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ABSTRACT One of the key challenge faced by space-based network is how to maximize the demand for
on-board resources for ground communication tasks, given the limited availability of satellite resources.
For this challenge, firstly, we propose a joint state space of satellite task requirements and resource pools to
obtain the global information of the environment, avoiding convergence to local optimal strategies. Secondly,
we propose a new joint partitioningmethod for frequency and time resources, which avoids the fragmentation
of the resource to themaximum extent. Thirdly, a new algorithm called dynamic weight based soft actor critic
(DWSAC) is proposed, which enhances the update range when the actions taken by the agent significantly
contribute to the improvement of system performance, otherwise weakens the update range, significantly
improving the convergence efficiency and performance of the soft actor critic (SAC). The results show that
the proposed model and algorithm have good practicability, which can make the average resource occupancy
rate higher and the running cost lower.

INDEX TERMS Reinforcement learning, satellite resource scheduling, dynamic weight, soft actor critic.

I. INTRODUCTION
With the continuous growth of demand for satellite com-
munication tasks, one of the major challenges faced by
space-based network is how to achieve fast and efficient
scheduling of satellite communication resource and maxi-
mize the satisfaction of the demand for satellite resources for
ground communication tasks, given the limited availability
of satellite resources [1]. The traditional fixed resource
scheduling method will make the shortage of satellite
communication resources increasingly serious. When facing
non-uniform distribution of beam service requirements, this
method finds it difficult to match the allocated resources
with the resources required by the beam. Usually, there
will be insufficient beam allocation resources for high
service requirements and excess beam allocation resources
for low service requirements, resulting in resource waste [2].
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Therefore, designing reasonable and efficient communication
resource scheduling methods for key system resources such
as subcarriers, power, and beam hopping time slots can
provide users with better communication services and reduce
the cost of each bit of information in satellite-Internet
communication, and it is of great significance for promoting
the development of satellite communication technology.

A lot of research has been done on resources scheduling
problem related to satellite communication system. In [3]
designed a dynamic scheduling method that integrates beam
coverage channels based on real-time location information of
user terminals. This method can allocate channel resources in
real time, thereby improving the utilization rate of spectrum.
In [4] proposed a channel feedback optimization access
mechanism and constructed a dynamic negotiation feedback
model by introducing a humble incentive method. In [5]
adopts a combination of GA and PSO to obtain the optimal
reserved channel threshold, in order to reserve sufficient
channel resources for various call types, service types,
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and terminal types. In [6] proposes a solution for multi-
objective optimization problem aimed at minimizing system
unmet capacity and transmission power. In [7] used convex
optimization methods to optimize beam resource allocation.
However, the above research mainly focuses on the problem
of resource allocation at the user level within the beam,
which is easy to waste the resource of each beam due to
the spatial inhomogeneity and time variability of the service
distribution. In [8], beams are uniformly clustered and the
optimal clustering size is solved by convex optimization
method, and then a joint power and beamhopping time-slot
allocation algorithm is proposed to allocate resources to each
cluster. In [9] studies the synergistic effect of hopping beam
technology and NOMA technology in multi-beam satellite
communication systems, establishes a joint scheduling model
of hopping beam resources and power resource, and proposes
an improved greedy algorithm to solve the model. However,
with the increase of the number of beams and the number
of users, the power consumption and computing power of
the satellite are also strictly limited. Excessive constraints
will cause the variables to be solved and the computational
complexity to increase significantly.

With the development of RL technology [10] and the
improvement of perception ability in satellite communication
systems, more and more empirical data is being saved [11].
Deep reinforcement learning, due to its own characteristics,
can effectively use this data to discover patterns and learning
strategies. Therefore, the method based on reinforcement
learning has been widely studied in task and resource
scheduling [12], and is also suitable for resource scheduling
in satellite communication. In [13] studies the application of
reinforcement learning in satellite-terrestrial fusion networks.
In [14] studies an asynchronous reinforcement learning
model for subcarrier allocation in broadband cognitive radio
network, taking into account whether secondary users can
exchange information. In [15] adopts a deep Q learning
scheme to jointly optimize cache, computation, and network
resources in satellite-terrestrial network, improving resources
utilization efficiency. In [16] models D2D devices as
intelligent agents, models power scheduling problem as a
Markov decision process, and then uses MADQN algorithm
to train the optimal scheduling strategy. In [17] introduces
the PDMA channel matrix to improve the channel resource
multiplex rate and a reward threshold is introduced on
the basis of the Q learning algorithm. In [18] proposes
a power allocation method based on DRL to address
high dynamic characteristics of low orbit satellites and
the limitations of frequency and power resources. In [19]
transforms the two-dimensional subcarrier and transmission
power selection problem into a one-dimensional armed bandit
problem, and proposed a distributed MAB based DQN
algorithm. However, there are still some problems in these
methods, such as the unreasonable design of task scheduling
action space, the decrease in resource utilization caused by
the unreasonable design of reward function, and the low

convergence efficiency and poor convergence performance
caused by the unreasonable algorithm design.

In this paper, we take the task requirements and satellite
communication resources as the observation object. Firstly,
we propose a joint state space of satellite task requirements
and resource pools to obtain the global information of
the environment, avoiding convergence to local optimal
strategies. Secondly, we propose a new joint partitioning
method for frequency and time resources, which avoids
the fragmentation of the resource to the maximum extent.
Finally, in order to overcome the drawbacks of traditional
soft actor critic algorithm [20] that use fixed learning rate,
the agent cannot dynamically adjust the learning rate based
on the real-time reward changing over time, which affects
the convergence rate and performance of the algorithm.
We proposes a soft actor critic based on dynamic weight
(DWSAC). It incorporates a dynamic weight mechanism to
enhance the update range when the actions taken by the
intelligent agent contribute to the improvement of system
performance, otherwise reduce the update range.

The rest of the paper is organized as follows. Section II
introduces the proposed DWSAC, which is used to
solve satellite communication resource scheduling problem.
Section III shows description of satellite communication
resource scheduling based on Markov process. Section IV
is simulation and analysis. Section V is conclusion.

II. SOFT ACTOR CRITIC ALGORITHM BASED ON
DYNAMIC WEIGHT
Compared with DDPG, SAC uses a random policy and
has some advantages over deterministic policy. Specifically,
deterministic strategy refers to a strategy that only choose a
best action for a state. However, in many problems, there may
be more than one optimal action. In this case, a stochastic
strategy can be considered, which can output the probability
of each action in each state. The maximum entropy (ME)
mechanism adopted by SAC is to not leave behind any useful
action. The approach of using deterministic strategy in DDPG
is to pick up the good one and discard the slightly inferior
one, while the maximum entropy is to pick up everything and
consider everything.

However, SAC adopts a fixed learning rate, and the
agent cannot adjust the learning rate based on the real-time
reward changing over time, which to some extent affects
the convergence. Therefore, this paper introduces dynamic
weight into the SAC and proposes DWSAC.

A. DYNAMIC WEIGHT
In order to introduce dynamic weight into the SAC, first of
all, it is necessary to identify the valid and invalid information
during the learning process. In the framework based on actor-
critic, the large amount of information collected by an agent
is sparse and delayed, which is ineffective for critic and
therefore cannot efficiently obtain useful reward values in
most cases. In addition, how to enable actor to learn action
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strategies from sparse reward values is another important
problem that needs to be addressed, thus the algorithm’s
parameter update process needs to be modified. Due to the
different characteristics of the parameters updating for actor
and critic, it is necessary to set different updating weights
respectively.

Firstly, the weight of critic network is introduced, and a
ratio is set for the update of network parameter according to
the reward value before and after the execution of the agent
action, which is used to reflect the impact of the current
action on the environment and improves the convergence
rate. It should be noted that in the definition process of this
ratio, if only the linear ratio of the current reward ϒcr to the
previous reward ϒpv is used, it cannot accurately reflect the
updated values. Therefore, the ratio is defined as follows:

R c =


1 ϒpv = 0
exp

(
ϒcr /ϒpv − 1

)
ϒcr /ϒpv > 1

ϒcr /ϒpv ϒcr /ϒpv ≤ 1

(1)

Next, the gradient weight can be assigned value using defined
ratio. According to θi ← θi − λQ∇̂θiJQ (θi) , i ∈ {1, 2} for
updating the critic network parameter in [21] and the Eq. (1),
the update of critic network parameter can be described as
follows:

θi← θi − εc ·min ( R c, ξc) · ∇̂θiJQ (θi) i ∈ {1, 2} (2)

where θi is the parameter of critic network, εc is learning rate.
ξc is the upper limit of the weight, used to prevent network
oscillation when the gradient changes significantly during a
single updating.

Similarly, for the weight of the actor network, it is found
in [22] that if the current reward changes significantly
compared to the previous reward, it will cause the update
amplitude of actor to be too large, resulting in oscillation.
To avoid this phenomenon, we propose a method to make the
gradient weight of actor smoother, which can be defined as
follows:

R a = 1+

∣∣ϒcr − ϒpv
∣∣2

ϒ2
cr + ϒ2

pv
(3)

According to the formula φ← φ − λπ ∇̂φJπ (φ) for updating
the actor network parameter in [21] and the Eq. (3), the
updating of actor network parameter can be described as
follows:

φ← φ − εa ·min ( R a, ξa) · ∇̂φJπ (φ) (4)

where ξa is a threshold used to avoid oscillation in actor
network. After adopting this approach, effective resources
can be efficiently utilized to accelerate the convergence of
the network.

B. DESIGN OF SOFT ACTOR-CRITIC ALGORITHM BASED
ON DYNAMIC WEIGHT
The SAC uses a function approximator to approximate the
soft Q value and strategy, and optimizes the two networks

using random gradient descent. The parameterized Q value
function and strategy function areQθ (st , at) and πφ (at | st),
respectively, and their network parameters are θ and φ. Next,
we will export update rules for these parameters.

The soft state value function V (st) can be defined as
follows:

V (st) = Eat∼π

[
Q (st , at)− α logπ (at | st)

]
(5)

The parameters of the soft Q valued function can be trained
by minimizing the soft Bellman residuals, which can be
described as follows:

JQ(θ ) = E(st ,at )∼D

[
1
2

(Qθ (st , at)− (r (st , at)

+γ Est+1∼p
[
Vθ̄ (st+1)

]))2] (6)

where the value function Vθ̄ (st+1) is an implicit parameter-
ized form of the parameter θ of the soft Q value function of
the Eq. (5), which is optimized with a random gradient and
can be described as follows:

∇̂θJQ(θ ) = ∇θQθ (at , st) (Qθ (st , at)

−
(
r (st , at)+ γ

(
Qθ̄ (st+1, at+1)

−α log
(
πφ (at+1 | st+1)

)))
(7)

The updating utilizes the target soft Q value function with
parameter θ̄ .

For the strategy, SAC updates it with the Kullback-Leibler
divergence, which can be described as follows:

πnew = arg min
π ′∈5

DKL

π ′ (· | st) ∥
exp

(
1
α
Qπold (st , ·)

)
Zπold (st)


(8)

where Zπold (st) is the partition function used to normalize
the distribution, which is usually difficult to handle and can
usually be ignored.

The parameter θ of the strategyπ can be learned by directly
minimizing the expected Kulbach-Leibler divergence in the
Eq. (8), which can be described as follows:

Jπ (φ) = Est∼D
[
Eat∼πφ

[
α log

(
πφ (at | st)

)
− Qθ (st , st)

]]
(9)

where α is a constant that determines the relative importance
of the entropy term relative to the reward.

We use a re-parameterization method to minimize Jπ ,
which is not only convenient but also has a lower variance
estimation. To this end, a neural network is used to
reparameterize the strategy, which can be described as
follows:

at = fφ (ϵt ; st) (10)

where ϵt is input noise.
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According to the Eq. (9) and Eq. (10), Jπ (φ) can be
rewritten as follows:

Jπ (φ) = Est∼D,ϵt∼N
[
α logπφ

(
fφ (ϵt ; st) | st

)
−Qθ

(
st , fφ (ϵt ; st)

)]
(11)

where: πφ is implicitly defined according to fφ .
The gradient of Eq. (10) can be defined as follows:

∇̂φJπ (φ)

= ∇φα log
(
πφ (at | st)

)
+
(
∇atα log

(
πφ (at | st)

)
−∇atQ (st , at)∇φ fφ (ϵt ; st) (12)

where at is evaluated in fφ(ϵt ; st ). This unbiased gradient
estimation extends the policy gradient in the form of
DDPG [24] to any easily processed random strategy.
The aforementioned algorithm learns the maximum

entropy strategy under a given temperature, but in practical
problems, the optimal temperature should be adjusted
according to the specific problem. Therefore, setting a
maximum entropy reinforcement learning objective and
adaptively adjusting temperature has practical significance,
where entropy is considered as a constraint in which the
average entropy of the strategy is constrained, and the entropy
varies in different states. The goal of the algorithm is to
find a random strategy that maximizes the expected reward.
In addition, this strategy minimizes the expected entropy
constraint. It can be defined as follows:

max
π0:T

Eρπ

[
T∑
t=0

r (st , at)

]
s.t. E(st ,at )∼ρπ

[
− log (πt (at | st))

]
≥ H ∀t (13)

where H is the minimum expected value of entropy. It is
important to note that for a fully observable Markov decision
process, the strategy for optimizing reward expectations is
deterministic, so the constraint is usually strict and does not
need to impose an upper limit on entropy.

Since the policy at time step t can only affects the future
target value, a dynamic programming method can be used.
Here we rewrite the goal in iteration-maximized form as
follows:

max
π0

(
E [r (s0, a0)]+max

π1

(
E[. . .]+max

πT
E [r (sT , aT )]

))
(14)

The Eq. (14) is constrained by entropy, and from the
last time step, the constraint maximization problem is
transformed into a dual problem, which can be defined as
follows:

max
πT

E(st ,at )∼ρπ [r (sT , aT )] = min
αT≥0

max
πT

E [r (sT , aT )

−αT logπ (aT | sT )
]
− αTH (15)

E (sT , aT ) ∼ ρπ

[
− log (πT (sT | sT ))

]
≥ H (16)

where αT is a dual variable. Due to the fact that the objective
is linear and the constraint (entropy) is a convex function in

πT , strong duality is also used here, which is closely related
to the maximum entropy objective of the policy. The optimal
policy is the maximum entropy strategy corresponding to
temperature αT : π∗T (aT | sT ;αT ). The solution of the
optimal dual variable α∗T can be defined as follows:

argmin
αT

Est ,at∼π∗t

[
−αT logπ∗T (aT | sT ;αT )− αTH

]
(17)

To simplify, the following equation takes advantage of the
recursive definition of a soft Q value function:

Q∗t
(
st , at ;π∗t+1:T , α∗t+1:T

)
= E [r (st , at)]+ Eρπ

[
Q∗t+1 (st+1, at+1)

−α∗t+1 logπ∗t+1 (at+1 | st+1)
]

(18)

where Q∗T (sT , aT ) = E [r (sT , aT )]. Using the duality
problem again under the entropy constraints, the equation can
be obtained as follows:

max
πT−1

(
E [r (sT−1, aT−1)]+max

πT
E [r (sT , aT )]

)
= max

πT−1

(
Q∗T−1 (sT−1, aT−1)− αTH

)
= min

αT−1>0
max
πT−1

(
E
[
Q∗T−1 (sT−1, aT−1)

]
−E

[
αT−1 logπ (aT−1 | sT−1)

]
− αT−1H

)
+ α∗TH

(19)

In this way, we can backtrack in time and recursively
optimize the Eq. (15). It should be noted that the optimal
strategy at time step t is a function of the dual variable αt .
Similarly, after solving Q∗t and π∗t , the optimal dual variable
α∗t can be solved, which can be defined as follows:

α∗t = argmin
αt

Eat∼π∗t

[
−αt logπ∗t (at | st ;αt)− αtH

]
(20)

The solution in the Eq. (20), as well as the update of the
strategy and soft Q function described earlier, constitute the
core of this algorithm. In theory, these variables and strategies
are accurately solved recursively, and the maximum expected
reward objective of the optimal entropy constraint in the
Eq. (15) is optimized, but in reality, function approximators
and random gradient descent is needed.

In this algorithm, two soft Q value functions are used to
alleviate the positive bias of the strategy, which reduces the
performance of value based methods [25]. Specifically, two
soft Q value functions are parameterized with parameter θi,
and they are trained independently to optimize JQ (θi), and
then the minimum value of the softQ value is substituted into
the Eq. (7) and Eq. (12) to solve the stochastic gradient and
the policy gradient respectively.

In addition to the soft Q value function and strategy,
learning α is also achieved by minimizing the dual objective
in the Eq. (20). This can be achieved by approximating
double gradient descent. Although it is impractical to com-
pletely optimize the original variables, under the assumption
of convexity, truncated versions that perform incomplete
optimization can be proven to converge [26]. Although
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FIGURE 1. Satellite communication resource scheduling diagram.

these assumptions are not applicable to non-linear function
approximators such as neural network, it has been found in
practice that this method is still effective. Therefore, in order
to calculate the gradient target of α, it can be defined as
follows:

J (α) = Eat∼πt

[
−α logπt (at | st)− αH

]
(21)

Combined with the dynamic weights proposed in
section II-A, this paper proposes the DWSAC. The
pseudocode of the algorithm is given in Algorithm 1.

Algorithm 1 DWSAC Algorithm
Input: Initial parameters θ1, θ2, φ.
1: Initializing parameters θ1, θ2, φ
2: Initializing target network parameters θ̄1← θ1, θ̄2← θ2
3: Initializing an empty experience replay pool D← ∅
4: for each iteration do
5: for each environmental step do
6: Getting an action based on the current policy at ∼

πφ (at | st)
7: Getting the next state st+1 ∼ p (st+1 | st , at)
8: Saving to the experience replay pool D ← D ∪

{(st , at , r (st , at) , st+1)}
9: end for

10: for each gradient updating step do
11: Updating the parameter of the Q value function

θi← θi−εc ·min ( R c, ξc) · ∇̂θiJQ (θi) for i ∈ {1, 2}

12: Updating policy parameter φ ← φ − εa · min ( R
a, ξa) · ∇̂φJπ (φ)

13: Adjusting temperature α← α − λ∇̂αJ (α)
14: Updating target network parameter θ̄i← τθi+ (1−

τ )θ̄i for i ∈ {1, 2}
15: end for
16: end for
Output: Parameters after training θ1, θ2, φ.

III. DESCRIPTION OF SCRS BASED ON MARKOV PROCESS
Satellite communication resource scheduling (SCRS)
includes time resource scheduling and frequency resource
scheduling. The common resource scheduling process based
on transparent satellite transponder is shown in Fig.1.
By scheduling time and frequency reasonably and quickly,
the utilization rate of satellite repeater resources can be
improved under multiple constraints. Improving satellite
resources occupancy rate through DWSAC network is shown
in Fig.1. The essence of using RL methods to solve the SCRS
is to find a set of better sorting sequences than using heuristic
algorithms. In this paper, a satellite management center is
modeled as an agent. The external environment includes
task requirements and satellite communication resources.
In addition, the main elements of RL based on DWSAC
definition in the SCRS problem will be discussed as follows.
The SCRS based on DWSAC is shown in Fig. 2.

1) state space
The satellite task requirements and resource pool state is

st =
(
srp, stl

)
t . srp is resource pool state at time t . stl is task

list state at time t . When there are new task requirements, it is
necessary to format the task list status stl and update the status
of task list stl. stl is described as follows:

stl = {[δ1, ϕ1 (t1) , ϕ2 (f1)] , · · · , [δm, ϕ1 (tm) , ϕ2 (fm)]

(22)

where, δm is the allocation status of themth task in the satellite
resource pool, tm and fm are the satellite time and frequency
resources occupied by the task, respectively. ϕ1 (tm) = N ×
tm/1t and ϕ2 (fm) = N × fm/1f are the state reconstructions
of tm and fm, respectively, so that they conform to the tensor
size of themodel inputing. tm and fm are both rephrasedwithin
[1,N ], while 1f and 1t represent the time and frequency
resource ranges in the satellite resource pool, respectively.
By dividing frequency resources and time resources into
N − 1 times in their respective dimensions, the satellite
resource pool can be divided into N×N resource blocks. The
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FIGURE 2. Overview diagram of satellite resource scheduling based on DWSAC method.

state matrix srp is used to represent the occupancy of each
resource block in the resource pool. The state matrix srp is
defined as follows:

srp =

 p(1,1) · · · p(1,n)
...

...

p(n,1) · · · p(n,n)


N×N

(23)

where, p(n,n) is the occupancy indicator of the satellite
resource pool in resource block (n, n).
2) action space
In the SCRS problem, the available action space A(s) is the

decision space of the satellite control system, and action at is
selected from A(s) based on the current state st at time t . The
available operating space depends on the type of allocated
resources and resource limitations, including priority action
space Ap and selection action space Ac. A(s) is defined as
follows:

A(s) =
{(
Ac(i),Ap(j)

)
| 1 ⩽ i ⩽ m, j = 0, 1

}
(24)

where, ac = Ac(i) represents the task selection action,
representing the task number selected in the list for this round;
ap = Ap(j) is the action of resource search priority.
3) reward function
For a task assignment of the same resource block size, the

closer the resource occupancy rate is to the upper limit, the
greater the reward value should be. Therefore, the reward
function is defined as follows:

r = − lg

(
1−

∑M
m=1 δm × ϕ1 (tm)× ϕ2 (fm)

1t ×1f
+ ε

)
(25)

where, ε is a non-negative number used to avoid the
occurrence of infinite values.

A. DESCRIPTION OF THE SIMULATION PLATFORM
With reference to the recommendation on LEO satellite
parameter setting in 3GPP NTN TR38.811 [27], this paper

TABLE 1. Parameters setting of simulator.

assumes that LEO satellite works in Ka-band, satellite height
is 600km, center frequency of downlink signal is 20GHz,
total bandwidth is 400MHz, spectrum multiplexing between
beams, and users are evenly distributed within the beam. All
other parameters are shown in Table 1.

In addition, this paper uses two random generation
methods to generate satellite task list datasets and trains deep
reinforcement learning models. Firstly, in order to compare
the performance of different scheduling methods, we adopt
the zero waste task generation method. Secondly, in order
to better match the actual situation of the satellite task list,
we adopted the non-zero waste task generation method.

IV. NUMERICAL EXPERIMENTS
A. ALGORITHM PARAMETER SETTINGS
This paper compares three state-of-the-art deep reinforce-
ment learning algorithms (SAC, DDPG, TD3) with the
proposed DWSAC algorithm. The hyperparameter setting of
DDPG is consistent with the reference [28], TD3 is consistent
with the reference [29], and SAC is consistent with the
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TABLE 2. Parameters setting of simulator.

reference [30]. The hyperparameter setting of the DWSAC
proposed in this paper is shown in Table 2.

B. SIMULATION AND ANALYSIS IN SATELLITE RESOURCE
SCHEDULING
Firstly, we analyze and evaluate the performance of the pro-
posed DWSAC and the other three state-of-the-art algorithms
in satellite resource scheduling based on the mean episode
reward value. In Fig. 3 and Fig. 4, the convergence curves
of reward value trained on the zero waste dataset and non-
zero waste dataset are shown respectively. From the Fig. 3 and
Fig. 4, it can be seen that although there are still significant
fluctuation in the curve after 400 episodes, the trend of the
curve is basically clear. DDPG receives the smallest reward,
which means a lower utilization rate of satellite resources.
Its curve has been fluctuating significantly throughout the
entire training process, indicating the existence of value
overestimation problem that lead to poor performance of
reward values and difficulty in finding the optimal strategy.
The average reward of TD3 and SAC is better than that of
DDPG. Although the fluctuation amplitude of the curve has
been alleviated, it is still very obvious, especially in TD3
due to the lack of target network mechanism and the non-
uniformity of state value frequency in the experience cache,
as well as the overestimation problem of the critic network,
making it difficult to learn the optimal strategy. In addition,
SAC has significant curve fluctuation due to its inability to
efficiently evaluate the state values. The DWSAC proposed
in this paper is significantly superior to the other three
algorithms in terms of convergence speed, average reward,
and curve stability, indicating that the dynamic weight update
strategy can update the actor network and critic network
with better quality based on value estimation, improving
the efficiency and ability to find the optimal strategy, and
enhancing robustness.

Secondly, based on zero waste and non-zero waste
datasets, this paper conducted comparative experiments on
task scheduling performance and running cost performance.
As shown in Table 3 and Table 4, the effectiveness of the

FIGURE 3. Mean episode reward at zero waste dataset.

FIGURE 4. Mean episode reward at non-zero waste dataset.

DWSAC is demonstrated, and the performance is compared
with the other three algorithms.

From Table 3, it can be seen that compared with the
three algorithms DDPG, TD3, and SAC, DWSAC showed
significant improvements in average resource utilization rate
(ARU) and running cost (RC) when tested on zero waste
dataset. Compared with SAC, DWSAC can significantly
improve ARU indicator within the allowable time limit,
and with the increase of satellite missions, the perfor-
mance improvement becomes more significant after adopting
DWSAC. For example, when M = 50, the performance of
DWSAC (96.7%) is significantly higher than that of SAC
(94.9%), because the dynamic weight update strategy in
DWSAC can update the network with better quality based
on value estimation, improving the ability to find the optimal
strategy. Especially in terms of time complexity, DWSAC
(1.12%) can significantly reduce the running cost of the task
scheduling process.

In order to evaluate the performance of DWSAC more
comprehensively, this paper also conducts comparative
experiments based on non-zero waste datasets. The
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TABLE 3. Comparison of zero waste dataset.

TABLE 4. Comparison of non-zero waste dataset.

FIGURE 5. Mean episode reward of Hopper − v2.

experimental results are shown in Table 4, which are similar
to those on the zero waste dataset. Since optimal allocation
results cannot be obtained based on non-zero waste datasets,
ARU can still be used to compare the performance of each
algorithm. When M = 50, compared with DDPG, TD3, and
SAC algorithms, DWSAC also achieved better performance
in ARU (92.6%) and RC (1.32%).

C. SIMULATION AND ANALYSIS IN STANDARD
CONTINUOUS CONTROL TASK
The simulation experiments in section IV-B shows that
the DWSAC algorithm proposed in this paper has good
performance in solving satellite resource scheduling problem.
In order to further test whether the algorithm still has good
performance when the control task changes, that is, the
universality of the algorithm, six challenging continuous
control tasks are selected from the OpenAI Gym standard
test set and the Humanoid standard test set to test the
proposed DWSAC and its comparative algorithms. These
testing tasks specifically include Hopper − v2, Walker2d −
v2, HalfCheetah − v2, Ant − v2, Humanoid − v2, and
Humanoid(rllab). The average reward curves for each
standard testing task are shown in Fig.5 - Fig.10, respectively.
Fig.5 - Fig.10 shows the average reward curves of four

algorithms, DWSAC, SAC, TD3, and DDPG, trained in
different continuous control tasks. In each task, the four

FIGURE 6. Mean episode reward of Walker2d − v2.

FIGURE 7. Mean episode reward of HalfCheetah − v2.

algorithms used for testing are evaluated once after each
complete training to calculate the average reward. From the
average reward curves of the Fig.5 - Fig.10, it can be seen
that both in terms of algorithm learning convergence speed
and final performance, DWSAC performs similarly to the
three state-of-the-art algorithms on simpler tasks. However,
on more difficult tasks, the performance of the other three
algorithms lags behind DWSAC significantly. For example,
DDPG has made little progress on Ant − v2, Humanoid −
v2, and Humanoid(rllab), especially in the latter two tasks.
TD3 has also made little progress on Humanoid − v2 and
Humanoid(rllab). In terms of the stationarity of the curve in
the Fig.5 - Fig.10, the proposed DWSAC is slightly better
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FIGURE 8. Mean episode reward of Ant − v2.

FIGURE 9. Mean episode reward of Humanoid − v2.

FIGURE 10. Mean episode reward of Humanoid (rllab).

than SAC and far better than TD3 and DDPG, indicating that
the DWSAC has better robustness. From the Fig.5 - Fig.10,
it can also be seen that the proposed algorithm has a higher
learning rate than the original SAC algorithm. In addition,
the quantitative results obtained by using DWSAC in this
simulation are also better than the algorithms in [31], [32],
and [33], indicating that DWSAC’s learning efficiency and
final performance on these standard tasks exceed several
state-of-the-art algorithms.

V. CONCLUSION
With the increasing demand for satellite communication
tasks, limited satellite resources cannot meet the needs
of all users at the same time. At this time, meeting

the needs as much as possible through satellite resource
scheduling has become a key challenge. This paper adopts
deep reinforcement learning method. Firstly, a joint state
space of satellite task requirements and resource pool is
proposed to obtain global information of the environment,
avoiding convergence to a local optimal strategy. Secondly,
a new joint partitioning method for frequency and time
resources is proposed, which avoids the fragmentation of
the resource to the maximum extent. Finally, DWSAC is
proposed to overcome the shortcoming that SAC adopts a
fixed learning rate, which makes it impossible for the agent
to dynamically adjust the learning rate according to the
change of the instant reward with time step. The dynamic
weight mechanism added in the algorithm enhances the
update range when the action taken by the agent is conducive
to the improvement of system performance, otherwise it
reduces the update range, which significantly improves the
convergence efficiency and convergence performance of the
algorithm.

In terms of simulation results, firstly, the proposed model
and algorithm are used to simulate on the zero waste task
dataset and the non-zero waste dataset respectively. The
simulation data show that the proposed method shows the
significant improvements in average resource utilization rate
(ARU) and running cost (RC). Secondly, four algorithms
were used to simulate six different difficulty tasks in OpenAI
Gym and Humanoid. It can be seen from the average reward
curve of the six tasks that DWSAC is superior to DDPG, TD3
and SAC in terms of learning efficiency, robustness and final
performance.

In the future, we hope to treat each satellite as an inde-
pendent agent and adopt multi-agent reinforcement learning
method to solve the satellite resource scheduling problem.
This method not only effectively reduces computational
complexity, but also has strong scalability and is easier to
learn the optimal strategy.
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