90Hz. It claims an FOV of up to 110◦,
but no information is specified on the horizontal, vertical,
or diagonal. The headset has 6DOF inside-out tracking. The
headset has a G-sensor (accelerometer), gyroscope, depth
sensor, proximity sensor, and four tracking cameras [84].
The headset supports hand tracking [85] but has no
eye or face tracking sensors. 16MP RGB camera allows
capturing the environment for video passthrough. There are
embedded speakers and dual-integrated microphones for
audio. Compute is provided by the Qualcomm Snapdragon
XR2 platform. It has 128GB of storage and 12GB of
memory. For wireless connectivity, it supports Wifi 6E and
Bluetooth 5.2. It has 2 USB 3.2Gen-1 Type-C ports, one for
power and one for peripheral. It has a 24.32Wh battery cradle
that is removable and hot-swappable [84] and can provide up
to 2 hours of continuous power [85].
The headset is single-size but adjustable. A feature of this

headset is that the battery cradle can be removed to change
the form factor to one more akin to that of normal eyewear.
The diopters of each lens can be adjusted and allow the
user to use the headset without prescriptive eyewear [85].

VOLUME 12, 2024 109025

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

The IPD can be adjusted within a range of 54-73mm [84].
It should be noted that the battery cradle is claimed to act
as a counterweight to the display [84], [85]. The long-term
comfort of the headset may be affected if used without the
battery, but the headset only weighs 273g. It weighs 625g
with the battery cradle headstrap [86]. An alternative power
source must also be provided if the battery cradle is detached,
with at least 30W of power delivery [85]. Included with the
headset are 2 controllers with up to 15 hours of battery life.
However, the controller’s tracking is provided by a G-sensor
and gryoscope [84], unlike the optical tracking seen in other
systems.

The headset runs on Android [86]. HTC provides
the VIVE Wave SDK for application development. The
SDK is available for Unity, Unreal, and Native (Android)
development [87]. Applications can also be developed
with OpenXR [88] as the device is conformant to this
standard [89]. The headset is available for a retail price of
$1099 [86].

6) VARJO XR-3
The Varjo XR-3 is a tethered VST HMD. This HMD’s
display is a key feature as it claims human-eye resolution [90].
This is achieved by taking advantage of the nature of the
human eye. The resolution of the human eye is not uniform
across the visual field in a given instance. The human eye’s
resolution can be matched by providing a high resolution
for the fovea and a low resolution for the periphery. This
rendering technique is called foveated rendering [31]. The
XR-3 display has a focus area uOLED with a resolution of
1920 × 1920 per eye. It has an FOV of 27◦ x 27◦, giving it
roughly 70 Pixels Per Degree (PPD). The peripheral area
has a 30PPD LCD with a resolution of 2880 × 2720 per
eye. The display overall has a horizontal FOV of 115◦ and
a refresh rate of 90Hz. It also supports a wide color gamut,
supporting 99% of sRGB and 93% of DCI-P3. The foveated
rendering is enabled by the built-in eye tracking, operating
at 200Hzwith sub-degree accuracy. This allows the headset to
show the user what they directly look at in full resolution [90].
Positional tracking is provided by utilizing the RGB video

pass-through cameras for inside-out tracking. There are two
12MP cameras with a latency of < 20ms for passthrough.
Alternatively, base stations can provide positional tracking
(sold separately). Depth sensing is provided by a fusion of
LiDAR with the stereo RGB feed, with an operating range
of 40cm-5m. Hand tracking is provided by Ultraleap’s
Gemini v5 software [90], [91]. There is no in-built
audio, but there is a 3.5mm audio jack with microphone
support [90]. Since this is a tethered headset, the processing
must be performed on an external computer. The XR-3 can,
therefore, utilize/require much more computing power to
operate compared to its competitors [92]. The headset is
single-size but adjustable and does support user eyewear.
It also has automatic IPD adjustment with a range of 59-
71mm. It weighs 980g, with the headband alone weighing
386g [90].

Since this tethered HMD outsources processing, it has
no OS. Applications can be developed using Unity, Unreal,
and OpenXR [90], [93]. There is support for a broad range
of professional 3D software [93]. Native development is
possible through the Varjo Native SDK [94]. Varjo also offers
various services and applications of their own, namely:

• Varjo Base: Companion software for headset configura-
tion and monitoring [95]

• Varjo Workspace: Virtual Windows Desktop for Win-
dows Applications [96]

• Reality Cloud: Remote processing, session manage-
ment, and shared AR sessions [97]

The Varjo XR-3 is available for e6495. However, the
headset cannot be purchased without buying at least a 1-
year Varjo subscription. It costs e1495 for the mandatory
1-year subscription, raising the total price to e7990. The
subscription features include software updates, commercial
licenses for Varjo and Ultraleap software, access to a Varjo
Account portal, and technical support for businesses [98].

7) VRGINEERS XTAL 3 MIXED REALITY
Vrgineers is a company that specializes in pilot training
systems for both professional andmilitary clients. Their latest
offering, the XTAL 3, was developed to be a pilot-dedicated
headset [99]. However, it is not limited to this thanks to
its wide support for developer software [100], [101]. It is a
tethered headset with both a VR and MR variant. The central
cover of the headset is removable and reconfigurable. This
makes it possible to configure the VR headset to support
MR [99]. This is done with the addition of RGB cameras for
passthrough. Thus, it is a tethered VST HMD. The two key
features of this headset are the wide FOV and the high display
resolution. Vrgineers claim an FOV of 180◦ horizontal and
90◦ vertical. However, the actual FOV for MR can vary
depending on the lens used. On the lower end, it has an FOV
of 63◦ horizontal and 38◦ vertical with a high-fidelity lens
with 60 PPD. On the higher end, it can offer 175◦ horizontal
and 100◦ vertical with the Infinite lens, at the cost of the
PPD being lowered to 22 [101]. The HMD has one LCD per
eye. For MR, it can provide a resolution of 3864×2192 at
45Hz or 2232×2192 at 75Hz per eye. By utilizing foveated
rendering, it is capable of 3840×2192 at 90Hz per eye.
To support foveated rendering, eye tracking is provided,
running natively at 120 Hz (up to 210 Hz) [100], [101].
Positional tracking is provided by inside-out tracking.

It can also support other 3rd party tracking solutions such as
Optitrack or Vicon [99], [100]. Hand tracking is provided
by the embedded sensor from Ultraleap [99], [101]. The
headset also features automatic IPD adjustment, with a
range of 60-76mm [100]. The wide FOV of the HMD is not
without its issues. To compensate for the distortion, Vrgineers
use a combination of their embedded lenses and warping
algorithms [99]. The wide FOV also makes the optical system
focus on the standard reading distance [100]. This can be a
problem for users with eyewear. Vrgineers offers a service to

109026 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

prepare custom corrective lenses with every order [99], [100].
The headset is single-size but adjustable. Using user eyewear
may be possible but will very likely be uncomfortable. The
headset is heavier compared to competitors, weighing 700g
without including the headstrap. Since it is a tethered
headset, it connects to a PC with DisplayPort 1.4 and USB
3.2 Gen 2 [100], [101].

Since this is a tethered headset, it has no OS. Microsoft
Windows is the only supported OS for the tethered PC. The
headset supports a wide range of flight simulators, keeping
with its origin as a pilot-dedicated headset. Other applications
can be developed through Unity and Unreal Engine, and it
also supports SteamVR and OpenXR [100], [101]. Vrgineers
also provides the VRG C++ API for native application
development with C++ libraries [102]. The XTAL 3 is
available with a starting price of $11800 for a personal free
license [100]. There are also plans to release a wireless
version of this headset. The headset will not be standalone
owing to the lack of onboard computing. However, the PC
can stream data to a separate on-belt module containing the
battery pack and wireless antennas [103].

8) AR GLASSES
AR glasses are a category of devices in the industry that
attempt to constrain the HMD to the small form factor
and weight of regular eyewear. These constraints limit
them in display, input, and compute capabilities. However,
as technologies improve, the feature-rich HMDs covered
above may shrink to the size of AR glasses. It is important
to note that we use AR glasses as a subjective classification
and are not based on an objective definition. To better gain
an idea of the devices in this class, a selection of five devices
have been chosen:

• Google Glass Enterprise Edition 2
• Epson Moverio BT-40S
• Nreal Light
• Nreal Air
• Vuzix M400

The specifications for each device have been provided in
Table 11 (see Appendix). These devices have been chosen
to convey this class’s variety rather than showcase the latest
commercial solutions. The differences primarily manifest in
the device type, display, and registration capabilities.

C. SPATIAL AR (SAR)
The field of SAR has not enjoyed the same attention as HMDs
or smartphones in the industry. No complete solutions could
be found for sale at the time of writing. One possible reason
would be the challenges of SAR (see Section IV-B3: Spatial
AR under Enabling Technologies: Display). These limit the
scenarios in which SAR can be deployed. This can reduce
the demand needed to drive mass adoption and development.
At the time of writing, Lightform was the only provider of
complete SAR solutions that could be found. Unfortunately,
the company has shut down, with all products discontinued

and services stopped [104]. Nevertheless, their products are
still worth covering as examples.

LF2+ was a complete SAR solution from Lightform. The
unit consisted of the following [105]:

• a projector for the display
• a camera array for scanning and estimating depth
• compute for processing
• onboard storage
• an integrated microphone (input)

The LFC kit was another product by Lightform for adding
SAR functionality to almost any projector. The kit consisted
of the Lightform Compute (LFC) unit, a Logitech Brio
webcam, and a projector mount. The projector mount could
mount the webcam and LFC unit to a projector [106]. Table 1
provides the full list of specifications for both products. The
Lightform Creator app was used for developing experiences
and was provided for free with the LFC kit or LF2+ [105],
[106], [107]. The app simplified the process of projection
mapping and the implementation of audio reactivity [107].

Audio reactivity is the most developed and integrated
form of interaction for Lightform products. However, audio
reactivity is simply the system reacting to the audio captured
from the surroundings, such as a sound-reactive visual
effect [108]. While it is a form of interaction, it is not
particularly meaningful beyond being a gimmick. There
are other means of interaction, but over the Open Sound
Control (OSC) protocol. OSC is a protocol originally
intended for networking between sound synthesizers, musical
instruments, and other multimedia devices [109]. This can
be used to make interactive controllers with phones through
the TouchOSC app [110]. It can also be used to interface
with Microsoft Kinect sensors. The sensors could be used to
incorporate body tracking, but only one example is provided.
Other sensors with OSC libraries for communication could
also be utilized [111]. However, these OSC expansions were
experimental [110], [111]. They were not well developed,
providing only limited interactions out of the box. While
Lightform products are technically complete solutions, they
are practically incomplete.

Lightform was aware of this, and their plans can be seen
with Project LFX [112]. The foundation of this system would
be projectors capable of adjusting their orientation to project
content anywhere in a given space. This is meant to be
combined with more unconstrained modes of interaction, like
voice commands. The system’s potential can be seen with
their stated design principles [113], and it even highlights
some of the advantages of SAR.

While theremay be no complete and commercial solutions,
there are still commercial solutions that could be combined
for SAR. An AR system can be built if it possesses
all three enabling technologies. Software for projection
mapping is commercially available. They are intended to
be used with almost any projector on the market. Such
projection mapping software may also come with a means
for interaction. For example,MadMapper comeswith support

VOLUME 12, 2024 109027

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

forMIDI/OSC-based controllers [114]. This can be expanded
to communicate with other sensors, similar to Lightform.
Sensors like Azure Kinect for 3D sensing have already
been made to empower XR applications. This can add body
tracking, speech recognition, and other computer vision
capabilities to a system [115]. These sensors can be used to
enable tracking, registration, and input. If such sensors cannot
be obtained, computer vision techniques could be utilized
with any camera to implement similar functionality. Table 2
shows a list of projection-mapping software and 3D sensing
sensors that could be used for custom SAR solutions.

D. OTHER POSSIBILITIES
This section discusses planned, unreleased, and unconven-
tional hardware implementations.

1) MICROSOFT HOLOLENS 3
Microsoft has hinted plans to update the HoloLens 2, but no
more information has been revealed. The rumored HoloLens
3 is suffering from issues with the development team, and
thus, its future remains uncertain [116].

2) APPLE VISION PRO
The Vision Pro is a standalone VST HMD from Apple,
scheduled for release in early 2024 in the U.S. with a price
of $3,499 [117]. Apple claims a resolution beyond 4K with
two micro-OLED displays having 23 million pixels between
them [118]. For reference, the standard 4K resolution at
3840 × 2160 has about 8.3 million pixels. The FOV is
unknown. The LiDAR scanner and camera array can scan
and construct a 3D map of the user’s environment. Hand
tracking is supported, with infrared flood illuminators to
support hand tracking in low light conditions. Eye tracking
is supported through a system of infrared cameras and LEDs.
It has integrated speakers supporting spatial audio and a
microphone [118].
For computing, the Vision Pro comes with Apple’s

proprietary M2 chip for running the OS and applications
and an R1 chip dedicated to dealing with sensor input and
streaming images to the displays. The HMD is single-size but
adjustable with a flexible headband and a dial to adjust the
fit. Compatibility with eyewear is unknown, but prescription
inserts can be obtained to use the HMD without eyewear.
The HMD has a split design like the Magic Leap 2 with an
external battery pack. This provides up to 2 hours of battery
life. The HMD can also be used plugged in, allowing all-day
usage [118]. It is unknown whether the Vision Pro can utilize
external computing in such a configuration since the user will
be tethered. This would depend on the connection used.

Apple is heavily betting on software and integrated features
for the success of this device, powered by their VisionOS.
The HMD has a feature called ’’EyeSight’’, a display at
the front of the HMD that allows other people to maintain
eye contact with the user. It can also enable other users to
know how immersed the user is in an experience (along the

virtuality-continuum). VisionOS will simultaneously display
a user’s eyes and make people in the environment visible
when they approach the user. The microphone is integrated
with the OS for dictation. Eye tracking is integrated as a
mode of input, specifically for intent. Apple has revealed
many intended applications for their HMD. Remote displays
will allow the user to carry a computer’s display anywhere.
The HMD or an iPhone can capture spatial videos as 3D
recordings with depth, allowing users to relive experiences
as if they are in them. Apple is also promising integrations
for collaborative video conferencing that can take place
spatially [118].

3) HolokitX
The Holokit X by Holo Interactive is an accessory that can
convert an iPhone into a stereoscopic AR display [119].
The idea of converting a smartphone into a headset is
not new. For instance, Cardboard by Google would allow
converting smartphones into stereoscopic VR headsets [120].
It is easy to think that video passthrough from the phone’s
camera is all that is needed to convert such a VR HMD
to a VST HMD for AR. However, the outward-facing
cameras on a smartphone are kept together and towards
one side of the phone. Thus, the real-world view of the
cameras would never be aligned with what the user would
normally see (see Section IV-B4: OST vs VST HMDs
under Enabling Technologies: Display). TheHolokit X solves
this by utilizing an OST display instead, offering an FOV
of 60◦. The digital objects are projected from the phone
display to the user. The headset is single-size but adjustable
and is compatible with user eyewear. The iPhone and
Apple’s AR platform (ARKit) provide AR functionality. The
system is capable of 6DOF tracking, environment scanning
with LiDAR, human and object recognition, visual hand
tracking, and hands-free motion control (with Apple Watch).
It also offers strong multi-user functionality. Additionally,
it provides a spectator view, where users with iPhones or
iPads can view and record the AR session experienced
by other Holokit users in third-person [119]. The Holokit
Unity SDK allows applications to be developed with Unity
and is compatible with ARFoundation by Unity [121]. The
Holokit X is available for $129 [119]. However, since the
functionality depends on an iPhone and other Apple devices,
the price can easily balloon into the range of dedicated MR
HMDs. As an alternative, there exists an open-source Holokit
project, similar to Google Cardboard, to turn smartphones
into OST AR HMDs. While it can support Android and iOS
devices, the compatible list of devices is limited [122].

4) ZAPBOX
Zapbox by Zappar is a kit to convert iPhones into AR
HMDs [123], similar to the HolokitX. Zappar is a provider
of AR solutions [124]. Unlike the HolokitX, the Zapbox
converts an iPhone into a VST display. Zapbox also provides

109028 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

TABLE 1. Specifications of Lightform products for SAR.

TABLE 2. A list of projection-mapping software and 3D sensing sensors
for custom SAR solutions.

two Bluetooth controllers for input [123], and a Unity SDK
for development [125]. It is priced at $79.99 [123].

5) MONOCLE
Another interesting solution is the Monocle by Brilliant
Labs. The Monocle is, as the name suggests, a monocle but
with built-in electronics. It is a device that can be clipped
on, converting any traditional eyewear into an OST HMD.
It comes with a 720p camera and a micro OLED display
with a resolution of 640 × 400. The optics can project the
display to the eye with an FOV of 20◦ [126]. A microphone
and touch buttons are provided for input, and Bluetooth 5.2 is
used for connectivity. The Monocle also has an FPGA for
accelerating ML/CV tasks [127]. It weighs just 15g and has
a battery life of up to an hour. An accompanying charging
case has the capacity for six recharges. It is available for

purchase at $349 [126]. It supports open source development,
and applications can be developed using Python (running an
OS based on MicroPython) [127].

6) MOJO LENS
The final device we cover is the Mojo Lens by Mojo Vision.
The Mojo Lens shrinks the hardware for AR into a form
factor of a contact lens. It has a 0.48mm MicroLED display,
an IMU, an ARM processor, a 5GHz radio, micro-batteries,
and a circuit for wireless recharging and power management.
The display is opaque and placed in the middle of the eye.
However, its small size and proximity effectively render it
invisible. The user can only see the image that it projects. The
device has a very small FOV of 15◦. However, by placing the
device directly on the eye, the display can move with the eye.
This alleviates the FOV limitation to some extent. It can also
be considered as a form of foveated rendering. Gaze tracking
is intended to be the primary (and probably only) mode of
input with this device [128]. The project was still under
development when it was revealed. However, the company
has decided to pivot into other ventures, citing unfavorable
market conditions for continued development of the Mojo
Lens [129].

VII. AR SOFTWARE
Hardware means nothing without adequate software to back
it up. Devices with well-developed software frameworks and
tools for development will almost always win out against
those without. Taking care of the foundational elements of

VOLUME 12, 2024 109029

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

an AR session, such as registration and display, frees up
the developer to focus on the application itself. Choosing
the right software platform can reduce development times
and ease deployment and management. Good platforms will
also attract a large community, further increasing the support
available to developers. Refer to Fig. 4 for a visual breakdown
of all the sections under the topic of ‘‘AR Software’’. For
easier referencing, the features of AR software will be
highlighted in its discussion if present. Furthermore, the
naming and definition of features are not consistent between
software. If the feature name or functionality in the software
does not match the scheme in our paper, it will be mapped
with the following format: Feature Name in Software
(Feature Name in our Paper). Features not in our feature
list are left as is.

Each section has been provided a preamble for their
discussions. In the upcoming sections on Basic andAdvanced
Features that can be expected from AR software, we have
provided illustrations to showcase the features with a dummy
application. The application showcases ‘‘THE CUBE’’. The
floating cube and its wooden base (where applicable) have
been used to show AR content placed in the real world. These
illustrations were fully rendered in UE5 (see Fig. 5). We used
the following resources and tools to assemble and create our
renders:

• Archviz Interior: A UE4 template project; It was used
for the interior in our renders.

• Quixel Megascans: A collection of scanned 3D assets.
Assets from this collection were used to improve the
interior’s photorealism.

• MetaHuman Creator: This tool can used to create
photorealistic humans that can be imported into UE5.

• Cesium: A tool for 3D geospatial applications; It was
used to create the world in Fig. 13.

• Blender: A Digital Content Creation (DCC) tool for 3D.
This was used to create any custom 3D assets.

• Krita: A DCC tool for 2D. This was used to edit the
images.

VIII. BASIC FEATURES
To make it easy for future reference and avoid redundant
information, we decided it was best to discuss a list of AR
software features first. Such a list would also make it easy
to compare between various software. We have classified
these features into two groups: basic and advanced. We have
selected the features in this section to be basic based on their
commonality. Most, if not all, AR software will have at least
one of the basic features we have classified. Being registered
in 3D is a characteristic of AR. The features classified here as
basic assist with enabling this particular characteristic. Thus,
these features form the foundation of most AR software.

A. POSITIONAL TRACKING
Positional tracking means that the system can estimate the
device’s position and rotation in the environment. This allows

users to both look around and move around in the scene.
There are two types of tracking available for AR devices:
3DOF and 6DOF tracking [130]. Most AR solutions provide
6DOF tracking under the name ‘‘positional tracking’’. With
3DOF tracking, it is typically restricted to only tracking
rotation along three axes: pitch, yaw, and roll [130]. The user
will only be able to look around with the device. This means
that the AR content will be anchored to the device and will
move with the device’s position. With 6DOF tracking, it can
track three axes each for rotation and position [130]. Virtual
objects will no longer move around with the device (unless
forced to).

B. FEATURE POINTS AND POINT CLOUDS
Most tools rely on identifying distinct features in the visual
feed to support positional tracking. These ‘‘feature points’’
are then used to compute location changes [131]. Since
these feature points correspond with the environment, they
can also be used to place AR content into the world (see
Section VIII-D: Hit-testing). It may also be possible to obtain
a collection of feature points as a point cloud may also be
possible. A point cloud is a 3D representation of a collection
of points in space.

C. PLANE TRACKING
Plane tracking can be used to detect and track planar
surfaces in the scene. Finding a planar surface typically
involves identifying feature points on the same planes [131],
[132]. The basic functionality of this feature is to detect
horizontal surfaces facing up, like floors or tables. Support for
horizontal surfaces facing down (e.g., ceilings) and vertical
surfaces (e.g., walls) are also becoming more common. The
functionality can also be expanded to other arbitrary planes,
such as ramps in certain libraries.

Once the planes have been detected, virtual objects can be
placed on them (see Section VIII-D: Hit-testing). Physics can
also be applied to the virtual objects and planes. This can
make it seem like the virtual objects interact with real-world
surfaces. A caveat, however, is that the illusion of physics can
break easily once the virtual object goes beyond the bounds
of a tracked plane. Additional care should be taken when
positioning an object on a plane. The lack of occlusion can
easily break the illusion of a place object from another view
or position (see Section IX-L: Occlusion).

Fig. 6 showcases an application for Plane Tracking.
By tracking horizontal planes, the system can detect flat
surfaces onto which AR content (black cube with a wooden
base) can be placed. It is not uncommon for Plane Tracking
implementations to track multiple planes in the same region.
Fig. 6 showcases three tracked planes in translucent orange.
Notice that the two planes underneath the AR content appear
in the same region and appear to overlap. Additionally, notice
the lighting on the AR content. The real world is lit from
the right and has shadows going to the left. The AR content
is lit from the viewer’s perspective, indicated by the shadow

109030 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 4. A visual breakdown of the section ‘‘AR Software’’. Primary topics are at the top (gray) and go from left to right.

going away from the viewer (on thewooden base). AR objects
are rendered separately with virtual lighting and overlaid on
the real image. The content looks unnatural and stands out
because the lighting on the object is inconsistent with the
real-world environment. This problem of having consistent
lighting is addressed by Light Estimation (see Section IX-J:
Light Estimation).

D. HIT TESTING
Placing a virtual object directly onto the scene involves
additional steps beyond detecting and tracking scene features.
The virtual object must have the correct placement and size
to blend into the scene. The problem is determining the
proper point for placement in the scene. This can be resolved
with hit-testing. It is also called raycasting as it follows
the same principle. Raycasting is a technique used in game
development. It is used to trace a line in 3D space (casting
a ray) to query if any entities are being intersected by the
line [133]. This should not be confused with the rendering
technique of the same name. Most development tools for AR
use the term hit-testing over raycasting. Performing a hit test

will extend a ray from a chosen origin point. Hit-tests can
return any tracked entities in the scene it intersects with. The
intersection point can be used to identify the position where
the virtual object should be placed. The pose of the tracked
entity can be used to determine the pose of the virtual object
to be placed.

The first result is typically considered if multiple results
are obtained from a hit test. As the objects nearest to the
origin point will be intersected first, the list of results will be
sorted by increasing distance. Thus, the first result will be the
closest and where we want to place the object. The purpose
and behavior of a hit test can be adjusted by changing the
ray’s origin point, direction, and length and how the results
are processed. For example, object placement has different
implementations on a handheld compared to an HMD. On a
handheld, the origin point can be the device camera or even
a point on the screen where the user tapped. The direction of
the ray can be obtained from the device’s orientation. On an
HMD, the origin point can be a hand-held controller, the
user’s hand (from hand tracking), or the HMD. The ray’s
direction can be obtained from the orientation of the entity
chosen as the origin.

VOLUME 12, 2024 109031

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 5. A screenshot of the Unreal Engine project used to create the renders in this paper. It shows a behind-the-scenes view of Fig. 7.

FIGURE 6. AR content (cube with a wooden base) placed on planes
tracked in the environment (orange surfaces).

Fig. 7 visually represents how hit-testing works for object
placement. Here, the ray originates from the phone held by
the user. The ray intercepts the plane tracked on the book
shown in Fig. 6 and displays an indicator for the object to
be placed. The user can then confirm the position in which to
place the object.

E. IMAGE TRACKING
Image tracking can be used to detect and track images placed
in the environment. First, a library of images to be detected
is created. An algorithm then attempts to detect these images

FIGURE 7. A visual representation of utilizing hit-testing (white line) for
object placement.

from the visual feed of the world. Once detected and tracked,
the images can then be used to place AR content in the scene.

The challenge with image tracking boils down to image
quality. Tracking quality depends on the image’s quality and
its appearance in the visual feed. Computers do not see
like humans. They rely on algorithms to distinguish and
identify an image from its surroundings. The harder it gets
to distinguish and identify, the greater the computational
power required, which is a constraint for AR devices (see
Section V-B: Remote Computing).

Algorithms simplify the problem to negate the need for
more computing. Every image is processed into something

109032 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

easier to track. An example would be reducing an image to its
most important features and searching for only those features
in the visual feed. However, this approach effectively limits
what images can be used for tracking. Images must always
conform to certain rules for optimal tracking depending on
the underlying algorithm.

The most basic implementation of image tracking is
(fiducial) marker tracking. These images/markers are meant
to act as reference points (hence the name fiducial) and be
easily recognized by a computer. Markers can be divided
into two categories: barcode and pattern. Barcode markers
are extremely limited in their appearance. They are bi-tonal
(black and white), with variations of a set pattern. They are
akin to QR codes but more simple in their appearance to aid
with recognition [134].

Pattern markers are more flexible. These markers are white
squares with a black bounding box. Unlike barcode markers,
these markers can have their appearance customized. This
can be done by placing a pattern in the white square (hence
the name). There are still limits when it comes to the pattern
that can be used. This is because pattern markers break down
the pattern into a grid of squares [134]. Therefore, complex
patterns or patterns with low contrast to the background will
be difficult to track.

More modern implementations provide support for typical
images over markers. They also provide support for tracking
multiple images at once. However, image tracking requires
more computational power than marker tracking. As such,
multiple marker tracking may be preferable in certain
scenarios. Some development tools also expand support for
image tracking on curved surfaces, such as cylinders or cones.

Image tracking can be expensive to compute, so it is best to
limit the number of images that require precise tracking [135].
For similar reasons, image tracking performance can degrade
if the library of images to be detected is too large. Image
libraries, therefore, usually have a hard or soft limit on the
number of images that can be stored. If more images are
needed, one can switch to a different set of images depending
on the context, such as location [135]. Alternatively, features
and facilities like Cloud Recognition can be used to support
large reference libraries.

Fig. 8 shows one application of image tracking. Outside of
acting as a tracked point for AR content, image tracking can
make images interactive or give them depth. Here, the system
can identify a poster in the environment, causing an AR cube
to pop out of the wall.

F. ANCHORS
Anchors are used to enable object permanence in AR.
Losing the line of sight means losing the ability to track
the scene. This, by extension, means losing the ability to
display virtual content in its placed position in the scene.
By attaching/anchoring virtual content to anchors, they
appear to remain in place in the scene, even if they go
out of sight. This is done by updating the transform of
the anchor relative to the device transform every frame.

FIGURE 8. AR content (cube) placed next to a poster using image tracking.

Anchors can be used with tracked entities, such as planes
or images, to ensure they remain tracked even when out
of sight. Alternatively, they can also be used to track an
arbitrary point in space. These are sometimes called Spatial
Anchors. Besides permanence, anchors can be saved to
memory to create persistence (see Section IX-H: Persistent
Anchors) and multi-user experiences (see Section IX-I:
Shared Sessions) [136].

IX. ADVANCED FEATURES
Advanced features are typically found inmorewell-developed
AR software. In general, they are more specialized and
complex functionality beyond assisting with the third charac-
teristic of AR. While advanced features like location tracking
and object tracking do help with the third characteristic of
AR, they are not as common as their basic counterparts.

One feature we have left from our list is ‘‘Instant
Placement’’. It typically refers to the ability to instantly place
an object into the environment (see sections XI-A(ARKit)
and XI-B(ARCore) under AR Software). This is because
AR systems have to wait until tracking is established and to
be accurate enough to place an environment in the world.
We argue this is not a feature as it provides no unique
functionality. Rather, it is a measure of the system’s capability
to provide accurate tracking in a time small enough to be seen
as instantaneous.

A. DEPTH SENSING
Some tools provide an API for accessing the depth infor-
mation of the scene. This allows a system to know the
physical objects are positioned relative to each other in the
world. Utilizing a dedicated hardware sensor like LiDAR can
improve depth estimation accuracy. Depth information can
be utilized in a variety of ways. This can be used to enable
physics or occlusion (see Section IX-L: Occlusion). It can
also be used to apply visual effects, such as depth of field
or fog [137].

B. SPATIAL MAPPING
Spatial mapping (or scenemapping) is a feature used to create
a 3D scan of the scene. Creating a 3D model of the scene

VOLUME 12, 2024 109033

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 9. Spatial mapping: The real world environment to be mapped.

FIGURE 10. Spatial mapping: The mapped 3D model of the environment.

makes it possible to keep track of entire sections of the scene
outside of view. This has multiple applications. Since the
system has a 3D model of the environment, it can calculate
physics even in spaces that cannot be seen, just like reality.
The 3D model can also be utilized to enable occlusion. This
can provide a great sense of realism and immersion. A 3D
map of the scene can also be used to simulate the environment
without needing to be there. This reduces the effort involved
in iteration and testing, speeding up development.

Fig. 9 shows the real-world environment, and Fig. 10
shows the scanned 3D model. The 3D model will never
be completely accurate from a scan. For instance, notice
how regions below the chair, couch, and table are not fully
mapped.

C. SCENE SEMANTICS
Scene semantics is used to classify and label objects within
the scene. This makes it possible for the system to distinguish
a tabletop from the floor or buildings from the terrain.
Such classification will allow the creation of more adaptable
and tailored AR experiences. Scene semantics must not
be confused with spatial mapping. That being said, scene
semantics can be used in conjunction with spatial mapping
to create a labeled 3D model of a scene.

D. OBJECT TRACKING
Object tracking can be used to track physical objects in the
scene, which can then be used to place AR content into the

FIGURE 11. AR content (text and target marker) placed with object
tracking.

world. A 3D model of the object is required for detecting and
tracking the object. Some developer tools provide the ability
to scan a physical object to produce a 3Dmodel with a process
called 3D scanning. In some cases, this can also be done with
the AR device itself by leveraging the same techniques it uses
to map and understand the scene.

Fig. 11 showcases an application for Object Tracking.
Objects can be identified in the environment and marked, and
tooltips can be placed next to them. In Fig. 11, the system
looks for a regular dodecahedron in the environment after
being provided with its 3D model. It then places a marker
with text to alert the user it has discovered the object.

E. CLOUD RECOGNITION
With certain types of tracking, such as image tracking, it is
necessary to keep a library of references. However, this
can pose problems in scenarios requiring a large reference
library. The system will need to search for multiple images
in the feed and store a large database of images. Mobile
hardware will struggle as the references start to number in the
thousands. Cloud recognition aims to resolve this dilemma.
It removes the need for processing the visual feed and storing
the reference library locally on a device. Instead, the reference
library and visual feed can be sent to the cloud for storage and
processing respectively.

This has both benefits and drawbacks. The capabilities of
mobile hardware are improved with remote computing (see
Section V-B: Remote Computing). The cloud has vastly more
compute resources than mobile hardware and is scalable.
As the reference library is stored and accessed in the cloud,
it is easier to maintain the database, as all end-point devices
share it. However, a major concern would be privacy. Cloud
recognition is mostly provided for image recognition with 3rd
party cloud service providers. The visual feed is being sent to
a 3rd party for processing. Thus, a 3rd party can have access
to possible sensitive information.

F. FACE TRACKING
Face tracking is used to track a user’s face and facial
expressions. With appropriate processing, it can be utilized
as a supplementary method of input. This can be utilized in

109034 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 12. Placing AR content (glasses) with face tracking.

a variety of ways. It can be used for motion capture, which
can be used to create animations, or used in real-time for
animating user avatars. This could be used to resolve some of
the social challenges arising from using HMDs, particularly
VST HMDs (see Section IV-B4: OST vs VST HMDs under
Enabling Technologies: Display). It can also be a foundation
for applying visual effects to the face. This could used to
preview eyewear or makeup on the face, as shown in Fig. 12.
By tracking the user’s face, it is possible to preview eyewear
by positioning the virtual content correctly around the eyes.
Notice that the lighting of the eyewear in Fig. 12 is flat and
inconsistent with that of the real world.

G. LOCATION TRACKING
Location Tracking can be used to deliver location-specificAR
experiences. The basic implementation relies only on GPS
data to determine where the user is in the world. AR content
is assigned to a specific set of GPS coordinates. The user
can view the content when the user’s GPS coordinates match.
Other implementations improve tracking by incorporating a
Visual Positioning System (VPS). A VPS can compare the
image captured by an AR device with a library of captured
images or 3D geometry of a location. Thus, the system can
pinpoint a user’s location with greater precision.

Some tools can also provide or even create 3D geometry
of a location. This is akin to spatial mapping but for outdoor
locations. This offers all the advantages of having a 3Dmodel
of the scene (see Section IX-B: Spatial Mapping). There can
also be tools to simulate locations in software, complete with
the 3D geometry of the scene, to simplify development. This
can prove useful when creating international experiences,
negating the need to travel to each location.

Fig. 13 showcases location tracking. Once the system can
correctly identify its location in the real world, it can display
content positioned in the real world. Here, an AR cube has
been placed in front of the Eiffel Tower.

H. PERSISTENT ANCHORS
AR content, on its own, is not persistent. Virtual objects
placed will not be present for the next session. The system
will have to detect, track, and place content into the scene
from scratch for each session. This issue can be resolved

FIGURE 13. Location tracking can be used to place AR content (cube) in
real-world locations.

FIGURE 14. Two users viewing the same AR content (cube with base)
using a shared session.

by using Persistent Anchors. Anchors created by the user
are saved with their transform and other associated data.
When a new session is loaded, the system tries to place these
anchors (along with their content) back into the scene. The
functionality can be further improved by hosting the anchor
on a network or the cloud. Persistent anchors can then be
distributed to multiple devices and users, which opens the
possibility for shared AR sessions.

I. SHARED SESSIONS
For multiple users to share an AR session, their devices need
to track the same points in space. Therefore, anchors are used
as the foundation for shared sessions. By sharing the same
anchor data, multiple devices can view AR content at the
same point in space. Fig. 14 shows a visual representation
of two users viewing the same content. Devices can also
share and combine their scene maps and similar data to
improve tracking. In the case of real-time shared sessions,
persistent anchors are not necessary. Devices only require a
means to share data. There is no requirement to save the data.
Depending on the implementation, users may need to assist
the system in setting it up, and thus, users need to be guided
through the procedure [138], [139].

J. LIGHT ESTIMATION
In computer graphics, rendered images that mimic the
look of the real world are called photorealistic. Achieving

VOLUME 12, 2024 109035

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 15. Two shaded circles. Despite being a sphere and a cone
viewed from the top, the lighting makes it impossible to distinguish
between them.

photorealism aligns with the interests of AR. A realistic
virtual object will blend in better with the real world. The
more real a virtual object appears and behaves, the more
immersed a user can be in the experience. A key element
of photorealism is lighting. Despite it being called lighting,
it is important to note the role of shadows. Lighting is the
interplay between lights and shadows. How an object is lit
determines how it will appear. Fig. 15 shows two flat circles.
They are, in fact, a sphere and a cone lit and viewed from the
top. This can be seen in Fig. 16, with the shadows revealing
the topology of the shapes.

Typically, with computer graphics, a developer has full
control over the lights placed in a virtual scene and, thus,
the final look. The light’s size, position, and intensity can
easily be adjusted as desired. However, this is a challenge
for AR. The virtual object’s lighting must match the lighting
in the real world to blend in. The system requires some way
to understand the lighting conditions of the environment.
This functionality is provided by light estimation. This
feature can estimate the light in the scene. It then uses this
information to create a hypothetical light source that best
represents the scene’s lighting. This can be considered as
the combination/result of all the real lights in the scene. The
estimated features of this light source can then be applied to
a virtual light source, which then applies the lighting to the
virtual object.

Fig. 17 shows AR content with light estimation applied.
Compared to Fig. 6, the lighting on the content is more
consistent with the lighting in the environment. This is
reflected in the shadows. The real-world lighting in Fig. 17 is
coming from the left, with shadows going to the right; notice
the line between the book and the metal bar to the left of the
image. The shadow on the base of the AR cube has shadows
with the correct orientation.

K. ENVIRONMENT PROBE
An object reflects light from a light source as well as the
reflected light of the environment. Even if present as a subtle
effect, it is an important aspect of photorealistic lighting.

FIGURE 16. A shaded sphere (left) and cone (right). This is the same as
Fig. 16 but with different lighting, showcasing the importance of shadows.

FIGURE 17. AR content with light estimation applied. The direction of
lighting on the AR content is consistent with the environment.

However, reflections present a challenge for AR. Reflective
surfaces can show surroundings out of the viewer’s sight.
Mirrors are an obvious example. In AR, this means that the
system needs to display images of an area it cannot see.
The solution is to use environment probes. These probes can
be placed in the scene in a way similar to anchors. They
are used to gather 360◦ views of the environment. This is
then converted into environment textures such as cube maps.
This texture/image information can then be used to display
surroundings as reflections.

Environment probes can also be utilized to obtain lighting
information since they capture a complete view of the
environment. One such method is HDR cube map lighting.
This can provide more realistic lighting where multiple light
sources are accounted for rather than a singular estimated
light source with light estimation. However, this leads
to quite a bit of confusion between light estimation and
environment probes. Some tools view and provide them as
distinct tools. Others combine them and may even offer them
under the name of light estimation or environment probes
alone.

Fig. 18 showcases the same scene in Fig. 17 with
Environment Probes applied on top. The AR content has been
modified to be more reflective to showcase the effect better.
Looking closely, one can find the Newton’s cradle from Fig. 6
reflected in the AR cube (left face).

109036 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 18. AR content with environment probes applied. The AR content
now reflects the content in the environment.

L. OCCLUSION
Occlusion is an important feature of AR. It is an important cue
for a viewer to understand where objects are placed relative
to each other in the world. Occlusion between virtual objects
is a problem solved by the render engine. Occlusion between
real and virtual objects is more complicated. Virtual objects
occluding real objects can be considered a solved problem.
As virtual images are overlaid on real images, occlusion is
achieved naturally. The only challenge here lay with OST
devices, as virtual objects can appear translucent. Occluding
virtual objects with physical objects is where the challenge
lies. The system needs to identify which physical objects will
occlude a virtual object. It then needs to mimic occlusion
by hiding the correct parts of the virtual object. All further
references to occlusion and solutions for occlusion refer to
this specific challenge.

The simplest solution is to utilize an occlusion material
with some clever assumptions. An occlusion material has
two properties that must be applied to a virtual object. One,
it makes the virtual object to which it is applied invisible.
Two, despite being invisible, it must make the virtual objects
with the material applied occlude other virtual objects behind
it. The exact means to create such a material will vary from
one rendering engine to another. The next step is to make
some assumptions. Consider a scenario where a virtual object
is to be displayed on an image printed on a sheet of paper. The
goal is to ensure that the paper occludes the virtual object no
matter which angle it is viewed from. This can be achieved
by creating a virtual plane matching the size of the paper
and then applying the occlusion material to it. This occlusion
method relies solely on the rendering engine and is useful
when the AR system alone cannot provide much information
about the world.

The above solution is quite limiting as knowing or guessing
information about the scene is necessary beforehand. The
more adaptable solution is utilizing software features to
understand the scene. Plane tracking, depth sensing, and
spatial mapping are all features that can be used for occlusion.
The occlusion material can be applied to the tracked plane or
3D model of the scene to achieve occlusion. Alternatively,
the depth information can be processed to render parts

FIGURE 19. AR content with occlusion applied. It is now occluded by
real-world objects in front (the book and the hand), giving a proper sense
of depth.

of a virtual object selectively. Some tools also provide
support for human/people occlusion. This is specifically to
achieve the effect where people in the scene occlude virtual
objects.

Fig. 19 showcases the application of occlusion. The AR
content gets obscured by real-world objects (book at the
bottom) and by a human. This lets us know that the content
is placed behind the hand and the book in the real world.
Without occlusion, the object would not be obscured at all.
This would make it seem like the object was placed in front
of the hand and the book.

M. RECORDING AND PLAYBACK
Recording and Playback is a feature for creating AR
experiences that can be viewed anytime, anywhere. The
camera video stream, IMU data, and any other custom
metadata are recorded and saved as a file. This file can then
be played back to replicate the session. This can simplify
development significantly. Developers can record a scene
once and test it anywhere, reducing the need to be physically
there. The same video can also be used on different devices,
reducing iteration time. End users can also use this feature
and have experiences on videos recorded by the API [140].
However, the second characteristic of AR is that it should
be interactive in real-time. Since such experiences use a
prerecorded video feed, it violates the second characteristic
and cannot be considered as AR.

X. AR STANDARDS
This section covers two standards developed for AR software.
A wide variety of AR hardware exists, providing consumers
with choice and competition. However, AR applications
and engines would be forced to use unique and proprietary
hardware APIs without a cross-platform standard. This
means an application would require custom code to be
deployed to each platform. This problem, also present in the
VR ecosystem, is collectively termed ‘‘XR Fragmentation’’
and is the motivation behind standardization. By provid-
ing a common platform, standardization can help resolve
fragmentation.

VOLUME 12, 2024 109037

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

A. OPENXR
OpenXR is an open-source, royalty-free standard created by
the Khronos Group. OpenXR aims to enable developers to
create applications that can run on any AR or VR system
without having to rewrite or recompile their code. The
OpenXR API provides high-performance, cross-platform
access to XR platforms and devices [141], [142].
The standard defines a core set of features and extensions

that XR devices and applications can support. Khronos
provides a conformance test suite [143] andmaintains a list of
devices conformant with OpenXR [89]. The API is a layered
architecture that acts as a mediator between the application
and the device [144]. It handles the core of an XR session,
including tracking, inputs, and display parameters. For the
rendering and composition of images, it is to be used in
conjunction with a 3D API like Vulkan [142].

OpenXR provides a lot of benefits to the XR ecosystem.
Developers can easily ship their applications to multiple
platforms, providing greater market reach. Vendors for XR
devices/platforms can bring more applications onto their
platforms for a larger library. End-users can run their apps
on any system, removing vendor lock-in. This also reduces
market confusion and increases consumer confidence, which
helps to increase the adoption of XR technologies [142].

Despite OpenXR’s infancy, the benefits are starting to
show. Consider the Cross-Vendor Advanced UI extensions.
This allows developers to use hand or eye-tracking UI
interaction solutions from a different vendor. Commonality
with UI interactions will enable users to pick up an XR
platform or switch between them easily. Yet another example
would be WebXR. Using OpenXR as the backend, Google
Chromium can run WebXR applications on any device that
supports OpenXR (see Section X-B: WebXR) [142]. Finally,
development tools like Mixed Reality Toolkit 3 can be
utilized onmultiple platforms and devices despite beingmade
by Microsoft [145].

OpenXR is not without its issues. Not all devices and
applications are conformant to the standard. Some devices
may have proprietary features or limitations that OpenXR
does not cover. Some applications may use non-standard
APIs or libraries incompatible with OpenXR. Additionally,
the standard also requires the cooperation of vendors to truly
achieve its goal. One notable name missing from the list
of supporting companies is Apple [141]. That being said,
OpenXR is an evolving standard. It is still in version 1.0; it
remains to be seen what the future will hold.

B. WebXR
AR experiences, typically, are distributed as applications
through an app store. There are, however, benefits to
distributing an AR experience through the web. Users do not
need to install an app. Users can scan a QR code for a link
and immediately be taken to a page with the AR session on
their phones. Developers are also able to bypass restrictions
from app stores. The review process by app stores can be

skipped entirely and developers do not need to wait or worry
about their application being accepted. The application can
be deployed immediately, along with any updates. They can
also avoid any fees or royalties for publishing in a specific
store. The nature of the web also provides additional benefits.
The web is inherently cross-platform, as web pages can
deliver content across a spectrum of devices. Web apps have
become more commonplace and take advantage of other
web apps, services, and APIs. Web AR can do the same
and integrate them into the AR application. However, Web
AR has challenges preventing wider adoption. Standardized
access to device sensors needs to be provided. Otherwise,
it leads back to the XR fragmentation problem. Furthermore,
web applications are not as performant or responsive as apps
running natively on a device.

WebXR is a standard defined and maintained by the
World Wide Web Consortium (W3C) to address these
challenges [146]. The W3C was founded in 1994 to ensure
the growth of the web [147]. The WebXR Device API
provides access to XR devices’ input and output capabilities.
Like OpenXR, WebXR relies on graphics APIs like WebGL
& WebGL2 [146]. While there are a lot of similarities,
WebXR is not a 1:1 web version of OpenXR. WebXR
and OpenXR are separate projects maintained by different
groups [148]. WebXR also relies on OpenXR as the backend
where possible [142].
WebXR provides access to many AR features. It supports

most basic features: spatial tracking (positional track-
ing) [149], plane tracking [150], image tracking [151],
hit tests, and anchors [146] with image tracking currently
still in development [151]. WebXR also supports more
advanced features like depth sensing and light estimation.
It also supports multiple means of input, including hand
tracking. As a web-based platform, support for Document
Object Model (DOM) overlays is also provided as a
feature (see Section XIII: Web AR Software) [146]. WebXR
is cross-platform and supports smartphones, desktops, and
HMDs. However, support for specific features will depend
on the browser, device, and platform [146]. WebXR is meant
to be used in conjunction with other tools and libraries for
building the website [146]. For examples, see the section:
Web AR Software.

XI. AR FRAMEWORKS, PLATFORMS, AND SDKs
This section will cover software frameworks, platforms,
and SDKs for AR development. Most, if not all, are
focused on enabling an AR experience. As such, it may be
preferable/required to use them in conjunction with other
tools (such as game engines or DCC tools). Table 3 shows
a matrix of all the AR features discussed before vs the
software listed in this section. Some features are marked
with an asterisk. This means the software can provide the
functionality, but it is not exactly as defined in our paper or
has certain limitations. We have provided explanations as to
why, where possible, on a best-effort basis.

109038 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

TABLE 3. Matrix of AR features vs. AR frameworks, platforms, and SDKs.

A. ARKit
ARKit 6 is Apple’s proprietary AR framework for Apple
devices and boasts an impressive feature set. The Depth API
(Depth Sensing) takes advantage of the LiDAR Scanner on
select Apple devices, opening up new features. Instant AR
allows for instant placement of objects in the real world.
The LiDAR scanner enables quick plane detection [152].
This also powers Scene Geometry (SpatialMapping, Scene
Semantics), providing a 3D map of the user space with
labels, e.g., floor, walls, and windows [152], [153]. This
can be used for better occlusion and virtual object physics
(see Section IV-A6: SLAM under Enabling Technologies:
Registration). To add more photorealism, ARKit offers Light
Estimation [154] and Environment Texturing (Environ-
ment Probe) [155].

ARKit has excellent features for integrating human
interaction. People Occlusion (Occlusion) provides realistic
occlusion with people moving around in the real world,
improving immersion [152], [156]. Multiple types ofMotion
Capture are supported, including body [157], hand [158],
and face tracking [159]. Hand tracking is currently limited
to VisionOS (Apple Vision Pro).

In addition to supporting all basic features [160], [161],
ARKit also supportsObject Tracking (and Scanning) [162],
and GeoTracking (Location Tracking). Location accuracy
is improved through localization imagery. ARKit downloads
imagery of the physical environment in the user’s area based
on GPS coordinates. This imagery is then compared with the
current camera image for a more precise geographic position.
Localization imagery is only supported in a limited number
of areas and cities [163].
Other features include 4K video capture [152], [164],

simultaneous front and back camera [165], Shared AR
(multi-user sessions) [160] and App Clip Codes [166]. App
Clip Codes are similar to QR codes and give users immediate
access to critical or context-specific parts of an AR app.
It also makes it easy for users to download and launch the

full app. Support is also provided for NFC-integrated clip
codes [166].
Apple also provides additional tools and applications for

AR:

• AR Quick Look: Allows users to view 3D content in
AR directly through built-in apps by Apple like Safari
or Mail [168].

• RealityKit: A framework built on ARKit to develop
AR experiences. It supports several features found in
game engines, like photo-realistic rendering, rigid-body
physics, and skeletal animations [169].

• Reality Composer: An app with an intuitive interface
for developing AR experiences powered by Reali-
tyKit [170].

• RoomPlan: An API for Swift that utilizes ARKit
for Scene Mapping. It returns a 3D model of the
room with characteristics like dimensions and types of
furniture [171].

• Reality Converter: This app makes it easy to convert
more common 3D file formats into USDZ, which is the
format used by Apple. It also supports previewing and
editing the properties of the created USDZ file [172].

B. ARcore
ARCore is a cross-platform AR SDK by Google. It supports
AR development for Android, iOS, and Web [173]. ARCore
possesses a similar set of features to ARKit. However, the
implementation differs as it needs to support a greater range
of devices. ARCore has a Depth API (Depth Sensing,
Occlusion) like ARKit, but it uses a depth-from-motion
algorithm to create depth images. This requires the user to
move their device around as the algorithm requires views
from multiple angles. Depth sensors (like ToF or LiDAR) are
not always a given but can be incorporated if present [137].
This is also reflected in Instant Placement. While objects

can be placed instantly, they are placed with an estimated

VOLUME 12, 2024 109039

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

pose without the need to detect surface geometry. The pose
is later updated as more tracking information becomes avail-
able [174]. For more realistic and immersive scenes, ARCore
provides the Lighting Estimation API (Light Estimation,
Environment Probes) [175] and Occlusion through the
Depth API [137]. Electronic Image Stabilization (EIS) can
also be utilized to deliver smoother, stable experiences even
when the camera moves around [176].

ARCore supports all basic features [131], [173], [177] and
Augmented Faces (Face Tracking) [178]. It also expands
on Anchors with Persistent Cloud Anchors (Persistent
Anchors, Shared Session) using the ARCore Cloud Anchor
API or ARCore Cloud Anchor service. The local anchor data
is uploaded to the cloud with a unique ID for the anchor.
This ID is then distributed to other users and then resolved
to get the anchor on their devices. This allows for persistent
and shared sessions [179]. However, Google hosts the cloud
service, which may be discontinued at their discretion [180].
ARCore supports location tracking through theGeospatial

API (Location Tracking). The device sensor and GPS data
are combined with Google’s VPS to match the environment
for the precise location. TheVPS is built on top of Street View
images from Google Maps, providing wide coverage [181].
This can be used with the Streetscape Geometry API. This
provides the 3D geometry of terrain, buildings, or other
structures in a supported outdoor area [182]. Google provides
the Geospatial Creator to support development with these
APIs. This tool allows developers to preview and work with
locations supported by the Geospatial API without physically
being on location [183].
Incorporating AI further enhances the AR experience.

The camera feed can be fed through ML Kit and Google
Cloud Vision API to identify real-world objects [184].
The Scene Semantics API can be used to understand a
user’s surroundings better when outdoors. It can label and
distinguish objects outdoors, such as sky, building, terrain,
object, or person [185].
The Recording and Playback API creates AR experi-

ences that can be viewed anytime, anywhere. The camera
video stream, IMU data, and any other custom metadata can
be stored in an MP4 file with the Recording API. Playing
the file via the Playback API treats the MP4 file like a live
session feed. This can simplify development significantly.
Developers can record a scene once and test it anywhere,
reducing the need to be physically there. The same video can
also be used on different devices, reducing iteration time. End
users can also use this feature and have experiences on videos
recorded by the API [140]. However, these experiences
violate the second characteristic of AR. Finally, Google also
provides Scene Viewer, which allows users to view 3D
content in AR directly through a website or an app.

C. VUFORIA
Vuforia is PTC’s cross-platform, enterprise AR solu-
tion [186]. Vuforia Engine is their primary tool for AR

development. It has a free basic plan where apps are free to
be published. The premium plan unlocks full use of model
and area targets (see below) and removes creation limits and
watermarks in the published app when using these premium
features [187].

Not all basic features are supported, in addition to being
present under different names [188]:

• Ground Plane (Plane Tracking)
• Image Targets (Image Tracking)
• Device Tracking (Positional Tracking, Anchors)
The engine expands on image tracking with additional

features. Marker tracking is provided through VuMarks
and Barcode Scanner [188]. VuMarks, in essence, are QR
codes that can store data and be tracked in AR [189]. But
they differ from QR codes in their ability to have custom
appearances [190]. The Barcode Scanner has support for
standard barcodes and QR codes [191]. Images can also be
tracked on special surfaces. Cylinder targets allow tracking
images on cylindrical objects like bottles. Multi Targets
allow tracking more than one image arranged in regular
geometric shapes like boxes [188].

Model Targets (Object Tracking) and Area Targets
(Spatial Mapping) are the more advanced tracking fea-
tures [188]. Area targets can take a 3D scan of an area and
create an AR experience for the entire area. This can be
used to create an AR experience spanning a large space,
like a factory floor. In case 3D scanners are unavailable,
Vuforia also supports 3D scanning through LiDAR-enabled
iOS devices [192]. Another interesting feature is External
Camera support. The engine can use any external camera
to drive the AR session. It does not matter if it is connected
physically to a device or has the images streamed through a
network [193].
Some features are aimed at aiding development. TheCloud

Recognition Service improves on image tracking capabili-
ties. By leveraging the cloud, an application recognizes and
tracks image targets from a database of millions. It can also
simplify updating and maintaining an image database [194].
The engine also supports Recording and Playback [188].

Vuforia can support a large range of devices through
Vuforia Fusion. It is Vuforia’s proprietary solution to AR
fragmentation [195], and essentially acts like OpenXR.
Vuforia maintains a list of recommended devices, and
includes the following HMDs [196]:

• HoloLens 2
• Magic Leap 2
• Vuzix M400
• RealWear HMT-1 and HMT-1Z1

As for platforms, Vuforia supports Android, iOS, Windows
(through Universal Windows Platform), and Magic Leap OS.
The Vuforia Engine can also be integrated for use with the
game engine ‘‘Unity’’ [197].

In addition to developer tools for the engine, PTC also
provides other applications based on Vuforia for more
specialized needs:

109040 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

• Vuforia Expert Capture: A Software-as-a-Service
(SaaS) AR solution. Experts can capture their work
routine with an AR device. This captured expert
knowledge can then be played back as instructions in
AR to other workers [198].

• Vuforia Studio: An easy-to-use, low/no-code version
of Vuforia Engine. It lacks support for a few features
compared to the engine [199].

• Vuforia Chalk: An application for providing AR-based
remote assistance [200].

D. MIXED REALITY TOOLKIT (MRTK)
Mixed Reality Toolkit (MRTK) is a cross-platform develop-
ment kit for MR applications. It is an open-source project
by Microsoft. The goal is to provide cross-platform input
systems and basic building blocks for the User Experience
(UX) in MR [145]. MRTK does not offer many of the AR
features discussed before. It focuses more on improving the
AR experience than enabling an AR session. There are three
versions of MRTK available (in order of increasing feature
set):

• MRTK for Unreal [201]
• MRTK2 - Unity [202]
• MRTK3 - Unity [145]

MRTK for Unreal consists of two parts: UX Tools and
Graphics Tools [201]. UXTools consist of code and example
assets for common features in UX development for MR.
The included UX building blocks enable developers to add
common MR interactions easily. Many of them support hand
interaction [203].
Graphics Tools aim to improve the visual fidelity of MR

applications. It provides useful visual effects such as clipping
primitives and spatial perception. Clipping Primitives allow
one to dynamically slice away into a 3D model, providing
a better look at what is inside. Spatial Perception is a set of
techniques to make more compelling materials that can be
applied to the 3D scene map [204].
There is a significant increase in features with MRTK2 for

Unity. It expands on UX building blocks and supports eye-
tracking interactions. Spatial Awareness(Spatial Mapping)
is now built into the toolkit [202]. This specific functionality
is likely limited to the HoloLens 2. The built-in input system
supports multiple means of input for various platforms [205].
Extension services can extend the functionality of MRTK.
They can be created or be provided by MRTK or other
parties [206].

MRTK also supports features to aid device-agnostic MR
app development. The camera system is used to configure
the application’s camera, i.e., the display view. This system
allows an app to support both OST and VST displays [207].
Profiles are used to configure MRTK and initialize the
subsystems and features according to the device. This negates
the need to configure an app for each device [208].
MRTK 3 for Unity is the latest iteration. It has multiple

improvements and additions overMRTK2, but not all features

have 1-1 correspondence or have been ported over. As such,
porting applications from MRTK 2 to 3 is not recommended.
It adds accessibility features and improves the architecture
and performance of the toolkit [145].

MRTK does not support Recording and Playback, but all
versions of MRTK support Input Simulation. This allows
developers to use a keyboard and a mouse to simulate AR
inputs, such as HMD pose or hand tracking [209], [210],
[211].

MRTK’s feature support for other platforms depends on
the version used. MRTK-Unreal should support any device
with OpenXR for UXTools. But it has only been tested on
HoloLens 2 and Windows Mixed Reality VR devices [203].
Graphics tools only support HoloLens 2, Windows, and
Android [204]. MRTK2 supports OpenXR, Windows XR,
and Oculus in addition to ARKit and ARCore via Unity’s
ARFoundation [202]. MRTK3 is built to be more OpenXR-
focused. However, support for OpenXR devices outside of
HoloLens 2 is experimental [145].

E. WIKITUDE
Wikitude is a cross-platform AR SDK owned by Qual-
comm [212]. The SDK has two editions: Professional and
Expert. The Professional Edition supports Unity, JavaScript,
and Native development. The Expert Edition offers more
features by leveraging Unity while limiting development to
the engine [213].

Both editions support single and multiple image track-
ing, as well as cloud recognition. They also support single
object/scene tracking [214]. Scene tracking is used for
recognizing structures larger than table-sized objects, such as
rooms or faces of buildings [215]. Features exclusive to the
professional SDK includeGeo AR (Location Tracking) and
Instant Tracking (Anchors). Geo AR can support single or
multiple location-based markers/Points of Interest (POI). It is
only available with the JavaScript API [214].
Instant Tracking in Wikitude is different from Instant AR

in ARCore or ARKit. Instead, it enables tracking without
the need for targets such as images and objects. This is
powered by Seamless AR Tracking (SMART) API, which
integrates ARKit, ARCore, and Wikitude’s SLAM into one.
Plane Detection (Plane Tracking) is available through
Instant Tracking [216]. Instant Tracking also enables Anchors
throughExtendedTracking [214]. However, extended track-
ing has beenmarked as deprecated since version 9.12.0 [217].

The Expert Edition supports multiple tracking for
object/scene tracking. It also allows mixing multiple tracking
types. Image tracking is further expanded with single and
multiple cylinder tracking. It uses AR Bridge to integrate
ARCore and ARKit. AR Bridge also expands the feature set
by leveraging Unity’s ARFoundation. The expert edition also
offers Universal Render Pipeline (URP) support [214].

Unity’s URP is aimed at creating optimized graphics
for a wide range of platforms [218]. The expert SDK
further supports Light Estimation, Environment Probes,

VOLUME 12, 2024 109041

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

Human Depth Occlusion, and Camera Grain through
ARFoundation. Camera grain can add noise in the real
captured image for the virtual objects. This improves the
blending between real and virtual images [219].

Wikitude also provides Wikitude Studio, a tool for easily
creating AR experiences without needing deep technical or
programming skills [220]. It is a free tool and does not need
a license key. However, there are extra benefits to buying the
SDK. You can use Studio to create image targets (.wtc files)
and object targets (.wto files), which can be published to the
Cloud. One can also create Studio Editor projects that can
be exported and integrated within an app or uploaded on a
server [221]. A separate encoder tool allows 3D model files
(.fbx) to be converted into .wt3 files used by Wikitude [222].
Wikitude has extensions for development for Xamarin,

Flutter, and Cordova. Wikitude can be deployed to Android,
iOS, and Windows devices. For HMDs, Wikitude supports
devices by Epson (Moverio) and Vuzix, as well as the
HoloLens [214]. Wikitude is a paid SDK with three pricing
plans: standard, cloud, and enterprise. The standard and
cloud plans have an annual fee per app, with custom fees
for enterprises. The standard plan is free for Snapdragon
Spaces developers [223]. It is unknown if the Expert Edition
is available with all plans. While URP is listed on all
plans [223], it is excluded from standard and cloud plans in
the feature list [214].

F. SNAPDRAGON SPACES
Snapdragon Spaces is an XR SDK by Qualcomm for XR
HMDs based on Android [224]. The SDK supports all
basic features [225], [226]. For advanced features, the
SDK supports Spatial Meshing (Spatial Mapping) [226].
It also supports additional means of input: gaze control,
hand tracking, handheld XR controllers, and compan-
ion controllers. The Companion/Host controllers allow
a smartphone to be used as a 3DOF controller [227].
It is currently meant to be used with HMDs tethered to
smartphones.

The SDK is meant to be used with either Unity or Unreal
Engine. The list of supported HMDs is currently limited to
two: Lenovo Think Reality A3 and Lenovo ThinkReality
VRX [224]. The SDK does utilize OpenXR [228], which
could help support more devices in the future.

G. AR-MEDIA
AR-media by Inglobe Technologies is a zero-code MR
platform. Supported features are limited to image tracking,
geolocation (Location Tracking), and Spatial Tracking
(Positional Tracking, Anchors). Spatial tracking requires
ARKit or ARCore to function [229]. AR-media provides
three tools for creating and delivering AR experiences [230]:

• AR-media Studio
• AR-media Plugins
• AR-media Player

AR-media Studio is a web-based tool for creating,
managing, and distributing projects. Content can be imported
directly into AR-media Studio. It can also be imported
through AR-media Plugins for 3rd party DCC tools [230].
Plugins are available for SketchUp and 3ds Max [229].
The projects are then deployed to the AR-media Player,

an app for Android and iOS [230]. AR-media offers multiple
pricing plans, with a free plan for individuals. The project
content is hosted online, and higher-tier plans support more
projects and content. They also offer more features. The plans
for firms and enterprises support publishing white label apps
(with additional charges) [231]. This will allow developers to
publish their AR project as an app under their brand instead
of the AR-media Player.

H. ARToolKit
ARToolKit began as a software library for AR applica-
tions [232]. It possesses a limited set of features and at best
(with artoolkitX) offers only Image and Marker Tracking.
Image tracking is supported through NFT. For Marker
tracking, it supports barcode and pictorial/pattern markers.
It also supportsMulti-Marker tracking [233]. However, the
markers must be in a fixed position relative to each other. The
markers cannot be moved individually in a session [234].
ARToolKit is still worth mentioning despite its limitations

for three reasons:

• historical significance
• variety in supported OS, software, and languages
• open source code

ARToolKit was first developed in 1999 by Dr Hirokazu
Kato at HIT Lab [235]. ARToolworks was founded in 2001 to
develop ARToolKit further and provide commercial licenses
and solutions [236]. ARToolworks was sold in 2015, which
led to the creation of artoolkitX. This was to ensure that
ARToolKit would continue to be developed and supported
into the future [237].
Its long history has led to ARToolkit supporting a variety

of OS, software, and programming languages. artoolkitX
supports iOS, Android, macOS, Windows, and Linux [238].
artoolkitX also provides a version for use with Unity [239].
Currently, artoolkitX also maintains JSARToolKit5. It is
based on JavaScript and can enable web-based AR experi-
ences [240].

More variants of ARToolkit can be obtained from ARTool-
works. These include versions for Java and niche ports like
those for Silverlight or Adobe Flash [241]. Most software
under ARToolworks has a dual license model: one for open
source and one for commercial. The open-source license
requires developers to make their applications open-source
as well. The commercial license does not have this require-
ment [242].

The different variants of ARToolkit and its open-source
nature make it an excellent starting point for building a
custom AR library from the ground up. AR.js, for instance,
is built on top of JSARToolKit5 (see Section XIII-B: AR.js).

109042 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

Should the need ever arise, the variants will also allow
development for niche or perhaps obsolete platforms.

I. OTHER POSSIBILITIES
There are a few other possibilities we could not discuss in
detail that can be considered:

• Niantic Lightship [243]
• Meta Spark Studio [244]
• TikTok Effect House [245]

XII. GAME ENGINES FOR AR
Game engines are tools used to simplify the task of game
development. Games can be built with little technical exper-
tise, with the engines handling the more technical aspects,
such as rendering or physics simulation. A developer’s task
can be simplified to producing assets (like 3D models or
images) and assembling them with appropriate systems for
logic and behavior. Many of the features they provide for
video games, particularly in 3D, have applications in other
fields. Game engines have since expanded to support such
fields, including AR. Some have even adopted the term
‘‘real-time 3D’’ engine, as it is no longer solely for game
development.

There are many reasons to utilize a game engine for
developing AR applications. Many features and tools that one
might need for complex 3D experiences have already been
implemented in game engines. Combining an AR framework
with an appropriate game engine brings more features to the
table to build more complex experiences. AI state machines
can be used to build reactive virtual characters. Animation
state machines and blending can be used to build reactive
animations. The built-in physics engine can enable physics
for virtual objects. Additionally, game engines often leverage
the Entity-Component System (ECS) software architecture.
Games are usually complex systems, which complicates the
task of development. By using the ECS architecture, a game
can be broken down into smaller systems of entities and
components. The use of entities and components provides
modularity and reusability. It is a proven architecture that
forms the foundation of most, if not all, engines.

Before we begin, there are a few things to note with
this discussion. No AR software features will be listed in
this section. Game engines rely on other AR frameworks to
provide AR functionality. Therefore, any supported features
will depend on the framework usedwith the engine. Similarly,
supported hardware is left out of discussion as it depends on
the framework. Finally, game engines are often customized
to the needs of the developer. There are official and 3rd
party tools and extensions that will be available. As such,
these engines may support other programming languages or
frameworks and are not limited to what is mentioned.

A. UNITY
Unity is a real-time 3D development engine by Unity
Technologies [246]. It uses C# as the native development

language [247]. It offers a lot of features for AR develop-
ment [248]:

• AR Foundation
• Unity MARS
• XR Interaction Toolkit
• Unity as a Library

AR Foundation is Unity’s solution to XR Fragmenta-
tion. The framework combines core features from ARKit,
ARCore, Hololens, and Magic Leap. This, combined with
Unity’s features, provides a unified workflow for AR
development. Not all features are available on every platform.
However, Unity has the means to easily integrate an unsup-
ported feature should it be enabled in the future. AR Founda-
tion can also be integrated with Unity MARS [249].

MARS is a paid extension that simplifies AR devel-
opment and reduces development time. MARS supports
cross-platform development for iOS, Android, and the
HoloLens [250]. It aims to address the challenges of devel-
oping AR apps for dynamic physical environments. MARS
provides plain-language authoring where app behavior can
be described with plain language, reducing the amount of
code required. The proxy-basedworkflow provides proxies to
represent real-world objects. This makes development more
agnostic to the specifics of the physical environment [250].
MARS can simulate environments in Editor, reducing

iteration time. Templates with customizable components are
provided for faster prototyping. An AR companion app is
provided for Android and iOS. It can be used to capture
environments and scan objects [250]. Object scanning is
limited to the Unity Editor for Mac. It can also do some
minor editing of the project, with changes reflected in the
editor [251].

XR Interaction Toolkit is Unity’s solution for cross-platform
interaction systems for XR. Commonly used interactions are
provided as premade components, similar to MRTK [252].
MRTK 3 was built on top of Unity’s XRManagement system
and XR Interaction Toolkit [145].
‘‘Unity as a Library’’ allows developers to insert features

of Unity directly into a native app. This can be used to embed
AR experiences within existing mobile apps without the need
to rebuild them from scratch. This functionality can also be
expanded to applications for Windows [253].
Unity’s greatest advantage (over other engines) is its

comparatively well-developed AR integration, excellent
documentation, and massive community. Unity supports
many AR frameworks and tools, including OpenXR, ARKit,
ARCore, Vuforia, WebXR, and MRTK. For HMDs, it has
official support for HoloLens 2 and Magic Leap 2.

Unity operates on a subscription model but offers free
plans. Paid plans mostly provide increasing support and
guidance for Unity as far as AR is concerned [254]. MARS
is included in the Unity Pro, Enterprise, and Industry plans.
Other plans require an annual subscription at $50/month. All
plans are royalty-free and include access to the Unity Asset

VOLUME 12, 2024 109043

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

Store (asset marketplace) and Unity Learn (training materials
by Unity) [254].

B. UNREAL ENGINE
Unreal Engine 5 (UE5) is a real-time 3D tool by Epic
Games [255]. UE5 relies on C++ and Blueprints for
programming and scripting. Blueprints are a visual scripting
system relying on classes defined by C++ [256]. UE5
supports AR for Android, iOS, and the HoloLens 2 out of
the box [257].

UE5 provides a unified framework for handheld AR
experiences (ARCore and ARKit) [258]. Development for
the HoloLens 2 is supported through OpenXR [259]. Support
for Magic Leap 2 could be expected in the future, as Magic
Leap 1 was supported in UE4 [260]. UE5 supports shared AR
sessions through ARPins (persistent anchors) [261].

Unreal also provides tools based on AR frameworks. These
tools could prove useful for AR development. RealityScan
is an app for Android and iOS that can be used to scan
real-world objects to produce 3Dmodels. It is technically free
to use but relies on Sketchfab to export models. Sketchfab
operates on separate pricing plans from Unreal, limiting
uploads [262]. The Live Link Face app, powered by ARKit,
can easily capture facial animations. The usage of ARKit
limits the app to iOS [263]. This app can be combined
with MetaHuman, a tool for creating and animating realistic
human models [264]

Unreal Engine is open-source and free to use. It charges a
royalty of 5% after a project earns over $1 million. Alterna-
tively, other licensing solutions are available providing direct
support services from Epic Games [255].

C. GODOT
Godot 4.0 is a completely free, open-source game engine
maintained by the Godot Foundation [265]. Godot offers
support for four programming languages: GDScript, C#,
C++, and C. GDScript is a custom language built for Godot,
with syntax similar to Python. C and C++ are supported
through GDExtension [266].
OpenXR is now built into Godot 4.0 and does not require a

plugin. It supports Magic Leap 2 and Lynx R1 for ARHMDs.
Godot 4 also provides Godot XR Tools, a toolkit providing
popular XRmechanics [267]. Support for ARKit andARCore
is currently not listed for Godot 4 but can be expected as
Godot 3 supported them both [268]. Godot 4 was released in
2023 [267] and it will be a while before support for additional
frameworks is added. In the meantime, Godot 4.0 supports
WebXR [267], which can be used as an alternative for AR on
handheld platforms.

Godot still has a long way to go to match the developed
status of other engines. But it is open-source and free to
use. It is also incredibly lightweight for a game engine. The
base editor is distributed as a standalone application [269]
with a file size of less than 150 MB (at the time of writing).
In addition to the three major desktop OS (Windows, Mac,

and Linux), Godot also has editors for Android and the
web [269]. All this means that the Godot Editor can run quite
smoothly on lower-end devices.

XIII. WEB AR SOFTWARE
This section covers frameworks, libraries, and other tools
specifically meant for web-based AR development. Table 4
shows a matrix of all the AR features discussed before vs
the software listed in this section. There are two things to
note in Table 4. First, quite a few web AR software rely on
WebXR as their foundation. Thus, despite not being in this
section, WebXR has been included in the matrix. Second,
we added DOM overlays to the list of features. Document
Object Model (DOM) is ‘‘the data representation of the
objects that comprise the structure and content of a document
on the web’’ [270]. DOM overlays are a way to overlay DOM
content on the user’s visual feed. Thus, DOM content can be
repurposed for use in AR, and this feature is often used to
create a UI quickly [271].

A. MODEL VIEWER
Model viewer (stylized as < model-viewer>) is a web
component to easily add 3D models for display on a web
page or in AR through HTML [272]. It supports AR through
3 modes:

• WebXR for Android
• SceneViewer (see Section XI-B: ARCore) for Android
• QuickLook (see Section XI-A: ARKit) for iOS.

WebXR is the default mode for Android [273].
The supported WebXR features are limited to hit-tests and

DOMOverlays. WebXR’s AR features are currently limited
to Chromium Browsers [272]. Additional post-processing
effects can be added through the < model-viewer-effects>
library addon [274]. A model editor is provided to quickly
configure and test the model viewer experience [275].

B. AR.JS
AR.js is a lightweight library for AR on the Web. It is
fully based on JavaScript and offers three AR features:
Image Tracking, Marker Tracking, and Location Based
(Location Tracking) [276]. Marker tracking is further split
into two: Barcode or Pattern [277]. It also offers DOM
overlays [278].

The library can work on any browser with support for
WebGL andWebRTC. It utilizes jsartoolkit5 for the tracking.
For rendering and display, AR.js depends on two solutions:

• three.js (see Section XIII-F3: three.js under Web AR
Software: Other Possibilities)

• A-Frame (see Section XIII-C: A-Frame)
AR.js maintains a separate version for each solution [276].
While intended for use with smartphones and tablets, AR.js
can also work on laptops. It is unknown whether it can
function on HMDs through browsers.

It should be noted that at the time of writing, the A-Frame
version has issues with resizing. Rotating the image with

109044 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

TABLE 4. Matrix of AR features vs. web AR software.

respect to the camera changes the transform of the AR content
with respect to the image. With markers, resizing the browser
after displaying AR content will affect its transform. It will
return to normal after the browser returns to its original size.
This can occur when changing from portrait to landscape on
a phone.

C. A-FRAME
A-Frame is a cross-platform web framework for XR [279].
It is based on three.js with an ECS architecture [280]. A core
feature and strength of A-Frame is its use of declarative
HTML. An XR experience can be set up by simply importing
in the A-Frame script and declaring an A-Frame scene tag in
HTML [279].
By leveraging the provided entities and components,

AR experiences can be quickly prototyped with a few lines
of HTML [281], [282]. A-Frame supports AR.js and all
its features [276]. A-Frame also supports WebXR [283],
but support is limited to hit-tests [281], [284], DOM
overlays [281], [283], light-estimation [285], and anchors
(through hit-test).

A-Frame is not limited to just HTML. Further functionality
can be added through Javascript, DOM APIs, three.js, and
WebGL. The ECS architecture allows for easy integration of
community-made components and entities. To further ease
development, A-Frame provides a built-in visual inspector to
view the workings of the scene [279].

D. BABYLON.JS
Babylon.js is an open-source game engine for the web,
bringing advanced rendering and physics simulation to the
web [286]. It offers an impressive feature set (considering the
web), as well as integration for other tools. These include 8th
Wall, Unity, 3ds Max, Maya, and Blender [287].

Babylon.js relies on WebXR for AR. The supported
WebXR features include hit-test, DOM Overlay, anchors
(by extension, positional tracking), plane detection (Plane
Tracking), light estimation, and depth sensing [288]. Since
Babylon.js has support for the HoloLens 2 [288], it also has
a port of MRTK [289].

Babylon.js also provides a suite of tools to help aid
with development. The Sandbox can be used to preview
3D models or .babylon files online [290]. The Playground
can be used to experiment with code. Code can be written
in JavaScript or TypeScript, with the results rendered in a
previewwindow [291]. The NodeMaterial Editor can be used
to create GLSL shaders through visual scripting, simplifying
the process [292]. Finally, to simplify GUI creation, a GUI
Editor is also provided [293].

E. 8TH WALL
8th Wall is a paid platform for creating WebAR experi-
ences [294], [295]. Supported features include positional
tracking, image tracking, anchors, face tracking, light
estimation, instant surface detection, and Lightship VPS
(Location Tracking). Image tracking can support flat,
cylindrical, and conical surfaces Lightship VPS can provide
a 3D mesh of the location for occlusion and physics [294].
Hand tracking has been introduced with Release 23 [296].
Support for shared AR is also available as module [297].

8th Wall provides a cloud-based editor for creating appli-
cations. The editor supports web frameworks like React and
Vue.js. It also supports remote debugging, instant preview,
and support for external libraries. 8thWall also supports other
3D web frameworks, namely A-Frame, three.js, Babylon.js,
and PlayCanvas [294].

8th Wall also provides additional services for deployment
and distribution. It provides deployment management as well
as global web hosting services for projects [294]. 8th Wall

VOLUME 12, 2024 109045

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

can also generate a QR code (QR 8Code) and shortened link
for easier distribution of the project [298]. 8th Wall is not
limited to web browsers and can support other apps like Slack
or Gmail. With Link-out support, 8th Wall can direct apps
without native support for certain AR features to apps with
the support [299].
8th Wall has its proprietary implementation for AR utiliz-

ing other libraries [294], [295]. However, it also leverages
other AR frameworks, the extent of which is not fully
known. ARCore has been listed amongst the open source
licenses [300]. WebXR has been utilized for VR projects with
8th Wall [301]. While there is no mention of ARKit, it is
unlikely it has been left out.

F. OTHER POSSIBILITIES
There are a few other possibilities we could not discuss in
detail that can be considered:

1) NEEDLE ENGINE
Needle is a web-based runtime for 3D apps [302]. It claims
theoretical support on all devices supporting WebXR.
Devices tested and confirmed to be supporting AR include
Android (10+), iOS (15+), HoloLens 2, and Magic
Leap 2 [303].

2) PLAYCANVAS
PlayCanvas is a WebGL game engine with a vast feature set
like Babylon.js [304]. It supports AR applications through
WebXR, with support provided for other frameworks like
8th Wall and ZapWorks. With WebXR, AR can be run on
Android with Chrome. WebXR support for iOS is still a work
in progress [305].

3) THREE.JS
three.js is a JavaScript library for rendering. It pos-
sesses no AR capabilities of its own and relies on other
libraries like WebXR for running the AR session [306].
three.js is nevertheless important as it forms the foun-
dation for rendering with many other web AR solu-
tions. three.js maintains a list of compatible libraries and
plugins [307].

4) P5.XR
p5.xr is an add-on for p5.js [308]. p5.js is a JavaScript
library made to make coding more accessible with a focus on
creating visual projects [309]. Currently, support is claimed
to be limited to Google Chrome and devices supported by
ARCore [310]. This limits support to Android.

5) REACT-XR
React-XR (or react-three-xr) is a React library providing
React components and hooks for react-three-fiber [311],
which is a react renderer for three.js [312]. React-XR relies
on WebXR to run the XR session. Its viability for AR could
not be confirmed at this time.

6) VERGE3D
Verge3D is a paid toolkit for creating interactive web
experiences. Its primary selling point is Verge3D Puzzles,
a visual scripting language that allows non-coders like artists
to add logic and behavior to an experience [313]. This is very
similar to the coding language Scratch. Verge3D supports
AR through WebXR [314]. The Verge3D toolkit is available
for Blender, 3ds Max, and Maya, all of which are DCC
tools. Three licensing models are available, ranging from
$290-$2990 [315]. An all-in-one package is available as the
‘‘ultimate edition’’ for $3990 [316].

7) ZAPWORKS
ZapWorks is a platform for Web AR from Zappar. It provides
SDKs for Unity and other web AR software in addition
to tools for AR development [317]. It appears to have a
proprietary system for AR [318] (like 8th Wall), but it also
has support for WebXR [319]. Pricing ranges from $68-
$458/month, and there are alternative licensing options [320].

8) WONDERLAND ENGINE
Wonderland Engine is a platform for developing web-based
graphics applications with the provided Wonderland Edi-
tor [321].Wonderland supports AR through both 8thWall and
WebXR [322]. Wonderland Engine is free to use [323].

XIV. GUIDELINES FOR AR DEVELOPMENT
In this section, we go over guidelines for AR development.
Fig. 20 provides a visual breakdown of the topics and
structure of discussion in this section. This section is the
result of an informal thematic analysis. Information was
extracted from seven primary sources and manually tagged in
the note-taking application ‘‘Obsidian’’. The graphing func-
tionality in Obsidian allows data to be linked and visualized
through graphs (see Fig. 21. Tagging the information allowed
them to be grouped under common themes and then be
‘‘distilled’’ to produce the set of guidelines in this paper. This
process aimed to reduce redundant information and provide
a structure to these guidelines. This has been done to the best
of our ability, as the interconnected nature of the information
(see Fig. 21) makes it difficult to isolate them into groups for
categories. This is particularly evident in the guidelines for
display (see SectionXIV-E: Display under Guidelines for AR
Development).

A. DESIGN THINKING
In this section, we go over the steps to generate and validate
ideas for an AR application. We utilize the principles and
steps of design thinking. They are very helpful in creating
any product, and AR is no different.

1) BRAINSTORMING
Before brainstorming, the first step would be to conduct
research and to interview people to identify their problems
in the real world that AR can address [324]. The problem,

109046 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

FIGURE 20. A visual breakdown of the section ‘‘Guidelines for AR Development’’. Primary topics are at the top (gray) and go from left to right.

FIGURE 21. The graph in Obsidian with the guidelines extracted from
various sources. The lines depict relationships between nodes. Green
circles represent tags, that were later used to group guidelines (large gray
circles). The smaller circles represent the guidelines, with colors assigned
by the source of the guidelines.

preferably, should only be addressable in AR for reasons we
will discuss (see Section XIV-A2: The Litmus Test). Once the
problem is identified, the next step is to brainstorm possible
solutions. Here are a few tips for brainstorming [325]:

• Stay on topic
• Avoid being too detailed
• Go for quantity
• Encourage wild ideas
• Be visual, use diagrams or props
• Note down all ideas
• Build on the ideas of others
• Have one conversation at a time and listen
• Defer judgment until the end

These guidelines are important because the first few ideas
generated are often safe and obvious. Pushing the boundaries

increases the chance of a more novel solution. After
brainstorming, it is time to narrow down possible candidates.
Typically, the next step in design thinking would be to
proceed with physical prototyping. However, as indicated by
the next few sections, we believe a few more tasks need to be
addressed before physical prototyping.

2) THE LITMUS TEST
The novelty of a technology, actual or apparent, can
sometimes be blinding. It is easy to get caught up in the
hype and ultimately end up with a gimmick instead of a
real solution. Gimmicks may have appeal, but they lack
intrinsic value. As the facade drops, the appeal will fade, and a
disillusioned user base will abandon such gimmicks. Failure
to distinguish between a gimmick and a real application by
a project or company could very well be their death knell
if not accounted for by strategy. AR is not impervious to
this effect, but we have developed a litmus test to help
distinguish between application and gimmick: ‘‘A great AR
application lets you do something impossible or impractical
in reality.’’

The point of AR is that it augments reality. If an AR
application performs a function that can be achieved more
efficiently by other means, it has missed the true strength
of AR. In a technical sense, the ability to augment reality is
unique to AR. Thus, an AR application achieves something
that cannot be done by other means. However, the existence
of alternatives is a testament that the problem does not require
AR. This can diminish the value of using AR and introduces
the need to compete with alternatives. This, in turn, leads
to the question of practicality. AR has plenty of issues to
contend with. Many of those issues are strikes against using
AR. In addition, if there are alternatives withmore advantages
in practice, the value of AR will be diminished further.
An AR application, therefore, needs to be practical enough
to overcome its weaknesses and survive its competition.
AR has appeal, but value distinguishes it from application and
gimmick.

VOLUME 12, 2024 109047

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

This is not to say that ‘‘gimmicks’’ are not to be made.
Value is subjective. Sometimes, the appeal alone is the value
of a product or perhaps even its function. Also, an application
that is largely a gimmick can still have its uses. For example,
a measuring tape can easily beat an AR measurement tool.
The measuring tape even has advantages, such as being able
to measure around round surfaces and areas that are occluded.
However, the AR application becomes valuable in situations
where one does not have a tape measure at hand. After all,
most people carry a phone rather than a measuring tape.

3) EXPERIENCE SIZE
The size of the experience is an important factor that affects
the application’s planning, design, and feel. For instance,
placing large AR objects in an insufficiently sized room can
lead to depth collisions [138]. This will ruin the immersion
of the experience. It is important to let users know the
experience’s size before engaging in it. Users may open the
application without enough room to move around or enough
large and flat surfaces typically used for object placement.
Communicating the application’s requirements and expec-
tations to people upfront will help them understand how
their physical environment can affect their AR experience.
A responsive playspace that adapts to the environment with
differing feature sets canmake the experiencemore flexible to
the environment [135], [139], [324], [326], [327]. However,
experience size does not necessarily have to be constrained
by the environment. Content can still be in the world out of
view. Users should be given the time and ability to adapt
to such an experience [328]. Audio and visual cues can be
used to direct user attention to content outside their view.
Alternatively, larger objects can be added to the experience by
placing them a good distance away or by ‘‘breaking’’ reality
and expanding into a virtual environment [329], [330]. Once
the entire object is shown to the user, it can then be brought
close to the user to reveal its true scale [328]. These ‘‘out-
of-view’’ techniques can also have other applications (see
Section XIV-G1: Environment and Movement under Best
Practices for AR Applications).

4) EXPERIENCE TYPE
It is important to know the experience type to settle on the
experience size. Knowing the experience type will help in
planning and designing the application. Experience type can
be classified and defined in many ways, but experiences need
not be limited to any one type. For instance, consider one clas-
sification by Microsoft. Applications are classified on how
the virtual objects are blended with the environment [331],
similar to the Reality-Virtuality Continuum. While this is
valid as a form of classification, we believe it is too broad in
definition and thus, does not provide the necessary constraints
to help design an AR application. Therefore, we focus on
classifications defined specifically by user interaction and the
space they’ll interact in.

Microsoft has another classification that suits our require-
ments, where experiences are classified by their ‘‘scale’’
(see Table 5). This classification by Microsoft was designed
with the principle of an experience scale supporting the
applications (and, by extension, features) of a smaller
scale. The requirements of a smaller scale also apply to a
larger scale. Table 6 shows how the features of a lesser
scale are nested within the larger scales [136]. With an
orientation-only experience, the content uses an attached
frame of reference [136]. An attached frame of reference is
locked/attached to a position and/or orientation, typically to
some part of the user. In orientation-only scale, the content
moves with the user’s body, with the user free to look around
with their head. An attached frame of reference can act as
a backup when other frames are unavailable. For example,
when the device cannot find its position with reference to
the world, content can always be anchored to the device by
choosing it as the origin [136].

With the seated-only scale, it uses a stationary frame
of reference. A stationary frame of reference is used to
create world-locked content, where content remains in the
same place even as the user’s position changes [136]. All
scales from seated-only and beyond use the stationary frame
of reference. The primary difference between them is the
size of the stationary reference frame. Standing-only is
similar to seated-only, but the coordinate system defines
the floor/stage on which the user stands. Expanding further,
room-scale defines a region of space where the user can move
around, while world-scale attempts to provide the room-scale
experience without bounds or limits. Microsoft may list
separate frames of reference for each scale, but this is because
additional requirements need to be fulfilled to provide and
expand the stationary frame of reference.

It is important to note that the above classification system
was originally made with HMDs in mind. The above
classification can also be utilized for handhelds and other AR
platforms, provided appropriate adaptations are made.

5) PHYSICAL PROTOTYPING
Once we have settled on the idea and the general size and
type of the experience, we can begin physical prototyping.
By physical prototyping, we mean prototyping without AR
hardware and software. Instead, we use props and other
physical materials to simulate the AR experience. But
why prototype physically? Why not directly create and
test prototypes with AR applications? Because prototyping
outside of AR is cheaper and quicker [332], [333]. When
prototyping in code, one has to deal with errors in code,
build times, and bugs, which get in the way of properly
identifying problems with the application’s design. With
physical prototyping, we can identify the design and features
we need before we commit to any level of technical
development. Traditionally, application design is for a 2D
context. However, 2D design philosophies start to break down
as we move into 3D. While 3D is best represented through

109048 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

TABLE 5. Mixed reality experience scales [136].

TABLE 6. Nesting of features within larger scales [136].

3D applications, these applications can require technical
expertise. Thus, prototyping and iteration can be bottlenecked
by the lack of expertise across the entire team. But with
physical prototyping, everyone can engage in it regardless of
expertise [332]. Simple and cheap art, office, or workshop
supplies, as well as certain toys, can be useful for prototyping.
Consider the following list:

• Styrofoam shapes (discs, cubes, spheres, cones)
• Cardboard boxes
• Cardstock, sticky notes, plain paper
• Wooden dowels, popsicle sticks
• Disposable cups
• Tape, glue, glue guns
• Scissors, hobby knives, craft blades
• Paperclips, filing clamps, staples
• Twine, thread, yarn
• Pencils, sharpies, highlighters
• Meccano, lego, animation armatures

Once the physical prototype is ready, acting out the
experience is a great way to gauge the experience before
building anything. It will help get into the user’s mindset
and notice obvious issues or constraints with the design. The
acting session can be recorded to provide guidance later in the
project, providing a visual example of what works and what
does not [332]. Before moving on to software development,
be it digital prototyping or asset creation, the results can then
be translated into a storyboard [324], [332].

6) STORYBOARDING
Storyboarding is a common technique in the entertainment
industry, particularly for movies and video game devel-
opment. They are almost like a comic book, showcasing
the actions and the experience to be built. Storyboards
can be either low or high-fidelity. Low-fidelity storyboards
are simple and used to convey ideas quickly, capable of
being made by anyone. High-fidelity storyboards can be
well-detailed and colored. It exists to showcase the final
product and its aesthetics. Its primary goal is to sell

the idea of the final application to important people like
stakeholders [332]. Storytelling is also a good skill to have
in this process. Be detailed in describing the user’s action
when noting down the flow of the experience. Note downwho
performs the action, the exact steps of the action, and what is
being affected by the action [334].

B. PLATFORM CONSIDERATIONS
This section will cover some considerations to keep in
mind when choosing the hardware and software platform for
building an AR application.

1) HARDWARE CONSIDERATIONS
In addition to the listed specifications or features of hardware,
it is also necessary to consider factors beyond them. The
technologies incorporated in a device could have unique traits
or limitations that are not listed up front. A device with
better specifications than another could still end up being
worse in practice. Consider display technologies. Since OST
displays generally combine the light of the display with the
environment, it affects the quality of the visuals. For example,
in the HoloLens 2, this means that color must be carefully
chosen for the best experience. A color like black cannot
be rendered with its additive display and must instead be
mimicked with another color. The rendering is also affected
by the user’s environment and lighting conditions [335]. As a
result, Microsoft has published design guidelines for best
practices and considerations when displaying content on the
HoloLens 2 [336]. Another example of traits and limitations
would be the device’s sensors. While the device may have the
sensors for a function, it is also necessary to consider their
range, precision, and accuracy. Take the HoloLens 2 once
more. While it supports hand tracking, gesture recognition
is limited to a ‘‘gesture frame’’ in front of the user [337].
The HoloLens also supports eye-tracking, which returns the
predicted eye gaze. However, the result is approximately
within 1.5 degrees in visual angle from the actual viewed

VOLUME 12, 2024 109049

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

target. Thus, the precision of the selection can be affected at
longer distances [34].

There can also be more factors related to the user
experience of the device, such as comfort. The general
comfort of wearing a headset or holding out a phone is tacit
information best experienced firsthand. The distribution of
weight with wearable devices like HMDs can also affect
comfort. Two devices may weigh the same, but the device
with better weight distribution and comfort will prove to be
better. Comfort can also be affected by the type of display as
well. Once again, with the HoloLens 2, Microsoft suggests
that AR content be placed between 1.25 m and 5 m for
maximum comfort and not be placed less than 40 cm from
the user. To further avoid visual discomfort and fatigue,
it is also recommended to minimize viewing content that
moves between various depths. The same applies to rapidly
switching focus between content placed near and afar [338].
Other device features that can affect the user experience
include battery life (and uptime), device temperature, and
breathability of cushioning materials.

2) SOFTWARE CONSIDERATIONS
There are five main factors to consider when choosing a soft-
ware platform for developing AR applications. Since these
factors are more or less general for software development,
we list them without elaboration for brevity:

• Feature set
• Supported platforms
• Conditions for distribution (licensing and pricing)
• Ease of development (documentation)
• Community size and support

C. SOFTWARE DEVELOPMENT
In this section, we cover some guidelines for development
and the importance of testing (and iteration) for development.
This is followed by guidelines for creating 3D content for AR
applications.

1) DEVELOPMENT
When moving into development, there are a few things to
keep in mind. Try to embrace standards where possible,
as they will likely stay relevant regardless of how the
technology evolves [324]. That being said, there can be
multiple competitive standards, like various file formats for
assets. In such cases, obtaining assets in a file format that can
be converted into any other required file format is best. For
example, glTF is a standard for 3D assets on the web, while
ARKit utilizes USDZ. By obtaining assets in a file format
like FBX, converting them into either glTF or USDZ will
be possible [339]. Furthermore, using modular designs can
allow for the reuse of components and speed up development.
It can also allow for easy replacement or modification should
changes be required in the future [324]. This is part of the
idea behind toolkits like MRTK, as they provide common

controls and behavior you can expect to see and use in an
AR app [340].

2) TESTING
Iteration and testing are crucial steps to identify and correct
issues with the application [324]. The goal of testing is
to stress the application by going outside the comfort
zone. Simulation tools like the HoloLens [341] or Unity
MARS [250] can be used to test the application without
deploying it to a real device. While this can save time, it is
important to remember that there is no perfect substitute for
real-world testing. AR applications can be deployed in a wide
variety of environments and should be tested as such. Be sure
to test a variety of environments with different variables such
as lighting and surfaces [324], [341]. Additionally, try testing
with different users. This can cause unexpected behaviors,
uncovering unforeseen aspects of the experience [341].
Utilize this opportunity also to test the accessibility of the
experience where possible [324]. Iteration is important as
there can be issues that will not show up during physical
prototyping. For instance, it can be difficult to perceive depth
in 2D due to the limited FOV, so placing objects at the
right distance is crucial [132]. For HMDs, remember that
the HVS has properties that can affect the quality of the
experience [338]. After deploying the application, you can
continue iterating based on user feedback [324].

3) 3D CONTENT GUIDELINES
The first thing to be aware of when designing content for
AR is the coordinate system used by a 3D application.
All 3D applications use the Cartesian coordinate system.
The position and orientation of a virtual object are defined
along three perpendicular axes: X, Y, and Z. However, the
applications do not follow the same conventions between
them. For example, it is common for different applications
to use either Y or Z to represent the direction ‘‘up’’. The unit
of measurement used can also vary. 3D content creation tools
like Blender allow users to set the unit system and its scale.
When moving between applications, be sure to identify and
pay attention to the differences in coordinate systems.

Unlike physical objects, virtual objects can adjust their
scale on the fly to be larger or smaller. However, adjusting
a virtual object’s scale during an experience can have some
unintended effects on the viewer. Consider the scenario
where an object is scaled while remaining in place. This
can make it seem like the object has been placed closer
or further away than it is as it grows larger or smaller.
If the user knows the size this virtual object is supposed to
represent in the real world, this can lead to conflicting visual
cues [329]. In general, it would be best to avoid changing
scale specifically to mimic changes in distance (and vice
versa).

Materials are essential to achieving the final look of 3D
models. To create more realistic-looking assets, utilize the
Physically Based Rendering (PBR) workflow for materials.

109050 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

The PBR workflow generally involves combining multiple
textures to create the final look of the object [342]. The
following are the common textures utilized in a PBR
workflow:

• Diffuse Map: This texture is used to determine the base
color that needs to be rendered for the material.

• Normal Map: This texture is used to provide the
appearance of more detailed geometry without the need
for detailed geometry. This helps keep detail while
reducing the need to have a complex 3D model at run
time.

• Roughness Map: This texture is used to map how rough
each area of a material should appear.

• Metallic Map: This texture is used to map how metallic
each area of a material should appear.

To help correctly map these 2D textures onto a 3D object,
a UVmap texture is utilized. It breaks down the 3D object into
its component flat 2D surfaces to determine which part of a
2D texture is applied to which face and how. Many additions
to a material may be subtle, but they add up. Simple materials
will only provide simple-looking objects. Utilize visual noise
and its randomness to add more detail to the objects and
break up repeating patterns. While higher-resolution textures
can contain more detail, they will impact streaming and
loading times. It is best to limit the resolution to improve
performance [343].

In addition to the above textures, it may also be possible
to improve the appearance of the object by adding more
lighting details. Ambient Occlusion is a rendering technique
used to calculate how exposed each part of an object is to
the ambient lighting. By ‘‘baking’’ in an ambient occlusion
map, it is possible to add shadows to less exposed regions of
an object [342]. This helps add and accentuate detail, such
as the crevices between the cushions of a couch. Baking is
simply a term for making something permanent. By baking
in an ambient occlusion map, we can add the appearance
of ambient occlusion without having to run an expensive
rendering process every time. Borrowing this philosophy,
one can also fake shadows with a shadow plane, which is
simply a plane containing only baked shadows [342]. Further
utilizing AR features such as light estimation, environment
probes, and occlusion will help immensely with blending
virtual objects into the real world. One should be aware that
rendering engines have differences between them in how to
render. As such, the same object can look different in different
engines.

D. REGISTRATION
As discussed before, registration is a fundamental pillar
of AR. In general, registration is the first step an AR
application would need to perform. If the tracking system
is part of a portable AR device, then the user will need
to be a part of the registration process for the system to
get its bearings and understand the environment. This initial
registration step/experience needs to keep two principles in

mind. First, there should be clear communication between
the user and the system. The user must be kept aware if the
application requirements are met. If not, then the user must
be made aware of the issue and given possible resolutions
with guidance. Second, strike a balance between efficiency
and reliability. If the system can perform registration reliably
without user assistance, that is optimal. User effort should
only be utilized if necessary [341]. To design the initial
registration experience, answer the following questions:

• What does the system need to find in the world?
• What information will the system already have?
• What actions can the system perform without user
assistance?

• What actions will the user need to perform?
• What feedback will the user require?

The quality of registration/tracking (currently) is depen-
dent on the user’s environment or, more accurately, the
environment perceived by the sensors. Limitations of the
environment can affect the perception and degrade tracking
quality and stability. Manipulating the environment to induce
good and stable tracking ismore of an art than a science [344].
A few examples of environmental limitations hindering
registration are [326]:

• Flat surfaces without texture (e.g., A solid color desk)
• Dimly lit environments
• Extremely bright environments
• Transparent or reflective surfaces (e.g., Glass)
• Dynamic or moving surfaces (e.g., Flowing Water)

If the device cannot track the world, the device can only use
an attached frame of reference to have device-locked AR
content. Particularly with HMDs, this reference frame can be
used to place content to alert the user about the issue [136].

For visual sensors to track the environment, they need to
obtain enough visual information about the world. Sensors
obstructed by hair or hands are an easy example of sensors
lacking information [136], [344]. Cameras can also struggle
to focus on real-world objects close to them, similar to human
eyes. Therefore, always maintain a minimum distance [344].
When it comes to environmental factors, lighting affects the
amount of information a sensor can get. If the environment is
too bright, it saturates the cameras. If the environment is too
dark, the cameras cannot see anything. Areas with contrasting
lighting will make the camera adjust between bright and
dim areas. This can cause the device to think a change in
illumination equates to a change in location. Since outdoor
lighting can vary across time, it can lead to inconsistent
results [344].
Modern AR registration systems often rely on tracking

features in the environment. Even with good lighting, there
needs to be enough detail and variety in the environment
for good tracking [344]. Reflective surfaces are a challenge
beyond just lighting because the device can track reflected
details on the surface. These details can change with the
viewing angle, causing the system to lose tracking [344].
Since vertical surfaces often reflect light and are painted in

VOLUME 12, 2024 109051

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

a single color, it makes them harder to detect than horizontal
surfaces [132]. Having more detail is not limited to quantity
but quality as well. If there are two identical areas in an
environment, the systemmay get confused between them and
mark them as the same location. This is an identified problem
with the HoloLens 2. Identical areas can cause AR content
to appear in different locations from where it was placed.
It can also break tracking as the internal representation of
the environment gets corrupted [136]. Since this makes the
system think it is in two places at once, Microsoft calls
this phenomenon ‘‘wormholes’’ [344]. Wormholes can be
resolved by adding unique detail to the environment to
distinguish between areas [344]. One very easy solution is to
use masking tape to create unique and non-repetitive patterns
along the surfaces of a space. There is also a simple test to
know if there is enough detail in the environment and if it is
unique enough: Can you uniquely locate yourself in the space
if you only saw a small amount of the scene? If the user cannot
locate themselves from visual cues, then the system will most
likely struggle as well [344]. Motion and dynamic changes in
the environment can also affect the tracking. As objects move
around, there is nothing stable enough for the tracking system
to use as a [136], [344]. Changes in the environment over a
longer period can also affect tracking data [136]. Specifically,
with spatial mapping, there can be ‘‘ghosts’’ of things that are
no longer present. The tracking needs to be redone to obtain
the most up-to-date information [344].
If tracking issues persist and the system is unable to

correct them, allowing the user to reset the session is a good
choice [136].

E. DISPLAY
In this section, we will discuss possible modes of interaction
and, thus, the possible interfaces for anAR application.While
this has more to do with input than with display, the UI cannot
be determined without first narrowing down the mode of
interaction.

1) INTERACTION AND INTERFACE
The interactions, controls, and interface are defined by the
interaction model used with the experience. The interaction
model chosen will depend on the type of experience that is
to be delivered and the type of devices they will run on. For
HMDs, Microsoft has identified three primary multimodal
interaction models (see Table 8). For handhelds, virtual
content can be divided into five interaction models based
on three aspects of interaction [345]. We have made a few
modifications to this classification. We have modified the
names and definitions of the three aspects of interaction
by [345] to the following:

• Content type: 2D or 3D.
• Location: The virtual content is placed on the screen
(Screen Space) or in the real world (World Space).

• Dynamicity: The content is either fixed in a specified
location (static) or can move around (dynamic). It can
be locked or tied to other constraints.

We then reduced the number of models that can be created
from this classification to the first four by [345]:

• 2D Static in Screen Space: 2D elements fixed in place
on a screen.

• 2D Locked in World Space: 2D elements placed in the
world. Usually locked to another object or point.

• 2D Dynamic in Screen Space: 2D elements that can be
moved around on a screen. e.g., Targeting reticle for 3D
object selection.

• 3D Flexible in World Space: 3D objects anchored or
placed in the real world. They can be manipulated by
the user if provided the ability.

The fifth model defined by [345] is ‘‘dynamic 3D and
proportionate in space’’. It is defined as a model to help users
to ‘‘see an object in an actual environment with lighting and
measurement considerations’’ [345]. We ignore this model
as the type of interaction model here is no different from
‘‘3D flexible in world space’’. Thus, we are left with four
interaction models for handhelds (see Table 7. While touch is
the primary mode of interaction for handhelds, the gestures
and interaction systems can be different for the four groups.

The different interaction models can be combined if
needed. However, this does come at the cost of increasing
the complexity for the user [346]. One way to keep the
controls simple and easy for the user is to make them
intuitive. Users should be able to interact with the system
without having to think about it as if the user and system
are in sync [34], [347]. Using familiar controls is one way
to make things more intuitive. We can rely on the user’s
prior knowledge, and the user does not need to learn a new
set of controls [347]. Another way is to utilize ‘‘implicit
actions’’, where the system automatically takes actions by
gauging the context and user intent. Two examples covered
previously are attentive holograms and eye-gaze-based auto-
scrolling. Another example would be smart notifications
that automatically vanish once the user is done reading (by
utilizing eye-tracking) [34].

2) UI
Two kinds of displays will be considered in this section. There
are differences in designing UI when moving from a flat
screen to an HMD. An HMD is inherently meant for a 3D
context, while a screen is intended for 2D. The guidelines here
will specify screen or HMD if they are limited to a display
type. Attempts can be made to apply guidelines to a different
display, but it needs to account for the traits of this display.

When designing UI for handhelds, try and support both
orientations: portrait and landscape. Supporting both can
increase user comfort and immersion. To avoid jarring
transitions, try rotating the UI to match an orientation and
avoid cutting the camera feed. Sometimes, different UI
layouts may be needed for each orientation. Otherwise,

109052 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

TABLE 7. Interaction models for handhelds.

TABLE 8. Multimodal interaction models for HMDs [346].

users will have to adjust their hold of the device to interact
with the UI. Changing the orientation may also change
camera positioning. This could affect depth sensing, spatial
awareness, and/or accurate surface measurements [347].
If additional information or controls are necessary, theseUI

elements can be directly displayed on a screen, like a HUD,
separate from the AR experience (2D Static in Screen Space).
Since they are locked to the screen, they will always be visible
to users, unlike free floating content [135]. Direct object
interactions (3D Flexible in World Space) are more intuitive
and immersive than indirect controls. As such, they should be
used when possible [135]. There are exceptions. For instance,
persistent controls should consider utilizing indirect controls
displayed directly on the screen [135]. Generally, fixed UI
elements are placed at the top and/or bottom of the screen.
This layout lets users focus on their AR experience [348].
If any 2D UI elements are placed in the world space (2D
Locked in World Space), make them rotate to face the user
unless otherwise required [135].
Cluttering the screen with controls and information can

diminish the immersion [135]. Persistent 2D overlays are
a constant reminder that the world the user looks at isn’t
entirely real. Alerts and notifications can also distract the
user from the experience [347]. The screen should be
devoted to displaying the AR session as much as possible.
Limit onscreen controls to those used frequently or needing
quick access (e.g., a camera shutter button) [139], [347].
Alternatively, utilizing translucency with UI can avoid
blocking the underlying scene completely [135]. Sudden pop-
ups, quick transitions, and fullscreen takeovers should be
avoided, especially if the user does not initiate them. They
could jolt the user and be unpleasant or shocking [139],
[347]. If a device is not solely meant for AR, then the device
likely needs to transition into the AR session. Keep this
transition as seamless as possible. Give the user the control
to trigger the AR session, as it is less jarring when they are
in control. Utilizing animations such as fading can also help
smoothen the transition [138]. Once inside the experience, try

to maintain the continuity of the experience for immersion.
Avoid taking the user out of the experience too often for
other tasks. Try to keep all functions within AR as much as
possible [135], [347].

The guidelines covered for handhelds could be adapted
to HMDs. However, care should be taken as a 1:1 cor-
respondence is not always possible or preferable. As an
example, consider HUDs. HMDs can replicate on-screen UI
elements by providing a head-locked HUD. While HUDs
on a normal screen can keep the user informed without
intruding, with HMDs they can be distracting and a cause
for discomfort [136], [338]. For HMDs, it is best to avoid
implementing 1:1 HUD rotation and translation based on
head motions [338]. One solution is to lock the content to
the user’s body rather than their head [136], [338]. A good
implementation would be a HUD that moves immediately
with the user but only rotates with the user after a threshold is
reached. The HUD can then reorient itself to provide a better
angle to the user [338].
Using the right font and size is necessary to maintain text

legibility and eye comfort. The limitations of hardware can
be one factor affecting this. With displays like Hololens, thin
fonts can vibrate and cause legibility issues [338], [349].
Legibility is also affected by the distance of the text to the
user [349]. Besides the font type and size, it can be made
more legible by utilizing a background that contrasts with
the text. This can make it easier to distinguish the text from
the environment [349]. To maintain consistency, avoid using
more than two fonts in any single context [349]. Should
there be text information, create and maintain a hierarchy for
the information by using different text sizes to distinguish
between them [349].

F. INPUT
In this section, we discuss object placement and interaction.
A discussion on input systems and guidelines for specific
input modalities follows this.

VOLUME 12, 2024 109053

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

1) OBJECT PLACEMENT AND INTERACTION
The information in this topic is primarily meant for handhelds
but can be reasonably used with HMDs with appropriate
modifications. The primary difference would be that users
can directly interact with the scene with HMDs, while the
interactions are indirect with handhelds.

Before users can begin interacting with AR content, they
must first be placed in the world. Objects can be placed into
the scene automatically or manually [334]. With automatic
placement, the app can start placing objects immediately once
a surface is detected. This is preferable when [132]:

• there is minimal or no interaction
• objects do not need precise placement
• the AR experience must start immediately

With manual placement, users must manually place the
objects into the scene. It is best-suited for [132]:

• a very interactive experience
• precise object placement

There are a few ways to implement manual placement. Users
can simply tap on the screen to make the object appear in the
scene. On handhelds, tapping is a very natural gesture for the
user. Tapping is an ideal method when [132]:

• the object needs no adjustment or resizing before
placement.

• the object needs quick placement
Another method is to let users drag the object into their scene
after selecting it. It is important to let users know that this
gesture is possible and how they can place down objects once
picked up. Dragging works best when the object needs [132]:

• to be transformed or adjusted
• precise placement

Users can be provided a gallery of objects for selection. They
can grab an object from the gallery and use themethods above
to place them into the scene [139].
Placing objects directly onto the surroundings will require

the surfaces to be tracked. It is necessary to communicate
these tracked surfaces to the user so they can know where
an object can be placed. A visual indicator can be utilized for
this. By placing a visual indicator on a tracked surface, we can
show the user exactly where an object can be placed [132],
[135], [334]. Indicators can range in their complexity from
simple images to 3D animations, depending on the need. They
are not meant to be persistent and should disappear when the
object has been placed [348]. Indicators can be implemented
in different ways:

• A part of the tracked surface can be visualized
• Visualizing an object’s shadow
• Placing another object (e.g., planes) on a tracked surface
An indicator can have more uses beyond just visualizing

the position for the user. By aligning the indicator with the
surface, we can convey the angle of the surface (and thus the
angle at which the object will be placed). We can also convey
the scale or size of the object to be placed by displaying
it with the indicator. Animations can be used to transition

from the indicator to the placed object to make it more
interesting [334].

A few more quality-of-life features can be implemented to
improve the experience.Whenmoving objects for placement,
set a maximum default distance where it can be placed. This
ensures users do not place it too far away at an uncomfortable
distance [132], [330]. Limits should also be placed on
scaling [330]. If a user makes the object too large or too small,
it will make it difficult for them to handle said objects. These
limits for translation and scale are not as important to rotation.
Particularly in utility apps, users are allowed to manipulate
the object to view it from any angle [139]. Objects can be
made to snap to make placement easier. Snapping will make
the objects behave as if they are magnetic, forcing themselves
into a specific point if they approach the general area. Objects
could snap to other objects, tracked surfaces, or particular
points on a tracked surface [334]. Scene understanding, such
as plane classification, can fine-tune object placement. For
example, if an object is only meant to be placed on a table,
users are limited to placing the objects on surfaces classified
as tables [135]. Once an object is placed, anchors can be
utilized to keep them in place as the user moves around [132].

Small or faraway objects can be a challenge for users
to select. In such cases, users should be given means for
more precise selection, like reticles or raycasts [139]. Even
then, precise selection may still prove difficult. In such cases,
provide affordances to the user. Considering user proximity
can provide leniency and make nearby objects react even if
they are not directly selected [135], [330]. Making the target
area for selection bigger than the objects is an alternative to
proximity [139], [330].

Since object placement is reliant on tracking, tracking
issues can bleed into objects placed in the world. A few
things can be done to negate the effect of such issues. It is
best to avoid aligning objects precisely with the edges of a
tracked surface [135]. AR systems typically recalculate the
frame of reference as they adapt to the environment [136].
The boundary of the tracked surface can easily change as
more data is acquired. Thus, trying to place an object near
a boundary is often a futile endeavor [135]. If tracking data
is poor or not fully available, it is best to let the user place
the object down regardless. Utilize what little information
is available to approximate the object’s place in the world.
It is better to be responsive without precision than to be
completely unavailable. The objects can be subtly nudged
into the correct spot as more data becomes available [135].
Finally, when tracking is lost, make the application wait a few
moments before making objects tied to it disappear. This is to
help prevent the effect of flickering as tracking gets lost and
found [135].

2) INPUT SYSTEM GUIDELINES
When creating AR applications, consider incorporating
multiple forms of input. This provides a few benefits to
the experience. First, it provides a fallback should an input
system be unavailable. Input systems may fail to operate

109054 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

correctly in certain scenarios or may even be disabled for
reasons such as privacy. In such cases, having a fallback will
allow the experience to continue. Second, having a fallback
helps improve accessibility. Some users may find it difficult
to use a specific form of input. Alternate modes of input will
give them a better chance to engage in the experience. Third,
combining various input modalities will cover one modality’s
weakness with another’s strength. This is especially useful if
some form of input is finicky and can help make the overall
experience smoother. For example, the user’s proximity to
virtual content can be combined with other inputs. This can
be used to ensure the user only interacts with what they want
to interact with. This also leads to the idea of ‘‘affordances’’,
which is to reduce the precision required with any one input
to provide more leniency to the user in their interaction [346].
This paper has discussed various input modalities available

for AR (see Section IV-C: Input under Enabling Technolo-
gies). Below, we discuss some guidelines for a few inputs in
particular.

3) TOUCHSCREEN GESTURES AND HAND TRACKING
We will discuss touchscreen gestures together with hand
tracking as they both involve the use of gestures and as such,
share similarities. Touchscreen gestures are primarily used
for directly interacting with 3D virtual content, similar to
hand tracking. Both are utilized for four main interactions
with 3D content:

• Selection
• Translation (moving the object)
• Rotation
• Scaling

In general, when creating gestures for interaction, try to
avoid creating custom gestures. Custom gestures can add to
the application’s learning curve and create confusion when
switching between them. Thus, it is best to stick to commonly
used gestures for a known interaction [135], [324], [346].
Furthermore, the more instinctual the interactions feel, the
smaller the learning curve will be [346]. Ensure that the
system can distinguish between similar gestures through
testing [135].

With these input modalities, the size of the object and
its distance from the user will determine how users interact
with them [346]. When it comes to on-screen/touch gestures,
there are common gestures for object manipulation. Some
require accommodating two-finger gestures commonly used
for rotating and scaling an object. With rotation, it is possible
to use one hand (index and thumb) or two hands (two
thumbs) [330]. Scaling can be achieved with a simple pinch
gesture, similar to zooming on a touch display [330]. Rotation
can also be done with one finger, and it is good practice to
support both options. However, this can introduce conflicts
with other gestures [330]:

• To avoid conflicts with scaling, limit 2-finger rotation
to when both fingers rotate in opposite directions on a
horizontal axis.

• To avoid conflicts with translation, ensure a 1-finger
rotation is limited to when the swipe gesture starts off
the selected object.

While AR is 3D, touch-screen gestures are inherently 2D.
Interactions can be simplified to accommodate this by
limiting the axis or axes of motion. Consider the following
examples [135]:

• Limiting movement to the 2D plane on which the object
rests.

• Limiting object rotation to a single axis.
Another limitation that arises from the nature of a
touch-screen is the difficulty in selecting small objects. The
objects may appear small due to their actual size or distance
from the user. Nevertheless, it can be difficult to precisely
select the object in such cases, as a finger can be larger than
the target and obscure the object from the user’s view. There
are two remedies available in this case:

• Increase the area/target size of the object to be selected,
reducing the precision needed for selection (affordance).

• Increase the user’s precision by utilizing ray casts for
precise selection.

Moving on to hand-tracking interactions, at the simplest
level, they involve mid-air hand gestures. By mimicking the
touchscreen gestures through hands, they can be converted
for use with hand-tracking [346]. A key difference, however,
is that hand tracking does not face the limitations of touch
gestures as it is not limited to 2D. Instead, we are introduced
to a different set of challenges. On a touch screen, users
can interact with any object that is visible on the screen.
However, with hand tracking, users need to reach the object
first. Since it is now possible for the hands to accidentally
interact with nearby physical objects, it may be necessary to
provide some affordances to the user. Users will also struggle
with interactingwith far-away objects. In such cases, ray casts
can be used to extend the user’s reach [346].

4) VOICE INPUT
Voice input is a powerful input modality. Speech is an
extension of thought, and thus, voice input allows the
communication of intent. Knowing intent can simplify tasks
and make the system more adept at responding to the user,
providing the following advantages:

• Cognitive load is reduced as it is intuitive and easy to
learn and remember.

• Effort is minimized by making tasks fluid and effortless.
• Time required to complete a task is reduced.

There are many examples of these advantages. Voice input
can simplify menu traversal. Users can simply state the menu
they wish to see and jump straight to it instead of navigating
the menu hierarchy manually. Dictation can be utilized when
virtual keyboards are hard to use. Voice input can also be used
in conjunction with other modes of input. This can allow the
users to multi-task. It can also enhance other modes of input,
such as targeting an object with gaze and then using voice to
declare intent [350].

VOLUME 12, 2024 109055

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

The primary challenge with voice input is the reliability
of detection. It is possible for the system to incorrectly hear
and misinterpret a command [350]. The system needs to
accommodate various accents and dialects that users can
have [350]. The system will also struggle when dealing with
unique or unknown words not in its vocabulary. Challenges
with voice input are not limited to the technical realm. Voice
input can be undesirable in shared spaces. It can be awkward
to be seen talking to oneself in public. Privacy is limited as
others can listen in. It can also disturb other users in the space.
Finally, most systems currently utilize a library of possible
voice commands. Users cannot naturally converse with the
system and, thus, must learn the library of commands. This
can add to the cognitive load instead of reducing it [350].

There are a few best practices that can be followed to
improve the voice input experience. For one, keep commands
concise and avoid similar sounding commands to maintain
clarity [324], [350]. This will keep things simple and avoid
confusion for both the user and the system. Limit commands
to simple vocabulary where possible, as this reduces the load
on the user to learn new terminology. Keeping the behavior of
the commands consistent between various contexts will also
reduce confusion for the user [350]. Voice input can struggle
with continuous input control, such as volume adjustment
or object manipulation [350]. But this can be alleviated to
some extent by specifying the exact amount needed, instead
of subjective words like ‘‘louder’’ or ‘‘bigger’’. Adequate
feedback must be provided to let users know that their
commands are being recognized [324]. Constraining voice
commands to non-destructive actions will make it easier to
revert changes in the case of any misinterpretation. Finally,
test the system with different accents to ensure the detection
is accurate [350].

5) GAZE TRACKING
We have discussed utilizing gaze tracking to obtain direc-
tional information (see Section IV-C3: Gaze Tracking under
Enabling Technologies: Input). However, gaze tracking can
provide another form of information. By processing the
duration of the gaze on a particular object, we can obtain
‘‘attention’’. Attention information can be utilized to gauge
interest or obtain intent within the application [324], [328].
For instance, participants’ gaze in a multi-user AR session
can be visualized. This will allow other users to see what
other participants are looking at. This can be useful for
collaboration in a session [34]. Attention information can also
be immensely helpful outside the application for debugging
and improving the application. Attention information can
be used to create heat maps. With such a heatmap, we can
identify where users spend the most time [34] or if users
have completely missed key objects or interactions [328].
This can streamline the application by identifying what is
important and removing the rest. In training and productivity
applications, attention information can be used to find
bottlenecks to optimize the flow of tasks. This information

can also be utilized in product design by identifying what
aspects of the product a user finds interesting [34].

While eye and head tracking have been discussed together,
they have fundamental differences. The specific features
can make one more suitable than the other depending on
the context. For example, consider the differences from
a physical/biological perspective. Turning one’s head is
slow compared to the eyes. It can also get fatiguing with
repeated motion. Eyes may allow faster movements with
less effort but are more difficult to track. Eye movements
are also sporadic and not smooth [34]. This makes eye
tracking more suitable for interacting with large objects.
It is not recommended for small targets or scenarios needing
precision [34]. Head tracking tends to be smoother and more
reliable and, therefore, a solid choice for most objects.

Now, let us consider the technical features. Head tracking
can essentially fall under registration for HMDs (and
handhelds). Registration is an essential component of AR.
Therefore, the foundation for head tracking is always
implemented. Eye tracking, on the other hand, will require
dedicated sensors and will be more complex to implement.
Additionally, eye tracking typically involves a calibration
step for proper operation. This step can fail for a variety of
reasons [34]:

• Incorrectly performing the calibration.
• System being unable to function correctly with correc-
tive eyewear

• System being unable to accommodate certain eye
conditions of the user

• External factors such as smudges on lenses of eyewear,
lighting conditions, and occlusion of the eye (e.g., by the
user’s hair)

Eye tracking also requires collecting sensitive user data and
therefore requires user permission [34], [324]. For these
reasons, head tracking can be the fallback or alternative to
eye-tracking [34]. However, head tracking is never a complete
substitute for eye tracking. This is because head tracking
does not provide the user’s real gaze as the user could be
looking somewhere else with their eyes [34]. For this reason,
it is preferable to use eye tracking overhead tracking where
possible.

When utilizing gaze tracking for interactions, a few
practices must be followed. Avoid cluttering the visual space
to provide clarity for the user [324], [328]. Similarly, it is
important to provide feedback if gaze input is being utilized,
and it should be kept subtle to avoid overwhelming the
user [324]. The techniques for feedback can differ according
to the tracking type. For example, a cursor can be utilizedwith
head tracking to show the user where they are looking. The
cursor should be smaller than the objects to avoid distracting
the user from the actual content [34]. With eye tracking, eyes
have sporadic movement, making the cursor too distracting.
In this case, subtle visual highlights or animations can be used
to create ‘‘attentive’’ objects. They can indicate themselves
to the user by reacting to the user’s gaze [34]. An example

109056 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

would be an object that floats or changes color when gazed
at. If timers are used with gaze for interaction, they should
be carefully fine-tuned. Keeping them too short will make
accidental selections more common. On the other hand,
keeping it too long can make the interaction inefficient and
cause user fatigue [34].

Finally, maintain user comfort. To avoid straining the user,
excessive movements should be avoided with gaze tracking.
A fixed gaze for long periods can cause strain [324]. When it
comes to head tracking, moving the head can add strain and
fatigue to the neck. As such, it is best to avoid the following
movements:

• Gaze more than 10o¯ above or 60o¯ below the horizon
(vertical motion)

• Neck rotations (horizontally) more than 45-degrees off-
center

The optimal angle for the head (neutral/resting) is considered
between 10o¯ -20

o
¯ below the horizon. It is normal for the head,

especially during activities, to tilt downward slightly from the
resting angle [338].

G. GENERAL AR APPLICATION DESIGN: BEST PRACTICES
This section covers some best practices to follow when
designing an AR application. They have been divided into
four categories.

1) ENVIRONMENT AND MOVEMENT
As AR is registered in 3D, the environment is a signifi-
cant component of the experience. Making content move
between various surfaces and interacting with them makes
the experience seem more immersive and showcases the
environment [139]. It is also possible to have visual effects
that interact with the environment [334]. Having the user
move in the environment to observe content is another way
to leverage this strength of AR. The user’s movement will be
defined by the type of experience. Here are some guidelines
for user movement:

• Let users know what movements are possible.
• Guide them through the types and range of movement.
• Provide easy transitions from one pose/movement to
another.

• Prioritize comfort. Avoid physically demanding,
uncomfortable, or sudden movements [351].

• Easing users into movement allows them to adapt [135],
[351].

There are various ways to encourage users to move around
in their environment. Hiding virtual objects behind real
or virtual objects can be used to reward and incentivize
exploration [139], [351]. Large virtual objects can make
people walk around to see it in its entirety [139]. Users can
be encouraged to look around by placing objects towards the
periphery [328]. Alternatively, audio and/or visual cues can
be used to guide them to offscreen content [135], [138], [139],
[328], [334]. By placing content offscreen, the environment
can also be used to offset any limitations in FOV by placing

content out of view but with indicating cues. It is important
to ensure that these cues are not too distracting to the user.
Using too many visual cues can clutter up the screen. With
audio cues, to avoid distracting the user, use the following
tips [138]:

• Avoid playing sounds simultaneously
• Add attenuation to moderate sound effects
• Set the audio to fade or stop if a user is not interacting
with the object

• Allow users to manually turn off the audio for individual
objects

If cues can be used to tell the user where to look, they can
also be used to tell where they should not look. As the user is
free to move around, they will be free to look inside objects.
Cues like dimming the screen can tell the user that they are
not meant to be looking inside [139].

Movement can be challenging when displaying a virtual
experience larger than the physical space. Since the expe-
rience is larger than the physical space, the user cannot
physically move around the virtual experience. In such cases,
some form of virtual movement is required. Automatic
movements and movements that go against the user’s gravity
can be disorientating. This is because the human vestibular
system (for balance and orientation) can interact with the
HVS. If visual cues from the virtual experience do not align
with vestibular cues from the real world, it leads to motion
sickness. Therefore, always keep the user in control of their
movements. The following steps can be used to make a
system for user navigation in a large scene [338]:

• select a point in the scene
• shrink the entire scene down to that point
• allow users to move the point close to their feet
• expand the scene again

2) COMFORT, SAFETY, AND SECURITY
It is important to consider the comfort, safety, and security of
the users for the continued use of the application. The first
step would be to consider the devices’ quirks. For example,
with the HoloLens 2, objects should ideally be placed 2m
away from the user to avoid eye discomfort. However,
switching between distances causes more discomfort than
an object placed close to the user [338]. Another example
would be the device’s weight, adding to the user’s fatigue as
the session continues. As the users get tired, they will want
to move around less. If a user is not able to move around,
give them an alternative way to use your app [351]. This
can also improve the application’s accessibility through an
alternative mode of input [324]. For example, users can have
muscle fatigue from holding their arms in the air for too
long. Using alternate forms of input can provide the users
with a break [135], [338], [352]. Avoiding long sessions and
allowing the experience to be paused and restarted at the
user’s convenience will reduce problems from fatigue [352].

Users can get too engrossed with their experience to pay
attention to the environment. This can be a problem if users

VOLUME 12, 2024 109057

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

are encouraged to move during the experience, raising the
probability of an accident. There are a few steps that can be
taken to avoid incidents:

• Give users reminders to look around and check their
surroundings [352].

• Avoid large and sudden movements by the user as
they will not be aware of their surroundings when
immersed [135].

• Do not make the user walk backward. They are more
likely to tripwhen unaware ofwhat is behind them [139],
[352].

• Do not startle users as they may jump backward and
trip [139].

If any of the movements listed above are required, ensure the
user is safe before asking them to do so. Precautions must
be taken if the users will be using AR in public. Moving
in public while immersed in AR can be distracting and
dangerous [326].
Security primarily comes into play when the user’s privacy

can be violated (see Section XV: Current Challenges in AR).
User permissions have been one way to communicate to
the user what information the system will need access to.
To encourage user cooperation, clearly state why certain
permissions are required and provide the relevance and
benefits of each permission. Additionally, only ask for
permissions when it is necessary to move forward in an
experience [135], [347]. While the methods above are
certainly valid, we would like to note that they are a bit
amoral. Providing only the relevance and benefits does not
apprise the users of the cost and risks of providing their data.
Asking for permission to continue during the experience also
encourages acceptance without further consideration. That
being said, focusing on the negatives can cause users to avoid
the application unnecessarily. It can be argued that the most
important thing is to be transparent and capable of protecting
the user’s data should the application collect it.

3) FEEDBACK AND GUIDANCE
Currently, for the vast majority of people, XR (let alone AR)
is a completely new experience. Users need to be provided
with appropriate guidance and feedback to navigate an AR
experience. To avoid overloading the user with information,
make the tutorial a part of the main experience. Show how to
perform tasks as they come up instead of teaching everything
at once. This will make it easier to link instructions and tips
to the task at hand [347]. Avoid using technical terms like
registration and tracking to be approachable to new users.
Instead, use friendly, common, and conversational terms that
most people will understand [135]. See Table 9 for some
examples of how to provide technical information in a more
approachable fashion.

The first step in an experience would be registration.
To scan the environment properly, it may be necessary to
show the users how to move the device, preferably with
visual aids like animations [132], [135], [347]. When trying

to coach or guide the user, hide unnecessary UI. This will
help the user focus on the instructions [135]. When a surface
has been detected, provide visual confirmation to the user
and tell them what to do next. Avoid highlighting multiple
surfaces at once. Only highlight the surface that the user is
viewing or pointing at. If multiple surfaces exist, ensure they
are visually distinct [132]. When tracking is lost, and the
system needs to regain its bearings, it undergoes a process
called ‘‘relocalization’’. Like registration, guide the users
back to their original position and orientation when trying to
relocalize a position [135]. Libraries and toolkits may provide
pre-made assets for guiding the user through registration,
avoiding the need for custom assets or to build assets from
scratch [135].
Once the experience begins, make it easy to spot interactive

objects by using visual highlights like glowing outlines.
This can also prove useful in scenarios with multiple virtual
objects to let the user know their selection [330]. As discussed
before, visual and audio cues can be used to guide users to
offscreen content. They can also be used to let the user know
if they are looking the wrong way, like inside an object or
in the wrong direction [334]. If there is more information
that the user can know at any point, let them know it is
available [135].

Since AR is primarily a visual experience, try to visually
guide and provide feedback. Providing text instructions, espe-
cially for tacit information on motion, can take users out of
the experience andmake instructions hard to remember [347].
It is easier to understand and remember motion by seeing it
than by reading about it. Similarly, it is better to use 3D hints
for actions in 3D space than 2D hints. Only revert to 2D if
people are not able to deal with the 3D context well [135].
For example, instead of providing text instructions for the
direction of rotating an object, show the arrows in 3D. Since
it is a visual medium, animation is also useful for providing
feedback and guidance in AR. Try to think of it as a necessity
instead of a luxury [333]. Visual cues can also leverage traits
of the HVS to their advantage. For instance, the eyes are
naturally drawn to motion and high-contrast areas. This can
be used to control the user’s attention [324]. Audio [135],
[328], [333] as well as haptic cues [135] are alternatives to
visual cues. Try not to go overboard when guiding the user’s
gaze to avoid overwhelming and limiting the users [324],
[328].

4) ERRORS AND ISSUES
When the application has errors or issues, communicate what
went wrong and proceed to the resolution [132], [135], [347].
Focus on the resolution and avoid blaming the user [347].
Walk the user through correcting the issue and proceed
one step at a time by giving simple and short tasks [132].
Use straightforward and friendly language when offering
suggestions [135]. Fixes obvious to the developer will not
be obvious to a naive user. Remember to use approachable
terminology (see Table 9). If the errors or issues that pop up

109058 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

TABLE 9. Examples of approachable terminology [135].

during an experience cannot be fixed, give them away to reset
the experience [135], [138]. This is particularly applicable to
issues relating to tracking [135]. Tracking issues can also lead
to flickering or other unwanted visual effects. It is best to hide
virtual objects in such cases until the system can properly
resolve tracking [135]. Last but not least, some issues just
cannot be resolved. For instance, sometimes, there is no
remaining fallback for input. Even if there is no resolution,
it is important to let users know about it [34].

XV. CURRENT CHALLENGES IN AR
Except for FOV, we do not list technological challenges
in this section, even though they most certainly exist.
With this paper covering multiple technologies without
enough depth, we cannot do them all justice. Furthermore,
technological challenges are ever-present, a point we address
under ‘‘Value’’.

A. VALUE
For AR to have mass adoption, it needs to have value. While
value is subjective, we anticipate at least four factors that will
affect it: function, usability, price, and appeal. These factors
are not mutually exclusive and can influence each other.
Function refers to what task the AR solution accomplishes.
Advancements in technology can always improve the stated
factors. However, there will always be technological chal-
lenges because there will always be constraints to overcome.
One can always wait for better technology that arises from
resolving these challenges. However, there is no guarantee
that a complete solution will achieve the resolution. It could
always be a tradeoff, e.g., remote computing for AR. While
improvements are always appreciated, good software is
needed more, particularly applications that provide value to
the user [353]. Reference [35] reflects this sentiment, citing
‘‘Killer MAR Applications’’ as a challenge to be addressed.
We address this point ourselves with the ‘‘Litmus Test’’.
By focusing on applications, we focus on function and appeal
and, to a degree, surpass issueswith usability and price arising
from technology. That being said, there is one additional
task beyond just the application: marketing. It is necessary
to make users aware that such value exists. If they do not
know, then it might as well not exist. Marketing can also
play into appeal. Immersive media as a concept has already
existed even as far back as 2017 with 360◦ photos [353].
But it is Apple with their Apple Vision Pro claiming to be
‘‘revolutionary’’ by providing immersive media, and thus,
will be the ones seen as ‘‘revolutionaries.’’

B. FOV
Improvements in FOV can be a huge boon for AR. Generally,
‘‘the larger the FOV, the more immersive the AR experience
will be.’’ Reference [31] With a small FOV, even small eye or
head movements can make the digital content disappear from
view. Thus, a small FOV can easily affect the immersion and
realism of the experience as the difference between real and
virtual becomes too obvious. This may also force the user
into unnatural movement patterns as they struggle to keep the
digital content in view. It is for this reason we have mentioned
FOV over other technological challenges. We believe that
with the current state of technology, in general, increasing
the FOV will provide the biggest increase in AR’s value by
improving its usability.Many commercial AR solutions today
do not come close to the typical horizontal FOV of human
vision, which is 180◦-200◦ when combining both eyes. With
handhelds and other mobile devices with screens, the FOV
is limited to the size of their screens, which tend to be small
to begin with. With HMDs, OST HMDs, in particular, have
much lower FOV than their VST counterparts. Finally, SAR
solutions would be limited by their ability to project onto
the environment. While strides are being made to provide
better FOVs, the solutions must remain practical for mass
adoption [31].

C. PRIVACY
Privacy has been identified as a challenge for AR before [35],
and it will be a greater one as AR becomes more widely
adopted. The capabilities of AR systems make them (in
theory) the ideal platform for mass surveillance. Most,
if not all, AR systems will have a camera for registration.
Therefore, AR applications require camera access at the
very minimum to be functional. Many AR systems also
incorporate microphones. This privilege can be abused to
view the user’s surroundings or listen to their conversations.
Since these concerns were raised for other applications well
before AR, obtaining camera and microphone access on
phones already requires asking the user for their permission.
The general trend in AR is to have a system capable of
understanding its environment better. This can be seen in the
advanced AR software features listed previously. However,
these advanced features can encroach further into the user’s
privacy. Location tracking and face tracking can be abused
to track the user. Eye tracking can be used to compromise
biometric information. Spatial mapping can be used to map
the user’s surroundings. Advancements in AI for features like
scene semantics can be utilized to correctly break down every

VOLUME 12, 2024 109059

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

item in a user’s environment, destroying privacy by providing
a complete picture/breakdown of their private lives. Remote
computing will put user data into third-party hands, thus
making a third party responsible for the privacy and security
of the data.

D. XR FRAGMENTATION
We have already discussed XR fragmentation and its
solutions under AR standards. However, we argue that XR
fragmentation is not limited to the technology. Standardiza-
tion is needed on other fronts. A common issue we would
encounter would come down to terminology and definitions.
Within the industry, it is not uncommon to consider MR
and AR to be distinct despite AR falling under MR in the
Reality-Virtuality Continuum. The naming of the various AR
features can also be conflicting. Scene understanding, spatial
mapping, scene mapping, and scene semantics are all terms
thrown around that can mean different things under different
libraries. Another example would be environment probes,
which may or may not include light estimation depending
on the context. Similar effects can also be seen in academic
work. Reference [31] makes the argument that characteristics
of AR alone do not lead to an AR experience, specifically
stating the real and virtual need to be indistinguishable.While
visual coherence is needed for a good experience, being
indistinguishable is not necessary for AR. Standardization
can help resolve such confusion and keep AR moving
forward.

XVI. FUTURE STEPS
The motivation of this paper was to provide a com-
prehensive introduction. However, owing to constraints,
we had to sacrifice certain elements from the original
scope of this paper. In this section, we discuss some of
our shortcomings and, by extension, future steps for this
research.

One glaring omission in this paper is any mention of digital
twins. It is important to AR as an enhancing technology, and
needs to be discussed in further detail.

Despite being an introduction, we lack a section on AR
history. AR history needs to be identified and archived.
Considering the players in this industry, it will be an arduous
task. But it is important to understand why things are the way
they are, e.g., the various variants of ARToolKit. We also
wanted to include a survey of AR applications. Typically,
applications for AR would be identified and grouped
according to various fields, such as medicine or education.
However, such surveys never go into the project’s imple-
mentation and techniques. They would also limit themselves
to academic papers when it comes to applications. AR is
now accessible to the general public, and we must expand
beyond academia to find the best applications. We believe
a survey of applications beyond academia and a focus on
implementation would be more useful because it would better
identify AR applications that showcase the potential of the
technology.

Our paper focuses primarily on visual AR, specifically for
handhelds and HMDs. Our information is limited for SAR
and AR for other senses. In addition, the list of hardware and
software can be expanded. For example, the Varjo XR-4 is
one HMDwe are aware of but could not include in this paper.
The section on hardware and software could also be expanded
with hands-on reviews. This can provide comparisons on the
viability of each solution.

In the section for design guidelines, the information was
spread across multiple sources and even across different
mediums (videos, apps, etc). Some sources are provided
on a best-effort basis. Furthermore, the information in the
guidelines section often gets split between handhelds and
HMDs. It may be possible to combine the knowledge to
create universal guidelines such as universal interaction
models. The guidelines could also be expanded with
a basic but more comprehensive introduction to 3D or
video-game development, specifically for AR. While we
have already covered a few topics under 3D content
guidelines, we believe it is important to showcase some
basics of 3D to understand better what can be achieved
with AR.

Finally, the long-term health effects of AR is another
interesting topic that needs to be explored. We have gone
from our parents telling us not to be too close to the TV to
strapping displays right next to our eyes. Regardless of the
veracity of such claims, consequences to health should be an
important factor in the long-term success of a technology.
We could not find any mention of health effects in a
survey on AR.

XVII. CONCLUSION
In this paper, we aimed to provide a comprehensive
introduction and start to the field of AR. We have provided
an introduction to AR and covered the essential technologies
that enable AR. We also covered additional technologies that
could enhance AR further. This was followed by a discussion
on commercially available AR hardware, in which we
covered 18 HMDs (including those under ‘‘Other Devices’’).
The seven primary HMDs and the five AR Glasses have
Tables with their specifications for easy comparison (see
Appendix). This was followed by a section on AR software
features, where we provided descriptions and illustrations
for features found in AR software. In the discussion on
AR software, we have covered 26 software solutions for
development, with an additional three listed by name, for a
total of 29 software. Feature matrices were provided for easy
comparison between 13 of the 29 software. We then covered
guidelines for AR development, covering the complete flow
of developing an AR application. Finally, we discussed
current challenges in AR and future steps that could be taken
to improve this paper.

APPENDIX. TABLES
Tables 10 and 11 for AR HMDs and AR Glasses,
respectively.

109060 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

TA
B

LE
10

.
D

ev
ic

e
sp

ec
if

ic
at

io
ns

fo
r

A
R

H
M

D
s.

VOLUME 12, 2024 109061

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

TA
B

LE
11

.
D

ev
ic

e
sp

ec
if

ic
at

io
ns

fo
r

A
R

gl
as

se
s.

109062 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

REFERENCES
[1] Y. Asham, M. H. Bakr, and A. Emadi, ‘‘Applications of augmented

and virtual reality in electrical engineering education: A review,’’ IEEE
Access, vol. 11, pp. 134717–134738, 2023.

[2] M.-B. Ibáñez and C. Delgado-Kloos, ‘‘Augmented reality for STEM
learning: A systematic review,’’ Comput. Educ., vol. 123, pp. 109–123,
Aug. 2018.

[3] N. F. Saidin, N. D. Abd Halim, and N. Yahaya, ‘‘A review of research on
augmented reality in education: Advantages and applications,’’ Int. Educ.
Stud., vol. 8, no. 13, pp. 1–8, Jun. 2015.

[4] E. Z. Barsom, M. Graafland, and M. P. Schijven, ‘‘Systematic
review on the effectiveness of augmented reality applications in
medical training,’’ Surgical Endoscopy, vol. 30, pp. 4174–4183,
Sep. 2016.

[5] M. Eckert, J. S. Volmerg, and C. M. Friedrich, ‘‘Augmented reality in
medicine: Systematic and bibliographic review,’’ JMIR mHealth uHealth,
vol. 7, no. 4, Apr. 2019, Art. no. e10967.

[6] H. A. A. M. Abas, F. B. A. Aziz, and R. Hasan, ‘‘Review of augmented
reality applications in manufacturing engineering,’’ J. Adv. Res. Comput.
Appl., vol. 5, pp. 11–16, Aug. 2016.

[7] S. Agarwal, ‘‘Review on application of augmented reality in civil
engineering,’’ in Proc. Int. Conf. Inter Disciplinary Res. Eng. Technol.,
vol. 68, 2016, p. 71.

[8] W. Jia, J. Zhu, L. Xie, and C. Yu, ‘‘Review of the research on augmented
reality maintenance assistant system of mechanical system,’’ J. Phys.
Conf. Ser., vol. 1748, no. 6, Jan. 2021, Art. no. 062041.

[9] Z. Makhataeva and H. Varol, ‘‘Augmented reality for robotics: A review,’’
Robotics, vol. 9, no. 2, p. 21, Apr. 2020.

[10] M. E. de Oliveira and C. G. Correa, ‘‘Virtual reality and augmented reality
applications in agriculture: A literature review,’’ in Proc. 22nd Symp.
Virtual Augmented Reality (SVR), Nov. 2020, pp. 1–9.

[11] M. A. Bretos, S. Ibáñez-Sánchez, and C. Orus, ‘‘Applying virtual
reality and augmented reality to the tourism experience: A comparative
literature review,’’ Spanish J. Marketing, vol. 28, no. 3, pp. 287–309,
Jul. 2024.

[12] Y. Zhou, J. Chen, andM.Wang, ‘‘Ameta-analytic review on incorporating
virtual and augmented reality in museum learning,’’ Educ. Res. Rev.,
vol. 36, Jun. 2022, Art. no. 100454.

[13] N. S. Matthie, N. A. Giordano, C. M. Jenerette, G. S. Magwood,
S. L. Leslie, E. E. Northey, C. I. Webster, and S. Sil, ‘‘Use and efficacy
of virtual, augmented, or mixed reality technology for chronic pain:
A systematic review,’’ Pain Manage., vol. 12, no. 7, pp. 859–878,
Oct. 2022.

[14] J. G. Kovoor, A. K. Gupta, and M. A. Gladman, ‘‘Validity
and effectiveness of augmented reality in surgical education:
A systematic review,’’ Surgery, vol. 170, no. 1, pp. 88–98,
Jul. 2021.

[15] K. A. Bölek, G. De Jong, and D. Henssen, ‘‘The effectiveness of the use of
augmented reality in anatomy education: A systematic review and meta-
analysis,’’ Sci. Rep., vol. 11, no. 1, p. 15292, Jul. 2021.

[16] R. Z. Ramli, W. Z. Wan Husin, A. M. S. Elaklouk, and N. S. Ashaari,
‘‘Augmented reality: A systematic review between usability and
learning experience,’’ Interact. Learn. Environments, vol. 1, pp. 1–17,
Sep. 2023.

[17] A. Dey, M. Billinghurst, R. W. Lindeman, and J. E. Swan, ‘‘A systematic
review of 10 years of augmented reality usability studies: 2005 to 2014,’’
Frontiers Robot. AI, vol. 5, p. 37, Apr. 2018.

[18] K. C. Lim, A. Selamat, R. A. Alias, O. Krejcar, and H. Fujita,
‘‘Usability measures in mobile-based augmented reality learning appli-
cations: A systematic review,’’ Appl. Sci., vol. 9, no. 13, p. 2718,
Jul. 2019.

[19] M. D. Gómez-Rios, M. Paredes-Velasco, R. D. Hernández-Beleño, and
J. A. Fuentes-Pinargote, ‘‘Analysis of emotions in the use of augmented
reality technologies in education: A systematic review,’’ Comput. Appl.
Eng. Educ., vol. 31, no. 1, pp. 216–234, Jan. 2023.

[20] M. Akçayır and G. Akçayır, ‘‘Advantages and challenges associated with
augmented reality for education: A systematic review of the literature,’’
Educ. Res. Rev., vol. 20, pp. 1–11, Feb. 2017.

[21] D. G. Molina Vargas, K. K. Vijayan, and O. J. Mork, ‘‘Augmented
reality for future research opportunities and challenges in the shipbuilding
industry: A literature review,’’ Proc. Manuf., vol. 45, pp. 497–503,
Oct. 2020.

[22] E. Coronado, S. Itadera, and I. G. Ramirez-Alpizar, ‘‘Integrating
virtual, mixed, and augmented reality to human–robot interaction
applications using game engines: A brief review of accessible soft-
ware tools and frameworks,’’ Appl. Sci., vol. 13, no. 3, p. 1292,
Jan. 2023.

[23] M. Vásquez-Carbonell, ‘‘A systematic literature review of augmented
reality in engineering education : Hardware, software, student motivation
& development recommendations,’’ Digit. Educ. Rev., vol. 1, no. 41,
pp. 249–267, Jul. 2022.

[24] R. T. Azuma, ‘‘A survey of augmented reality,’’ Presence, Teleoperators
Virtual Environ., vol. 6, no. 4, pp. 355–385, 1997.

[25] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and
M. Ivkovic, ‘‘Augmented reality technologies, systems and applications,’’
Multimedia Tools Appl., vol. 51, no. 1, pp. 341–377, 2011.

[26] C. Bermejo and P. Hui, ‘‘A survey on haptic technologies for mobile
augmented reality,’’ ACM Comput. Surveys, vol. 54, no. 9, pp. 1–35,
Dec. 2022.

[27] D. Rumiłski, ‘‘An experimental study of spatial sound usefulness in
searching and navigating through AR environments,’’ Virtual Reality,
vol. 19, nos. 3–4, pp. 223–233, Nov. 2015.

[28] P. Milgram and F. Kishino, ‘‘A taxonomy of mixed reality visual-
displays,’’ IEICE Trans. Inf. Syst., vol. 77, no. 12, pp. 1321–1329, 1994.

[29] U. Neumann and S. You, ‘‘Natural feature tracking for augmented
reality,’’ IEEE Trans. Multimedia, vol. 1, no. 1, pp. 53–64,
Mar. 1999.

[30] E. Marchand, H. Uchiyama, and F. Spindler, ‘‘Pose estimation for
augmented reality: A hands-on survey,’’ IEEE Trans. Vis. Comput.
Graphics, vol. 22, no. 12, pp. 2633–2651, Dec. 2016.

[31] Y. Itoh, T. Langlotz, J. Sutton, and A. Plopski, ‘‘Towards indistin-
guishable augmented reality: A survey on optical see-through head-
mounted displays,’’ ACM Comput. Surveys, vol. 54, no. 6, pp. 1–36,
Jul. 2022.

[32] A. Samini, K. L. Palmerius, and P. Ljung, ‘‘A review of current, complete
augmented reality solutions,’’ in Proc. Int. Conf. Cyberworlds (CW),
Sep. 2021, pp. 49–56.

[33] A. Ahmad, C. Migniot, and A. Dipanda, ‘‘Hand pose estimation and
tracking in real and virtual interaction: A review,’’ Image Vis. Comput.,
vol. 89, pp. 35–49, Sep. 2019.

[34] Eye Tracking Overview—Mixed Reality | Microsoft Learn. Accessed:
Aug. 4, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/design/eye-tracking

[35] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, ‘‘Mobile augmented
reality survey: From where we are to where we go,’’ IEEE Access, vol. 5,
pp. 6917–6950, 2017.

[36] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila,
‘‘A survey on mobile augmented reality with 5G mobile edge
computing: Architectures, applications, and technical aspects,’’ IEEE
Commun. Surveys Tuts., vol. 23, no. 2, pp. 1160–1192, 2nd Quart.,
2021.

[37] Touch Haptic Device. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.3dsystems.com/haptics-devices/touch

[38] Desktop 6D—Haption SA. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.haption.com/en/products-en/virtuose-6d-desktop-en.html

[39] Novint’s Falcon Haptic Device—Hapticshouse.com. Accessed:
Apr. 18, 2023. [Online]. Available: https://hapticshouse.
com/pages/novints-falcon-haptic-device

[40] Novint Technologies–Crunchbase Company Profile &
Funding. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.crunchbase.com/organization/novint-technologies

[41] Collections—Hapticshouse.com. Accessed: Apr. 18, 2023. [Online].
Available: https://hapticshouse.com/collections

[42] Senso Devices. Accessed: Apr. 18, 2023. [Online]. Available:
https://senso.me/

[43] Buy Next Generation Full Body Haptic Suit–Bhaptics Tactsuit. Accessed:
Apr. 18, 2023. [Online]. Available: https://www.bhaptics.com/shop

[44] Haptic Gloves for Virtual Reality and Robotics | Haptx. Accessed:
Apr. 18, 2023. [Online]. Available: https://haptx.com/

[45] Haptics | Ultraleap. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.ultraleap.com/haptics/

[46] (2021). Q&A With Lofelt, a Leader in Hd Haptics.
Accessed: Apr. 18, 2023. [Online]. Available: https://www.
qualcomm.com/news/onq/2021/05/qa-lofelt-leader-hd-haptics

VOLUME 12, 2024 109063

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

[47] Audio to Haptic—How Interhaptics Works?. Accessed:
Apr. 18, 2023. [Online]. Available: https://www.interhaptics.
com/tech/how-interhaptics-works/

[48] Verifying Device Support and User Permission. Accessed: Apr. 18, 2023.
[Online]. Available: https://developer.apple.com/documentation/arkit/
verifying_device_support_and_user_permission

[49] Arcore Supported Devices | Google for Developers. Accessed:
Apr. 18, 2023. [Online]. Available: https://developers.
google.com/ar/devices

[50] What is a Hologram?—Mixed Reality | Microsoft Learn. Accessed:
Mar. 27, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/discover/hologram

[51] Microsoft Hololens 2 Vs Microsoft Hololens (comparison).
Accessed: Mar. 27, 2023. [Online]. Available: https://vr-
compare.com/compare?h1=EkSDYv0cW&h2=tSCQxsAA

[52] Hololens 2. Accessed: Mar. 27, 2023. [Online]. Available:
https://www.microsoft.com/en-us/hololens/hardware

[53] (2021). Hololens 2 Display Troubleshooting. Accessed:
Mar. 27, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/hololens/hololens2-display

[54] (2021). Hologram Stability—Mixed Reality. Accessed: Mar. 27, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/windows/mixed-
reality/develop/advanced-concepts/hologram-stability

[55] (2021). Get Your Hololens 2 Ready to Use. Accessed:
Mar. 28, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/hololens/hololens2-setup

[56] Magic Leap 2. Accessed: Mar. 28, 2023. [Online]. Available:
https://www.magicleap.com/magic-leap-2

[57] Magic Leap 2 Vs Magic Leap 1 (comparison). Accessed:
Mar. 28, 2023. [Online]. Available: https://vr-compare.
com/compare?h1=mt3AEYJu5&h2=1N3k3S4MN

[58] (2023). Comfort and Content Placement. Accessed:
Mar. 28, 2023. [Online]. Available: https://developer-docs.
magicleap.cloud/docs/guides/best-practices/comfort-content-placement

[59] (2023). Spatial Mapping. Accessed: Mar. 28, 2023. [Online]. Available:
https://developer-docs.magicleap.cloud/docs/guides/features/spatial-
mapping

[60] (2023). Magic Leap 2 Devices. Accessed: Mar. 28, 2023. [Online].
Available: https://www.magicleap.com/ml2-devices

[61] (2023). Hand Tracking. Accessed: Mar. 29, 2023. [Online].
Available: https://developer-docs.magicleap.cloud/docs/api-ref/api/
Modules/group_hand_tracking

[62] (2023). Hand Tracking Overview. Accessed:
Mar. 29, 2023. [Online]. Available: https://developer-
docs.magicleap.cloud/docs/guides/unity/input/hand-tracking/unity-
hand-tracking-api

[63] Where To Buy. Accessed: Mar. 30, 2023. [Online]. Available:
https://www.magicleap.com/where-to-buy

[64] (2022). Magic Leap 2: The Most Immersive Enterprise
Ar Device. Accessed: Mar. 29, 2023. [Online]. Available:
https://www.magicleap.com/hubfs/docs/Magic-Leap-2_Product-Spec-
Sales-Sheet_09.30.2022_Version-English-4.0.pdf?hsLang=en

[65] Choosing a Development Environment | Magicleap Developer
Documentation. Accessed: Mar. 30, 2023. [Online]. Available:
https://developer-docs.magicleap.cloud/docs/guides/getting-
started/developer-environment/

[66] Openxr Setup | Magicleap Developer Documentation.
Accessed: Mar. 30, 2023. [Online]. Available: https://developer-
docs.magicleap.cloud/docs/guides/native/native-openxr-setup/

[67] Webxr | Magicleap Developer Documentation. Accessed:
Mar. 30, 2023. [Online]. Available: https://developer-
docs.magicleap.cloud/docs/guides/features/webxr-viewer/

[68] Unreal Engine 5 SDK Overview | Magicleap Developer Documenta-
tion. Accessed: Mar. 30, 2023. [Online]. Available: https://developer-
docs.magicleap.cloud/docs/guides/unreal/unreal-overview/

[69] Third-Party Resources | Magicleap Developer Documentation.
Accessed: Mar. 30, 2023. [Online]. Available: https://developer-
docs.magicleap.cloud/docs/guides/third-party/third-party-resources/

[70] Application Simulator | Magicleap Developer Documentation.
Accessed: Mar. 30, 2023. [Online]. Available: https://developer-
docs.magicleap.cloud/docs/guides/developer-tools/app-sim/app-sim/

[71] Ar Cloud | Magicleap Developer Documentation. Accessed:
Mar. 30, 2023. [Online]. Available: https://developer-
docs.magicleap.cloud/docs/guides/arcloud/

[72] Mixed Reality With Passthrough. Accessed: Apr. 3, 2023. [Online]. Avail-
able: https://developer.oculus.com/blog/mixed-reality-with-passthrough/

[73] Meta Quest Pro Vs Oculus Quest 2 (comparison). Accessed: Apr. 3, 2023.
[Online]. Available: https://vr-compare.com/compare?h1=-MpSqv-
rB&h2=pDTZ02PkT

[74] Tech Specs. Accessed: Apr. 3, 2023. [Online]. Available:
https://www.meta.com/quest/quest-pro/tech-specs/

[75] Getting Started With Hand Tracking on Meta Quest
Headsets. Accessed: Apr. 4, 2023. [Online]. Available:
https://www.meta.com/help/quest/articles/headsets-and-
accessories/controllers-and-hand-tracking/hand-tracking-quest-2/

[76] Adjust the Fit and Feel of Your Meta Quest Pro. Accessed: Apr. 4, 2023.
[Online]. Available: https://www.meta.com/help/quest/articles/getting-
started/getting-started-with-quest-pro/headset-fit/

[77] Meta Quest Pro Full Light Blocker. Accessed: Apr. 4, 2023. [Online].
Available: https://www.meta.com/quest/accessories/quest-pro-full-light-
blocker/

[78] Develop With Your Preferred Game Engine. Accessed: Apr. 5, 2023.
[Online]. Available: https://developer.oculus.com/get-started-platform/

[79] Meta Quest 3: New Mixed Reality Vr Headset—Shop Bundles
| Meta Store. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.meta.com/quest/quest-3/

[80] Compare Quest Vr Headsets: Quest 2 Vs. Quest Pro Vs. Quest
3 | Meta Store. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.meta.com/quest/compare/

[81] Snapdragon XR2 GEN2 Platform | Qualcomm. Accessed:
Apr. 18, 2023. [Online]. Available: https://www.
qualcomm.com/products/mobile/snapdragon/xr-vr-ar/snapdragon-
xr2-gen-2-platform

[82] Zenni Vr Prescription Lenses for Meta Quest 3 | Meta Store.
Accessed: Apr. 18, 2023. [Online]. Available: https://www.
meta.com/help/quest/articles/getting-started/getting-started-with-quest-
3/zenni-vr-prescription-lenses/

[83] Start Building With Meta Quest 3. Accessed: Apr. 18, 2023. [Online].
Available: https://developer.oculus.com/blog/start-developing-Meta-
Quest-3-tips-performance-mixed-reality/

[84] Vive XR Elite: Specs. Accessed: Apr. 5, 2023. [Online]. Available:
https://www.vive.com/mea-en/product/vive-xr-elite/specs/

[85] Vive XR Elite: Overview. Accessed: Apr. 5, 2023. [Online]. Available:
https://www.vive.com/mea-en/product/vive-xr-elite/overview/

[86] HTC Vive XR Elite. Accessed: Apr. 5, 2023. [Online]. Available:
https://vr-compare.com/headset/htcvivexrelite

[87] About Vive Wave. Accessed: Apr. 5, 2023. [Online]. Available:
https://hub.vive.com/storage/docs/en-us/AboutViveWave.html

[88] Vive Wave: Openxr. Accessed: Apr. 5, 2023. [Online]. Available:
https://developer.vive.com/resources/openxr/

[89] Conformant Products. Accessed: Apr. 6, 2023. [Online]. Available:
https://www.khronos.org/conformance/adopters/conformant-
products/openxr

[90] Varjo XR-3—The Industry’s Highest Resolution Mixed Reality
Headset | Varjo. Accessed: Apr. 6, 2023. [Online]. Available:
https://varjo.com/products/varjo-xr-3/

[91] Varjo Launches XR-3 and VR-3 Headsets With Next Generation
Hand Tracking. Accessed: Apr. 6, 2023. [Online]. Available:
https://www.ultraleap.com/company/news/press-release/varjo-xr3-
vr3-hand-tracking/

[92] System Requirements for XR-3 and VR-3. Accessed: Apr. 6, 2023.
[Online]. Available: https://varjo.com/use-center/get-started/varjo-
headsets/system-requirements/xr-3-vr-3/

[93] Varjo-Ready Software. Accessed: Apr. 7, 2023. [Online]. Available:
https://varjo.com/varjo-ready-software/

[94] Varjo Native SDK. Accessed: Apr. 7, 2023. [Online]. Available:
https://developer.varjo.com/docs/native/varjo-native-sdk

[95] Using Varjo Base. Accessed: Apr. 7, 2023. [Online]. Available:
https://varjo.com/use-center/get-to-know-your-headset/using-varjo-base/

[96] Varjo Workspace. Accessed: Apr. 7, 2023. [Online]. Available:
https://varjo.com/use-center/get-to-know-your-headset/varjo-workspace/

[97] Reality Cloud. Accessed: Apr. 7, 2023. [Online]. Available:
https://varjo.com/products/realitycloud/

109064 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

[98] Most Advanced XR and VR Software With Varjo Subscriptions
for XR-3 and VR-3. Accessed: Apr. 7, 2023. [Online]. Available:
https://varjo.com/products/subscriptions/

[99] Introducing the XTAL-3—The World’s Most Advanced Virtual & Mixed
Reality Simulation Headset. Accessed: Apr. 7, 2023. [Online]. Available:
https://vrgineers.com/introducing-the-xtal-3/

[100] XTAL 3 Mixed Reality. Accessed: Apr. 7, 2023. [Online]. Available:
https://www.xtal.pro/product/xtal-3-mr

[101] Xtal 3—Mixed Reality | Vrgineers. Accessed: Apr. 7, 2023. [Online].
Available: https://vrgineers.com/xtal-3-mixed-reality/

[102] VRG C++ API. Accessed: Apr. 7, 2023. [Online]. Available:
https://portal.vrgineers.com/user-guide/software/vrg-c-api/

[103] Xtal Goes Wireless—The First Professional Wireless Headset is Here.
Accessed: Apr. 7, 2023. [Online]. Available: https://vrgineers.com/press-
release/xtal-goes-wireless-the-first-professional-wireless-headset-is-
here/

[104] Sunset FAQ. Accessed: Apr. 13, 2023. [Online]. Available:
https://lightform.notion.site/Sunset-FAQ-ec66702589a14c12b539
bfa10061cba9

[105] LF2+—lightform. Accessed: Apr. 18, 2023. [Online]. Available:
https://lightform.com/lf2plus

[106] LFC—Lightform. Accessed: Apr. 18, 2023. [Online]. Available:
https://lightform.com/lfc

[107] Creator—Lightform. Accessed: Apr. 18, 2023. [Online]. Available:
https://lightform.com/creator

[108] Audio Reactivity Overview. Accessed: Apr. 18, 2023. [Online].
Available: https://lightform.notion.site/Audio-Reactivity-Overview-
25fce695173a415f8b1ad3369fdc533c

[109] OSC Controls. Accessed: Apr. 18, 2023. [Online]. Available:
https://lightform.notion.site/OSC-Controls-4e455eede2a3406
abb3986dcd2e1108c

[110] Interactive Controllers With Touchosc. Accessed: Apr. 18, 2023.
[Online]. Available: https://lightform.notion.site/Interactive-Controllers-
with-TouchOSC-7f049f5493fb429894c943944d2a9c6b

[111] Send OSC Messages With Microsoft Kinect. Accessed: Apr. 18, 2023.
[Online]. Available: https://lightform.notion.site/Send-OSC-Messages-
with-Microsoft-Kinect-96104c5cfc184f80a996cfd9190de76e

[112] Project LFX—Lightform. Accessed: Apr. 18, 2023. [Online]. Available:
https://lightform.com/lfx

[113] Design Principles—Project LFX—Lightform. Accessed: Apr. 18, 2023.
[Online]. Available: https://lightform.com/lfx/design-principles

[114] Madmapper Software. Accessed: Apr. 18, 2023. [Online]. Available:
https://madmapper.com/madmapper/features

[115] Azure Kinect DK—Develop AI Models | Microsoft Azure. Accessed:
Apr. 18, 2023. [Online]. Available: https://azure.microsoft.com/en-
us/products/Kinect-dk

[116] Is the Hololens 3 Coming Next Year?. Accessed: Apr. 13, 2023. [Online].
Available: https://www.xrtoday.com/mixed-reality/is-the-hololens-3-
coming-next-year/

[117] (2023). Introducing Apple Vision Pro: Apple’s First Spatial
Computer—Apple. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.apple.com/newsroom/2023/06/introducing-apple-vision-
pro/

[118] Apple Vision Pro—Apple. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.apple.com/apple-vision-pro/

[119] Holokitx. Accessed: Apr. 13, 2023. [Online]. Available:
https://holokit.io/pages/holokit-x

[120] Cardboard | Google VR | Google Developers. Accessed:
Apr. 13, 2023. [Online]. Available: https://developers.google.
com/vr/discover/cardboard

[121] Overview—Holokit Docs. Accessed: Apr. 13, 2023. [Online]. Available:
https://docs.holokit.io/for-developers/holokit-unity-sdk/overview

[122] Holokit: Mixed Reality for Everyone. Accessed: Apr. 13, 2023. [Online].
Available: https://docubase.mit.edu/tools/holokit/

[123] Zapbox:Mixed Reality for Everyone By Zappar. Accessed: Apr. 13, 2023.
[Online]. Available: https://www.zappar.com/zapbox/

[124] (2011). Zappar: World-Leading Augmented Reality Solutions Since.
Accessed: Apr. 13, 2023. [Online]. Available: https://www.zappar.com/

[125] Zapbox: Mixed Reality for Everyone by Zappar. Accessed: Apr. 13, 2023.
[Online]. Available: https://www.zappar.com/zapbox/unity/

[126] Monocle. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.brilliantmonocle.com/monocle

[127] Monocle | Brilliant Documentation. Accessed: Apr. 13, 2023. [Online].
Available: https://docs.brilliantmonocle.com/monocle/monocle/

[128] Hands-on: Mojo Vision’s Smart Contact Lens is Further Along Than
You Might Think. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.roadtovr.com/mojo-vision-smart-contact-lens-ar-hands-on/

[129] A New Direction for Mojo Vision’s Groundbreaking
Technology. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.mojo.vision/news/a-new-direction

[130] The Differences Between 3dof and 6dof, and Why—IEEE
Digital Reality. Accessed: Apr. 18, 2023. [Online]. Available:
https://digitalreality.ieee.org/publications/degrees-of-freedom

[131] Fundamental Concepts | Arcore | Google Developers.
Accessed: Apr. 18, 2023. [Online]. Available:
https://developers.google.com/ar/develop/fundamentals

[132] Content Placement | Arcore | Google for Developers.
Accessed: Apr. 18, 2023. [Online]. Available:
https://developers.google.com/ar/design/content/content-placement

[133] Hit-Test/Hit-Testing-Explainer. Accessed: Apr. 18, 2023. [Online]. Avail-
able: https://github.com/immersive-web/hit-test/blob/master/hit-testing-
explainer.md

[134] M. Fiala, ‘‘ARTag, a fiducial marker system using digital techniques,’’
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
Aug. 2005, pp. 590–596.

[135] Augmented Reality | Apple Developer Documentation.
Accessed: Apr. 18, 2023. [Online]. Available: https://developer.
apple.com/design/human-interface-guidelines/augmented-reality

[136] Coordinate Systems—Mixed Reality | Microsoft Learn. Accessed:
Aug. 4, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/design/coordinate-systems

[137] Depth Adds Realism. Accessed: Apr. 18, 2023. [Online]. Available:
https://developers.google.com/ar/develop/depth

[138] Interaction (UX) | Arcore | Google for Developers. Accessed:
Apr. 18, 2023. [Online]. Available: https://developers.google.
com/ar/design/interaction/ux

[139] Google. (2020). AR Core Elements. [Online]. Available:
https://play.google.com/store/apps/details/ARCore_Elements?
id=com.google.ar.unity.ddelements&gl=CO

[140] Recording and Playback Introduction. Accessed: Apr. 18, 2023.
[Online]. Available: https://developers.google.com/ar/develop/recording-
and-playback

[141] Openxr Overview—The Khronos Group Inc. Accessed: Jul. 26, 2023.
[Online]. Available: https://www.khronos.org/openxr/

[142] Openxr Ecosystem Update. Accessed: Apr. 18, 2023. [Online]. Avail-
able: https://www.khronos.org/assets/uploads/apis/OpenXR-EcoSystem-
Updat_Jul20.pdf

[143] Openxr Conformance Test Suite. Accessed: Apr. 18, 2023. [Online].
Available: https://github.com/KhronosGroup/OpenXR-CTS

[144] Openxr Loader—Design and Operation (With All Registered
Extensions). Accessed: Apr. 18, 2023. [Online]. Available:
https://registry.khronos.org/OpenXR/specs/1.0/loader.html

[145] Mixed Reality Toolkit 3. Accessed: Apr. 13, 2023. [Online]. Available:
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-
unity/mrtk3-overview/

[146] Immersive Web Developer Home. Accessed: Apr. 18, 2023. [Online].
Available: https://immersiveweb.dev/

[147] About Us | W3C. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.w3.org/about/

[148] Webxr/Explainer. Accessed: Apr. 18, 2023. [Online]. Available:
https://github.com/immersive-web/webxr/blob/master/explainer.md

[149] Webxr Device API—Spatial Tracking | Webxr. Accessed: Apr. 18, 2023.
[Online]. Available: https://immersive-web.github.io/webxr/spatial-
tracking-explainer.html

[150] Webxr Plane Detection Module. Accessed: Apr. 18, 2023. [Online].
Available: https://immersive-web.github.io/real-world-geometry/plane-
detection.html

[151] Webxr Marker Tracking Module. Accessed: Apr. 18, 2023. [Online].
Available: https://immersive-web.github.io/marker-tracking/

[152] Arkit 6—Augmented Reality—Apple Developer. Accessed: Apr. 18, 2023.
[Online]. Available: https://developer.apple.com/augmented-reality/
arkit/

[153] Arconfiguration.Scenereconstruction | Apple Developer Documentation.
Accessed: Apr. 18, 2023. [Online]. Available: https://developer.apple.
com/documentation/arkit/arconfiguration/scenereconstruction

VOLUME 12, 2024 109065

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

[154] Islightestimationenabled | Apple Developer Documentation.
Accessed: Apr. 13, 2023. [Online]. Available: https://
developer.apple.com/documentation/arkit/arconfiguration/2923546-
islightestimationenabled

[155] Environmenttexturing | Apple Developer Documentation. Accessed:
Apr. 18, 2023. [Online]. Available: https://developer.apple.
com/documentation/arkit/arworldtrackingconfiguration/2977509-
environmenttexturing

[156] Framesemantics | Apple Developer Documentation. Accessed:
Apr. 18, 2023. [Online]. Available: https://developer.apple.com/
documentation/arkit/arconfiguration/3089121-framesemantics

[157] Arbodytrackingconfiguration | Apple Developer Documentation.
Accessed: Apr. 18, 2023. [Online]. Available: https://
developer.apple.com/documentation/arkit/arbodytrackingconfiguration

[158] Arkit in Visionos | Apple Developer Documentation.
Accessed: Apr. 18, 2023. [Online]. Available: https://
developer.apple.com/documentation/arkit/arkit_in_visionos

[159] Arfacetrackingconfiguration | Apple Developer Documentation.
Accessed: Apr. 18, 2023. [Online]. Available: https://
developer.apple.com/documentation/arkit/arfacetrackingconfiguration

[160] Arworldtrackingconfiguration | Apple Developer Documentation.
Accessed: Apr. 18, 2023. [Online]. Available: https://developer.apple.
com/documentation/arkit/arworldtrackingconfiguration

[161] Content Anchors | Apple Developer Documentation.
Accessed: Apr. 18, 2023. [Online]. Available:
https://developer.apple.com/documentation/arkit/content_anchors

[162] Arobjectscanningconfiguration | Apple Developer Documentation.
Accessed: Apr. 13, 2023. [Online]. Available: https://developer.apple.
com/documentation/arkit/arobjectscanningconfiguration

[163] Argeotrackingconfiguration | Apple Developer Documentation.
Accessed: Apr. 18, 2023. [Online]. Available: https://
developer.apple.com/documentation/arkit/argeotrackingconfiguration

[164] Configuration Objects. Accessed: Apr. 18, 2023. [Online]. Available:
https://developer.apple.com/documentation/arkit/configuration_objects

[165] Choosing Which Camera Feed To Augment. Accessed:
Apr. 18, 2023. [Online]. Available: https://developer.apple.
com/documentation/arkit/choosing_which_camera_feed_to_augment

[166] Interacting With App Clip Codes in AR. Accessed:
Apr. 18, 2023. [Online]. Available: https://developer.apple.com/
documentation/appclips/interacting_with_appclip_codes_in_ar

[167] Interacting With App Clip Codes in AR. Accessed:
Apr. 18, 2023. [Online]. Available: https://developer.apple.com/
documentation/appclips/creating_appclip_codes

[168] Quick Look Gallery—Augmented Reality—Apple Developer.
Accessed: Apr. 18, 2023. [Online]. Available: https://
developer.apple.com/augmented-reality/quick-look/

[169] Realitykit Overview—Augmented Reality—Apple Developer.
Accessed: Apr. 18, 2023. [Online]. Available: https://
developer.apple.com/augmented-reality/realitykit/

[170] Creating 3D Content With Reality Composer | Apple Developer
Documentation. Accessed: Apr. 18, 2023. [Online]. Available:
https://developer.apple.com/documentation/realitykit/creating-3d-
content-with-reality-composer

[171] Roomplan Overview—Augmented Reality—Apple
Developer. Accessed: Apr. 18, 2023. [Online]. Available:
https://developer.apple.com/augmented-reality/roomplan/

[172] Introducing Reality Converter—Latest News—-Aapple
Developer. Accessed: Apr. 18, 2023. [Online]. Available:
https://developer.apple.com/news/?id=01132020a

[173] Build New Augmented Reality Experiences That Seamlessly Blend the
Digital and Physical Worlds | Arcore | Google Developers. Accessed:
Apr. 18, 2023. [Online]. Available: https://developers.google.com/ar

[174] Place Objects Instantly. Accessed: Apr. 13, 2023. [Online]. Available:
https://developers.google.com/ar/develop/instant-placement

[175] Get the Lighting Right. Accessed: Apr. 18, 2023. [Online]. Available:
https://developers.google.com/ar/develop/lighting-estimation

[176] Smooth Camera Preview With Electronic Image Stabilization (ESI) |
Arcore | Google for Developers. Accessed: Apr. 18, 2023. [Online].
Available: https://developers.google.com/ar/develop/electronic-image-
stabilization

[177] Add Dimension to Images. Accessed: Apr. 18, 2023. [Online]. Available:
https://developers.google.com/ar/develop/augmented-images

[178] Augmented Faces Introduction. Accessed: Apr. 18, 2023. [Online].
Available: https://developers.google.com/ar/develop/augmented-faces

[179] Cloud Anchors Allow Different Users to Share Ar
Experiences. Accessed: Apr. 18, 2023. [Online]. Available:
https://developers.google.com/ar/develop/cloud-anchors

[180] Arcore Cloud Anchor API Deprecation Policy | Google for
Developers. Accessed: Apr. 18, 2023. [Online]. Available:
https://developers.google.com/ar/develop/cloud-anchors/cloud-anchor-
deprecation-policy

[181] Build Global-Scale, Immersive, Location-based AR Experiences With the
Arcore Geospatial API. Accessed: Apr. 13, 2023. [Online]. Available:
https://developers.google.com/ar/develop/geospatial

[182] Use Buildings and Terrain Around You on Android Sdk
(kotlin/java) | Arcore | Google for Developers. Accessed:
Apr. 13, 2023. [Online]. Available: https://developers.
google.com/ar/develop/java/geospatial/streetscape-geometry

[183] Geospatial Creator | Arcore | Google for Developers.
Accessed: Apr. 13, 2023. [Online]. Available:
https://developers.google.com/ar/geospatialcreator/intro

[184] Machine Learning With Arcore. Accessed: Apr. 18, 2023. [Online].
Available: https://developers.google.com/ar/develop/machine-learning

[185] Understand the User’s Environment With the Scene Semantics API |
Arcore | Google for Developers. Accessed: Apr. 18, 2023. [Online].
Available: https://developers.google.com/ar/develop/scene-semantics

[186] Vuforia Enterprise Augmented Reality (AR) Software
| PTC. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.ptc.com/en/products/vuforia

[187] Pricing and Licensing Options | Vuforia Library.
Accessed: Apr. 13, 2023. [Online]. Available:
https://library.vuforia.com/faqs/pricing-and-licensing-options

[188] Vuforia Engine Overview | Vuforia Library. Accessed: Apr. 18, 2023.
[Online]. Available: https://library.vuforia.com/getting-started/vuforia-
features

[189] Vumarks | Vuforia Library. Accessed: Apr. 18, 2023. [Online]. Available:
https://developer.vuforia.com/library/objects/vumarks

[190] Vumark Design Guide | Vuforia Library. Accessed: Apr. 18, 2023.
[Online]. Available: https://library.vuforia.com/vumarks/vumark-design-
guide

[191] Barcode Scanner | Vuforia Library. Accessed: Apr. 18, 2023. [Online].
Available: https://library.vuforia.com/objects/barcode-scanner

[192] Area Targets | Vuforia Library. Accessed: Apr. 13, 2023. [Online].
Available: https://library.vuforia.com/environments/area-targets

[193] External Camera Support | Vuforia Library. Accessed:
Apr. 18, 2023. [Online]. Available: https://library.vuforia.com/platform-
support/external-camera

[194] Cloud Recognition | Vuforia Library. Accessed: Apr. 18, 2023. [Online].
Available: https://library.vuforia.com/objects/cloud-recognition

[195] Vuforia Fusion | Vuforia Library. Accessed: Apr. 18, 2023. [Online].
Available: https://library.vuforia.com/environments/vuforia-fusion

[196] Recommended Devices | Vuforia Library. Accessed: Apr. 18, 2023.
[Online]. Available: https://library.vuforia.com/platform-
support/recommended-devices

[197] Supported Versions | Vuforia Library. Accessed: Apr. 18, 2023. [Online].
Available: https://library.vuforia.com/platform-support/supported-
versions

[198] Vuforia Expert Capture: AR Knowledge Capture Tools
| PTC. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.ptc.com/en/products/vuforia/vuforia-expert-capture

[199] Vuforia Studio Augmented Reality for Industrial Enterprise
| PTC. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.ptc.com/en/products/vuforia/vuforia-studio

[200] Vuforia Chalk Augmented Reality (AR) Remote Assistance
| PTC. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.ptc.com/en/products/vuforia/vuforia-chalk

[201] Introducing MRTK for Unreal. Accessed: Apr. 18, 2023. [Online].
Available: https://learn.microsoft.com/en-us/windows/mixed-
reality/develop/unreal/unreal-mrtk-introduction

[202] (2022). What is Mixed Reality Toolkit 2. Accessed: Apr. 18, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/windows/mixed-
reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05

[203] What are the UX Tools?. Accessed: Apr. 18, 2023. [Online].
Available: https://github.com/microsoft/MixedReality-UXTools-
Unreal/blob/public/0.12.x-UE5.0/README.md

109066 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

[204] What is Graphics Tools?. Accessed: Apr. 18, 2023. [Online].
Available: https://github.com/microsoft/MixedReality-GraphicsTools-
Unreal/blob/main/README.md

[205] (2022). Input Overview—MRTK 2 | Microsoft
Learn. Accessed: Apr. 13, 2023. [Online]. Available:
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-
unity/mrtk2/features/input/overview?view=mrtkunity-2022-05.

[206] (2022). Extension Services—MRTK2 | Microsoft
Learn. Accessed: Apr. 18, 2023. [Online]. Available:
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-
unity/mrtk2/features/extensions/extension-services?view=mrtkunity-
2022-05

[207] (2022).Camera SystemOverview—MRTK 2 |Microsoft Learn. Accessed:
Apr. 18, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/mrtk-unity/mrtk2/features/camera-
system/camera-system-overview?view=mrtkunity-2022-05

[208] (2022). Profiles—MRTK 2 | Microsoft Learn. Accessed: Apr. 18, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/windows/mixed-
reality/mrtk-unity/mrtk2/features/profiles/profiles?view=mrtkunity-
2022-05

[209] Input Simulation. Accessed: Apr. 18, 2023. [Online].
Available: https://github.com/microsoft/MixedReality-UXTools-
Unreal/blob/public/0.12.x-UE5.0/Docs/InputSimulation.md

[210] (2022). Input Simulation Service—MRTK 2 | Microsoft Learn. Accessed:
Apr. 18, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/mrtk-unity/mrtk2/features/input-
simulation/input-simulation-service?view=mrtkunity-2022-05

[211] Input Simulation—MRTK3 | Microsoft Learn. Accessed: Apr. 18, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/windows/mixed-
reality/mrtk-unity/mrtk3-input/packages/input/input-simulation

[212] Wikitude Augmented Reality: The World’s Leading Cross-
platform AR SDK. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.wikitude.com/

[213] What’s the Difference Between the Professional and the Expert
Editions? : Wikitude. Accessed: Apr. 18, 2023. [Online]. Available:
https://support.wikitude.com/support/solutions/articles/5000854979-
what-s-the-difference-between-the-professional-and-the-expert-
editions-

[214] Augmented Reality—Wikitude SDK Full Features Overview. Accessed:
Apr. 13, 2023. [Online]. Available: https://www.Interacting With App
Clip Codes in AR. Accessed: Apr. 18, 2023. [Online]. Available:
https://developer.apple.com/documentation/app

[215] Object and Scene Recognition. Accessed: Apr. 18, 2023. [Online].
Available: https://www.wikitude.Interacting With App Clip Codes in AR.
Accessed: Apr. 18, 2023. [Online]. Available: https://developer.apple.
com/documentation/app

[216] Instant Tracking. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.wikitude.Interacting With App Clip Codes in AR.
Accessed: Apr. 18, 2023. [Online]. Available: https://developer.apple.
com/documentation/app_clips/interacting_

[217] Release Notes Wikitude Sdk Professional Edition.
Accessed: Apr. 18, 2023. [Online]. Available:
https://www.wikitude.Interacting With App Clip Codes in AR.
Accessed: Apr. 18, 2023. [Online]. Available: https://developer.apple.
com/documentation/app

[218] Universal Render Pipeline Overview | Universal RP |
16.0.3. Accessed: Apr. 18, 2023. [Online]. Available:
https://docs.unity3d.Interacting With App Clip Codes in AR.
Accessed: Apr. 18, 2023. [Online]. Available: https://developer.apple.
com/documentation/app

[219] Advanced Rendering | Wikitude Documentation—Expert
Edition. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.wikitude.Interacting With App Clip Codes in AR.
Accessed: Apr. 18, 2023. [Online]. Available: https://developer.apple.
com/documentation/app

[220] Wikitude SDK Studio User Manual. Accessed:
Apr. 18, 2023. [Online]. Available: https://www.wikitude.
com/external/doc/documentation/studio/introduction.html

[221] Solutions: Wikitude. Accessed: Apr. 18, 2023. [Online]. Available:
https://support.wikitude.com/support/solutions

[222] Download Wikitude 3D Encoder for Windows—Wikitude. Accessed:
Apr. 13, 2023. [Online]. Available: https://www.wikitude.com/download-
wikitude-3d-encoder-for-windows/

[223] Wikitude Store: Find Best Pricing for Your Augmented Reality
Experiences. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.wikitude.com/store/

[224] Snapdragon Spaces Augmented Reality SDK | Snapdragon
Spaces. Accessed: Apr. 18, 2023. [Online]. Available:
https://spaces.qualcomm.com/sdk/

[225] General Features | Snapdragon Spaces. Accessed:
Apr. 18, 2023. [Online]. Available: https://docs.spaces.qualcomm.
com/common/features/GeneralFeatures.html

[226] Environmental Understanding | Snapdragon Spaces.
Accessed: Apr. 13, 2023. [Online]. Available: https://docs.
spaces.qualcomm.com/common/features/EnvironmentalFeatures.html

[227] Interaction | Snapdragon Spaces. Accessed: Apr. 18, 2023.
[Online]. Available: https://docs.spaces.qualcomm.com/
common/features/Interaction.html

[228] Openxr for Snapdragon Spaces | Snapdragon Spaces.
Accessed: Apr. 18, 2023. [Online]. Available: https://docs.
spaces.qualcomm.com/common/architecture/OpenXRForSpaces.html

[229] Ar-media Features—Inglobe Technologies. Accessed: Apr. 18, 2023.
[Online]. Available: https://www.inglobetechnologies.com/ar-
media/features/

[230] Introduction—Inglobe Technologies. Accessed: Apr. 18, 2023.
[Online]. Available: https://www.inglobetechnologies.com/ar-
media/documentation/overview-introduction/

[231] Ar-media Pricing—Inglobe Technologies. Accessed: Apr. 18, 2023.
[Online]. Available: https://www.inglobetechnologies.com/ar-
media/pricing/

[232] Artoolkit Home Page. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.hitl.washington.edu/artoolkit.html

[233] Home. Accessed: Apr. 18, 2023. [Online]. Available:
https://github.com/artoolkitx/artoolkitx/wiki

[234] Creating and Using Multi Square Marker Sets.
Accessed: Apr. 18, 2023. [Online]. Available:
https://github.com/artoolkitx/artoolkitx/wiki/Creating-and-using-multi-
square-marker-sets

[235] Artoolkit Documentation (History). Accessed: Apr. 18, 2023.
[Online]. Available: https://www.hitl.washington.edu/
artoolkit/documentation/history.htm

[236] About Us—Artoolworks. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.artoolworks.com/corporate/about-us.html

[237] Artoolkitx. Accessed: Apr. 18, 2023. [Online]. Available:
http://www.artoolkitx.org/

[238] Read Me for Artoolkitx. Accessed: Apr. 18, 2023. [Online]. Available:
https://github.com/artoolkitx/artoolkitx

[239] Welcome to Artoolkitx for Unity. Accessed: Apr. 18, 2023. [Online].
Available: https://github.com/artoolkitx/arunityx

[240] Github—Artoolkitx/jsartoolkit5: Javascript Artoolkit
V5.x. Accessed: Apr. 13, 2023. [Online]. Available:
https://github.com/artoolkitx/jsartoolkit5

[241] Products—Artoolworks. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.artoolworks.com/products.html

[242] Licensing—Artoolworks. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.artoolworks.com/products/licensing.html

[243] Niantic Lightship. Accessed: Jan. 8, 2024. [Online]. Available:
https://lightship.dev/

[244] Meta Spark Studio—Create Immersive AR Experiences. Accessed:
Jan. 8, 2024. [Online]. Available: https://spark.meta.com/

[245] Tiktok Effect House. Accessed: Jan. 8, 2024. [Online]. Available:
https://effecthouse.tiktok.com/

[246] Real-Time 3D Development Platform & Editor| Unity. Accessed:
Apr. 18, 2023. [Online]. Available: https://unity.com/products/unity-
engine

[247] (2023). Unity—-Manual: Creating and Using Scripts. Accessed:
Apr. 18, 2023. [Online]. Available: https://docs.unity3d.
com/2023.2/Documentation/Manual/CreatingAndUsingScripts.html

[248] Augmented Reality Game Design Software for Apps | Unity. Accessed:
Apr. 18, 2023. [Online]. Available: https://unity.com/unity/features/ar

[249] Unity’s Ar Foundation Framework | Cross Platform Augmented Reality
Development Software | Unity. Accessed: Apr. 13, 2023. [Online].
Available: https://unity.com/unity/features/arfoundation

[250] Advanced Workflows for AR Developers | Unity Mars. Accessed:
Apr. 18, 2023. [Online]. Available: https://unity.com/products/unity-mars

VOLUME 12, 2024 109067

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

[251] The AR Companion App is Now Available | Unity Blog. Accessed:
Apr. 18, 2023. [Online]. Available: https://blog.unity.com/engine-
platform/the-ar-companion-app-is-now-available

[252] Xr Interaction Toolkit | Xr Interaction Toolkit |
2.4.3. Accessed: Apr. 18, 2023. [Online]. Available:
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit

[253] Unity As a Library for Native Mobile Apps Written in Objective C &
Java | Ar for Android & Ios | Unity. Accessed: Apr. 18, 2023. [Online].
Available: https://unity.com/features/unity-as-a-library

[254] Plans and Pricing. Accessed: Apr. 18, 2023. [Online]. Available:
https://unity.com/pricing

[255] The Most Powerful Real-time 3D Creation Tool—0unreal
Engine. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.unrealengine.com/en-U.S

[256] Unreal Engine Programming and Scripting | Unreal Engine 5.2
Documentation. Accessed: Apr. 18, 2023. [Online]. Available:
https://docs.unrealengine.com/5.2/en-U.S./unreal-engine-programming-
and-scripting/

[257] Supported XR Devices in Unreal Engine | Unreal Engine 5.2
Documentation. Accessed: Apr. 18, 2023. [Online]. Available:
https://docs.unrealengine.com/5.2/en-U.S./supported-xr-devices-in-
unreal-engine/

[258] Developing for Handheld Augmented Reality Experiences in
Unreal Engine | Unreal Engine 5.2 Documentation. Accessed:
Apr. 18, 2023. [Online]. Available: https://docs.unrealengine.
com/5.2/en-U.S./developing-for-handheld-augmented-reality-
experiences-in-unreal-engine/

[259] Developing for Head-mounted Experiences With Openxr in
Unreal Engine | Unreal Engine 5.2 Documentation. Accessed:
Apr. 18, 2023. [Online]. Available: https://docs.unrealengine.com/5.2/en-
U.S./developing-for-head-mounted-experiences-with-openxr-in-unreal-
engine/

[260] Magic Leap Development | Unreal Engine 4.27
Documentation. Accessed: Apr. 18, 2023. [Online]. Available:
https://docs.unrealengine.com/4.27/en-U.S./SharingAndReleasing/
XRDevelopment/AR/ARPlatforms/MagicLeap/

[261] Sharing XR Experiences in Unreal Engine | Unreal Engine 5.2
Documentation. Accessed: Apr. 18, 2023. [Online]. Available:
https://docs.unrealengine.com/5.2/en-U.S./sharing-xr-experiences-
in-unreal-engine/

[262] Realityscan | Free to Download 3D Scanning App for Mobile—
Unreal Engine. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.unrealengine.com/en-U.S./realityscan

[263] Recording Face Animation on Ios Device in Unreal Engine | Unreal
Engine 5.2 Documentation. Accessed: Apr. 18, 2023. [Online]. Available:
https://docs.unrealengine.com/5.2/en-U.S./recording-face-animation-on-
ios-device-in-unreal-engine/

[264] Metahuman | Realistic Person Creator—Unreal Engine. Accessed:
Apr. 18, 2023. [Online]. Available: https://www.unrealengine.com/en-
U.S./metahuman

[265] Godot Engine—Free and Open Source 2D and 3Dd Game Engine.
Accessed: Apr. 18, 2023. [Online]. Available: https://godotengine.org/

[266] Scripting Languages—Godot Engine (Stable) Documentation in English.
Accessed: Apr. 18, 2023. [Online]. Available: https://docs.godotengine.
org/en/stable/getting_started/step_by_step/scripting_languages.html

[267] Godot 4.0 Sets Sail: All Aboard for New Horizons. Accessed:
Apr. 13, 2023. [Online]. Available: https://godotengine.org/article/godot-
4-0-sets-sail/

[268] Godot 3.2 ARVR Update. Accessed: Apr. 18, 2023. [Online]. Available:
https://godotengine.org/article/godot-3-2-arvr-update/

[269] Download for Windows—Godot Engine. Accessed: Apr. 13, 2023.
[Online]. Available: https://godotengine.org/download/windows/

[270] Introduction to the Dom—Web APIS | Mdn. Accessed:
Apr. 18, 2023. [Online]. Available: https://developer.mozilla.org/en-
U.S./docs/Web/API/Document_Object_Model/Introduction

[271] Dom-Overlays/Explainer.Md At Master. Accessed: Apr. 18, 2023.
[Online]. Available: https://github.com/immersive-web/dom-
overlays/blob/master/explainer.md

[272] Model-Viewer. Accessed: Apr. 18, 2023. [Online]. Available:
https://modelviewer.dev/

[273] Model-Viewer Faq. Accessed: Apr. 18, 2023. [Online]. Available:
https://modelviewer.dev/docs/faq.html.

[274] Model-Viewer Postprocessing Examples. Accessed: Apr. 18, 2023.
[Online]. Available: https://modelviewer.dev/examples/postprocessing/

[275] Model Editor. Accessed: Apr. 18, 2023. [Online]. Available:
https://modelviewer.dev/editor/

[276] ARJS Documentation. Accessed: Apr. 18, 2023. [Online]. Available:
https://ar-js-org.github.io/AR.js-Docs/

[277] Marker Based—AR.JS Documentation. Accessed: Apr. 18, 2023.
[Online]. Available: https://ar-js-org.github.io/AR.js-Docs/marker-based/

[278] Ui and Events—Ar.js Documentation. Accessed: Apr. 18, 2023. [Online].
Available: https://ar-js-org.github.io/AR.js-Docs/ui-events/

[279] Introduction—A-Frame. Accessed: Apr. 18, 2023. [Online]. Available:
https://aframe.io/docs/1.4.0/introduction/

[280] Entity-component-system—A-Frame. Accessed: Apr. 18, 2023. [Online].
Available: https://aframe.io/docs/1.4.0/introduction/entity-component-
system.html

[281] Experiment With Ar and A-frame—A-Frame. Accessed: Apr. 18, 2023.
[Online]. Available: https://aframe.io/blog/webxr-ar-module/

[282] Creating Augmented Reality With Ar.Js and A-frame—A-Frame.
Accessed: Apr. 13, 2023. [Online]. Available: https://aframe.io/blog/arjs/

[283] Webxr-A-Frame. Accessed: Apr. 18, 2023. [Online]. Available:
https://aframe.io/docs/1.4.0/components/webxr.html

[284] Ar-Hit-Test-A-frame. Accessed: Apr. 18, 2023. [Online]. Available:
https://aframe.io/docs/1.4.0/components/ar-hit-test.html

[285] Reflection—A-Frame. Accessed: Apr. 18, 2023. [Online]. Available:
https://aframe.io/docs/1.4.0/components/reflection.html

[286] Babylon.Js: Powerful, Beautiful, Simple, Open—Wb-based 3D
At Its Best. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.babylonjs.com/

[287] Babylon.JS Specifications. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.babylonjs.com/specifications/

[288] Webxr Augmented Reality Features | Babylon.js Documentation.
Accessed: Apr. 18, 2023. [Online]. Available: https://doc.babylonjs.
com/features/featuresDeepDive/webXR/webXRARFeatures.

[289] Mrtk 2.x for Babylon.js | Babylon.js Documentation. Accessed:
Apr. 13, 2023. [Online]. Available: https://doc.babylonjs.
com/features/featuresDeepDive/gui/mrtk

[290] Babylon.js Sandbox—View GLTF, GLB, OBJ and Babylon
Files. Accessed: Apr. 18, 2023. [Online]. Available:
https://sandbox.babylonjs.com/

[291] Playground | Babylon.Js Documentation. Accessed:
Apr. 18, 2023. [Online]. Available: https://doc.babylonjs.
com/toolsAndResources/thePlayground

[292] The Node Material Editor | Babylon.Js Documentation.
Accessed: Apr. 18, 2023. [Online]. Available:
https://doc.babylonjs.com/toolsAndResources/nme

[293] The Gui Editor | Babylon.Js Documentation. Accessed:
Apr. 18, 2023. [Online]. Available: https://doc.babylonjs.
com/toolsAndResources/guiEditor

[294] 8th Wall | Product—Webar SDK for World Tracking, Face Effects,
Image Targets, Inline AR. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.8thwall.com/products-web

[295] Introduction | 8th Wall. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.8thwall.com/docs/

[296] Changelog | 8th Wall. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.8thwall.com/docs/changelog/

[297] Shared AR Module | 8th Wall | 8th Wall. Accessed: Apr. 18, 2023.
[Online]. Available: https://www.8thwall.com/8thwall/modules/shared-
ar

[298] Qr 8CODE | 8th Wall. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.8thwall.com/docs/guides/projects/qr-8code/

[299] Requirements | 8th Wall. Accessed: Apr. 18, 2023. [Online]. Available:
https://www.8thwall.com/docs/getting-started/requirements/

[300] 8th Wall | Open Source Licenses. Accessed: Apr. 18, 2023. [Online].
Available: https://www.8thwall.com/open-source-licenses

[301] Introducing the New 8th Wall Project Library Featuring Over 30+
Projects | 8th Wall. Accessed: Apr. 18, 2023. [Online]. Avail-
able: https://www.8thwall.com/blog/post/41172589178/introducing-the-
new-8th-wall-project-library-featuring-over-30-projects

[302] Needle Tools. Accessed: Apr. 13, 2023. [Online]. Available:
https://needle.tools/

[303] Virtual and Augmented Reality | Needle Engine
Documentation. Accessed: Apr. 13, 2023. [Online]. Available:
https://engine.needle.tools/docs/xr.html

109068 VOLUME 12, 2024

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

[304] Playcanvas Webgl Game Engine. Accessed: Apr. 13, 2023. [Online].
Available: https://playcanvas.com/

[305] Ar | Learn Playcanvas. Accessed: Apr. 13, 2023. [Online]. Available:
https://developer.playcanvas.com/en/user-manual/xr/ar/

[306] Xrestimatedlight—Three.js Docs. Accessed: Apr. 13, 2023. [Online].
Available: https://threejs.org/docs/index.html

[307] Libraries and Plugins—Three.js Docs. Accessed: Apr. 13, 2023. [Online].
Available: https://threejs.org/docs/index.html

[308] General Info. Accessed: Apr. 13, 2023. [Online]. Available:
https://p5xr.org/

[309] Home | P5.js. Accessed: Apr. 13, 2023. [Online]. Available:
https://p5js.org/

[310] Device and Browser Support. Accessed: Apr. 13, 2023. [Online].
Available: https://p5xr.org/

[311] Github—Pmndrs/react-xr: Vr/ar With React-three-fiber. Accessed:
Apr. 13, 2023. [Online]. Available: https://github.com/pmndrs/react-xr

[312] Github—Pmndrs/react-three-fiber: A React Renderer for
Three.js. Accessed: Apr. 13, 2023. [Online]. Available:
https://github.com/pmndrs/react-three-fiber

[313] Verge3d: An Artist-friendly Toolkit for 3D Web Experiences—
Soft8soft. Accessed: Apr. 13, 2023. [Online]. Available:
https://www.soft8soft.com/verge3d/

[314] Ar/Vr Development—Soft8soft. Accessed: Apr. 13, 2023. [Online].
Available: https://www.soft8soft.com/docs/manual/en/introduction/AR-
VR-development.html

[315] Verge3d Licensing Options–Soft8soft. Accessed: Apr. 13, 2023. [Online].
Available: https://www.soft8soft.com/licensing/

[316] Verge3d Ultimate Web Interactive Suite—Soft8soft.
Accessed: Apr. 13, 2023. [Online]. Available: https://www.
soft8soft.com/product/verge3d-ultimate-web-interactive-suite/

[317] Zapworks: The Most Powerful All-in-One Webar Platform. Accessed:
Apr. 13, 2023. [Online]. Available: https://zap.works/

[318] Zapworks Webar: Publish AR Experiences Directly to the Web. Accessed:
Apr. 13, 2023. [Online]. Available: https://zap.works/webar/

[319] Zapworks Webxr: Rich and Immersive XR Experiences. Accessed:
Apr. 13, 2023. [Online]. Available: https://zap.works/webxr/

[320] Zapworks Pricing: Choose the Right Plan for You. Accessed:
Apr. 13, 2023. [Online]. Available: https://zap.works/pricing/

[321] What is Wonderland Engine | Wonderland Engine. Accessed:
Apr. 13, 2023. [Online]. Available: https://wonderlandengine.
com/about/what-is-wle/

[322] Quick Start—Augmented Reality | Wonderland Engine.
Accessed: Apr. 13, 2023. [Online]. Available: https://
wonderlandengine.com/getting-started/quick-start-ar/

[323] Meet Our Products | Wonderland Engine. Accessed:
Apr. 13, 2023. [Online]. Available: https://wonderlandengine.
com/pricing/

[324] Mastering Apple’s Ar Guidelines: An Exploration Into Designing for
AR | By Martina Sartor | Ux Planet. Accessed: Apr. 18, 2023.
[Online]. Available: https://uxplanet.org/mastering-apples-ar-guidelines-
an-exploration-into-designing-for-ar-a8632d84ba6e

[325] Brainstorming At the D.School—YouTube. Accessed: Jan. 12, 2024.
[Online]. Available: https://www.youtube.com/watch?v=cmoWCSyujPY

[326] Environment | Arcore | Google for Developers. Accessed:
Apr. 18, 2023. [Online]. Available: https://developers.
google.com/ar/design/environment/definition

[327] Experience Size | Arcore | Google for Developers. Accessed:
Apr. 18, 2023. [Online]. Available: https://developers.google.
com/ar/design/environment/experience-size

[328] Holographic Frame—Mixed Reality | Microsoft Learn. Accessed:
Aug. 4, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/design/holographic-frame

[329] Scale—Mixed Reality | Microsoft Learn. Accessed: Aug. 4, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/windows/mixed-
reality/design/scale

[330] Content Manipulation | Arcore | Google for Developers.
Accessed: Apr. 18, 2023. [Online]. Available: https://developers.
google.com/ar/design/content/content-manipulation

[331] Types of Mixed Reality Apps—Mixed Reality | Microsoft Learn.
Accessed: Aug. 4, 2023. [Online]. Available: https://learn.microsoft.
com/en-us/windows/mixed-reality/discover/types-of-mixed-
reality-apps

[332] Design Process for Mixed Reality—Mixed Reality | Microsoft
Learn. Accessed: Aug. 4, 2023. [Online]. Available:
https://learn.microsoft.com/en-us/windows/mixed-reality/discover/case-
study-expanding-the-design-process-for-mixed-reality

[333] 7 Tips to Consider When Designing for Hololens | By Jan Marek
| Inloopx | Medium. Accessed: Apr. 18, 2023. [Online]. Available:
https://medium.com/inloopx/7-tips-to-consider-when-designing-for-
hololens-67d7b09d3e86

[334] A Quick Guide To Designing for Augmented Reality on Mobile (Part 2)
| By Bushra Mahmood | Medium. Accessed: Apr. 18, 2023. [Online].
Available: https://medium.com/

[335] Color, Light, and Materials—Mixed Reality | Microsoft Learn. Accessed:
Aug. 4, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/design/color-light-and-materials

[336] Designing Content for Holographic Display—Mixed Reality |
Microsoft Learn. Accessed: Aug. 4, 2023. [Online]. Available:
https://learn.microsoft.com/en-us/windows/mixed-reality/
design/designing-content-for-holographic-display

[337] Gaze and Commit—Mixed Reality | Microsoft Learn. Accessed:
Aug. 4, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/design/gaze-and-commit

[338] Comfort—Mixed Reality | Microsoft Learn. Accessed: Aug. 4, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/windows/mixed-
reality/design/comfort

[339] A Quick Guide To Designing for Augmented Reality on Mobile (Part 4)
| By Bushra Mahmood | Medium. Accessed: Apr. 18, 2023. [Online].
Available: https://medium.com/

[340] Mixed Reality Ux Elements—Mixed Reality | Microsoft Learn. Accessed:
Aug. 4, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/design/app-patterns-landingpage

[341] Spatial Mapping—Mixed Reality | Microsoft Learn. Accessed:
Aug. 4, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/design/spatial-mapping

[342] Augmented Reality Design Guidelines | Arcore | Google for
Developers. Accessed: Apr. 18, 2023. [Online]. Available:
https://developers.google.com/ar/design

[343] Realism | Arcore | Google for Developers. Accessed:
Apr. 18, 2023. [Online]. Available: https://developers.
google.com/ar/design/content/realism

[344] Hololens Environment Considerations | Microsoft Learn. Accessed:
Aug. 4, 2023. [Online]. Available: https://learn.microsoft.
com/en-us/hololens/hololens-environment-considerations

[345] A Quick Guide to Designing for Augmented Reality on Mobile (Part 1)
| By Bushra Mahmood | Medium. Accessed: Apr. 18, 2023. [Online].
Available: https://medium.com/

[346] Instinctual Interactions—Mixed Reality | Microsoft Learn. Accessed:
Aug. 4, 2023. [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/design/interaction-fundamentals

[347] UI Elements | Arcore | Google for Developers. Accessed:
Apr. 18, 2023. [Online]. Available: https://developers.
google.com/ar/design/interaction/ui

[348] A Quick Guide To Designing for Augmented Reality on Mobile (Part 3)
| By Bushra Mahmood | Medium. Accessed: Apr. 18, 2023. [Online].
Available: https://medium.com/

[349] Typography—Mixed Reality | Microsoft Learn. Accessed: Aug. 4, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/windows/mixed-
reality/design/typography

[350] Voice Input—Mixed Reality | Microsoft Learn. Accessed: Aug. 4, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/windows/mixed-
reality/design/voice-input

[351] Movement | Arcore | Google for Developers. Accessed:
Apr. 18, 2023. [Online]. Available: https://developers.
google.com/ar/design/user/movement

[352] Safety and Comfort | Arcore | Google for Developers. Accessed:
Apr. 18, 2023. [Online]. Available: https://developers.google.
com/ar/design/user/safety-comfort

[353] Oculus Connect 4 | Day 2 Keynote: Carmack Unscripted—
YouTube. Accessed: Jan. 12, 2024. [Online]. Available:
https://www.youtube.com/watch?v=vlYL16-NaOw

[354] Google Glass Enterprise Edition 2: Full Specification—
Vrcompare. Accessed: Apr. 7, 2023. [Online]. Available: https://vr-
compare.com/headset/googleglassenterpriseedition2

VOLUME 12, 2024 109069

F. M. Haneefa et al.: Essentials: A Comprehensive Survey to Get Started in Augmented Reality

[355] Epson Moverio Bt-40s: Full Specification - Vrcompare.
Accessed: Apr. 7, 2023. [Online]. Available: https://vr-
compare.com/headset/epsonmoveriobt-40s

[356] Nreal Light: Full Specification—vrcompare. Accessed: Apr. 7, 2023.
[Online]. Available: https://vr-compare.com/headset/nreallight

[357] Nreal Air: Full Specification—Vrcompare. Accessed: Apr. 7, 2023.
[Online]. Available: https://vr-compare.com/headset/nrealair

[358] Vuzix M400: Full Specification—Vrcompare. Accessed: Apr. 7, 2023.
[Online]. Available: https://vr-compare.com/headset/vuzixm400

FAYAZ MOHAMED HANEEFA received the B.Sc. degree in computer
engineering from Khalifa University, Abu Dhabi, United Arab Emirates,
in 2022. He is currently a Research Assistant with the Center for Cyber-
Physical Systems, Khalifa University. His research interests include XR,
computer graphics, and computer animation.

ABDULHADI SHOUFAN (Member, IEEE)
received the Dr.-Ing. degree from Technische
Universität Darmstadt, Germany, in 2007. He is
currently an Associate Professor of computer and
information engineering with Khalifa University,
Abu Dhabi. His research interests include drone
security, safe operation, embedded security,
cryptography hardware, learning analytics, and
engineering education.

ERNESTO DAMIANI (Senior Member, IEEE) is
currently a Full Professor with the UniversitÃ
degli Studi di Milano, Italy, the Senior Director
of the Robotics and Intelligent Systems Institute,
and the Director of the Center for Cyber-Physical
Systems (C2PS), Khalifa University, United Arab
Emirates. He is also the Leader of the Big Data
Area, Etisalat British Telecom Innovation Center
(EBTIC), and the President of the Consortium
of Italian Computer Science Universities (CINI).

He is also a part of the ENISA Ad-Hoc Working Group on Artificial
Intelligence Cybersecurity. He has pioneered model-driven data analytics.
He has authored more than 650 Scopus-indexed publications and several
patents. His research interests include cyber-physical systems, big data
analytics, edge/cloud security and performance, artificial intelligence, and
machine learning. He was a recipient of the Research and Innovation Award
from the IEEE Technical Committee on Homeland Security, the Stephen Yau
Award from the Service Society, the Outstanding Contributions Award from
IFIP TC2, the Chester-Sall Award from IEEE IES, the IEEE TCHS Research
and Innovation Award, and the Doctorate Honoris Causa from INSA-Lyon,
France, for his contribution to big data teaching and research.

109070 VOLUME 12, 2024

