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ABSTRACT Existing artificial intelligence (AI) models for diagnosing knee osteoarthritis (OA) have
faced criticism for their lack of transparency and interpretability, despite achieving medical-expert-like
performance. This opacity makes them challenging to trust in clinical practice. Recently, explainable
artificial intelligence (XAI) has emerged as a specialized technique that can provide confidence in the
model’s prediction by revealing how the prediction is derived, thus promoting the use of AI systems in
healthcare. This paper presents the first survey of XAI techniques used for knee OA diagnosis. This survey
identified 78 AI-based primary knee OA diagnostic test accuracy studies, of which 70 (89.7%) employed
XAI. In 34 out of 70 (48.6%) of studies, XAI was utilized for the goal of visualization of predictions.
Gradient-weighted class activation mapping (GradCAM) is the most common technique, being used in
24 out of 70 studies (34.3%), followed by SHapley Additive exPlanations (SHAP), being used in 9 out
of 70 (12.9%) studies. All included studies analyzed the outcomes generated by XAI methods through
qualitative analysis. However, only three studies utilized quantitative measures to evaluate the reliability
of the XAI outcomes. We also observed that 64.3% of the studies utilized widely-circulated dataset, namely
Osteoarthritis Initiative (OAI) extensively.The XAI techniques are discussed from two perspectives: data
interpretability and model interpretability. Our paper provides an overview of XAI’s potential towards a
more reliable knee OA diagnosis approach and helps to encourage its adoption in clinical practice.

INDEX TERMS Computer aided diagnosis, explainable artificial intelligence, explanation representation,
knee osteoarthritis, radiology.

I. INTRODUCTION
Osteoarthritis (OA) is a prevalent degenerative joint disease
that affects millions of people worldwide [1], [2], with
the weight-bearing knee joint being particularly susceptible.
Radiography is a commonly used diagnostic tool for knee
OA [3]. However, its diagnostic precision is often compro-
mised due to the subjective nature of image interpretation
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and the perceptual differences among radiologists, which are
influenced by their individual knowledge and experience [4].
To maximize the accuracy of OA diagnosis, researchers
have also explored modeling OA using multimodal and
multidimensional data to encompass a comprehensive range
of patient information [5], [6], [7]. These data could be
demographic, societal, symptomatic, medical history, biome-
chanical, biochemical, genetic, and behavioral characteris-
tics. Artificial intelligence (AI) models have demonstrated
the ability to automate diagnosis and have shown promising
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results, achieving diagnostic accuracy on par with medical
experts using either individual or combined data [8], [9],
[10]. However, the specific impact of each factor within the
data and the correlation between these factors remain largely
unexplored.

Furthermore, there is a growing concern about the lack of
transparency and interpretability of AI models in healthcare
settings [11], [12], [13], [14]. The use of AI models in
medical data for OA diagnosis shows potential in reducing
the subjectivity and variability linked to human interpretation.
However, those AI approaches predominantly rely on black-
box models, which lack transparency and interpretabil-
ity [11], [12]. In contrast to the human reasoning process,
which depends on complex cognitive abilities, intuition,
and the assimilation of diverse knowledge and experiences
to make decisions, AI models make predictions based on
the learning outcomes from training datasets. The internal
workings of these models remain hidden or unknown, even
to their designers. This lack of transparency can engender
uncertainty and erode trust among patients and healthcare
providers. Additionally, the use of black-box models impedes
the development of health mobile applications for disease
management [15]. According to a survey conducted by
Mrklas et al. [15], a significant number of patients and
physicians have expressed a strong desire for a visual
symptom graph to aid in monitoring their condition.

Explainable AI (XAI) [16] offers a potential solution to
these concerns by providing a transparent and interpretable
framework for automated analysis of radiographic images.
XAI algorithms can identify specific regions of interest
within the image and provide a clear explanation of the factors
that contributed to the final diagnosis [17], [18]. This could
help to overcome the limitations of traditional radiographic
diagnosis and increase the accuracy and consistency of knee
OA diagnosis.

By leveraging XAI, healthcare providers could have a
more objective and transparent method for diagnosing knee
OA, leading to earlier detection and more timely treatment.
XAI could also potentially reduce the need for costly and
invasive diagnostic procedures, such as arthroscopy, which
are currently used for further evaluation to confirm cartilage
lesion.

A. MOTIVATIONS AND PAPER CONTRIBUTIONS
In recent years, as XAI gains popularity, numerous survey
papers have emerged discussing its application in healthcare
settings [16], [17], [18], [19], [20], [21], [22]. Despite
this growing interest, there is still a noticeable lack of
comprehensive survey papers that delve into the specific
application of XAI for diagnosing knee OA. Furthermore,
many existing XAI strategies have been designed with a
general-purpose approach and may not fully address the
unique clinical concerns and domain-specific knowledge
required for accurate diagnosis of knee OA. Therefore, there
is a need for specialized XAI frameworks that take into

account the specific clinical considerations and incorporate
relevant domain knowledge to enhance the application of
XAI in diagnosing knee OA effectively. To address this gap,
it is crucial to explore different explanation methods and
evaluate their effectiveness. By conducting a comprehensive
review of the literature on interpretability and explainability
of AI models for knee OA diagnosis, we can gain a
deeper understanding of these concepts and their potential
applications. Such a review will provide valuable insights
into how interpretability and explainability can be leveraged
to improve AI and machine learning models for knee OA
diagnosis. To the best of our knowledge, this paper represents
the first survey dedicated to exploring the application of XAI
in knee OA diagnosis. The contributions of the paper include:

• Systematic review of the current state-of-the-art explain-
ability and interpretability methods for neural networks
used in diagnosing knee OA from medical data;

• Comparison of the existing knee OA datasets and the
performance analysis of different explainability and
interpretability methods in AI models;

• Identification of the potential clinical impact of the most
promising explainability and interpretability methods by
assessing their practicality, scalability, and effectiveness
in real-world clinical settings for improving diagnostic
accuracy and reducing misdiagnosis rates in knee OA.

B. ORGANIZATION OF PAPER
This review paper is partitioned into seven sections. Firstly,
Section II introduces the preliminaries and fundamental
concepts of XAI. Section III describes the study protocol,
including the search strategy, as well as the inclusion and
exclusion criteria for selecting relevant studies. In Section IV,
the overview of the included studies is presented. Next,
Section V introduces an XAI taxonomy and explores various
techniques for achieving data and model interpretability.
The implications and potential applications of XAI are
discussed in Section VI, which also suggests promising
avenues for future research. Finally, Section VII offers a
comprehensive conclusion to this study, summarizing its
findings and highlighting its contributions to the field of XAI
in knee OA assessment.

II. PRELIMINARIES AND FUNDAMENTAL CONCEPTS
A. CURRENT STATE OF AI TECHNOLOGIES FOR OA
DIAGNOSIS AND LIMITATIONS
AI algorithms can accurately identify definite OA cases (Kell-
gren Lawrence grade ≥ 2) from healthy cases with an accu-
racy above 77% [23], [24], [25], [26]. Moustakidis et al. [26]
further revealed that theOAdiagnosis by the dense neural net-
work (DNN) exhibits a high level of fairness and equity across
various demographic groups, with a demographic parity of
98.5% and balanced equalized odds around 92%. However,
AI models for the detection of early OA, especially Kellgren
Lawrence grade 1, suffer from low accuracy at about 64.3%,
due to less noticeable visual clues [23], [24]. Multi-class
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classification is often employed to grade the severity of OA
structural damage. The reported multi-class accuracy for OA
diagnosis ranges from 57.6% to 98.36% using pre-trained
convolutional neural network (CNN) models, as indicated by
previous studies [8], [9], [23], [27], [28], [29], [30], [31]

Despite the promising prediction outcomes, existing AI
technologies for OA diagnosis heavily rely on black box
supervised learning approaches, especially CNN and random
forest models [32]. About 75% of the models remain unex-
plainable [32]. While these AI methods can make accurate
predictions with rigorous training, they face a significant
challenge known as overfitting. Overfitting occurs when
the model becomes too focused on specific details of the
training data, including noise, making its predictions biased
and less reliable for new cases. Recent surveys and reviews
of OA studies (Table 1) highlight a critical issue in OA
research, which is the lack of external validation [32], [33],
[34], [35]. Without thorough external validation, AI models
may struggle to adapt to new datasets effectively. However,
it is particularly challenging to acquire new datasets due to
privacy issues.

To address these concerns, explainable models should
be fully utilized to bridge the gap between AI and the
human intelligence of medical experts and to enhance the
reliability of the AI models. For instance, Tiulpin et al. [8]
found that while a baseline model (fine-tuned ResNet-34)
achieved higher performance metrics, it overlooked relevant
OA radiological findings compared to their proposed model
(deep Siamese CNN). Through further investigation, the
authors discovered that the baseline model was prone to
overfitting. It demonstrates that the adoption of explainable
AI (XAI) ensures that general AImodels make their decisions
based on meaningful patterns, similar to how medical experts
analyze radiology images, looking for visual indications of
OA signs, such as joint space narrowing, bone spurs, etc.
Moreover,Wang et al. [36] showed that the CNNmodel could
outperform specialists in identifying surgical candidates who
have Kellgren-Lawrence grades 3 and 4 with an F1 score of
0.923 when using attention maps for external validation.

B. XAI CONCEPTS AND FRAMEWORKS
Due to rapid development of artificial intelligence and
machine learning technologies, it becomes increasingly
important to understand how these models make pre-
dictions [37]. In this field, the terms ‘‘interpretability’’
and ‘‘explainability’’ are closely related and often used
interchangeably [38], but they do have subtle differences in
the context of deep learning. Here’s a breakdown of each
concept:

1) INTERPRETABILITY
Interpretability refers to the ability to understand and
make sense of the internal workings of a deep learning
model [39]. It involves gaining insights into how the model
processes inputs, makes decisions, and generates outputs.

An interpretable model allows humans to examine and
comprehend the underlying mechanisms and logic employed
by the model to arrive at its predictions or decisions [40].

2) EXPLAINABILITY
Explainability, on the other hand, focuses on providing
human-understandable explanations for the model’s outputs
or predictions [39], [41]. It goes beyond mere interpretation
and aims to make the decision-making process of the model
transparent and understandable to non-experts. Explainable
models not only produce accurate predictions but also provide
intuitive explanations that can be easily comprehended by
end-users or stakeholders.

In summary, while interpretability is primarily concerned
with understanding the internal workings of a deep learning
model, explainability goes a step further by providing
human-understandable explanations for the model’s outputs
or decisions. Both concepts aim to enhance the transparency
and trustworthiness of deep learning models, especially
in high-stakes applications such as healthcare, finance,
or autonomous systems.

Recently published XAI taxonomies [38], [42], [43]
propose a conceptual framework for XAI, utilizing four
evaluation dimensions to effectively describe the scope and
characteristics of the XAI domain. These dimensions include:

• Explanation scopes, which can be divided into local
(explaining individual prediction) or global (explaining
the whole model) interpretability.

• Model specificity, which can be divided into model-
specific and model-agnostic interpretability.

• Interpretation types, which can be divided into pre-
model, intrinsic, post-hoc, and extrinsic interpretability.

• Explanation forms, which encompass various ways in
which explanations can be presented or communicated.

The proposed XAI framework effectively tackles the tech-
nical concerns of general AI models. However, it lacks
emphasis on the essential aspects of data and problem
characteristics required for instilling domain knowledge into
AI models. Moreover, it does not adequately consider the
specific needs of lay users, such as medical experts [44].
These factors are crucial in ensuring that AI models are
not only transparent and interpretable but also capable of
effectively utilizing domain-specific information to enhance
their performance and relevance in real-world applications.
Therefore, [45] extend the general XAI framework by
incorporating considerations for the type of input data,
problem, and task. This extension aims to provide a more
comprehensive and practical approach to XAI, catering to the
specific needs of various domains and ensuring the successful
integration of domain knowledge into AI models.

The realm of interpretability in XAI can be categorized
into two distinct groups: perceptive interpretability and
interpretability by mathematical structures, as proposed by
Tjoa et al. [19]. Perceptive interpretability methods typically
provide immediate interpretations, while methods that offer
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TABLE 1. Summary of existing reviews and surveys on the topic of predicting OA disease using automated approaches.

interpretation via mathematical structures produce outputs
that require an additional layer of cognitive processing
to reach a human-readable presentation. These taxonomies
primarily focus on the transition from black-box models to
white-box models, where the inner logic is fully explored
and understood. Reference [39] introduce a novel approach
by incorporating gray-box models. These models lie between
black-box and white-box models, offering a partial under-
standing of the underlying mechanisms. By considering this
intermediate category, the proposed taxonomy accounts for
a broader range of interpretability levels and provides a
more nuanced perspective on XAI. Compared to previous
studies, their XAI taxonomy incorporates data explainability
as an essential aspect to comprehend the datasets used in the
AI models. This addition reflects their effort on providing
insights into the transparency and interpretability of the data
itself, in addition to understanding the model’s decision-
making process. By considering data explainability, the
proposed taxonomy offers a more comprehensive approach
in gaining a deeper understanding of AI systems and the role
of data in shaping their predictions.

All previously proposed XAI taxonomies offer a struc-
tured framework for comprehending and classifying various
aspects of XAI approaches and their applications. As high-
lighted by Nauta et al. [45], it is important to recognize that
certain explanation methods have the ability to incorporate
multiple types of explanations, thereby making the categories
of explanation methods non-mutually exclusive.

In order to enhance the connection between users and
XAI, [46] introduced a theoretical conceptual framework that
establishes links between different XAI explanation facilities
and user reasoning goals. Their work generated a concept
called user-centric XAI, where the AI systems are designed
by placing the end-users, such as healthcare professionals
or patients, at the forefront of the explanation process,
as illustrated in Figure 1. Their framework was meticulously
designed to mitigate reasoning failures caused by cognitive
biases. Additionally, [47] proposed a flowchart to guide
the design of human-centered XAI systems. This flowchart
incorporates three essential components: domain analysis,
requirements analysis, and interaction design. By following
this flowchart, XAI designers can ensure that their systems

are alignedwith user needs and provide effective explanations
for improved user understanding and decision-making.

C. ETHICAL CONSIDERATIONS IN XAI
Global policy discussions are placing increasing emphasis
on the integration of ethical standards into the design and
implementation of AI-enabled technologies, highlighting the
growing importance of Trustable AI. In 2018, the High-Level
Expert Group on AI, established by the European Commis-
sion, published ethical guidelines focused on fostering trust
in human-centric AI [48]. The guidelines highlighted seven
key requirements for Trustable AI [49], as follows:

• Human agency and oversight that emphasize human
autonomy and the importance of fundamental rights in
decision-making.

• Technical robustness and safety that ensureAI systems
are designed to prevent harm and promote resilience and
security.

• Privacy and data governance that respect privacy
and data protection while implementing sound data
governance mechanisms.

• Transparency that advocates for transparency in data,
system, and AI business models, complemented by
traceability and explainability.

• Diversity, non-discrimination, and fairness that pro-
mote fairness and accessibility for all human while
involve relevant stakeholders throughout the AI system’s
lifecycle.

• Societal and environmental well-being that focus
on AI systems’ positive impact on society and the
environment, including sustainability considerations.

• Accountability that establishes mechanisms for respon-
sibility and accountability, including auditability and
accessible redress for AI system outcomes.

These requirements lead to the principles of Valid AI,
Responsible AI, Privacy-preserving AI, and Explainable AI
(XAI):

• Valid AI ensures that AI systems produce accurate and
reliable results by using high-quality data, appropriate
algorithms, and robust evaluation methods. It aims to
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FIGURE 1. Illustration of XAI implementation for knee OA diagnosis. Through XAI, the decision-making process of AI models becomes interpretable
and explainable, leading to the visualization of essential insights for AI expert, medical expert, and patient.

minimize errors and biases, making the AI outputs valid
and trustworthy.

• Responsible AI involves designing and deploying AI
systems in an ethical and socially conscious manner.
It entails considering potential societal impacts, adher-
ing to human values, and complying with legal and
regulatory standards to minimize harm and promote
positive outcomes.

• Privacy-preserving AI safeguards individuals’ sensi-
tive data during data processing and model training.
These AI techniques ensure that personal information
remains protected and confidential, preventing unautho-
rized access and preserving user privacy.

• Explainable AI (XAI) addresses the question of under-
standing the reasoning behind AI decisions. It provides
transparency and interpretability to AI outputs, allowing
users, including AI experts, medical professionals, and
patients, to comprehend and trust the AI model’s
decisions.

In this framework, XAI plays a crucial role in addressing
the fundamental question surrounding the rationale behind
the decision-making process of AI systems, encompassing
both human-level XAI (for human users) and machine-level
XAI (for other AI models or systems). XAI techniques
contribute to the transparency and interpretability required for
achieving Trustable AI.

The European Union’s High-Level Group on AI has made
significant efforts to promote XAI by taking initiatives

such to implement the General Data Protection Regulation
(GDPR) [50], [51]. In addition, the proposal of the Artificial
Intelligence Act by the European Commission represents
their recent endeavors to foster a robust internal market
for Artificial Intelligence (AI) systems [52], [53]. In the
United States, the Defense Advanced Research Projects
Agency (DARPA) has launched an XAI program aimed at
tackling three key challenges: (1) developing more explain-
able models, (2) designing effective explanation interfaces,
and (3) understanding the psychological requirements for
effective explanations [54]. Despite considerable efforts,
existing explainability methods still fall short in providing
reassurance about the correctness of individual decisions,
building trust among users, and justifying the acceptance
of AI recommendations in clinical practice. Consequently,
there is an immediate need to prioritize rigorous internal
and external validation of AI models as a more direct
approach to achieving the goals commonly associated with
explainability [55].

III. SEARCH STRATEGY AND ELIGIBILITY CRITERIA
This systematic reviewwas conducted based on the procedure
proposed by Kitchenham et al. [56]. We conducted a compre-
hensive literature search using Boolean search strategy in five
databases, namely Web of Science, Scopus, ScienceDirect,
PubMed, and Google Scholar (Table 2). Our search included
all publications up to May 20th, 2024. Eligibility screening
was independently conducted by at least two of the authors.
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TABLE 2. Boolean search strings employed for the corresponding bibliographic databases and search engines.

A. INCLUSION AND EXCLUSION CRITERIA
Papers will be included if they meet the following criteria:

• Focus on diagnostic tasks related to knee osteoarthritis
(OA)

• Propose an end-to-end artificial intelligence (AI) model
• Utilize explainable AI (XAI) methods to provide
explanations for the proposed model

• Not a review paper
• Published in English

B. DATA EXTRACTION
Our review identified a total of 78 studies that presented
at least one knee OA computer-assisted diagnostic system
utilizing an end-to-end AI approach. Among these studies,
70 out of 78 (89.7%) incorporated explainable AI (XAI)
techniques and were included for our analysis (Figure 2).
The earliest publication in this domain was found in
2017, which coincides with the introduction of popular
XAI approaches such as gradient-weighted class activation
map (GradCAM) [57] and self-attention mechanism [58].
The introduction of these techniques sparked increased
interest and discussion surrounding XAI in the field of knee
OA diagnosis, therefore the publication trend experienced
exponential growth from 2017 to 2021, as depicted in
Figure 3. Although there was a slight decrease in publications
in 2022, the number of publications in high-quality (Q1)

journals has been increasing steadily. This trend highlights
the growing recognition and validation of XAI research in
prestigious academic circles. Since 2022, the overall growth
in publications has slowed, reflecting a shift towards more
focused and impactful research in the field.

To provide an overview of our included papers, a biblio-
graphic analysis and systematic review will be performed and
presented in Section IV, based on the following breakdowns.

1) General query on knee OA assessment
2) Background of the study
3) Datasets for knee OA assessment
4) Classification systems for knee OA conditions
In Section V, detailed analysis of XAI methods for

OA diagnosis will be presented. The XAI methods from
all included articles will be analyzed based on their XAI
explainability characteristics and categorized into either data,
model, or post-hoc interpretability domains.

IV. OVERVIEW OF OA STUDY
A. GENERAL QUERY ON KNEE OA ASSESSMENT
We conducted an analysis of the general query to acquire an
up-to-date comprehension of the topic on XAI application
for knee OA diagnosis. This analysis aims to complement
the qualitative literature review and provide valuable insights
into the current state of research in this area. Co-occurrence
analysis was performed using VOSviewer [59] to discover
the relationships among terms extracted from the titles and

VOLUME 12, 2024 109085



Y. X. Teoh et al.: Deciphering Knee OA Diagnostic Features With Explainable AI: A Systematic Review

FIGURE 2. PRISMA flowchart depicting the study selection process for this systematic review.

FIGURE 3. Trend of publications between 2017 to 2024.

abstracts of the selected studies. Out of the 1,692 terms
identified, a subset of 222 termswith an occurrence frequency
of at least three were chosen for analysis. Out of these
222 terms, we focused on the top 133 terms based on their
relevance score, which fell within the top 60% range. These
114 terms were then included in our analysis to gain insights
into their co-occurrence patterns and relationships (Figure 4).
As a result, the analysis revealed nine distinct clusters.

Cluster 1 (19 items), Cluster 2 (19 items), Cluster 6 (15

items), and Cluster 7 (14 items) primarily focused on
various aspects of knee OA symptoms and underlying risks,
including bone and cartilage conditions, anterior cruciate
ligament injury, demographics, and risk of OA deterioration,
respectively. Cluster 3 (17 items), Cluster 4 (16 items),
and Cluster 5 (15 items) emphasized model interpretability
and clinical practitioners. Cluster 8 (13 items) mainly
encompassed studies related to automatic early diagnosis of
knee OA. Cluster 9 (5 items) was specifically associated with
patient data.

The ten most cited terms included ‘‘severity’’ (26 occur-
rences), ‘‘radiograph’’ (22 occurrences), ‘‘detection’’
(22 occurrences), ‘‘pain’’ (15 occurrences), ‘‘cluster’’
(13 occurrences), ‘‘parameter’’ (13 occurrences), methodol-
ogy (13 occurences), ‘‘risk factor’’ (12 occurrences), ‘‘mri’’
(12 occurrences), and ‘‘task’’ (12 occurrences).

B. BACKGROUND OF THE STUDY
1) GEOGRAPHICAL DISTRIBUTION
Extensive data collection for OA research was conducted in
bothWestern (n= 16) and Eastern (n= 10) countries (Fig. 5),
with a particular focus on the United States and China
regions. Existing research heavily relied on data from United
States, where European American is the largest population in
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FIGURE 4. Visual representation of the scientific landscape of the selected studies using VOSviewer’s mapping function.

the datasets. It is worth noting that limited research has been
carried out in South American countries, and no research has
been conducted in African countries.

2) SUBJECT AND INPUT DATA CHARACTERISTICS
Overall, the identified datasets included a wide range of
sample size, varying from 40 to 4,796 individuals. Notably,
64.3% of the studies (45 out of 70) utilized the Osteoarthritis
Initiative (OAI) dataset from United States for training or
testing purposes. In 49 out of 70 studies, imaging data, pri-
marily X-ray images (38 out of 49 studies), were utilized for
clinical confirmation of OA disease. Approximately 38.6% of
the studies (27 out of 70) employed tabular or structured data,
such as demographics, clinical characteristics, and laboratory
examinations, to predict the risk of OA incidence.

The use of single-channel data, whether images or tables,
poses significant challenges in knee OA research, as it may
limit the comprehensive understanding of the condition.
To address this limitation, two studies [5], [9] adopted a
data fusion approach, leading to the development of multi-
modal data models that maximize the utilization of patient

information. By integrating diverse data types (Figure 6),
these innovative approaches achieved more comprehensive
and accurate predictions for knee OA assessment.

C. DATASETS FOR KNEE OA ASSESSMENT
Knee OA is a complex and multifactorial disorder, and
as such, a wide variety of data can be utilized to gain
insights and explanations related to this health condition.
In this review, we specifically focus on tabular data and
image pixels. To track the evolving landscape of knee OA
research, we performed an analysis of available datasets for
knee OA assessment. This analysis provides a comprehensive
understanding of the Western and Eastern data sources in
knee OA diagnosis. We also highlight the role of datasets for
generalizability and applicability of AI-based approaches.

1) TABULAR DATA
Tabular data in knee OA research is a collection of structured
information encompassing both objective and subjective
measurements of the condition. Within this tabular data,
we have identified six distinct domains: demographic,
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clinical, imaging, patient-reported outcomes, biomechanics,
and biomarkers. Demographic data represents information
about participants’ characteristics, such as medical history,
symptoms, demographics, nutrition, physical activity, comor-
bidity, and behavioral aspects. Clinical data involves physical
exam and blood measures, outlining patients’ essential
health information. Imaging data consists of medial imaging
outcomes and anthropometrics for quantifying anatomical
structures. Patient-reported outcomes focus on data collected
through questionnaires to assess patient-reported symptoms
and health-related quality of life. Biomechanical data
involves the mechanics and movement of the knee during
various activities. Biomarkers data includes measurable
indicators found in bodily fluids, offering insights into
disease status and treatment response. A comprehensive
comparison of the accessibility, cost, and level of knowledge
required for each domain is presented in Table 3. This
evaluation aids researchers in understanding the strengths and
limitations of each data domain.

2) IMAGE PIXELS
Image pixels in knee OA research consist of 2D or 3D
data that allow for the visualization of human bone and
tissue structures. This visual representation aids in gaining
a deeper understanding of the anatomical aspects of the knee,
enabling researchers to analyze and assess the condition more
effectively. When paired with the tabular data of medical
imaging outcomes, the combination of image pixels and
structured data provides a more comprehensive approach
to both qualitative and quantitative assessments of knee
OA. This integration enhances the overall analysis and
contributes to better knowledge discovery opportunities.
However, handling image pixels data comes with challenges
such as noise and resolution issues. High-resolution images
offer improved visualization outcomes but also create a
heavier computational load. Thus, a trade-off between image
quality and computational efficiency needs to be carefully
considered for practical implementation.

3) PUBLIC DATASETS FOR KNEE OA ASSESSMENT
Due to ethical concerns and strict institutional regulations,
there are limited public datasets available for knee OA
assessment. Despite the availability of a greater number of
private datasets, public datasets play a dominant role in
establishing benchmark results and facilitating continuous
improvement in the field of knee OA research. In this section,
we present the publicly accessible datasets for knee OA
diagnosis as outlined in Table 4.

Osteoarthritis Initiative (OAI) [60] is an open access
dataset provided by the National Institutes of Health (NIH).
It focuses on identifying the most promising biomarkers of
development and progression of symptomatic knee OA. This
dataset includes 4,796 subjects between the ages of 45 and
79 years who either have knee OA or are at an increased
risk of developing the condition. The data was collected

from four clinical centers (Ohio State University, University
of Maryland School of Medicine/Johns Hopkins University
School of Medicine, University of Pittsburgh School of
Medicine, and Brown University School of Medicine and
Memorial Hospital of Rhode Island). Over a period of ten
years, all participants underwent annual radiography and
MRI scan of the knee, along with clinical assessments
of disease activity. Furthermore, genetic and biochemical
specimens were collected annually from all participants,
providing rich data for researchers to explore novel knee OA
diagnosis and treatment approaches.

Multicenter Osteoarthritis Study (MOST) [61] is a
public dataset funded by the National Institutes of Health
(NIH) and National Institute on Aging (NIA). The primary
objective of this dataset is to study symptomatic knee
OA in a community-based sample of adults with or at
high risk of developing knee OA. About 3,026 subjects
between the ages of 50 and 79 years from two clinical sites
(Iowa City, Iowa and Birmingham, Alabama) participated
the study. The dataset contains essential information related
to biomechanical factors (such as physical activity-related
factors), bone and joint structural factors (such as knee MRI
assessment), and nutritional factors.

MRNet [62] is a collection of MRI data created by the
Stanford University Medical Center. This dataset aims to
investigate two common types of knee injuries: anterior
cruciate ligament tears and meniscal tears which are con-
tributing factors to knee OA disorder. The study involved
1,312 subjects and generated a total of 1,370 MRI scans.
The MRI examinations were conducted using GE scanners
(GE Discovery, GE Healthcare, Waukesha, WI) with a
standard knee MRI coil and a routine non-contrast knee
MRI protocol, comprising several key sequences: coronal
T1 weighted, coronal T2 with fat saturation, sagittal proton
density (PD) weighted, sagittal T2 with fat saturation, and
axial PD weighted with fat saturation. Among the knee
examinations, about 56.6% were performed using a 3.0 Tesla
magnetic field, while the remaining used a 1.5 Tesla magnetic
field. Furthermore, the authors provided a benchmarkMRNet
single model, intended to support further research endeavors
in the field.

FastMRI+ [63] is a publicly available MRI dataset
that extended the work of the FastMRI dataset [64]. This
extended dataset includes 1,172 MRI scans acquired at 1.5 or
3.0 Tesla and provides 22 different pathology labels in
knee anatomical areas such as bone, cartilage, ligament,
meniscus, and joint. Notably, many of the pathologies, such
as cartilage loss and joint effusion, are closely related to
knee OA. Each knee MRI scan comprises a single series
of coronal images in PD or T2-weighted sequence. The
primary focus of the FastMRI+ dataset is to facilitate the
study of MRI image reconstruction, particularly in regions
that could potentially contain clinical pathology. This dataset
provides detailed pathology labels, researchers can explore
and develop advanced image reconstruction techniques that
cater to specific clinical conditions.
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Cohort Hip and Cohort Knee (CHECK) [65], [66]
is a research initiative sponsored by the Dutch Arthritis
Foundation, in collaboration with ten general and university
hospitals in The Netherlands, situated in semi-urbanized
regions. The study recruited a total of 1,002 subjects aged
between 45 and 65 years. The primary goal of this dataset
is to explore and analyze the clinical, biochemical, and
radiographic signs and symptoms associated with early OA.
Moreover, the dataset aims to identify prognostic factors
that may contribute to the diagnosis and progression of OA.
The study spans a duration of seven years, during which
846 subjects actively participated in annual clinic visits,
providing valuable longitudinal data for comprehensive OA
research.

Private research at Danderyd University Hospital is
used in [67] to develop a predictive model for classi-
fication of OA stage. The dataset consists of 6,103 X-
ray images acquired from Danderyd University Hospital.
Unlike other datasets that undergo extensive preprocessing
for artifact removal, this dataset used the entire image
series, including X-ray images with visual disturbances
like implants, casts, and non-degenerative pathologies. This
unique approach provides a more realistic representation
of clinical scenarios and enhances the dataset’s value
for studying OA progression and prediction in real-world
conditions.

Mendeley VI is a unique public dataset that focuses on the
Eastern population. It contains 1,650 X-ray images collected
from Indian institutions. The X-ray images were captured
using the PROTEC PRS 500E X-ray machine. All images
are 8-bit grayscale and have been cropped to focus on the
cartilage region. They have been manually annotated by two
experienced medical experts with their respective Kellgren
and Lawrence grades. The intention of this dataset is to
facilitate in the development of AI models for classifying
osteoarthritis severity.

Private research at Chang Gung Memorial Hospital
comprises a small dataset of 400 X-ray images collected from
the Taiwanese population. These 8-bit grayscale images have
been manually annotated by a doctor with their respective
Kellgren and Lawrence grades. The dataset is intended to aid
in the development of AI models for classifying the severity
of radiographic OA.

D. CLASSIFICATION SYSTEMS FOR KNEE OA CONDITIONS
In this section, we conducted a comparison of the employ-
ment of classification systems from the medical domain
that establish the ground truth data for predictive models.
Approximately half of the studies (40 out of 70) utilized
medical experts’ knowledge for classification or clustering
tasks. Within this subset of studies, 34 employed Kellgren
Lawrence (KL) grading system to rate the OA severity.
Original Kellgren Lawrence (KL) grading system comprises
five ordinal classes based on composite score of radiographic
OA symptoms. However, the number of classes used in the

FIGURE 5. Geographical distribution of OA data sources.

top layer of the KL prediction models varied from two to five
across the reviewed studies, depending on their respective
research purposes. A commonly used standard threshold for
radiological OA is a KL≥2. Most of the studies (23 out
of 34) were dedicated to developing AI models specifically
for the five-grade KL classification. Binary classification
was designed to identify the presence of OA (KL1 to
KL4) (4 out of 34) or early OA (KL2) (6 out of 34).
In addition, one study classified the change in KL grade after
60 months.

Besides KL grading, there was one study employed
Osteoarthritis Research Society International (OARSI) atlas
joint-space narrowing for medial tibiofemoral OA. Another
research developed radiographic spiking criteria to guide
the generation of ground truth data [100]. Whole-Organ
Magnetic Resonance Imaging Score (WORMS) (n = 1)
and MRI Osteoarthritis Knee Score (MOAKS) (n = 1)
were employed for knee OA detection on MRI data. Both
classification systems emphasized cartilage damage related
to OA.

In contrast, patient-reported outcome measure were only
used in four studies. Western Ontario and McMaster Uni-
versities Osteoarthritis Index (WOMAC) (n = 2) and the
Knee Injury and Osteoarthritis Outcome Score (KOOS)
(n = 1) were frequently employed as patient-reported
outcome measures, particularly for assessing pain. However,
due to their subjective nature, the analysis process for
these measures was complex and required careful statistical
analysis [76]. Moreover, transforming the data from these
measures into a format suitable for modeling presented a
significant challenge. Reference [101] established a direct
binary classification system for chronic knee pain based on
patient self-reporting. They defined chronic knee pain as
pain that persists for more than half of the days in a month
for at least six out of the past 12 months. Moreover, two
studies utilized knowledge-based and patient-based outcome
measures [71], [95].
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FIGURE 6. Categorization and distribution of input data for AI models.

TABLE 3. Comparison of input data types in knee OA diagnosis. Threshold for Accessibility - High: easily acquired; Moderate: requires equipment and
technician; Low: necessitates equipment and technician, available in a limited number of labs.

V. XAI APPROACHES FOR KNEE OA ASSESSMENT
The role of XAI in knee OA assessment is to offer
comprehensible explanations regarding the input data. These
explanations are intended to be understood by humans. Thus,
we take into account the interests of data scientists and
domain experts in the development of XAI methods.

For data scientists, knowing the internal workings of
the model and comprehending how the data is applied
are crucial for improving the model’s performance and
preventing overfitting. This knowledge enables them to
fine-tune the model, optimize its architecture, and make
informed decisions during the development process. Post-hoc

109090 VOLUME 12, 2024



Y. X. Teoh et al.: Deciphering Knee OA Diagnostic Features With Explainable AI: A Systematic Review

TABLE 4. List of open access OA-related data sources and descriptions.

explanations may be of lesser concern to them, as they
prioritize optimizing the model itself.

On the other hand, domain experts especially medical
experts who may not have the technical expertise of data
scientists are more interested in understanding how and
why a model generated a particular result. They seek
clear and interpretable explanations to trust the model’s
decisions and insights. Knowing the key characteristics that
led to a conclusion helps them validate the model’s outputs
and make informed decisions based on the AI system’s
recommendations.

By considering the specific needs and interests of both
data scientists and domain experts, we propose the XAI
taxonomy as shown in Figure 7 to provide valuable insights
into the diverse requirements of different stakeholders.
Understanding data interpretability, model interpretability,
and post-hoc interpretability, along with XAI evaluation
approaches, is crucial in building transparent, trustworthy,
and effective AI models that cater to various real-world
applications.

A. DATA INTERPRETABILITY
The importance of data interpretability arises from the
substantial impact of the training dataset on an AI model’s
behavior. To facilitate a better understanding of the input
data, numerous data analysis techniques and mathematical
algorithms have been developed to quantify the intrinsic data
characteristics. In the context of knee OA, data interpretabil-
ity can uncover valuable clinical patterns that might not

have been captured in traditional evidence-based research.
This can empower the researchers to glean new insights and
knowledge from the data, contributing to more informed and
effective decision-making in knee OA assessment.

In the following sections, we will discuss a few approaches
that provide interpretability for knee OA data. This includes
feature extraction, explainable feature engineering, and
knowledge graphs, which are widely recognized as pre-
modelling approaches. These approaches help extract use-
ful information from the data and represent different
steps in achieving data interpretability. Feature extraction
extracts relevant features, explainable feature engineering
transforms data for better understanding, and knowledge
graphs connect related points for a comprehensive disease
overview.

1) FEATURE EXTRACTION
Feature extraction plays a critical role in capturing a
representative set of features. In our survey, we found three
types of feature extraction: exploratory data analysis, image
descriptors, and dimensionality reduction.

a: EXPLORATORY DATA ANALYSIS
Exploratory data analysis (EDA) is a data analysis approach
that involves summarizing the main characteristics of the
data and visualizing the data summary using appropriate
representations [102]. EDA is an essential process for
understanding the structure and distribution of tabular data,
as well as identifying important features and patterns that
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FIGURE 7. Proposed XAI taxonomy.

can guide subsequent analysis. The significant contribution
of EDA in knee OA data is analysis of population-based
samples to provide the disease overview and to detect biases
in data [98].

General EDA outcomes included dimensions, mean [88],
median [98], standard deviation [88], range, and missing
samples. To deal with missing samples, [98] implemented
imputation models using random forest (RF) and k-nearest
neighbor (KNN) regression models, which were further
refined through a bootstrapping-like procedure. Refer-
ence [103] performed an analysis on the brightness value
distributions in the lateral and medial sides of the OA and
control groups. The results showed that the mean brightness
in the OA group was higher than in the control group in
both sides. The observation suggested that the higher mean
brightness may be indicative of increased bone density in
patients from the OA case group.

b: IMAGE DESCRIPTORS
Image descriptors are typically used to capture and describe
the shape of an object in an image. Jakaite et al. [103] utilized
Zernike moments (Equation 1) to capture knee X-ray textural
details at the bone microstructural level. By using this image
descriptor and the GroupMethod of Data Handling (GMDH),
they were able to effectively identify patients at risk of early
knee OA, even with a relatively small dataset of 40 samples.

The Zernike moments Anm are defined as:

Anm =
n+ 1

π

∑
x

∑
y

f (x, y)V ∗
nm(ρ, θ) (1a)

where f (x, y) represents the image, n denotes the number of
order, m denotes the number of repetition, Vnm represents
orthogonal complex polynomials, ρ represents the length of
a vector to a (x, y) pixel, and θ represents the angle between
x-axis and ρ.

The orthogonal complex polynomials Vnm are defined as:

Vnm(x, y) = Vnm(ρ, θ) = Rnm(ρ)e(−jmθ) (1b)

where Rnm represents radial polynomials, ρ represents the
length of a vector to a (x, y) pixel, and θ represents the angle
between x-axis and ρ.

The radial polynomials Rnm are defined as:

Rnm =

(n−|m|)/2∑
k=0

(−1)k (n− k)!
k!((n+ |m|)/2 − k)!((n− |m|)/2 − k)!

ρn−2k

(1c)

where n denotes the number of order and m denotes the
number of repetition.

A more detailed bone analysis work was performed by
Bayramoglu et al. [104]. The authors conducted a comparison
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of five image descriptors: local binary pattern (LBP), fractal
dimension (FD), Haralick features, Shannon entropy, and
histogram of gradient (HOG). Based on their findings, they
recommended the use of LBP as it preserved the most
discriminative features among the descriptors. They also
pointed out that LBP and HOG descriptors are less sensitive
to changes in radiographic acquisition protocols and could be
applied in clinical decision support tools in the future.

Fatema et al. [88] utilized six sets of features to describe
the geometry of knee X-rays. These included morphological
features, gray level co-occurrence matrix (GLCM) features,
statistical features, texture features, LBP features, and a novel
set of features inspired by unique characteristics of knee
bone structures. The proposed features computed several
key metrics: the vertical distance between femur and tibial
bones, joint space area, peak curvature angle at the femur
center, and gradient features representing both magnitude
and direction derived from function derivatives in horizontal
and vertical directions. Computation was compartmentalized
for medial and lateral sides. Heatmap analysis of feature
correlations revealed strong correlations in bone distances
across compartments, except between the middle of lateral
knee segments and the medial side of medial knee segments.
Moderate positive correlations were observed between the
joint space areas of the lateral and medial compartments.
Notably, gradient features at the lateral and medial knees
exhibited negative correlations with several distance and peak
features, suggesting an inverse relationship. The analysis also
indicated weaker or negative correlations between the medial
and lateral compartments, highlighting distinct behavioral
characteristics between these compartments.

A range of texture features were extracted from knee
MRI images [86], including first-order statistical features,
GLCM, gray level size zone matrix (GLSZM), gray level
run length matrix features (GLRLM), gray level dependence
matrix (GLDM), and neighboring gray tone difference
matrix (NGTDM) to characterize bone and cartilage textures.
Feature extraction was conducted from 32 anatomical
sub-regions identified as potentially influential in knee OA
progression [87] at three time points: baseline, 12 months,
and 24 months. These features served as input for deep
learning models. Due to the extensive feature set and the
risk of spatial heterogeneity, theMinimumRedundancyMax-
imum Relevance (mRMR) and Least Absolute Shrinkage
and Selection Operator (LASSO) algorithms were employed
to select the optimal feature sets. However, this approach
was not applicable to severely damaged cartilage because
the texture patterns in such cartilage were too degraded
to provide consistent and reliable feature measurements.
In these cases, the variability introduced by the damaged
tissue could obscure meaningful patterns, leading to less
accurate and less robust feature extraction.

Besides texture analysis, image descriptor could be used to
extract object edge information. Adaptive Canny algorithm
was employed to extract the edges of the knee joint from
X-ray images by dynamically adjusting the threshold values

based on the local image characteristics [105]. The low α and
high adaptive thresholds β are defined as:

α = max (0, (1 − σ ) × median(xi)) (2a)

β = min (255, (1 + σ ) × median(xi)) (2b)

where α denotes upper limit pixel value, β denotes bottom
limit pixel value, and xi represents median pixel value.

c: DIMENSIONALITY REDUCTION
OA datasets are typically complex and multidimensional,
containing a vast amount of variables. Visualizing such
high-dimensional data can be challenging since human
perception is limited to three dimensions. Hence, researchers
tend to find lower-dimensional representations of the original
data [40]. Dimensionality reduction techniques are employed
to reduce the number of parameters while preserving the
underlying structure as much as possible. Two commonly
used methods in this field are Principal Component Analysis
(PCA) [98] and t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [25], [27], [71], [106], [107].
Nielsen et al. [81] performed OA patient clustering and

characterization using the Louvain clustering algorithm based
on SHapley Additive exPlanations (SHAP) values. A total
of 12 clusters were obtained after dimensionality reduction
using PCA (10 PCs) and further visualized with Uniform
Manifold Approximation and Projection (UMAP).

2) EXPLAINABLE FEATURE ENGINEERING
There are two main approaches developed for explainable
feature engineering: domain-specific methods and model-
based methods. Another emerging approach in explainable
feature engineering is disentangled representation learning,
which has gained traction with the introduction of various
generative models.

a: DOMAIN-SPECIFIC
Domain-specific approaches for knee OA diagnostic task
utilize the knowledge and expertise of medical experts, along
with insights derived from EDA to extract features. Many
studies in this field have focused on developing knee-specific
approaches that capture and characterize key aspects on bone
and cartilage, as well as the limb alignment.

Reference [108] developed ameasure called cartilage dam-
age index (CDI) to quantify cartilage thickness by measuring
specific informative locations on the reconstructed cartilage
layer instead of evaluating the entire cartilage. In a cartilage
assessment conducted by Ciliberti et al. [84], two volumetric
analyses were employed. The first analysis focused on wall
thickness, where the cartilage mesh was examined, and the
thickness of each element was calculated from surface to
surface. The hypothesis underlying this analysis was that
patients with degenerative and traumatic cartilages would
exhibit thinner cartilage in specific regions compared to
the control group. The second analysis focused on cartilage
curvature by measuring the Gaussian curvature of cartilage
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element based on its neighboring elements. This analysis
hypothesized that areas with higher cartilage degradation
would exhibit increased curvature due to the formation of
holes and depressions surrounding those regions. In [101],
cartilage thickness was determined for femoral, tibial, and
patellar cartilage masks per sagittal slice by performing
an Euclidean distance transform along the morphological
skeleton of each mask. Furthermore, the shape of the bone
was characterized by measuring the distance from the bone
surface of each bone mask to its volumetric centroid.

A recent study by Zhuang et al. [109] proposed a unified
graph representation approach to construct personalized
knee cartilages that are attached to the femur, tibia, and
patella, respectively. They used the patient-specific cartilage
graph representation to guide their DL model. Additionally,
to assess the coronal limb alignment through radiographic
means, weight-bearing line (WBL) ratio was derived by
calculating the ratio between the crossing point of the
mechanical axis, measured from the medial edge of the
tibial plateau, and the total width of the tibial plateau [110].
Recognizing the multi-compartment nature of the knee joint,
Hu et al. [86] employed an undirected regional adjacency
graph to represent the interrelations among various knee sub-
regions. In this graphical representation, nodes corresponded
to distinct knee MRI-extracted structures such as bone and
cartilage, while edges denoted their anatomical connections.
For instance, given the connection between the tibia and
femur through the meniscus, edges were assigned between
the meniscus and nearby cartilage. Similarly, connections
between the medial and lateral tibiofemoral joints and
the patellofemoral joints were determined by their direct
structural contacts. This approach resulted in the creation
of four anatomic compartment-based regional graphs, each
capturing the intricate anatomical relationships within the
knee joint.

b: MODEL BASED
Model-based feature engineering leverages an automatic
approach to unveil the inherent structure of a dataset, leading
to the extraction of relevant and informative features [40].
One such example is unsupervised clustering, a technique
that groups similar data points together based on their
intrinsic characteristics, without the need for labelled tar-
get variables [40]. For instance, [101] developed a fully
automatic landmark-matching algorithm based on Coherent
Point Drift to map the bone surfaces into reference space.
Reference [104] used simple linear iterative clustering
based superpixel segmentation to extract the region of
interest as a pre-processing strategy. Reference [98] applied
k-means clustering to analyze biochemical marker data and
figure out prominent subgroups among patients with OA.
This approach enabled them to identify three dominant
OA phenotypes. Reference [72] conducted similar work
using biclustering, but their work was extended to more
inclusive clinical data, including demographics, medical

history, symptoms, physical activity, physical exam, and
medical imaging outcome. Through their analysis, they
identified two significant clusters. One cluster represented
individuals who exhibited structural progression over time
but experienced improvements in pain. The other cluster
represented individuals who had stable pain scores and
were less affected by OA. Additionally, model-based feature
engineering techniques were employed to analyze gait data,
which is known for its complexity with multidimensional
and time-series properties. Leporace et al. [93] utilized
self-organizing maps (SOM) on principal components to
detect gait similarity patterns in individuals with high grade
OA. The resulting patterns were visualized using a unified
distances matrix (U-matrix). Subsequently, the U-matrix
was subjected to the k-means clustering algorithm, leading
to the formation of four distinct gait kinematic clusters.
Liu et al. [111] employed a feature optimization learning
method, namely the integrated multi-modal learning method
(MMLM) to enhance the classification of early-stage knee
OA. Their study addressed the challenges posed by the
complexity and high dimensionality of multi-modal data,
which includes clinical, imaging, and demographic features.
By utilizing L1-norm-based optimization, they were able to
regularize and select the most relevant features from each
modality, effectively reducing the overall dimensionality of
the data, thereby improving the performance of machine
learning classifiers in detecting early knee OA. Consequently,
MMLM not only tackles the curse of dimensionality but
also enhances interpretability and efficiency in the diagnostic
process.

c: DISENTANGLED REPRESENTATION LEARNING
Disentangled representation learning is a significant and
closely related area of research that focuses on acquiring a
dataset representation where the generative latent variables
are disentangled or separated. Latent variables in this context
can be regarded as interpretable or explainable features of
the dataset. Reference [112] were pioneers in applying the
DeepFake concept in this medical domain, specifically by
utilizing Wasserstein generative adversarial neural networks
with gradient penalty (WGAN-GP). Their model managed
to preserve important OA anatomical information during
the generation process. The authors utilized DeepFake
generated data to substitute real data during the training of
a pre-trained VGG model for classification task. Remark-
ably, they achieved a mere 3.79% decrease in accuracy
compared to the baseline when classifying real OA X-
rays. Reference [113] advanced the field of disentangled
representation learning by introducing a novel approach
called key-exchange convolutional autoencoder (KE-CAE).
This method was designed to extract specific radiograph
features related to early knee osteoarthritis (OA) from latent
space through cross image reconstruction. Their proposed
approach successfully captured crucial information from
radiographs that represents early knee OA, enabling effective
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analysis. Notably, their model not only achieved high-quality
reconstruction of the original images but also generated
synthetic images that accurately represented different stages
of knee OA. This noteworthy contribution holds promise for
the early detection and diagnosis of knee OA.

3) KNOWLEDGE GRAPHS
Knowledge graph (Figure 8) is a structured representation
of knowledge that captures relationships between entities in
a particular domain. Reference [74] established a medical
knowledge graph using unstructured data from an electronic
medical record (EMR) database. The EMR data was in
Mandarin language, which posed a computational chal-
lenge for processing Mandarin words. To address this, the
authors adopted five feature extraction methods, including
bi-directional long short-term memory (Bi-LSTM), bag of
characters, natural language processing with the Chinese
Academy of Sciences Word Segmentation Tool, dictionary
features, and the k-means algorithm for word clustering.
These diverse feature sets were utilized in the conditional
random field (CRF++) algorithm for entity recognition.
Following entity recognition, the authors combined the
extracted features and implemented a CNN model, com-
prising a convolutional layer, pooling layer, fully connected
layer, and softmax classifier, to extract entity relations
from the identified entities. This step allowed for a deeper
understanding of the interconnections within the medical
data. In the final stages of building the medical knowledge
graph, the authors employed Neo4j graph database. They
achieved this by batch importing the previously identified
medical entities and their corresponding relationships into the
Neo4j database, forming a comprehensive and interconnected
representation of medical knowledge in knee OA domain.
The resulting knowledge graph encompassed 2,518 distinct
entities and an impressive 29,972 different relationships
related to knee OA condition. The knowledge graph spans
a diverse range of entity types, comprising 368 diseases,
706 symptoms, 421 treatments, 859 examination descrip-
tions, 72 examinations, 43 aggravating factors, 35 mitigat-
ing factors, and 14 inducing factors. This comprehensive
repository of information serves as a valuable resource,
empowering researchers and medical practitioners to gain
deeper insights into knee OA.

B. MODEL INTERPRETABILITY
While clean and carefully prepared data, aided by data
interpretability techniques, is crucial for training models, it is
equally important for themodel itself to possess a clear under-
standing. Without this understanding, developers may face
challenges when incorporating their domain knowledge into
the learning process to achieve improved results. Therefore,
alongside data interpretability, model interpretability plays a
vital role.

Inmany instances, analyzing outputs or examining individ-
ual inputs is insufficient for comprehending why a training
procedure failed to yield the desired outcomes. In such cases,

it becomes necessary to investigate the training procedure
in the model. The objective of model explainability is to
develop models that are inherently more interpretable and
understandable. This approach is also called intrinsic XAI.

1) INTERPRETABLE MODELS
Interpretable models, also known as white-box models, are
models that provide self-explanatory insights [44]. Examples
of such models include rule-based model, linear regression,
logistic regression, and decision trees.

In the realm of rule-based models, [76] devised an
objective algorithm for pain prediction and compared it
to a general KL grade-based algorithm. Their proposed
algorithm incorporated racial disparities (Black versus non-
Black) and two socioeconomic measures, namely annual
income below $50,000 and educational attainment (college
graduation). The authors examined the differences in pain
scores between groups and quantified the pain disparities
using non-parametric means. By employing a regression
model, the proposed algorithm successfully addressed the
inequalities faced by under-served patients.

Linear regression was utilized when researchers assumed
a linear relationship between the severity of OA disease and
the KL grade. Nichols et al. [91] employed Least Absolute
Shrinkage and Selection Operator (LASSO) regression on
knee acoustic emission features to predict the KL grade.
The predicted KL grade was then combined with Knee
Injury and Osteoarthritis Outcome Score (KOOS) scores
and used to determine the stage of OA, categorizing it as
either early or late, using a linear discriminant analysis
model. This two-stage classification approach achieved
improved balanced accuracy and area under a receiver
operating characteristic curve (ROC-AUC) over the models
using single-stage or single-input methods. The proposed
approach demonstrated the enhanced model’s intrinsic inter-
pretability for knee evaluation, despite the use of subjective
patient-recorded data (KOOS) as input.

Zeng et al. [95] utilized binary logistic regression to detect
knee OA and recommend appropriate treatment options,
including conservative or surgical approaches. Although the
authors claimed the interpretability of their model, however
they did not provide detailed analysis or explanations to
support their claim.

In terms of tree-based models, Kotti et al. [92] utilized
a regression tree to analyze and interpret the rule induction
process for detecting OA cases from a biomechanical
perspective. A random subset of parameters extracted from
ground reaction forces in the z-axis was employed to
construct the regression tree, as illustrated in Figure 9. This
approach provided insights into the biomechanical factors
that may contribute to the presence of OA and offered ameans
of interpreting the rule induction process in the context of OA
detection.

[68] employed splitting nodes algorithm to assess
the importance of each feature in a tree generated by
eXtreme Gradient Boosting (XGBoost). They found that
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FIGURE 8. Example of knowledge graph for knee OA. Each circle represents a specific Chinese term associated with knee OA. Adapted from [74].

demographics and anthropometric factors had a significant
influence on determining OA status, but acknowledged
that these factors are not exclusive to OA and contribute
to various clinical issues like pain and disability. Instead,
the authors emphasized three other categories: comorbidity,
blood measures, and physical activity measures. These
categories were closely linked to the risk of experiencing side
effects from analgesics in OA patients.

Despite the use of white-box mechanisms, relying
solely on interpretable models may not provide sufficient
explanation for complex models, particularly in scenarios
with high-dimensional and heterogeneous data. To address
this limitation, the application of regularization techniques
becomes necessary during model training. Regularization
helps control the number of relevant input features by
introducing penalties or constraints, ensuring that the model
focuses on the most important variables. For example,
[70] used a robust methodology to process 707 features
from multidisciplinary settings. They employed six feature
selection techniques, including filter algorithms, wrapper
approach, and embedded techniques, and ranked features
based on a majority vote scheme. This process identified

40 relevant risk factors, resulting in a classification accuracy
of 77.88% using logistic regression.

However, one limitation of the majority voting approach
is that it treats all models in the ensemble equally, without
considering the possibility of weak predictions. To address
this limitation, [79] introduced a Fuzzy ensemble approach
to optimize the model and improve decision-making by
considering the reliability and uncertainty of individual
predictions. Additionally, [73] demonstrated the effectiveness
of recursive feature elimination (RFE), which considers the
intrinsic characteristics of the data and model to select an
optimal feature combination. RFE iteratively eliminates less
relevant features, resulting in an informative subset that
contributes significantly to the model’s performance.

2) EXPLAINABILITY THROUGH ARCHITECTURAL
ADJUSTMENTS
Attention mechanisms could introduce certain level of
explainability and have revolutionized the utilization of
DL algorithms [28], [77], [85], [109], [114], [115], [116].
Zhang et al. [28] utilized the convolutional block attention
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FIGURE 9. Example of regression tree. Adapted from [92].

module (CBAM) to implement an attention mechanism.
Their CBAM consisted of both channel and spatial attention
modules. By incorporating the module into ResNet34, the
proposed approach identified the most relevant channel
and spatial parts that contributed significantly to the final
prediction and helped to enhance the model’s performance
by focusing on the most informative features in the input
data during the training process. Despite the improved
model performance in terms of accuracy, MSE, and Kappa
coefficient, the integration of CBAM at the end of each
residual block significantly increased the computational
burden, making real-time deployment challenging. Jain et al.
[85] addressed this issue by proposing a single integration
of CBAM into a multi-resolution deep CNN, specifically the
High-Resolution Network. This model effectively captured
multi-scale information and enabled more efficient adaptive
filtering of counterproductive features, thereby reducing the
computational load while maintaining high performance.

In the study conducted by Feng et al. [115], the channel
attention module within the CBAM was enhanced by
incorporating additional non-linear layers after fusing the
channel weights from dual branches. This modification
increased the expressiveness of the CBAM network and
improved the model’s accuracy in detecting potential lesions
in knee X-ray images. Similarly, [77] incorporated a gated
attention mechanism to calculate attention scores for indi-
vidual image slices, which can be interpreted as indicators
of their importance. These scores were then utilized in
the classification sub-model. Self-attention mechanism was
implemented by Wang et al. [114] by integrating a visual
transformer after their deep learning model. Their approach

effectively captured the interrelationship among imaging
features from multiple regions.

Alternatively, [109] proposed a self-attention-based net-
work, namely CSNet that has been designed in a layer-by-
layer manner. Each layer incorporated patch convolution to
extract local appearance features from individual vertices
and graph convolution to facilitate communication among
the vertices. The self-attention mechanism was employed
in each layer to enhance the model’s ability to capture
information from the cartilage graph. The final assessment of
knee cartilage defects was obtained by pooling information
from all vertices in the graph, and the CSNet also allowed
for easy 3D visualization of the defects, showcasing its
interpretability. In contrast to previous approaches that did
not take semantic information into account, a recent study
by Huo et al. [116] introduced the use of an online class
activation mapping (CAM) module to specifically direct the
network’s attention towards the cartilage regions.

C. POST-HOC INTERPRETABILITY
Post-hoc XAI methods were found to be more commonly
employed than intrinsic XAI methods in those studies. These
post-hoc methods provide an external explanation of the AI
model’s decisions after it has made predictions. It involves
querying the trained model and constructing a white-box
surrogate model to extract the underlying relationships the
model has learned [40]. These methods could gain insights
into the model’s decision-making process by analyzing its
predictions on specific instances, without altering the original
model architecture. In contrast, intrinsic XAI focuses on
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designing AI models with inherent interpretability right from
the model’s architecture and design [44]. These models are
built with specific structures or components that naturally
provide transparency and understandability in their decision-
making process.

1) ATTRIBUTION BASED
a: PERTURBATION APPROACH
Perturbation is a simple and effective method for computing
the impact of changing input features on the output of an AI
model [16]. It involves manipulating certain input features,
running the forward pass, and measuring the difference from
the original output. The importance of the input features can
be ranked based on their effect on the output. Reference [76]
demonstrated a region-wise method to visualize image areas
that influenced predictions made by a neural network. To do
this, the image regions are ‘‘masked’’ out by replacing them
with a circle, and the value of the circle was set to the mean
pixel value for the image. Gaussian smoothing was applied
to prevent sharp boundaries. The neural network’s predicted
pain score was then compared between the masked image and
the original image, and the absolute change in the predicted
pain level was computed. This process was repeated for a 32×
32 grid of regions that evenly tiled the 1024 × 1024-pixel
image. This has allowed a heatmap analysis that revealed how
much masking each region of the image affected the neural
network’s prediction.

Another perturbation approach is GNNExplainer. This
technique is used to identify the nodes that are most
critical to the performance of a Graph Neural Network
(GNN). It operates by removing or altering nodes, features,
edges, or subgraphs to determine which changes significantly
impact the model’s final decision and its confidence in that
decision. For each node, GNNExplainer generates a score, S,
ranging from 0 to 1, with higher values of S indicating greater
node importance. Hu et al. [86] used GNNExplainer to assess
the contribution of various MRI subregions. The analysis
highlighted the importance of cartilage compared to other
structures and revealed the dominance of the tibiofemoral
joint over the patellofemoral joint for knee OA diagnosis. The
proposed model also tracked changes in importance scores
within compartments over time from baseline to 12 months
and then to 24 months.

b: BACKPROPAGATION APPROACH
Backpropagation approach can be further divided into
gradient-based approach, class-activation map, and gradient-
weighted class activation map. Nearly half of the studies
(34 out of 70) employed backpropagation XAI approach
to explain the predictions of AI models as described in
Supplementary Table 1.
Gradient-based approach focus solely on the gradient

information when assessing the impact of modifying a
specific pixel on the final prediction. Integrated Gradients is
a specific technique within this approach. Another technique,

namely SmoothGrad was introduced with the intention of
reducing visual noise [117] and used by Tack et al. [83] for
MRI study.

Class activation map (CAM) utilize global average
pooling to compute the spatial average of feature maps in the
final convolutional layer of a CNN [118]. Three studies [116],
[119], [120] that focused on MRI data used CAM approach
to analyze the prediction outcomes.

Gradient-weighted class activation map (GradCAM) is
an extension of CAM, which is a technique that does not
depend on a specific architecture. The principle of GradCAM
is based on the concept of gradient-based CAM. It leverages
the gradients of the final convolutional layer with respect
to the predicted class to understand which parts of the
input image are crucial for making that prediction. Around
34.3% of the studies (24 out of 70) utilized GradCAM for
visualizing the final predictions. Another technique, namely
GradCAM++ enhances GradCAM by substituting the
globally averaged gradients with a weighted average of the
gradients at the pixel level. This adaptation takes into account
the significance of individual pixels in influencing the final
prediction, resulting in more effective visual interpretations
of CNN model predictions. GradCAM++ effectively over-
comes the limitations of GradCAM, particularly in scenarios
involving multiple instances of a class in an image.

Eigen class activation map (Eigen-CAM) is a variation
of CAM that incorporates the use of principal components
of the learned convolutional activations [121]. It offers
more accurate localization of important regions in an image
and provides a deeper understanding of the underlying
features. Reference [122] employed Eigen-CAM as a tool for
localizing osteoarthritis (OA) features in X-ray images, using
the Kellgren Lawrence grading scheme. The application
of Eigen-CAM revealed significant findings, specifically
highlighting the medial and lateral margins of the knee joint.
These highlighted regions correspond to joint space narrow-
ing and osteophytes sign, offering valuable insights into the
presence and severity of OA-related changes in the knee joint.

c: DEEPLIFT
DeepLIFT was used by Chan et al. [71] to quantitatively
assess the contribution of each risk factor to the model’s
prediction. The assessment was carried out by computing
the relative backpropagated gradients of the risk factors
with regard to the model’s prediction output. Their analysis
revealed that for the prediction of knee OA onset, the medial
JSN exhibited the highest DeepLIFT gradient, followed by
history of injury. However, in the prediction of knee OA
deterioration, diabetes and smoking habits showed the second
and third highest gradients, respectively, alongside medial
JSN, indicating their greater impact compared to injury.

2) GAME THEORY BASED
SHapley Additive Explanations (SHAP) is a widely favoured
post-hoc approach for handling tabular data in machine
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learning models. This approach is rooted in game theory
that provides local explanations for individual predictions
in the models. By calculating Shapley Values, it assigns
importance values to each feature based on their interactions
and contributions to the prediction outcome. It enables a
comprehensive understanding of the factors driving each
prediction and facilitates interpretability by identifying the
most influential features in the decision-making process. The
findings of all eight studies that utilized SHAP on tabular data
were summarized in Table 5.

3) CASE BASED
Case-Based approach is a knowledge-driven approach in
which all relevant knowledge is pre-programmed and explic-
itly specified. Reference [82] demonstrated a case-based
methodology for detecting knee osteoarthritis. Their pro-
posedmethodology integrated a logic programming approach
to knowledge representation and reasoning with a case-based
approach to computing, resulting in a comprehensive frame-
work for effective problem-solving in OA field.

4) KNOWLEDGE EXTRACTION BASED
Knowledge distillation is the core of the knowledge extraction
based approaches. Reference [116] demonstrated the use
of dual-consistency mean teacher model (Figure 10) to
discriminate cartilage damages. Both the teacher sub-model
and the student sub-model shared common network architec-
ture, but the teacher model utilized an exponential moving
average (EMA) strategy for weight updates. This approach
involved averaging the student network’s weights across
multiple training steps, enabling the teacher model to
maintain consistent predictions and effectively guide the
student network, particularly for unlabelled data. Recent
study by [123] employed knowledge distillation to convey
pixel and pair-wise information from a teacher network to
a student network. The teacher network, built upon HRNet-
W, featured a head convolution layer consisting of 64 filters
and a 3×3 kernel, whereas the student network was equipped
with 32 filters and 3×3 kernels. The student network was
trained using pixel-wise knowledge extracted from heatmaps
generated by the more complex teacher network with loss
function as shown in Equation 3, enabling the student
network to adopt a simpler and more compact architecture.

Lpi =

∑
i∈ℜ

KL(hsi ||h
t
i )

ŵ× ĥ
, ℜ = 1, 2, . . . , ŵ × ĥ (3)

where hsi represents the response of the pixel at ith
position in student network, hti represents the response by
teacher network at ith position of pixel, KL represents
the Kullback-Leibler exhibiting divergence among two
heatmaps, and ŵ× ĥ represents feature map.
Reference [124] presented a novel two-stage method

inspired by multiple instance learning. This method aimed
to identify regions of high likelihood for pathologies by
leveraging mixed-format data, which encompassed categor-
ical and positional labels. Their approach incorporated a

UNet network along with a morphological peak-finding
algorithm to accurately localize defects. Prior to pathology
detection, the images were automatically cropped around the
anterior cruciate ligament or medial compartment cartilage.
Additionally, they employed a deep reinforcement learning
model to detect two anatomical landmarks, namely the
intercondylar eminence and the fibular styloid, which were
used to position a volume of interest in relation to the location
of these landmarks.

5) NEURAL BASED
Neural-based techniques encompass methods that explain
specific predictions, simplify neural networks, and visu-
alize the features and concepts learned by the network.
Reference [84] conducted feature important analysis on a
pre-developed model based on random forest algorithm.
Their findings demonstrated that cartilage and bone features,
including the volume of femoral cartilage and patellar
density, played a significant role in classifying the status of
the knee, whether it was healthy, degenerative, or traumatic.
Reference [9] implemented another neural based technique,
namely layer-wise relevance propagation (LRP) as illustrated
in Figure 11 to tackle important pixels by running a forward
pass through the neural network. In addition, deep Taylor
decomposition (DTD) was utilized to backpropagate the
relevance R(L)t , allowing for the generation of a visualizable
relevance map RLRP.

VI. DISCUSSION
Knee OA is a chronic joint disease that causes disability.
The heterogeneous nature of the disease makes the diagnosis
challenging, and this has motivated researchers to study
XAI for explainable OA diagnosis. Similar to general AI
models, XAI models also require a robust evaluation protocol
to ensure their effectiveness in addressing Co-12 properties
proposed by Nauta et al. [45]. These properties include
Correctness, Completeness, Consistency, Continuity, Con-
trastivity, Covariate complexity, Compactness, Composition,
Confidence, Context, Coherence, and Controllability.

In this survey, our observations indicate a relative lack of
emphasis on evaluating explanations generated by XAI in
existing research. Only three evaluation methods for XAI
were identified: sensitivity analysis [76], rate of agreement
with medical experts [119], and cross-validation [111]. These
methods minimally address the Correctness and Confidence
properties.

Pierson et al. [76] employed sensitivity analysis to
determine the impact of altering input data, such as masking
small image regions, on the AI model’s predictions. This
method helps assess the model’s robustness and the relevance
of different input regions. Chang et al. [119] engaged medical
experts directly in the validation process to enhance the relia-
bility of XAI techniques. In their approach, a musculoskeletal
radiologist with extensive experience in interpreting knee
MRI scans reviewed Class Activation Maps (CAMs) for
the final 15% of cases. The radiologist compared the
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FIGURE 10. Example of knowledge distillation. Adapted from [116].

FIGURE 11. Example of LRP for knee OA detection. Adapted from [9].

CAM-highlighted areaswith known abnormalities in theMRI
images to assess whether the CAMs accurately pinpointed
these abnormalities. This method not only provides a rigorous
check on the accuracy of the CAMs but also emphasizes the
crucial role of expert feedback in evaluating XAI systems.
Incorporating insights from medical professionals ensures

that the XAI techniques are aligned with clinical expertise,
thereby improving the validity and relevance of the generated
explanations and making them more applicable in real-
world settings. Liu et al. [111] applied cross-validation to
an interpretable model to identify key imaging and clinical
features for early OA detection. By analyzing features that
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TABLE 5. Summary of game-theory-based XAI techniques from included papers. JSN: joint space narrowing; SHAP: SHapley Additive exPlanations;
XGBoost: eXtreme Gradient Boosting.
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TABLE 5. (Continued.) Summary of game-theory-based XAI techniques from included papers. JSN: joint space narrowing; SHAP: SHapley Additive
exPlanations; XGBoost: eXtreme Gradient Boosting.

consistently appeared in at least eight out of ten folds of
the cross-validation, they determined which features were
most significant. This approach ensures that the identified
features are both robust and reliable, demonstrating stability
and consistency across various data subsets.

The strengths and limitations of XAI methods are summa-
rized in Table 6. Data interpretability plays an important role
in understanding and characterizing input data. It is typically
employed as a pre-processing model to extract representative
features. Model interpretability is crucial for comprehending
the decision-making process of AI models. However, due
to technical limitations in constructing an effective intrinsic
XAI model, most studies prefer a post-hoc model to visualize
the reasoning behind predictions made by the trained model.
Since most of the OA diagnosis models involve medical
imaging, visual XAI dominates over attribution-based XAI.
Visual XAI, such as GradCAM, has successfully identified
certain OA features, such as bone spurs and narrowed joint
spaces. However, the Correctness of visual XAI has not been
fully validated.

The application of XAI gives rise to ethical concerns,
including data privacy, patient safety, and risk of bias. As XAI
models strive to elucidate human health status through the
analysis of diverse data sources, there is a potential risk of
patient information leakage to third parties, posing harm to
the patient. Excessive reliance on XAI approaches may also
predispose clinicians to biases. Thus, it is crucial to recognize
that XAI is not all-powerful. Identifying the knowledge
boundaries of XAI models is upmost important for users
to have a clear understanding and make appropriate use of
the tool. Users should be informed about the operational
boundaries of the models and be able to discern when
the models go beyond their knowledge limits, as this can
potentially result in errors. While XAI-based systems have
the potential to alleviate the workload of healthcare providers,
they also raise concerns regarding legal responsibility in cases
of unethical actions and errors. Therefore, the development of
XAImodels in healthcare should be approached with caution,
balancing the potential for positive societal impact with the
need for ethical consideration.

A. SUGGESTIONS FOR FUTURE WORK
Despite the limitations, XAI holds promise in revealing the
crucial pathological patterns associated with the onset and
progression of knee OA. Moreover, XAI has the potential

to optimize the handling and organization of electronic
health record data, resulting in streamlined clinical workflows
and significantly reducing the physicians’ spending time on
making diagnosis, prognosis, and searching for pertinent
patient information in electronic records. However, the
current state of XAI has certain aspects that need to be
addressed in future research.

1) DEVELOPMENT OF INTEGRATED EVALUATION METRICS
FOR XAI
Our findings highlight a substantial gap in the evaluation of
XAI-generated explanations. A significant number of studies
(67 out of 70) have relied predominantly on qualitative
assessments. While qualitative analysis can offer valuable
insights, it often lacks the objective rigor required for
evaluating the effectiveness of XAI techniques, particularly
in medical contexts. This reliance on qualitative methods can
introduce subjectivity and variability, impeding the objective
assessment and comparison of XAI methods in knee OA
diagnosis.

Qualitative analysis typically lacks quantifiable metrics,
which are essential for objectively measuring the perfor-
mance of XAI techniques. Without such metrics, comparing
different techniques or assessing their performance over time
becomes challenging. Furthermore, qualitative assessments
often focus on specific cases or examples that may not
be representative of broader populations. This limitation
restricts the ability to determine the generalizability of XAI
techniques across different datasets or real-world clinical
settings. Additionally, qualitative analysis may inadvertently
reinforce existing biases or preconceived notions about
the effectiveness of XAI techniques, as researchers might
emphasize positive outcomes while overlooking potential
limitations or failures.

To address these challenges, the development and imple-
mentation of robust quantitative evaluation metrics are
essential. Quantitative metrics provide objective measures
and standardized benchmarks, which are crucial for several
reasons. Firstly, they facilitate precise comparisons between
different XAI techniques by offering clear, numerical cri-
teria for evaluation. This objectivity allows for a more
rigorous assessment of how well XAI techniques support
decision-making processes in clinical settings. Secondly,
quantitative metrics help in identifying the strengths and
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TABLE 6. Comparison of XAI methods for OA diagnosis.

weaknesses of various models, enabling researchers and
practitioners to pinpoint areas for improvement. This is
crucial for advancing the field and ensuring that XAI
techniques are both effective and reliable. Finally, the use of
quantitative metrics enhances the reproducibility of results by
establishing consistent evaluation standards, which is vital
for validating the effectiveness of XAI techniques across
different studies and datasets.

By integrating quantitative evaluation metrics alongside
qualitative analyses, a more comprehensive and objective
assessment of XAI techniques can be achieved. This dual
approach ensures that evaluations are not only insightful
but also rigorous, thereby enhancing the overall relia-
bility and applicability of XAI methods in clinical set-
tings. Such an integrated approach is necessary to fully
understand and improve the impact of XAI on knee OA
diagnosis.

2) INTEGRATION OF DOMAIN-SPECIFIC INFORMATION
FROM STAKEHOLDERS AND CLINICAL VALIDATION
The deployment of XAI could lead to the real application
of AI in healthcare, and overcome the lack of operator

confidence in AI models. However, it is essential to
understand how the application of these models in clinical
tasks will be perceived, whether as a support or a substitute
for medical expert’s work, as well as the level of substitution.
To achieve this, AI programmers must discern which
explanations are valuable and which are not for medical
professionals. Creating an XAI model that is deemed useless
or difficult to comprehend may deter medical experts from
utilizing it. Furthermore, patients play a significant role as
stakeholders since the developed model aims to elucidate
their health status. Therefore, their expectations and special
needs should be taken into account and integrated into
the process. To address the challenges, [15] implemented
a qualitative co-design approach at an academic health
center in Southern Alberta, which involved conducting focus
groups with patients, physicians, researchers, and industry
partners, as well as analyzing prioritization activities and a
pre-post quality and satisfaction Kano survey. The structured
co-design processes were developed based on the basis
of shared concepts, language, power dynamics, rationale,
mutual learning, and respect for diversity and differing
opinions.
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Further clinical validation is critical for assessing the
real-world impact and feasibility of XAI techniques in knee
OA diagnosis. Clinical validation ensures that XAI models
are not only reliable and effective in controlled settings but
also deliver consistent, interpretable results in actual medical
practice. This process confirms that XAI techniques provide
practical value and integrate well into everyday clinical
scenarios.

Moreover, clinical validation enhances transparency and
builds trust in AI-driven diagnostic systems. By demon-
strating that XAI models offer accurate and understandable
explanations, validation increases confidence among medical
professionals and patients alike. It addresses reliability
concerns and facilitates the integration of AI tools into
standard clinical workflows. Robust validation also helps
identify and mitigate potential risks and limitations, allowing
for necessary refinements and improving the overall effec-
tiveness of XAI in real-world applications.

In summary, integrating domain-specific information from
stakeholders is essential for developing effectiveXAImodels.
However, robust clinical validation is equally crucial to
ensure these models have a meaningful impact and are
practical for widespread use in knee OA diagnosis. This dual
approach ensures that XAI techniques meet both technical
and clinical standards, ultimately enhancing patient care and
outcomes.

3) EXPLORING PATIENT DISPARITIES AND
POPULATION-SPECIFIC FACTORS TO ENHANCE
GENERALIZABILITY
As highlighted by Pierson et al. [76], there are noticeable
racial and socioeconomic disparities in OA data. By consid-
ering these disparities during the training of AI models, there
is a potential to enhance accuracy. The study also revealed
that patient-perceived OA symptoms vary based on factors
such as education, culture, and geography. Considering these
variations is crucial in developing AI models that accurately
capture the diverse experiences and manifestations of OA
among different patient populations.

However, a notable challenge is the limited representation
of diverse populations in widely-used datasets. For instance,
while large datasets like OAI are extensively utilized, with
64.3% of studies relying on them, they predominantly focus
on the US population, with a marked emphasis on European
American individuals. This overrepresentation can severely
limit the generalizability of findings, as these datasets may
not fully reflect the experiences of individuals from other
racial, socioeconomic, or geographic backgrounds. As a
result, AI models trained on these datasets may perform
well for the overrepresented demographic but less effectively
for underrepresented groups, potentially leading to biased
results and less accurate clinical interpretations for those
populations.

In addition, we observed that there is lack ofwell-organized
open access data specifically for the Eastern population,
despite the higher prevalence of OA issues in this popu-

lation [125]. This highlights a significant gap in available
resources for studying and addressing OA within the Eastern
population. The limited availability of comprehensive and
representative data from this specific demographic group
hinders the development and evaluation of AI models tailored
to their unique needs and characteristics.

4) EXPLORING ALTERNATIVE XAI TECHNIQUES FOR KNEE
OA APPLICATIONS
In addition to the XAI applications discussed in the
Section V, a prospective XAI technique in OA diagnosis
could be image captioning. It is a process of generating
a textual description of an image using AI algorithms.
Medical imaging is an area where this technology could
be particularly useful, as generating accurate and detailed
descriptions of radiology and pathology images could help
healthcare professionals to identify the specific areas of
the knee that require treatment and make better-informed
decisions about patient care. This area of research presents
an exciting opportunity for the development of new XAI
models that could have a significant impact on the future
of musculoskeletal healthcare. Furthermore, the exploration
of the counterfactual approach to XAI in the context of OA
applications presents an additional avenue for research. This
approach aims to enhance people understanding of AI sys-
tems by offering counterfactual explanations specific to target
domain. Recent studies have shown that counterfactuals can
provide richer information compared to causal explanations,
as they encompass a broader range of possibilities in their
mental representation [126].

VII. CONCLUSION
A substantial number of studies in the field of computer-aided
knee OA diagnosis have sought to enhance the explainability
of their deep learning models through the integration of XAI
techniques. Despite the existing limitations in current XAI
methods, such as the absence of a standardized evaluation
method for measuring explanation quality, incompleteness,
and the lack of established guidelines, the development of
XAI in knee OA detection aligns with the trend of precision
diagnosis, offering the potential to reduce the healthcare
burden and promote preventive strategies for musculoskeletal
diseases.
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