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ABSTRACT We propose a Transfer learning-enabled electroencephalography-based intuitive brain-
computer interface system by utilizing phase-based brain functional connectivity methods such as phase
lag index (PLI) and Intersite phase clustering (ISPC) along with power features to explore both phase and
power-based information from electroencephalography (EEG) signals. Time-frequency decomposition using
a complexmorlet wavelet is applied to analyze the signal components in both the time and frequency domains
and extract phase connectivity and power features. Functional connectivity methods aim to recognize
functional interactions and statistical mutuality among signals acquired across various brain areas. The
phase-based connectivity features are extracted simultaneously for multiple channels to investigate the
phase synchronization among EEG signals across the entire brain. Next, Graph theory is adopted to trace
connectivity between brain regions by calculating the connectivity degree of extracted PLI and ISPC features
with other electrodes. In Parallel, Discrete wavelet convolution is performed to calculate the time variable
frequency band’s specific power from the imagined speech EEG data. Finally, Time-frequency images of
the above-mentioned PLI, ISPC, and EEG power features are fed as input to DenseNet-121 architecture
for classification. Dense Net architecture overcomes the problem of ‘vanishing gradient’ by connecting
each layer directly with other layers, making the network densely connected. The maximum classification
accuracy achieved is 100%, 99.14%, and 98.72% for binary, three-class, and four-class classifications,
respectively. The experimental results indicate that the proposed phase-based connectivity features, EEG
power, and the DenseNet-121model have achieved excellent accuracy for two public datasets, outperforming
the state-of-the-art methods. The outstanding results strengthen the possibility of real-time EEG-based
intuitive brain-computer interface communication.

INDEX TERMS Brain-computer interface, electroencephalography, deep learning, medical signal process-
ing, speech imagery, time-frequency analysis, phase connectivity.

I. INTRODUCTION
With the advancement in computer-aided data analysis meth-
ods, researchers are motivated to engage in machine learning,
deep learning, and transfer learning technology for evolving
brain-machine interfaces [1]. Brain-computer interface (BCI)
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bonds the gap between one’s inner world and physical world
by translating their intentions onto computer commands in
the form of messages to the outer world, providing non-
motor-based interactions.

As a type of mental imagery, imagined speech is one
of the most direct ways to elicit a pattern of brain activity
since the user visualizes what they wish to say rather than
using indirect commands, such as motor imagery, to express
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their message [2], [3]. It has the facility of using a more
significant number of commands as words or sentences or
objects, etc., which in turn facilitates the design of BCI
systems with extra degrees of freedom than what is imag-
inable with motor imagery (MI) based BCI systems, where
expanding the class number entirely relies on body part
movement that can overlap when a large number of classes
are to employed [4]. Imagery-based BCI systems can poten-
tially facilitate people with automation in daily life activities,
especially people with psychological/physical diseases or
disabilities, enabling individuals to control the environment
through mental thoughts [5].
Popular paradigms with great accuracy include P300 [6],

Steady State Visual Evoked Potentials (SSVEP) [7], and
MI [8]based BCI system. However, their real-time applica-
tion in daily life is restricted due to their lack of convenience,
which necessitates continuous visual attention, extra-ocular
muscle motor control, and external stimuli to produce the cor-
rect EEG signals [9]. One of the most essential non-invasive
methods for obtaining brain data corresponding to imagined
speech activity from the brain is electroencephalography
(EEG). EEG acquisition plays a primary role compared to
other non-invasive techniques for acquiring brain signals,
such as MEG, FNIRS, FMRI, PET, etc. The increasing
demand for comfortable, long-term, continuous brain sig-
nal monitoring has been rekindled by the development of
wearable EEG technology for both BCI and medical appli-
cations [10]. EEG-based imagined speech detection can
significantly boost the performance of brain-computer inter-
face devices. Successful Interpretation of thoughts is the
only possible way to provide communication aid to patients
with locked-in syndrome who are physically incapacitated
but psychologically conscious [2], thereby enlightening the
quality of rehabilitation and clinical neurology [11]. The
brain signals acquired using EEG electrodes are sent to the
computer-aided analysis process and converted intomeaning-
ful commands for operating the BCI system [12]. Computer-
aided analysis methods (Pre-processing, artifact removal,
feature engineering, machine learning, deep learning, etc.)
are essential as imagined speech EEG signals have complex
and random characteristics, making them laborious and drain-
ing to interpret even for experts. These methods enable the
faster and more accurate analysis of EEG signals without any
alteration caused by subjective uncertainty and human error.
We propose an innovative transfer learning-based architec-
ture that addresses the problem of limited multi-class accu-
racy and poor spatial resolution. Neural correlates of speech
imagery EEG signals are variable, and weak as compared to
the vocal state; hence, it is challenging to interpret them using
machine learning (ML) based classifiers. The applicability of
modern deep learning and transfer learning methods, along
with fine feature engineering methods like brain connectivity
analysis, have seen substantial advances in complex EEG
signal analysis as compared to ML-based methods. Transfer
learning methods have achieved high accuracy in EEG signal
classification with robust capability to extract characteristic

features [13]. Results in literature are not so astonishing
when it comes to the simultaneous recognition of multiple
classes. Considering the downsides in the aforementioned
literature, an innovative transfer learning-based BCI system is
proposed to classify imagined speech fromEEG data. Surface
Laplacian helps to identify the components specific to speech
imagination by attenuating low spatial frequency components
from the EEG data.

The awareness of imagined speech dates back to
1992 when Hans Berger invented the electroencephalogram
(EEG) as a tool for synthetic telepathy [14]. Research
in speech-imagery decoding mainly focuses on binary or
multi-class classification of discrete vowels, syllables, words,
and sentences. Such works typically encompass traditional
signal processing, feature extraction techniques, and machine
learning-based classifiers.

DaSalla et al. invented an EEG-based imagined speech
decoding system based on binary classification of vowel
categories like /a/, /u/, and rest with common spatial pattern
(CSP) based features and nonlinear SVM for classification
with accuracy of 68-79% [15]. Brigham and Kumar derived
an algorithm for classifying two imagined syllables, /ba/
and /ku/, with the help of autoregressive coefficients and a
k-nearest neighbor classifier, achieving classification accu-
racy between 46% and 88%, respectively [16].

Nguyen et al. obtained an average classification accuracy
of 73.3%, 49.0 %, 50.1%, and 66.2% for short vs. long
word vowels, short words, and long words classification,
respectively, with the help of relevance vector machine clas-
sifier [17]. Cooney et al. used information from statistics of
all remaining subjects to transfer knowledge to the target
subject. The highest overall accuracy of 35.68% for 5-class
classification is achieved when input layers of CNN are fine-
tuned. In contrast, an accuracy of 34.41 is achieved when the
final convolution layers are fine-tuned [18].

Saha et al. [19] used a Convolutional neural network
along with a long short-term memory network (LSTM) for
the classification of ±nasal, ±iy, ±bilab, ±uw, C/V and
attained accuracies of 73.45%, 73.30%, 75.55%, 81.99%,
and 85.23%, respectively. Panachakel and Ganesan [13]
used a ResNet-50-based transfer learning model along
with data augmentation for decoding imagined speech
prompts. They attained a maximum classification accu-
racy of 95.5% for short vs long words and 79.7% for
vowels.

Kamble et al. [20] achieved maximum classification accu-
racy of 89.6± 4.6% and 61.1± 5.1% in binary andmulticlass
(seven classes) signals, respectively, usingMachine-learning-
enabled adaptive signal decomposition for a brain-computer
interface using EEG. Bisla and Anand [21]employed an
amalgamation of the Two-dimensional convolutional neural
network and LSTM and achieved an average accuracy of
43.76% on 4 class classifications of words ‘pat,’ ‘pot,’ ‘knew,’
and ‘gnaw.’ The latter performed phase-based connectivity
analysis to identify the dominant neurophysiological dynam-
ics of the speech imagery paradigm [2].
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The real-time decoding of speech imagery from EEG sig-
nals is an essential issue that must be solved in the design of
the BCI system. Despite the expanding interests and efforts
in designing real-time imagined speech recognition systems
since 2010, limited accuracy and poor signal-to-noise ratio
of imagined speech signals hinder the development of BCI
systems based on imagined speech decoding.

Considering the literature review, some binary classifi-
cation works have archived appreciable accuracy, reaching
+85%. Multi-class classification would be more viable for
real-life applications and was demonstrated to have much
lower classification rates than binary tasks.

Considering the randomness, low signal-to-noise ratio, and
non-linearity of EEG data, EEG data analysis is a very chal-
lenging task. Especially in decoding Imagined speech-related
components, poor SNR causes the imagery components of
interest to be difficult to recognize from the numerous back-
ground neural activations.

Because of these issues, basic machine learning-based
classification has proven to be effective in P300 [5], Steady
State Visual Evoked Potentials (SSVEP) [6], and MI [7]
based BCI systems but has not obtained satisfactory results
when implemented for speech imagery task. The applicability
of modern transfer learning methods, along with advanced
filtering and feature extraction techniques, can substantially
advance the interpretation of imagined speech EEG data.

EEG data offers excellent temporal resolution but lacks
spatial resolution, leading to low accuracy on the source of
information in decoding feeble components corresponding
specifically to the imagination of speech from all the mixed
neural activation during that time. To address this issue,
we have applied surface Laplacian transform to the data to
attain robustness against the potential confound of volume
conduction by successful filtration of spatially broad assem-
blies of data.

We propose a novel deep learning architecture that
addresses the problem of limited multi-class accuracy and
poor signal-to-noise ratio 1) By applying Laplacian filtering
to the EEG data for attenuating low-spatial frequency fea-
tures and will help to isolate topographical features within
several centimeters of range. 2) By exploring the impor-
tant speech imagery-oriented features in both phase (PLI,
ISPC) and magnitude domain (EEG power), and 3) by using
the fine-tuned Dense transfer learning architecture for high-
accuracy multi-class classification.

This study investigates a competent approach for designing
a real-time brain-computer interface system based on inner
thoughts (imagined/Covert speech) with +90% accuracy for
both binary and multi-class classification. There are works
in the literature where phase synchronization [22] based fea-
tures like ISPC [2], PLI [23], and EEG power-based [24]
features are extracted from EEG data; this is the first work
to utilize them for the classification of imagined speech EEG
data, along with graph theory for analysis inter-electrode

phase connectivity and thereafter converting the extracted
phase connectivity and power features into time-frequency
images for the classification process.

Imaginary speech decoding using phase-based connectiv-
ity and EEG power using EEG signals is one such area that
has not been studied and worked upon extensively. Consider-
ing the non-stationary nature of EEG signals, time-frequency
decomposition is utilized to analyze the signal components
in both the time and frequency domains to extract phase
connectivity and power features.

This paper proposes Transfer learning-enabled phase-
based brain functional connectivity and power features for
an electroencephalography-based intuitive brain-computer
interface system. The proposed model embellishes the gigan-
tic potential to develop a practical EEG-based speech imagery
interpretation technology that can revolutionize the BCI
domain.

The essential contributions of this research are listed
below:

I. Although there are works in the literature where ISPC,
PLI, and EEG power features are extracted from EEG data,
this is the first work to utilize them for the classification of
imagined speech EEG data by converting the extracted phase
connectivity and power features into time-frequency images.

II. This is the first work to make use of a fine-tuned
DenseNet-121 network as the base classifier for classifying
imagined speech from time-frequency spectrogram images of
extracted features.

III. Surface Laplacian transform is applied to combat the
effect of poor spatial resolution of EEG signal; it helps
identify the components specific to speech imagination by
attenuating low spatial frequency components from the EEG
data.

IV. Our methodology has greatly improved the multi-class
classification performance compared to the state-of-the-art.

V. The paper presents a qualitative comparison of the
classification performance across different deep learning,
machine learning, and transfer learning classifiers.

The remaining portion of the research paper is system-
atized as follows: the second section contains information
about datasets and methods implemented in the paper
and provides a brief overview of features and classifiers
employed. The proposed algorithm is presented in section
three. The fourth section contains information about results
and comparisons. The conclusion is given in a later section.

II. DATASETS AND METHODS
A. DATASETS
This study utilizes two publicly available imagined speech
datasets. Dataset 1 belongs to Nguyen et al. [17]. It was
recorded at human-oriented robotics and controlled labs.,
Dataset 2 belongs to Zhao and Rudzicz [24]. It was acquired
by the Toronto Rehabilitation Institute.
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1) DATASET 1
This dataset contains EEG recordings corresponding to four
categories of speech imagination: long words, short words,
vowels, and short vs long words. The Long words consist of
twowords, ‘cooperate’ and ‘independent’ and the short words
consist of three words, ‘in’, ‘out’ and ‘up,’ while the set of
three vowels contained ‘/a/,’ ‘/i/’ and ‘/u/.’ A Brain Products
ACTi Champ amplifier device with 64 electrode sensors was
placed in accordance with the 10–20 international system
to record the data with a sampling frequency of 1000 Hz,
which was later down-sampled to 256 Hz. Also, a 5th-order
Butterworth bandpass filter with the pass band from 8 - 70 Hz
was used to eliminate any low-frequency disturbances and
electromyogram (EMG) artifacts from the acquired EEG
data. A notch filter was applied to eradicate the 60-Hz line
noise. The dataset consists of 100 trials per prompt, except for
a few subjects with 80 trials. More details about the dataset
can be found in [17].

2) DATASET 2
It comprises EEG, audio, and face tracking data recorded
during the imagery and articulation of four words taken
from Kent’s list of phonetically alike pairs (knew, gnaw, pot,
pat) and seven syllabic prompts (/m/, /n/, /iy/, /uw/, /piy/,
/diy/, /tiy/). Each prompt was displayed 12 times for an
overall 132 trials per subject, and the trials were randomly
permuted, except for a few subjects with 165 trials. EEG
signals from 8 male and four female subjects (average age
= 27.4, range = 14) were obtained with the help of a 64-
channel Neuroscan Quick-cap utilizing a 10-20 electrode
placement system. Every subject was right-handed with no
visual, motor, or hearing weakness and had no antiquity
of drug abuse or any neurological problem. EEG data was
acquired with a sampling rate of 1000 Hz using a SynAmps
RT amplifier.

Each trial comprises four distinct states of action:
I. Resting state, where the subject is told to rest for 5 sec-

onds so that the subject starts the recording procedure with a
relaxed state of mind.

II. Stimulus state, where both auditory and visual stimulus
is presented.

III. Speech imagery state, in which the subject performed
imagination of the prompt for 5 seconds without making any
kind of articulatory movement.

IV.Articulation state, where the subject spoke the prompt
audibly. A Kinect sensor is employed to record facial features
and audio when the subject is articulating the prompt.

Data from 4 of the 12 subjects were omitted because of
detached ground wires and two subjects falling asleep during
data acquisition. 5-second speech imagery state is utilized for
analysis. More detailed information about the dataset can be
found in [24].

B. TIME-FREQUENCY ANALYSIS
Simultaneous mapping of both the time and frequency
domain information is an ideal technique for extracting

relevant patterns from complex and highly random imag-
ined speech EEG signals, as spectral activity of the brain
varies with respect to time. Time-frequency feature extraction
methods allow the spectral activity to be mapped relative
to the temporal variations. Solely, Time or frequency-based
feature extraction researches have satisfactory results but
have inadequacies in mapping frequency and time domains
simultaneously.

ComplexMorlet wavelets were employed to obtain estima-
tions of the time variable frequency band-specific amplitude
and phase information from the EEG data and to extract
phase and power information from the non-stationary EEG
data [25], [26]. Time-frequency decomposition using Com-
plex morlet wavelets is a powerful and prevalent technique
that provides balanced time-frequency localization. These
wavelets are sinusoidal in shape and are weighted by a
Gaussian kernel, as shown in ‘‘(1)’’. Where fb refers to the
bandwidth of the Gaussian window and fc refers to the central
frequency of the wavelet.

9 (t) =
1

√
π fb

e2π fcte−
t2

fb
(1)

Time-frequency representation is obtained by performing
convolution of input EEG signal with wavelet function (9(t))
of complexmorlet wavelet. Thewavelet cycles vary from four
cycles in the lowermost frequency to ten cycles in the higher
most frequency.

Wavelet transform obtained as a result of convolution
provides time-frequency information of the inputted EEG
signal. Magnitude information is obtained by extracting the
modulus of wavelet transform coefficients. Phase information
is contained with the help of phase of the wavelet transform
coefficients.

Time-frequency decomposition led to an [electrode(E) ×

frequency(F) × time(T) × trial(N)] matrix of size [64 ×

30×1280 × 100] for dataset 1 and [62 × 30×5000 × 12] for
dataset 2 with values in the complex domain. The resultant
data matrix is utilized as input for phase-based connectivity
analysis and power analysis, as shown in the paper’s outline
in Figure 5.

C. GRAPH THEORY
Graph theory is utilized in the research to analyze the brain’s
structural and functional connectivity by engaging connec-
tivity degree as a network measure to study the interactions
between different neuronal units [25]. The graph’s nodes refer
to the electrodes, and the graph’s edges refer to the association
among electrodes. Phase lag index and intersite phase cluster-
ing were used in this work as phase connectivity measures
to build brain networks for EEG classification. Figure. 1
represents the all-to-all PLI and ISPC connectivity matrix at
a frequency and time of 45hz and 2.5 seconds, respectively,
for dataset 2. The upper triangle of Figure 1. a corresponds
to PLI connectivity, and the lower triangle corresponds to
ISPC connectivity. Both the axes (X-axis, Y-axis) refer to
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electrodes, and the intensity of color at each point signifies
the extent of the connectivity between the electrodes.

The thresholding technique filters the feeble connections
from the connectivity matrix that are not significant to the
underlying network structure. This step is beneficial in sim-
plifying complex network associations by focusing on the
most critical connections and filtering out spurious trends.
Statistical thresholding technique is utilized in this study
where threshold (T) is set to a value of one standard deviation
above the median connectivity as shown in ‘‘(2)’’. The con-
nectivity values above the calculated threshold value are set
to ‘1’, implying strong associations, and values lower than the
calculated threshold value are set to zero, representing weak
and feeble connections.

T = M(connectivity) + SD(connectivity) (2)

where M signifies median connectivity and SD signi-
fies standard deviation connectivity. The median and SD
connectivity-based binary thresholding technique is consid-
ered very simple and advantageous for connectivity analyses
as it delivers the threshold valve found in the data statistics,
which is rarely prone to outliers. Figures 1b and 1. c represent
the ISPC and PLI connectivity matrices after applying the
thresholding technique.

D. PHASE-BASED BRAIN FUNCTIONAL CONNECTIVITY
ANALYSIS
Brain functional connectivity analysis deals with the associa-
tions amongst similar patterns of activations within the units
of the nervous system. Functional connectivity refers to the
study of functional interactions and aims to recognize statis-
tical mutuality among signals acquired across various brain
areas [27], [28]. The proposed study utilized two distinct
phase-based non-linear brain functional connectivity entities
to evaluate the proposed approach across the connectivity
matrix of a graph. The graph’s edges refer to the connec-
tivity between the electrode pairs generated with the help of
ISPC and PLI features. Phase-based connectivity investigates
the synchronization of phases between two signals. There is
synchronization between two electrodes when their neuronal
units are functionally connected.

The idea of phase synchronization was broadly discussed
by Rosenblum and coworkers [29]. In brief, the phase dif-
ference between two signals is constant when there is severe
phase locking between them. In contrast, the easier concept
introduced by Rosenblum et al. [29] in the context of phase
entertainment only needs the difference of phase between two
signals to be bounded (≤2π).
If φ1 and φ2 refers to the phase of signals and1φ Refers to

the phase difference between two signals, the general phase
synchronization can be calculated as (n and m are constant
integers) shown in ‘‘(3)’’:

1φnm |= |nφ1 − mφ2| ≤ const (3)

Instantaneous phase differences are projected on the unit
circle, and the length R of the average is given by ‘‘(4)’’:

R =|
1
N

∑N−1

k=0
ei18(tk ) | (4)

Here (tk ) are discrete time steps, andN refers to the number of
samples. The value of R is ‘1’ for ideal phase synchronization,
whereas R is zero when there is a random distribution of
phases. R is oblivious to signal amplitude and depends solely
on their phase correlations.

1) PHASE LAG INDEX
PLI is introduced as a novel measure of statistical interde-
pendencies between the time series to obtain a consistent
evaluation of invariant phase synchronization against the
presence of familiar sources and amplitude effects like vol-
ume conduction or active reference electrodes, etc. [23]. PLI
is a phase-based functional connectivity measure that ignores
zero-phase lag connectivity to prevent spurious correlations.
Distribution of phase angles primarily on the positive or
negative side of the imaginary axis will result from the
non-volume directed connectivity [2].

EEG data may display bogus associations between elec-
trodes sensing the identical source with phase lags of 0 or
π radians. The phase lag will be π radians if the nodes are
on the opposite poles of the dipole. Therefore, such nonzero
and constant phase lag indicates upfront linkages between
the underlying systems and cannot be affected by volume
conduction from a single powerful source.

PLI quantifies the extent to which the complex plane’s
phase angle difference distribution is oriented toward the
positive or negative sides of the imaging axis, as indicated
‘‘(5)’’.

PLImn =

∣∣∣x−1
∑x

t=1
sgn (imag (Xmnt))

∣∣∣ (5)

where sgn represents the −1 for negative values, +1 for
positive values, and 0 for zero values [1], and imag (X)
indicates the imaginary fraction of the cross-spectral density
at trial t.

The central idea utilized in the PLI method is to abandon
the phase differences centered around 0 and π . The likelihood
that the distribution of phase angle differences 1φ are in the
range - π< 1φ < 0 is different from the likelihood they are
between the range 0 < 1φ < π . This asymmetry indicates
a constant, nonzero phase difference between the two signals
of the time domain. The symmetric distribution exists when
the median phase difference is centered around a value of 0 or
π (influenced by volume conduction).
The value of PLI lies in the range of 0 to 1. A PLI value

of ‘0’ either specifies no synchronization or synchronization
with a phase angle difference centered at 0 and π . A PLI of
‘1’ specifies perfect lockup of phase angles with 1φ having
value dissimilar from 0 and π . This paper employed the
PLI to measure functional connectivity among all electrode
pairs (64 for Dataset 1 and 62 for Dataset 2) at 30 fre-
quencies (spaced between 4 Hz to 80 Hz for Dataset 1) and
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FIGURE 1. Represents the all-to-all PLI and ISPC connectivity matrices at a frequency and time of 45hz and 2.5 second
respectively for dataset 2. Both the axes(X-axis, Y-axis) refers to electrodes, and the intensity of colour at each point signifies
the extent of the connectivity between electrode. Figure 1.a represents the joint connectivity matrix before thresholding and
figure 1.b and figure 1.crepresents threshold connectivity matrix.

between 1Hz to 50Hz for Dataset 2) and all time points (1280
for dataset 1 and 5000 for dataset 2). It resulted in a matrix
of size(E∗E∗F∗T), i.e., 64× 64×30× 1280 for dataset 1 and
a matrix of size 62 × 62×30 × 5000 for dataset 2, as shown
in figure 5. This method addressed a common spurious and
fake connectivity issue with phase-based connectivity mea-
surements. Refer to for more information on PLI [23].

2) INTERSITE PHASE CLUSTERING
Interstice phase clustering (ISPC): ISPCmeasures phase syn-
chronization between two signal sources in the brain. It can
detect associations between brain regions that are not pow-
erfully coupled in amplitude or power but have functional
connectivity via phase synchronization. In this study, elec-
trode connectivity was assessed for specific frequencies and
time points, qualifying the recognition of substantial dynam-
ics in electrode connectivity.

The term ‘‘ISPC’’ describes the clustering of phase angle
differences between electrodes at various time points repre-
sented in polar space. Instead of relying on phase values,
ISPC relies on clustering phase angle differences. Phase angle
discrepancies between electrodes are averaged throughout
time to calculate ISPC [2]. The phase angles of time-series
signals are calculated using Discrete wavelet transform with
complex morlet wavelet as mother wavelet. The expression
‘‘(6)’’ summarizes the procedure of calculating ISPC between

two signals.

ISPC f = |x−1
∑x

t=1
ei(∅mt−∅nt)

| (6)

where ∅m and ∅n are the phase angle of electrodes ‘m’ and ‘n’
at frequencies ‘f’ and ‘x’ is the number of trials. To evaluate
phase-based connectivity related to tasks, we have calculated
ISPC across trials. The distribution of phase angle difference
is computed at each trial over the time points with ISPC-time.
While it is generated at each time point over trials with ISPC
trials. Compared to ISPC-time, ISPC trials offer compelling
evidence of task-relatedmodulations in connectivity. Further-
more, ISPC-trials are computed independently at each time
point, resulting in no loss of temporal precision [2].
The ISPC ranges between 0 and 1. An ISPC of zero speci-

fies no phase synchronization. An ISPC of 1 specifies perfect
phase synchronization between the time domain signals. This
paper employed the ISPC to find functional connectivity
between all electrode pairs (64 for Dataset 1 and 62 for
Dataset 2) at 30 frequencies (spaced between 4 Hz to 80 Hz
for Dataset 1 and between 1 Hz to 50 Hz for Dataset 2) and
all time points (1280 for dataset 1 and 5000 for dataset 2).
Resulting in a matrix of size 64 × 64×30 × 1280 for dataset
1 and a matrix of size 62 × 62×30 × 5000 for dataset 2,
as is shown in the outline of the paper in Figure 5. A detailed
description of ISPC can be found in [25] and [27].
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FIGURE 2. Effect of Laplacian filtering of EEG data before calculating ISPC to combats volume conduction. Figure 2.a and
figure 2.b eletrode ∗ eletrode weighting matrices ‘G’ and ‘h’ that were utilized in the Laplacian computations Figure 2.c
represents Elements of the G and H matrices plotted as function of interelectrode distance, Figure 2.d shows ISPC matrix
without applying Laplacian filtering to EEG data and Figure 2.e shows ISPC matrix after applying. Laplacian filtering.
represents threshold connectivity matrix.

ISPC was selected because it delivers a high degree of
temporal precision and is capable of offering relatively solid
indications for variations in connectivity. It is perfect for EEG
signal analysis due to its robustness to time lag and frequency
non-stationarities. However, ISPC is prone to volume conduc-
tion, which restricts the precise identification of the source
of the mind’s electrical activity, sometimes resulting in inac-
curate or ambiguous connectivity information. To address
this issue, we have applied surface Laplacian transform to
the data to attain robustness against the potential confound
of volume conduction by successful filtration of spatially
broad assemblies of data. The Laplacian is applied to the
EEG data before time-frequency analysis. It attenuates low-
spatial frequency features and will help isolate topographical
features within several centimeters of range.

The spherical spline method by Perrin and colleagues is
utilized in the study for surface Laplacian transform [30].
The computation of G and H matrices is the initial step
in calculating Laplacian. The weighting matrices ‘G’ and
‘H’ are of size ‘‘electrode ∗electrode’’ and are used in the
Laplacian computations as shown in Figure 2. a and 2. b,
respectively. These matrices are utilized to attenuate low

spatial frequency components from the data. After that, the
cosine distance among all pairs of electrodes is computed,
and then the weighted sum of activity at all electrodes is
subtracted from the activity of each electrode [25]. In the
study, The Laplacian is calculated concurrently with the
help of matrix algebra for all electrodes and all time points.
Figure 2. c shows the elements of the matrices ‘G’ and ‘H’
plotted as a function of interelectrode distance. Figure 2.d
shows the ISPC matrix without applying Laplacian filtering
to EEG data, and Figure 2. e shows the ISPC matrix after
the application of Laplacian filtering. Laplacian filtering has
significantly attenuated the impact of volume conduction,
as evident in Figure 2. e.

E. CONNECTIVITY DEGREE
The connectivity degree is a simple but practical measure
of the extent to which a vertex acts as the intersec-
tion of many connections [25]. It is denoted by the sum
of all the suprathreshold connections, except for the ver-
tex itself, regardless of the location of these connections.
After counting the number of subthreshold connections
for each electrode, the input connectivity matrix of size
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FIGURE 3. Represents the time-frequency image of extracted PLI, ISPC, and EEG power features. Where Figure 3. a represents the
generated time-frequency image corresponding to PLI connectivity, Figure 3. b shows the generated time-frequency image
corresponding to ISPC connectivity, and Figure 3. c corresponds to EEG power.

[electrode(E) × electrode(E) × frequency(F) × time(T)]
is transformed into a new matrix of size [electrode(E) ×

frequency(F) × time(T)] as shown in outline of the paper
in figure 5. The first dimension represents the connectivity
degree at each electrode. It refers to the strength of association
of that particular electrode with other electrodes. The size
of the connectivity matrix for dataset 1 and dataset 2 is
[64 × 30×1280] and [64 × 30×1280], respectively.

F. EEG POWER ANALYSIS
The power spectrum reflects the distribution of signal power
over frequency. EEG power analysis is a well-established
method of examination of EEG signals [25]. This study used
discrete wavelet convolution to calculate the time variable
frequency band’s specific power from the imagined speech
EEG data. The power is averaged across all trails of a partic-
ular prompt. To analyze the power spectrum characteristics of
an imagined speech EEG data, power for 30 linearly spaced
frequency components ranging from 4 Hz to 70Hz for dataset
1 and 1 to 50 Hz for dataset 2 was calculated at each time
point, resulting in a power matrix of size 64 × 30×1280 for
dataset 1 and 62×30×5000 for dataset 2. The units of power
are db/Hz.

G. CONSTRUCTION OF TIME-FREQUENCY IMAGES
In this step, the signal classification task is converted into
an image classification task by converting the extracted
phase and power features into a time-frequency image. Time-
frequency images facilitate simultaneous time-frequency
representation of data and have become an effective means
for analyzing and characterizing signal features like power
and phase at different time and frequency points [31]. PLI
connectivity, ISPC connectivity, and EEG power at each
electrode are portrayed on a time-frequency image, leading
to 192 images per prompt for Dataset 1 and 186 images per
prompt for Dataset 2. MATLAB-generated images were of
size 875 ×656. All images were resized to a standard size of
100 × 100 before feeding as input to the classifier section.

Figures 3. a, 3. b, and 3. c show the generated time-frequency
image corresponding to PLI connectivity, ISPC connectivity,
and EEG power, respectively.

Once the time-frequency images of all the extracted PLI,
ISPC, and power features have been obtained for each sub-
ject, these images are provided as input into the neural
networks for classifications and predictions. Most pre-trained
neural networks, like VGG, Dense Net, Resnet, etc., are
trained on image datasets and are valid for image classifica-
tion problems. Hence, extracted features are converted into
time-frequency images to utilize the classification ability of
this network.

H. TRANSFER LEARNING ALGORITHM
Transfer learning is an influential deep learning technique
utilized in the study to apply existing models and their knowl-
edge to help the classification process [32], [33]. It has proven
very effective in training deep networks even with limited
data. In this study, fine-tuned DenseNet121 architecture is
employed to classify the imagined speech datasets. The task
is to transfer the learning of a DenseNet121 trained with
ImageNet to a model that classifies time-frequency images of
PLI connectivity, ISPC connectivity, and EEG power features
extracted from the dataset.

DenseNet-121 provides exceptional model performance
and offers various benefits, such as effective parameter uti-
lization, enhanced gradient flow, and adaptableness. Dense
Net architecture overcomes the problem of ‘vanishing gra-
dient’ by connecting each layer directly with other layers,
making the network densely connected. There are X(X+1)/2
direct associations for ’ X’ layers. This approach endorses
the resourceful usage of features, leading to a more efficient
network for feature propagation and reuse. After perform-
ing a qualitative comparison of the classification perfor-
mance of DenseNet-121 with different deep learning (CNN),
machine learning (SVM,RF), and transfer learning classifiers
(ResNet-50), It is concluded that DenseNet-121architecture
tends to provide higher classification accuracy with few
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FIGURE 4. Architecture of proposed DenseNet-121-based transfer
learning model for classifying imagined speech prompts. The input
time-frequency images are of size 100∗100∗3. The size of Dense layer-1,
Dense layer-2, and Dense layer-3 was set to 256, 128, and 64 units,
respectively. The parameters of DenseNet121[1: end-1] were frozen, and
only the dense layers appended after the DenseNet-121 model were
trained with Dataset 1 and Dataset 2.

parameters and low computation load. More information on
DenseNet-121 is available at [34]. Figure 4 represents the
basic design of the classifying architecture DenseNet-121
employed in this work. The Dense Net 121 neural network
was pre-trained on the images of a large dataset named Ima-
geNet [35]. It was utilized as the base architecture of the
classification process. Since this base architecture network is
initially trained for classifying 1000 entities of the ImageNet
dataset, the last fully connected layer has a size of 1000 with
a Softmax activation function. This layer was replaced by
three dense layers with the ReLU activation function. The
size of Dense layer-1, Dense layer-2, and Dense layer-3 is
set to 256, 128, and 64, respectively. The number of neurons
in the output layer with Softmax activation function was set
according to the number of classes in the imagined speech
classification task (binary or multi-class). Dropout layers of
rate 0.25 after each dense layer are not shown in Figure 4.

During the training on dataset 1 and dataset 2, All the
layers of the Dense Net-121 model were frozen, and only
the added dense layers (Dense layer-1, Dense layer-2, Dense
layer-3) were trained. Thus, the Dense Net layers act as
feature extraction layers. Adam optimizer [36] was employed
to optimize the cross-entropy loss function, and a learning
rate of 0.001 was chosen for optimization.

III. PROPOSED ARCHITECTURE
The applicability of modern transfer learning and feature
engineering methods have seen substantial advances in EEG
signal analysis [13], [37]. The outline of the paper is pro-
vided in Figure. 5. The initial step of the designed model
is to extract phase-based brain functional connectivity and
power features from both datasets. The proposed model uti-
lized two distinct phase-based brain functional connectivity
quantities (ISPC and PLI) to evaluate our approach across
the connectivity matrix of the graph. Extracting time and
frequency components of the EEG signal with the help of
a complex market wavelet is the primary step for extracting
power and phase features, as it extracts the estimations of time
variable frequency band-specific amplitude and phase from
the imagined speech EEG signal. Discrete wavelet transform
with Complex Morlet wavelets as mother wavelet was used
for time-frequency decomposition. Surface Laplacian was
applied to the data before extracting ISPC connectivity to
overcome the volume conduction effects. The connectivity
degree is used as a network measure to study the interactions
between different neuronal units. The nodes of the graph
refer to the electrodes, and the edges of the graph refer to
the association among paired electrodes. Time-varying fre-
quency band-specific power was calculated to analyze the
power spectrum characteristics of imagined speech EEG data.

In the second step, the Signal classification task is
converted into an image classification task by converting
extracted phase and power features in a time-frequency
image. This paper applies the transfer learning technique to
classify imagined speech EEG data. Time-frequency images
of PLI and ISPC connectivity and power features were clas-
sified with the help of the Dense Net 121 model pre-trained
on a large dataset with 1000 different categories of images.

In this paper, two open-access datasets were utilized to
validate the effectiveness of the proposed architecture. The
designed transfer learning-based model performed the classi-
fication of imagined prompts. For a classification task of N
classes, the chance level accuracy (C-Accuracy) is defined in
‘‘(7)’’:

C-Accuracy(%) = (1/N) × 100 (7)

10-fold cross-validation is performed to validate the acquired
classification results. The data was divided into ten folds,
and during each cross-validation iteration, nine folds were
employed for the training process and one for the testing
process. This procedure is repeated for ten iterations to test
data from all the folds once. During each cross-validation
step, 80% of the training data was utilized for the training
purpose and the remaining 20% for the validation purpose.
The number of epochs for the training process was set to 100,
and the batch size was set to 16. ADAM optimizer is used
with an initial learning rate of 0.001 to tune the parameters
of the neural network and in order to minimize the cost
function. Hyperparameters including the number and size of
Dense feature extraction layers in the trainable section, opti-
mizer type, cost function, learning rate, batch size, number of
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FIGURE 5. Outline of the paper. ‘E’ represents Number of electrodes (64
for dataset 1 and 62 for dataset 2), ‘F’ represents number of frequency
points (30 points between 8Hz to 70Hz for dataset 1 and 30 points
between 2Hz to 50Hz for dataset 2), ‘T’ represents Number of time points
(1280 for dataset 1 and 5000 for dataset 2) and ‘N’ represents number of
trails (100 for dataset 1, 12 or 15 for dataset 2).

epochs, dropout rate, etc., have a great influence on network
performance, but there is no detailed strategy to choose their
values, doing a large number of iterations is the only way
to determine the values of these hyperparameters. Regular-
ization techniques such as dropout have been adopted in the
fine-tuning network to diminish model overfitting as it tends
to advance the algorithm’s performance even on the statistics
that are outside the training set. Early stopping was applied in
our experiment to prevent overfitting and imposing smooth-
ness constraints. Early stopping was implemented based on
validation accuracywith a tolerance of 30 epochs to overcome
the effects of overfitting. Table 1 contains the training param-
eters of the proposed DenseNet-121-based transfer learning

TABLE 1. Training parameters of proposed DenseNet-121 based transfer
learning mode.

TABLE 2. Specification of layers used in trainable section of proposed
DenseNet-121 based transfer learning model.

model. Table 2 contains specifications of layers used in the
trainable section of the proposed Architecture.

IV. RESULTS AND COMPARISON
Algorithm Evaluation: A tenfold cross-validation method
was employed to confirm the legitimacy of classification
outcomes. All the designated trials were subjectively alien-
ated into ten equally sized subdivisions, where 80% of
data was used for training and 20% was used for valida-
tion purpose. Accuracy, Precision, recall, and F1 score were
utilized as measures for classifier evaluation. The average
accuracy, precision, F1 score and recall for N class classifica-
tion was calculated using ‘‘(8)’’, ‘‘(9)’’, ‘‘(10)’’ and ‘‘(11)’’,
respectively.

Average Accuracy =
1
N

∑N

i=1

TPi + TN i

TPi + TN i + FPi + FN i

(8)

Precision =
1
N

∑N

i=1

TPi
TPi + FPi

(9)

Recall =
1
N

∑N

i=1

TPi
TPi + FN i

(10)

F1 Score =
2 × Precision× Recall
Precision+ Recall

(11)

where TP denotes the true positive rate, FP denotes the
false positive rate, TN denotes the true negative rate, and
FN denotes the false negative rate. All these quantities (TP,
FP, TN, FN) refer to the numeral of predicted positives or
negatives that were accurate or inaccurate.
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TABLE 3. Percentage classification accuracy, precision, recall, and F1-score obtained with proposed DenseNet-121 model for long words ‘‘independent’’
and ‘‘cooperate’’ of dataset 1.

TABLE 4. Percentage classification accuracy, precision, recall, and f1-score obtained with proposed DenseNet-121 model for long vs short words ‘‘in’’ and
‘‘cooperate’’ of dataset 1.

TABLE 5. Percentage classification accuracy, precision, recall, and f1-score obtained with proposed DenseNet-121 model for short words ‘‘in’’, ‘‘out’’ and
‘‘up’’ of dataset 1.

Results: The investigational results show that the proposed
method can classify imagined speech with high accuracy
and efficiency as compared to the state of the arts. High
multi-class classification accuracy and good generalization
ability of the designed algorithm can deliver assurance for
the implementation of the designed network architecture in
real-time BCI system designs. The classification of imag-
ined speech EEG signals was carried out using various
deep learning and machine learning methods, namely, con-
volutional neural networks, support vector machine, random
forest, ResNet-50, and DenseNet-121. After testing and com-
paring with lots of deep learning and machine learning
methods, the DenseNet-121 architecture with Phase con-
nectivity and power features provided the best multi-class
classification accuracy, while others have failed badly, pro-
viding poor multi-class classification results except for the
ResNet-50-based classifier. All of these models used almost
the same training and testing procedure, yet the accuracy
of the proposed model is appreciably higher. The employed
feature engineering methods and fine-tuned Dense-Net-121
architecture are responsible for this enormous upsurge in
performance.

A. DATASET 1
Two binary (long words, long vs short words) and two mul-
ticlass (Short words, vowel) classifications were performed
on dataset 1. Percentage classification accuracy, precision,
recall, and F1-score obtained with the proposed DenseNet-
121-based transfer learning model with long words, long vs.
short words, short words, and vowel classes are shown in
TABLE 3, TABLE 4, TABLE 5, TABLE 6, respectively. After
feature extraction, the foremost step is choosing the finest
classifier to complete the classification process. Machine
learning (Support vector machine, random forest (RF)), deep
learning (Convolution neural network), and transfer learning
methods (ResNet-50, DenseNet-121) were explored. Classi-
fication accuracies have excelled the chance level accuracy
for all the adopted classifiers, proving the efficiency of
ISPC, PLI connectivity, and EEG power features in classi-
fying imagined speech. The transfer learning approach using
fine-tuned DenseNet-121 architecture achieved the best clas-
sification results among all the classifiers. The classification
results obtained for dataset 1 using convolution neural net-
work (CNN), ResNet-50, and DenseNet-121classifiers are
shown in TABLE 7, TABLE 8, TABLE 9, and Table 10,
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TABLE 6. Percentage classification accuracy, precision, recall, and f1-score obtained with proposed DenseNet-121 model for vowels ‘‘/A/’’, ‘‘/I/’’ and
‘‘/U/’’ of dataset 1.

TABLE 7. Classification accuracy (%) obtained for dataset 1 considering long words classification with CNN, ResNet-50, AND Dense net -121 classifiers.

TABLE 8. Classification accuracy (%) obtained for dataset 1 considering long vs short words classification with CNN, ResNet-50, and Dense net -
121 classifiers.

TABLE 9. Classification accuracy (%) obtained for dataset 1 considering vowel classification with CNN ResNet-50, and Dense net -121 classifiers.

TABLE 10. Classification accuracy (%) obtained for dataset 1 considering short word classification with CNN, ResNet-50, and dense net - 121 classifiers.

considering long words vs. short words, vowels, and short
words classification, respectively.

The overall two-class classification accuracies achieved
with the DenseNet121 classifier were 95.85% and 93.94%
for long words and long vs. short words, respectively. The
overall three-class classification accuracies achieved with
the DenseNet-121 classifier were 94.35% and 95.02% for
vowels and short words, respectively. Based on the accuracies
obtained from the classification of time-frequency images
of PLI connectivity, ISPC connectivity, and EEG power,
Figure 6 shows classification results obtained for dataset
1 concerning the Machine learning classifiers (SVM and ran-
dom forest), 7-layer convolution neural network, and transfer
learning methods (ResNet-50, DenseNet-121) with extracted
phase and power features. The DenseNet-121 algorithm out-
performs extracted features by bringing the accuracy above
90% for most cases. The Maximum accuracy obtained by
DenseNet-121classifier is 100% for long-word classification
from subject 11. Also, after comparison of the accuracy
values attained by SVM, random forest, CNN, and ResNet-
50 classifiers, it is strongly evident that the DenseNet-121
classifier, in amalgamation with time-frequency images of

phase-based connectivity and power feature, offers bet-
ter classification accuracy among all chosen classification
methods. All the results were obtained after 10-fold cross-
validation.

B. DATASET 2
The designed transfer learning enabled phase-based
brain functional connectivity and power for an
electroencephalography-based intuitive brain-computer inter-
face system tested and created with dataset 1. Dataset 2 is
utilized to validate the results of the developed model. Four
class classification of the words (‘pat,’ ‘pot,’ ‘knew,’ ‘gnaw’)
of dataset 2 was performedwith the help of the DenseNet-121
classifier. Classification accuracies have excelled the chance
level accuracy for all the classification methods, proving the
efficiency of ISPC and PLI connectivity and EEG power
features in classifying imagined speech. The multiclass (4
class) classification accuracy, precision, recall, and F1-score
obtained for dataset 2 using DenseNet-121 are given in
TABLE 11. The average four-class classification accuracy
obtained using the DenseNet-121 classifier was 92.69%.
TABLE 11 shows that the DenseNet-121 algorithm performs
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TABLE 11. Percentage classification accuracy, precision, recall, f1-score obtained for dataset 2 considering words (‘‘PAT’’, ‘‘POT’’, ‘‘KNEW’’, ‘‘GNAW’’)
classification using dense net -121 classifier.

TABLE 12. Comparison of the average accuracy (%) of the proposed algorithm with the state of art methods from the literature for dataset 1.

FIGURE 6. Average accuracy (%) values obtained for dataset 1 for different machine learning classifiers like SVM (support vector
machine), RF (random forest), and deep learning classifiers like CNN (convolution neural networks), ResNet-50, and DenseNet-121.

excellently with extracted features by bringing the accu-
racy above 85% for all the cases. The Maximum accuracy
obtained by DenseNet-121classifier is 95.2% for four-word
classification from subject MM08. The accomplished classi-
fication results make it clear that DenseNet-121, combined
with time-frequency images of phase-based connectivity and
power features, provides better classification results than the
state of the arts. All the results were obtained after 10-fold
cross-validation.

C. COMPARISION
In order to appraise the efficiency of the proposed method,
the accuracies obtained with the proposed transfer learning-
enabled phase-based brain functional connectivity and power
features architecture were compared with the other imagined
speech decoding methods in the literature. The effectiveness
of the proposed algorithm is clearly evident in TABLE 12
and TABLE 13, which compares the average accuracy of
the proposed method with the state-of-the-art methods from

VOLUME 12, 2024 108411



M. Bisla, R. S. Anand: Transfer Learning Enabled Imagined Speech Interpretation

TABLE 13. Comparison of the average accuracy (%) of the proposed algorithm with the state of art methods from the literature for dataset 2.

the literature of imagined speech decoding with the help of
Dataset 1 and Dataset 2, respectively. Classification accu-
racies have excelled among all the literature results in the
arena of imagined speech decoding, proving the efficiency of
ISPC and PLI connectivity and EEG power features in clas-
sifying imagined speech. The excellent results strengthen the
possibility of real-time EEG-based intuitive brain-computer
interface communication.

V. CONCLUSION
This study proposes a novel method to design an imagined
speech based brain-computer interface system. This work
has achieved the highest classification accuracies in imag-
ined speech decoding compared to the state of the arts. The
phase-based connectivity features, EEG power features, and
transfer learning technology have proven significant excel-
lence in classifying speech imagination EEG data compared
to other techniques in the literature of speech imagery decod-
ing. PLI connectivity, ISPC connectivity, and EEG power
features were selected after excessive exploration and test-
ing of classification accuracy for numerous time domain
and frequency domain features. The DenseNet-121 classifier
was selected after qualitatively comparing results with other
classifiers such as ResNet-50, 7-layer CNN, SVM, random
forest, etc. A comparison of the proposed study with lit-
erature studies from the speech imagination field verified
that the proposed technique offers outstanding accuracies
as compared to the state of the arts. The Effectiveness of
the proposed algorithm is evaluated on two publicly avail-
able datasets, ensuring the potential of real-time imagined
speech interpretation system design. The availability of an
exhaustive research-grade dataset is one major hindrance
in the design of an imagined speech-based real-time brain-
computer interface system. Also, there are other major issues
like poor signal-to-noise ratio, poor spatial resolution, and
a limited amount of data to train deep learning architec-
ture. In future works, we would like to acquire our datasets
and validate the performance of the proposed methodology
on the acquired datasets. We also plan to build more of
the latest feature extraction and classification methodolo-
gies for efficiently decoding imagined speech by overcoming
above mentioned limitations. It is also planned to explore
more phase-based approaches like instantaneous phase dif-
ference sequence, phase coherence, phase coupling, etc.,
to enhance the decoding performance. We would also like to
deeply explore some other graph theory-based connectivity
measures like local efficiency, betweenness centrality, partic-
ipation coefficient, clustering coefficient etc. The future aim
is to design a real-time brain-computer interface system for
interpreting imagined speech using an EEG data acquisition

device and real-time classification algorithm. The long-term
vision of our research is to provide communication aid to
individuals who are physically incapacitated but psycholog-
ically conscious by the successful real-time implementation
of imagined speech EEG data.
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