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ABSTRACT Current state-of-the-art sound source localization (SSL) deep learning networks lack feature
aggregation within their architecture. Feature aggregation within neural network architectures enhances
model performance by enabling the consolidation of information from different feature scales, thereby
improving feature robustness and invariance. We adapt feature aggregation sub-architectures from computer
vision neural networks onto a baseline neural network architecture for SSL, the Sound Event Localization
and Detection network (SELDnet). The incorporated sub-architecture are: Path Aggregation Network
(PANet); Weighted Bi-directional Feature Pyramid Network (BiFPN); and a novel Scale Encoding Network
(SEN). These sub-architectures were evaluated using two metrics for signal classification and two
metrics for direction-of-arrival regression. The results show that models incorporating feature aggregations
outperformed the baseline SELDnet, in both sound signal classification and localization. Among the
feature aggregators, PANet exhibited superior performance compared to other methods, which were
otherwise comparable. The results provide evidence that feature aggregation sub-architectures enhance the
performance of sound detection neural networks, particularly in direction-of-arrival regression.

INDEX TERMS Joint sound signal classification and localization, multi-task deep learning, feature
aggregation.

I. INTRODUCTION
Sound source localization (SSL) represents an imperative
domain within the broader field of audio signal processing,
holding significant implications for topics such as robotics,
hearing aids, and speech recognition systems [1]. SSL
techniques aim to ascertain the location and/or direction-
of-arrival (DOA) of a sound source, which provides critical
data for sound source separation [2], speech augmenta-
tion [3], robot-human interaction [4], noise control [5],
and auditory scene analysis [6]. A key gap within existing
SSL neural networks is the lack of feature aggregation
within their architecture. Feature aggregation can boost
a model performance by consolidating information from
various scales and contexts, thereby enhancing feature
robustness and scale invariance. It is particularly vital for
SSL networks, which must distinguish between direct signals
and reflections [7]. We adapt feature aggregation techniques
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from computer vision neural networks and applying them to
signal detection neural networks. Additionally, we propose
a novel architecture, the Scale Encoding Network (SEN),
which serves as a compact feature aggregator in the context
of SSL.

A. RELATED WORK
Early endeavors in machine learning for SSL were focused
on conventional machine learning models, namely the
Multilayer Perceptron (MLP) and Support Vector Machines
(SVM) [8], [9]. The aforementioned models encountered dif-
ficulties, particularly in effectively managing large datasets
and addressing the complexities associated with temporal
relationships in the input features. In light of these difficulties,
there has been a notable shift towards Convolutional Neural
Networks (CNNs), which have demonstrated the ability to
capture spatial features in data [6], [10]. As deep learning
techniques have advanced, the development of Recur-
rent Neural Networks (RNNs) gave rise to Convolutional
Recurrent Neural Networks (CRNNs). This combination
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successfully utilized both spatial and temporal dimensions of
the data, leading to improved DOA estimation [6], [11], [12].
Residual CNNs (Res-CNNs) soon emerged, incorporating

shortcut connections that provide a link between the input
and output layers. Res-CNNs proved superior in performance
compared to both conventional CNNs and CRNNs [13], [14].
The introduction of novel architectures such as Res-CRNNs
and deep generative models enhanced the DOA estima-
tion [15], [16], [17]. Additionally, attention mechanisms have
continued to enhance the capabilities of neural networks by
allowing them to selectively concentrate on pertinent fea-
tures, improving the accuracy of the estimation process [18],
[19], [20], [21], [22].

In addition to single-task SSL networks, neural networks
have been applied to the multi-task problem of Sound
Event Localization and Detection (SELD), where there
are multiple sound classes to be detected and localized
at once. Hirvonen [23] was the first to solve the SELD
problem by treating it as a multi-class classification task
using a CNN. In 2018, Adavanne et al. [7] introduced
the first CRNN-based SELD method (SELDnet) which was
effective in scenes with more than two overlapping sound
events and was able to localize sources at any azimuth and
elevation angles. SELDnet used a single network but with
two branches dedicated to solve the Sound Event Detection
(SED) problem and the SSL problem. The input features to
SELDnet included magnitude and phase of spectrograms.
After this study, SELD gained overwhelming interest from
the community, leading to numerous advancements aimed at
improving its performance. Researchers proposed new deep
learning-based networks [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], explored
novel input features [39], [40], and developed innovative data
augmentation techniques [26]. Some of the most significant
studies are as follows. Cao et al. [24] proposed using
two networks, instead of a single network as in SELDnet,
to better balance the SED and SSL objectives during
optimization. However, this representation increased system
complexity and network size. To address, Shimada et al. [25]
proposed an activity-coupled Cartesian DOA (ACCDOA)
representation, which avoids increasing model size. Addi-
tionally, [41] presented an Event-Independent Network that
enabled detection of different sound events of the same type
but with different DOAs. Wang et al. [26] introduced a
four-stage spatial data augmentation approach to increase the
diversity of DOA representations in limited training datasets
while effectively dealing with overlapping sources. They
also formed a ResNet-Conformer architecture to capture
both global and local context dependencies in an audio
sequence. While conventional SELD methods only consider
static microphones, a recent study by [42] formulated a
multi-modal SELD that utilizes both the audio and motion
tracking sensor signals.

The above-discussed deep learning-based SSL and SELD
have used datasets collected with different configurations
of microphone arrays [43]. The number of microphones

in the array is determined based on various factors [44],
including human imitation (e.g., using 2-microphone array
systems), the aim to reduce the dataset size and computational
time, and the argument that SSL performance is directly
correlated to the number of microphones. The existing
studies have used arrays containing varying numbers of
microphones, including 2 (also termed binaural arrays) [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56],
4 [57], [58], 8 [59], or more [7], [60]. The features used as
inputs to the network also vary significantly [6], involving
different levels of pre-processing of the datasets. This
ranges from no pre-processing, when using raw multichannel
waveforms, to higher levels of pre-processing for networks
using interchannel features [61], [62], cross correlation-based
features [63], [64], or intensity-based features [41], [65].
A commonly used type of input data across studies involves
the extraction of spectrogram-based features, which require
minimal pre-processing, namely computing the Short-Time
Fourier Transform (STFT) of multichannel information.
Various combinations of these spectrogram-based features
have been employed. Some studies have omitted either
phase [66], [67] or magnitude information [68], while others
have chosen to retain both [69], [70], arguing that keeping
bothmagnitude and phase (or alternatively real and imaginary
parts) can improve localization performance.

Lastly, feature aggregation has been previously used in
neural networks for SELD and sound classification. However,
these efforts have mainly focused on aggregations of features
into the inputs of the neural network, rather than a change
in the feature architecture. Some of these features are
statistical features of the audio [71] while others are learned
through dictionary methods via clustering [72]. The closest
previous work to achieving sound classification with feature
aggregation as part of the network architecture is [73]
which involved audio tagging for music genre classifica-
tion. The network in [73] directly feed in convolutional
neural network layers into a fully connected network for
tag prediction. This architecture therefore has a backbone
and head architecture sections but fails to incorporate the
neck section prevalent in the PANet or BiFPN. These
approaches may not fully leverage the hierarchical nature
of the neural networks and tend to be less adaptive in
processing features. The present study formulates methods
to incorporate feature aggregation in the neck of the SELD
network to address these shortcomings and enable the
network to combine features from the different scales of the
backbone.

B. CONTRIBUTIONS
This paper makes the following contributions:

1) We introduce Feature Aggregation techniques from
image based Object Detection Neural Networks into
SSL and Sound Detection Res-CRNN networks.

2) We propose and test a new Feature Aggregator method,
the SEN.
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3) We provide a publicly available Feature Aggregator
Library for TensorFlow’s Functional API. This library
contains pre-made aggregators and allows for the
efficient creation of new aggregators.

C. OVERVIEW
The remainder of this paper is organized as follows. Section II
explains challenges with feature scaling in SSL networks, the
role of feature aggregation in resolving them, and its practical
application in real-world models. Section III elaborates on
the training and testing procedures used to gather data for
evaluating the merit of our theory. Section IV describes
the dataset, preprocessing, evaluation metrics, and baseline
methods used to gauge our results. Section V investigates the
testing outcomes and their contextual meaning. Section VI
provides a summary of our findings, their implications, and
directions for future research.

II. THEORY
This section is divided into four parts. Section II-A discusses
the importance of scale invariance within neural networks.
Section II-B explains how feature aggregation addresses
scale invariance, how feature aggregation is performed, and
various feature aggregation designs. Section II-C elaborates
on our custom aggregation approach. Section II-D gives
an overview of standard object detection designs and how
feature aggregation is employed within a full architecture.

A. SCALING
Feature scaling is a powerful tool in both object detection and
SSL neural networks. The ability to learn notable patterns
in data and then identify these patterns at different scales
reduces the amount of training data required and chances
of overfitting to a particular size or amplitude input. The
scale of extracted features in CNNs depends on the tensor
dimensions and convolutional hyperparameters used in each
layer of the network [74], [75]. As the input tensor is passed
through the network, features are extracted at different scales.
Downsampling, such as max-pooling or strided convolutions,
reduces the size and spatial resolution of the feature map.
As a result, finer resolution features that are present in
earlier network layers may be neglected in subsequent
coarser resolution layers. This phenomenon is known as the
‘‘semantic gap,’’ where the features in different layers of the
network represent different levels of abstraction, and finer
features may be ignored as the network learns more complex
representations [74], [75].

This semantic gap is of extreme importance in perception
models because features of smaller scale can be overlooked
in deeper convolutions. For example, in computer vision,
features from distance or small objects may be lost as the
input image is downsampled throughout multiple convolu-
tions. Thismeans themodel loses the ability to identify a class
at various sizes and distances and therefore is quite limited in
its uses.

This same principle applies to SSL and may be even
more important. This is because SSL algorithms must
differentiate between direct and indirect signals (such as
reflections, reverberations, and diffractions). These indirect
signals generally have a similar (or identical) wave pattern
as their source’s direct signals, but at a reduced amplitude
and with a phase shift. From a neural network’s perspective,
features of quieter or indirect signals are the equivalent
to another source that is further away; the distinguishing
patterns are the same but of different amplitude and phase.
To differentiate between direct and indirect signals, a SSL
model should: 1) identify all signals from the same source;
and 2) isolate the direct signal based on its scale relative to
the indirect signals. For both these steps, the model must
understand feature scaling.

To address the semantic gap, specific architectures have
been proposed, such as U-Net and Feature Aggregators.
Various studies have conducted performance comparisons
between Feature Aggregation and U-Net architectures,
demonstrating that feature aggregation networks achieve
high performance in various image segmentation tasks [76].
Although, tasks such as brain tumor segmentation, which
have more emphasis on fine-grained details, benefit from
using a U-Net which has been trained on a sufficiently large
dataset [77], [78]. Additionally, feature aggregation networks
exhibited enhanced computational efficiency, reduced mem-
ory footprint, and the ability to achieve high accuracy with
smaller training datasets. The latter was demonstrated in a
study that examined the effectiveness of feature aggregation
networks in the context of image segmentation [79]. The
demand for less data is particularly crucial in the context
of sound detection models as each class of signal must be
sampled at many angles or locations; with variables like room
size/shape, wall material, and objects in the room affecting
signal reflections and reverberations.

Therefore, the choice between feature aggregation and
encoder architectures ultimately depends on the desired
tradeoff between efficiency and accuracy. Some tasks may
require more emphasis on fine-grained details and thus
benefit from the use of U-Net, while others may prioritize
computational efficiency and simplicity, making feature
aggregation a more suitable option [78]. This study focuses
on feature aggregation due to its practicality in real world
applications. Large computational cost, memory footprint,
and training dataset requirements make sound detection
U-Nets impractical for sound detection.

B. FEATURE AGGREGATION
The purpose of feature aggregation is to combine fea-
tures from various convolutions throughout the network to
improve scaling, overfitting, and exploding or vanishing
gradients [80]. Feature aggregation has three sequential
steps: resampling inputs to match shapes, aggregate inputs
(weighted averaging or concatenation), and convolution of
the aggregated tensor [80]. These processes are completed
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FIGURE 1. Aggregation node [80] diagram illustrating sequential
procedures performed within each feature aggregation node.

inside a TensorFlow sub-model called a ‘‘Node’’, as is
illustrated in Fig. 1. Multiple nodes can be connected
residually within an aggregator, allowing this process to be
repeatedly executed throughout an elaborate structure.

Resampling within the aggregator node consists of two
processes, downsampling and upsampling [80]. Downsam-
pling reduces the resolution of feature maps, resulting in a
smaller spatial dimension but a larger number of channels.
It is typically done through operations such as max pooling
or strided convolutions. In contrast, upsampling increases the
resolution of feature maps by interpolating the values and can
be achieved through techniques such as transposed convolu-
tion (aka deconvolution) or interpolation [80], [81], [82]. One
commonly used method for upsampling tensors in computer
vision and image processing is bilinear interpolation.

While transposed convolution offers advantages, such as
the potential for improved performance through learned
parameters, it is known to cause checkerboard artifacts
due to non-unit strides [83], [84], [85]. These artifacts can
be avoided by using bilinear interpolation, which is also
more computationally efficient than transposed convolution.
Furthermore, bilinear interpolation is preferred over other
interpolation methods like nearest-neighbor interpolation
because it produces smoother and more natural-looking
results [86]. Nearest-neighbor interpolation simply selects
the nearest pixel value without considering its neighboring
pixels, which can result in jagged edges and other arti-
facts [81]. This spatial preservation of features is vital for
the resampling of both images and spectrograms [7], [10].
Additionally, bilinear interpolation can be easily extended
to higher dimensions, such as 3D volumes or tensors [79].
It is relatively easy to implement and understand, making it
a popular choice for spatial features [76]. This study utilizes
bilinear interpolation over other upsampling methods due to
the reasons listed above.

Industrial computer vision object detection models
that demonstrate resampling are YOLO (You Only Look
Once) [81] and SSD (Single Shot MultiBox Detector)
[82]. In YOLO, downsampling is performed using strided

FIGURE 2. Example diagrams of PANet [89] and BiFPN [80] feature
aggregators with five scales, where Ni is a feature level with resolution
1/2i of the input image, and Ni-1 and Ni-2 are intermediate and output
features at level i, respectively. PANet involves propagation of high-level
features from the top-down to the bottom-down pathway. BiFPN
additionally introduces bidirectional cross-scale connections and
weighted feature fusion.

convolutions, while upsampling is achieved using transposed
convolution. In SSD, downsampling is performed using
max pooling, and upsampling is done using deconvolution
layers. Comparatively, this study performs downsampling
using strided convolutions and upsampling through bilinear
interpolation. Our choice for resampling methods is based
on [80]; a study that examines the efficiency of aggregation
methods in computer vision and uses bilinear interpolation
during its more efficient aggregation. The difference in
resampling approaches demonstrates that there is not one
universal method for the resampling process. The choice
of algorithm for aggregation steps can vary depending on
desired computational cost and desired performance.

Once resampling is complete, the tensors are aggregated
using weighted averaging. This is more efficient than the
conventional method of concatenation as it results in a smaller
tensor [87]. Weighted averaging allows the model to directly
contrast features derived at distinct scales and processing
depths, diversifying the scale and refinement level of features
used for final predictions [88]. The weights are trainable
variables, allowing the model to optimize the aggregation.

As seen in Fig. 2, feature aggregators connect nodes via
residual connections, creating a complex residual network.
A benefit of these residual connections is the minimization of
vanishing/exploding gradients throughout the network [88].
Residual connections enable the gradient to flow through
the network more easily, stabilizing the training process.
In Path Aggregation Network (PANet), residual connections
propagate high-level semantic features from the top-down
pathway to the bottom-up pathway, enabling the network
to generate highly detailed object proposals at multiple
scales [88], [89].
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FIGURE 3. Example diagram of SEN feature aggregator encoding five
scales down to one scale.

Feature aggregator architectures are classified based
on their number of nodes and connection order, which
varies with the feature extraction depth and structure.
However, aggregation of additional feature scales results in
computational overhead, necessitating a tradeoff between
higher aggregation and prediction speed [80], [88]. This
is why recent object detection models transitioned from
Feature Pyramid Network (FPN) to PANet for enhanced
performance [76], yet subsequent developments have focused
on more compact alternatives such as Neural Architecture
Search Feature Pyramid Network (NAS-FPN) [90] and
Weighted Bi-Directional Feature Pyramid Network [80].

C. SCALE ENCODER NETWORK
The novel aggregator introduced in this study is Scale
Encoder Network (SEN). The goal of SEN is to reduce aggre-
gation computational complexity from the node aggregation
process while still enabling the neural network to weigh
scales in a residual manner. Its premise is based on the idea
that encoding multiple scales into one scale results in less
nodes but still addresses the semantic gap.

Aggregators such as FPN, PANet, and BiFPN essentially
update a constant number of scales throughout their process.
If the backbone of the network has N nodes (or scales), the
final layer of these aggregators also has N nodes and outputs.
SEN, on the other hand, compresses multiple scales into one,
as seen in Fig. 3. In SEN, consecutive aggregation layers
reduce N until it is equal to the desired number of outputs.
In Fig. 3, five initial scales are compressed into two nodes,
then one node during aggregation.

In [80], seven backbone outputs feed into aggregators.
In this case, PANet adds 14 resamplings, weighted averages,
and convolutions to a network of only seven convolutions.
A SEN with a compression width of two would have a first
layer of three nodes and a second layer of one node. In models
like DarkNet [91], there can be over 50 convolutional blocks
in the backbone, and a SEN aggregator will have a huge
impact on the computational cost of feature aggregation.

The number of scales between nodes in a SEN layer
is referred to as the compression width W . For the SEN

nodes in Fig. 3, each node is thought to be a feature scale
that is at, one above, and one below of the scales of its
inputs. Thus, the compression width W of this encoding at
each node can be thought of as 2, since the max difference
between the input scale levels is 2. There are several factors
to consider when choosing it. The first factor is the volume
and scope of resampling. While downsampling results in data
loss, upsampling necessitates data approximation. In many
feature aggregators (PANet, FPN, BiFPN, NAS-FPN), scales
are never resampled more than one scale at a time [80], [90].
Presumably, this is to minimize data loss and approximation
throughout the network. In an attempt to not resample one
scale toomuch, we chose to use themiddle backbone scale for
SEN outputs. Connection overlaps should also be considered;
a compression width of one can result in many overlapping
connections, which could lead to repetitive calculations and
a preference for particular scales. To compare the effects
of various compression width sizes, this study evaluates
two different SEN designs; which are explained further in
Section III.

D. OBJECT DETECTION ARCHITECTURE
Multi-Task Learning (MTL) refers to the process of training
neural networks to make predictions for multiple tasks,
such as object localization and classification, simultane-
ously [92]. This enables models to train variables while
also cross-referencing losses from each task. By collectively
downplaying noise and anomalous patterns that one task
may have overemphasized, each task contributes evidence
for the applicability of features. This prevents overfitting
by focusing on crucial traits. An additional benefit to MTL
is eavesdropping, which occurs when information obtained
from simple tasks is used to finish a complex task [92]. For
instance, filters used in image segmentation to identify an
object’s class provide information about the object’s shape,
which can be used to calculate the object’s coordinates.

Usually, object detection models consist of the three steps
of feature extraction, feature aggregation, and prediction [81],
[91]. Collectively, these processes extract relevant features
from input tensors, combine those features into a single
representation, and then use that representation to predict
the presence and location of objects within each tensor’s
unique coordinate system. By following these three steps,
object detection neural networks can achieve cutting-edge
performance for a variety of object detection applications.

The input tensors are analyzed in the feature extraction
stage (or ‘‘the backbone’’) to identify relevant data patterns,
typically using convolutional layers. A hierarchy of increas-
ingly complex patterns is produced as the backbone processes
the tensor [93], [94]. High-level estimator performance is
still not assured, even though these extracted features are
a more useful representation for predictions than raw data.
In the feature aggregation stage, the object detection model
will produce feature maps that are resistant to changes in
scale, translation, and rotation [80], [88], [94]. The feature
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aggregation stage is covered in detail in Section II-B.
During the last stage, prediction (or ‘‘the neck’’), aggregated
features are transformed into an entire set of predictions.
In computer vision’s object detection models, separate
dense branches frequently perform classification and box
coordinate regression for the detected objects [81], [82].
For computing final predictions in object detection,

anchors, like those found in YOLO and SSD, have become
standard [81], [88]. In order to localize objects in an image,
anchors are a collection of predefined bounding boxes with
various scales and aspect ratios. Anchors streamline the
prediction process by splitting the task into two distinct
tasks; determining whether an anchor box contains an object
or not, and adjusting the anchor box coordinates to fit
any present objects. This method enables the network to
generalize objects of specific shapes and sizes while reducing
the number of trainable parameters, speeding up parameter
optimization. The network only predicts the presence and
location of objects in a fixed set of boxes rather than
predicting the precise location of each object across the entire
image, making anchors computationally efficient. Anchors
do not exist yet for SSL and sound detection models.
However, feature aggregation is essential to proper function
of anchors. Incorporating feature aggregation into sound
detection architectures allows for the use of sound signal
anchors in succeeding research, that is expected to substan-
tially improve the localization and classification of sound
sources at various amplitudes and phases [81], [82], [91].
This study uses a baseline model consisting of only a basic

backbone and head as a control model. The backbone of this
model consists of three sequential convolutions and the head
has two branches, each with two sequential dense layers.
As will be elaborated upon in the next section, Methodology,
various feature aggregators are inserted between the back-
bone and neck of the model; replicating the computer vision
object detection architecture described in this section.

III. METHODOLOGY
To isolate the effects of feature aggregation on SSL models,
this section will introduce four new SSL models that
integrate various aggregators into a baseline model (taken
from [7]) and then trained with identical datasets [95] and
preprocessing [7]. The baseline architecture SELDnet can be
seen in Fig. 4 and the proposed models with aggregation in
Fig. 5. Importantly, SELDnet is only used to demonstrate
the proof of concept. It was selected due to its publicly
available source code and training datasets, which ensure
reproducibility and verification of the results. However, the
created feature aggregation submodels can be integrated
with more recent Sound Event Localization and Detection
networks (e.g., SELD3DNET [29]), as explained in our
publicly available Feature Aggregator Library [96].

A. DEVELOPMENT
This study used Keras library with TensorFlow’s Functional
API backend to implement and test the feature aggregation

FIGURE 4. Illustration of the baseline SELDnet [7].

models. This API was chosen because of its flexibility for
creating non-sequential neural networks. Feature aggregation
nodes are Model class objects that incorporate sequential
resampling, weighted averaging, and convolutional layers
for processing input tensors. As the current version of the
TensorFlow Functional API does not include a weighted
averaging layer, we utilized a custom layer of the Layer
class, with the weights designated as trainable variables.
Subsequently, multiple node sub-models were interconnected
to create Feature Aggregator sub-models, which were then
integrated into themainmodel. This design allows nodes to be
easily arranged to quickly create aggregators, and aggregators
to be efficiently integrated into larger architectures.

Each model was trained for a max of 1000 epochs with
early stoppage if the SELD score (see Section IV-C) on
the test split does not improve for 100 epochs. This early
stoppage is to prevent network over-fitting. For training loss,
we utilized a weighted combination of binary cross-entropy
for classification and MSE for localization with an Adam
optimizer with default parameters [97].

Simple 1 × 1 convolutions were used in the feature aggre-
gation nodes due to their ability to reduce dimensionality of
feature maps [98] and apply nonlinear transformations [99].
In terms of dimensionality reduction, the convolutional
operation with a single filter and a stride of 1 in the
time axis can be used to generate a new feature map
with a reduced number of channels, which is particularly
beneficial in deep neural networks where the number of
feature maps can quickly become large and computationally
expensive to process [14]. As for nonlinear transformation,
the convolutional operation with multiple filters and a
nonlinear activation function, such as ReLu or softmax, are
applied to feature maps to increase their expressive power and
improve the performance of the neural network [99].

B. NETWORK ARCHITECTURES
SELDnet is a MTL CRNN without feature aggregation
which serves as a baseline architecture for this work.
It simultaneously predicts the presence of multiple classes
and their relative positions in 3D Cartesian coordinates.
It has been chosen for a few reasons. First, this is currently
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a state-of-the-art architecture that performed well in a
distinguished study by [7]. Second, the architecture design
allows for easy integration of feature aggregators compared
to non-sequential networks. Third, the hyperparameters have
already been tuned, allowing this study to focus on tuning
feature aggregators.

The feature extraction in SELDnet is done by three
sequential convolutions layers while the prediction stages are
completed by two branches of two dense layers, respectively.
Fig. 5 presents the proposed architectures by this study.
Figs. 5 (a)-(b) display SELDnet with the established PANet
and BiFPN aggregators. Figs. 5 (c)-(d) illustrate SELDnet
with two variations of SEN. The first variation, Fig. 5 (c),
incorporates an aggregator with two SEN layers with
compression width of one. The second variation, Fig. 5 (d),
demonstrates the SELDnet with a single SEN layer of
compression width two.

The feature aggregators to implement onto SELDnet
chosen for this study are PANet, BiFPN, and SEN. PANet and
BiFPN were selected because of their well-established track
record in popular object detection models, including YOLO
and SSD [80], [82]. SEN is a new aggregator developed by
this study. To evaluate the effects of the compression width
value, two models with SEN are tested: one test model with
a compression width of one (SENW=1) and the other with a
compression width of two (SENW=2). The SEN model with
a compression width of one uses two intermediate scales and
these scales sizes are the averaged dimensions of their input
tensors. All of these aggregators vary in number of nodes and
connection patterns, allowing for analysis and speculation of
optimal approaches for feature aggregation design.

IV. EVALUATION
A. DATASET
The REAL dataset, compiled by [95], serves as a valuable
resource for research on sound event detection (SED)
and localization [7]. The dataset consists of 216 uncom-
pressed WAV multichannel audio recordings, each lasting
30 seconds, captured in a university corridor surrounded
by classrooms during working hours. The settings represent
common real-life acoustic environments and feature diverse
overlapping sound sources and backgrounds.

More specifically, the data comprises impulse responses
(IRs) from the environment, measured using an Eigenmike
spherical microphone array. The IRs were generated by
slowly moving two loudspeakers (continuously playing a
maximum length sequence) in circular trajectories around the
array, one elevation at a time. These trajectories had radii of
1 meter (m) and 2 m from the array. At a distance of 1 m,
the elevation ranged from −40◦ to 40◦ in 10◦ increments,
and at 2 m, the elevation varied from −20◦ to 20◦ with the
same increments. The dataset contains spatial coordinates for
the loudspeakers and microphones, along with annotations
that provide information about the temporal boundaries,
classification, and spatial coordinates of sound events present

FIGURE 5. Diagrams of final model architectures proposed by this study.
Subfigures a, b, c, and d illustrate SELDnet with PANet, BiFPN, SENW =1,
and SENW =2, respectively.

in each recording. It encompasses 8 distinct sound categories,
including car horn, dog bark, drilling, engine idling, gun shot,
jackhammer, siren, and street music.

B. PREPROCESSING
In order to discern the specific impact of feature aggregation
within our framework, the data preprocessing methodology
employed is identical to the baseline model study [7] and uses
the code from this reference repository. The preprocessing
stage involves the following steps:
1) Raw audio files were de-noised using band-pass fil-

tration to remove low and high-frequency noise. This
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method is effective against typical noise in recording
environments [7]. Signals were then downsampled
to 16 kHz, reducing computational complexity and
ensuring efficient data preprocessing for future stages.

2) The STFT of the preprocessed audio signals were
computed to create a detailed time-frequency represen-
tation [11]. A window size of 1024 samples and hop
size of 256 samples provided the optimal temporal and
spectral details in the resulting spectrogram [100]. The
magnitude and phase from the STFT spectrogram were
used as separate input features to the neural network
to improve the localization performance. Extracting
these features from the raw waveforms requires minimal
pre-processing of the data.

3) To bolster the training dataset and improve model gener-
alization, data augmentation techniques were employed,
including random time shifting, frequency shifting, and
amplitude scaling [79]. This enriched dataset enhanced
the model’s adaptability and performance in varied
acoustic scenarios.

C. METRICS
Each model’s performance is evaluated using several metrics
that measure the accuracy of the SED and the sound
event DOA estimation. The SED metrics are F-score and
Error Rate. F-score (F) is a widely used metric for binary
classification problems that measures the balance between
precision and recall [101]. It is defined as the harmonic mean
of precision and recall. In the context of SED, True Positives
(TP) refer to the correctly detected events, False Positives
(FP) refer to the events that were incorrectly detected, and
False Negatives (FN ) refer to the events that were missed by
the model [7]. F-score is a useful metric because it considers
both the number of correctly detected events and the number
of missed and false alarms. A higher F-score indicates a
better performance. The F-score for predicting the presence
of classes in each k one-second segment is defined as

F =
2 ·
∑K

k=1 TP(k)

2 ·
∑K

k=1 TP(k) +
∑K

k=1 FP(k) +
∑K

k=1 FN (k)
(1)

where, for each one-second segment k , TP(k) is the number
of true positives; FP(k) is the number of false positives; and
FN (k) is the number of false negatives. True positives are
correctly predicted sound event classes which are present
in the segment. In contrast, false positives are sound event
classes erroneously predicted to be within the segment and
false negatives are sound event classes present in the segment
but failed to be detected.

Error Rate (ER) is another commonly used metric for
SED, which measures the percentage of incorrectly detected
events [7], [102]. ER is calculated as

ER =

∑K
k=1 S(k) +

∑K
k=1D(k) +

∑K
k=1 I (k)∑K

k=1 N (k)
(2)

where, for each one-second segment k , N (k) is the total
number of active sound event classes in the ground truth. S(k),

substitution, is the number of times an event was detected at
the wrong level and is calculated by merging false negatives
and false positives without individually correlating which
false positive substitutes which false negative. The remaining
false positives and false negatives, if any, are counted as
insertions I (k) and deletions D(k), respectively. These values
are calculated as follows:

S(k) = min(FN (k),FP(k)) (3)

D(k) = max(0,FN (k) − FP(k)) (4)

I (k) = max(0,FP(k) − FN (k)) (5)

The DOA metrics are DOA error and Frame Recall. DOA
errormeasures the difference between the estimatedDOAand
the ground truth DOA in degrees for the entire dataset with
total number of DOA estimates, D [7]. A lower DOA error
indicates a better performance. The error is defined as

DOA Error =
1
D

D∑
d=1

σ ((xdG, ydG, zdG), (x
d
E , ydE , zdE )) (6)

where (xE , yE , zE ) is the predictedDOAestimate, (xG, yG, zG)
is the ground truth DOA, and σ is the angle between
(xE , yE , zE ) and (xG, yG, zG) at the origin for the d-th
estimate:

σ = 2 · arcsin

(√
1x2 + 1y2 + 1z2

2

)
·
180
π

(7)

with 1x = xG − xE , 1y = yG − yE , and 1z = zG − zE .
Frame Recall (FR), as defined by [7], is a metric used to

measure the accuracy of a model’s predictions in the context
of time frames or segments. It measures the percentage of
time frames where the number of estimated and ground truth
DOAs are unequal. A higher Frame Recall indicates a better
performance and is calculated as

FR =

∑K
k=1 TP(k)∑K

k=1 TP(k) + FN (k)
· 100 (8)

We used a combined localization and classification score,
SELD, to perform early training stoppage. If the SELD score
did not improve over 100 epochs, training was terminated
to prevent overfitting. SED and DOA scores represent the
overall performance of an estimator for sound event detection
and localization, respectively. SELD is the average of these
scores and functions as a single overarching metric to
compare models. A lower value indicates better performance
for DOA, SED, and SELD scores. Eqs. (9), (10) and (11)
define these metrics [7]:

DOA score =
((DOA Error)/180 + (1 − FR/100))

2
(9)

SED score =
(ER+ (1 − F/100))

2
(10)

SELD =
((SED score) + (DOA score))

2
(11)
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D. BASELINE METHODS
SELDnet is a deep learning architecture developed specif-
ically for combined SED and DOA estimation tasks [7].
SELDnet processes spectral features dedicated to the SED
task in parallel with spatial features for the DOA estimation.
By leveraging the fusion of convolutional and recurrent
layers, SELDnet effectively pinpoints both the occurrence
and the spatial origin of a sound event. MSEDnet, derived
from SELDnet, is designed for monaural (single-channel)
SED. By focusing on the SED task, MSEDnet provides an
optimal solution for applications where the sole requirement
is event detection without the need for spatial localiza-
tion [103]. Its architecture is tailored to single-channel audio
contexts, ensuring precise event detection. SEDnet stands as
a dedicated solution for SED, capitalizing on deep learning
techniques [103]. With its architecture centered around event
identification, SEDnet excels in scenarios where temporal
detection of sound events is the primary objective. It delivers
accuracy and efficiency in sound event classification without
incorporating spatial estimation components. DOAnet offers
a specialized approach towards the spatial dimension of audio
signals, focusing solely on DOA estimation [104]. MUSIC
(Multiple Signal Classification) is a robust algorithm for
DOA estimation. Relying on subspace methods, MUSIC dif-
ferentiates the signal space from the noise space, facilitating
precise DOA predictions for multiple sound sources [105].
Its mathematical foundation and proven efficiency in array
signal processing render it as a reliable choice for DOA
estimation tasks, even in contexts dominated by neural
network models [7].
It is important to note that the comparisonsmadewith these

baseline models are not intended to show that integrating
the proposed feature aggregators with SELDnet make it
outperform all existing SELD networks published to date.
The purpose is rather to simply evaluate the quantitative
improvement resulted from integrating the proposed feature
aggregator with a Sound Event Localization and Detection
network in the joint classification and localization task. How-
ever, the created feature aggregation submodels (available
in our publicly available Feature Aggregator Library [96])
can be integrated with other Sound Event Localization and
Detection networks, such as SELD3DNET [29], and may
show improvement with respect to the model without feature
aggregators. Additionally, the study considers single-task
methods specialized in SED (MSEDnet and SEDnet) and
SSL (DOAnet and MUSIC) to determine if incorporating the
feature aggregators can sufficiently boost the performance of
SELDnet to make it comparable to these specialized methods
in individual SED and SSL tasks.

V. RESULTS
The results in Table 1 indicate that feature aggregation
enhanced the model’s capacity in both localization and clas-
sification of the sound sources. None of the models evaluated
in this study outperformed the algorithms specialized for

only classification or localization, but all demonstrated a
clear improvement in both tasks compared to the original
SELDnet.

A. CLASSIFICATION
For the SELDnet variants, classification improvements were
clear but minimal. All of the ER scores are closely clustered,
making it difficult to determine the extent to which different
feature aggregation designs affected scores. However, the
F and SED scores imply that aggregation did improve
SELDnet’s ability to classify in a manner comparable to
MSEDnet and SEDnet. The dataset may impose restrictions
on these scores, preventing architectural design from dis-
playing a large impact. Datasets can limit deep learning
model performance through factors such as data size, quality,
class imbalances, noisy or biased labeling, and distribution
mismatches; all of which hinder the model’s ability to
achieve over a certain score. Compared to MSEDnet,
both SELDnet+PANet and SELDnet+SENW=1 performed
marginally worse. These two models performed marginally
better than SEDnet, whereas SELDnet with BiFPN and
SENW=2 performed comparably to SEDnet. With respect to
SEDnet, SELDnet with BiFPN and SENW=2 scored slightly
better on ER, slightly worse on F-Score, but achieved the
same overall SED score. Overall, themodels with aggregation
provide better performance; they are associated with lower
ER, higher F-Score, and lower SED score.

B. LOCALIZATION
The improvements in localization scores of models with
aggregation are notable. Compared to SELDnet, all the net-
works with aggregation considerably improved performance,
as was expected. All aggregated models had considerably
lower DOA Errors, higher Frame Recall, and lower DOA
score. SELD+PANet performed particularly well in DOA
estimation, with metric scores that stand out from the
other clustered aggregation DOA scores. This clear DOA
estimation boost suggests that feature aggregation enhances
the distinguishing of various sound signals, such as rever-
berations, diffractions, and direct signals. The increased
robustness to indirect signals, observed after introducing
aggregators into SELDnet, is attributable to the enhanced
feature scaling. Indirect signals, such as reflections, can
exhibit comparable wave patterns to direct signals at lesser
amplitudes. Therefore, one would anticipate that a better
comprehension of feature scales would enhance the differen-
tiation between direct and indirect signals.

Compared to DOAnet, SELDnet and its variants have a
higher frame recall and overall DOA Error; signifying that
they excel at correctly identifying DOAs within individual
time frames while maintaining consistency with the ground
truth DOAs. This indicates that these models have difficulty
minimizing the overall disparity between predicted and
ground truth DOA compared to DOAnet, but consistently
capture signal patterns with respect to time.
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TABLE 1. Classification and Localization Scores of Test Architectures Compared to Control Algorithms. The best-performing metrics are highlighted in
bold and the secondary metrics are underlined. Arrows indicate the desired direction for better performance: ↓ for lower values and ↑ for higher values.

It is likely that DOAnet’s inconsistencywith respect to time
is a result of an inability to distinguish direct signals from
reflections, reverberations, and diffractions. The data implies
that SELDnet variants (developed by this study) are adept at
pinpointing the precise time instances when sound sources
appear, leading to an improved ability to distinguish between
multiple signals. Furthermore, by consistently capturing
signal patterns over time, these models are likely to be more
robust in dynamic soundscapes where the number of sound
sources and noise interference can vary. This trait is vital in
real-world applications where sound sources often overlap
and vary in number and characteristics.

C. JOINT CLASSIFICATION AND LOCALIZATION
The SELD scores indicate that, regardless of aggregator
design, feature aggregation improves the function of joint
sound classification and localization models. Although
aggregators with more nodes outperformed the single node
SEN model, this modest aggregator demonstrated that
even minimal aggregation can counter-act the negative
effects of the semantic gap. Clearly, PANet’s in-depth and
equal processing of all scales is optimal for performance.
However, as previously discussed, this approach can be
computationally demanding, which may prove adverse for
certain situations.

D. AGGREGATOR COMPARISON
This section will compare aggregators using two metrics:
their overall percentage improvement on SED, DOA, and
SELD scores and the percentage improvement per node. The
percentage improvement per node is intended as a metric to
quantify the efficiency of aggregator designs. As can be seen
in Table 2, although some aggregators have better overall
improvement, others have a better improvement ratio per
node, implying a more efficient connection design.

The obvious outlier is SENW=2. The results for this model
imply that any aggregation helps counteract the semantic
gap. The collective results indicate that less nodes result
in a higher percentage improvement per node. However,
in this particular SENW=2 aggregator, the magnitude of

improvement per feature aggregator node must be taken
with a grain of salt due to the simplicity of the aggregator.
SELDnet is an unusually compact neural network, and most
real-world models are much deeper (such as Darknet 53 with
a backbone of 53 convolutional layers). For backbones deeper
than three layers, which is the case for most models, SEN
aggregators with a compression width of two would involve
more than one node. We hypothesize that the use of a single
node causes this SENW=2 to seem disproportionally effective
per node because the overall score change is divided by one.
The overall improvement from this SENW=2 aggregator is
a testament to the effects of having any aggregator, but the
results for improvement per node are skewed due to division
by one. Nevertheless it is interesting that compared to BiFPN,
this single node performed comparatively in overall SED and
DOA percentage improvement and slightly worse in overall
SELD. It is important to note that the DOA and SED scores
of BiFPN and SENW=2 are the same because of rounding,
but the actual difference is seen in the SELD score. As will
be discussed later in this section, we attribute this similar
performance to the efficacy of encoder aggregators of SEN.

After removing this outlier and comparing PANet, BiFPN
and SENW=1, the next clear take away is PANet’s overall per-
centage improvement. PANet was not as efficient as SENW=1,
but the overall improvement is substantial compared to
all other aggregators. This is attributable to the in-depth
processing at every scale, which is the most comprehensive
design for addressing the semantic gap. The lower efficiency
per node is likely the result of certain scales not requiring as
much processing as is actively occurring.

SENW=1 is clearly an efficient design, with the second
highest overall percentage improvements and highest per-
centage improvement per node, when excluding the outlier
SENW=2. This efficiency per node is attributable to the
efficacy of the encoder approach. This approach allows for
even weighing and consideration of all scales, like PANet,
without leading to uneven processing of each scale, as seen in
BiFPN. This equal evaluation of all scales with reduced nodes
leads to an efficient aggregation process. BiFPN’s results
indicate that the design is not the best performing or most
efficient. Architectures with more trainable parameters, such
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TABLE 2. Comparison of Aggregator Effects on Baseline SELDnet Scores. The best-performing metrics are highlighted in bold.

as the additional nodes in PANet, can be trained to outperform
BiFPN on the test dataset. It is interesting that the SEN
models performed well in comparison with BiFPN, which
has more nodes than both SEN models. We hypothesize that
BiFPN overemphasized one scale due to the scale’s extra
nodes, whereas SEN created a compressed representation
with equal weighting of all scales.

VI. CONCLUSION
The results indicate that, regardless of the aggregator’s
design, feature aggregation can significantly improve the
performance of neural networks in SELD and specially SSL.
Compared to SELDnet, all networks with feature aggre-
gation showed considerable improvement in localization,
classification, and the joint task of SELD. The addition of
feature aggregators particularly enhanced the localization
task, resulting in significantly higher frame recall and notably
lower DOA score compared to single-task networks such
as DOAnet, which specializes in DOA prediction. The
performance in classification was also competitive with
specialized networks such as MSEDnet and SEDnet.

A balance must be struck between computational expense
and performance when deciding on an aggregator. While
examining the available aggregators, SEN and PANet stand
out as the most cost-effective and robust, respectively.
The difference in aggregator performances indicates that
when performing feature aggregation, it is best to equally
emphasize all scales. Future research may delve deeper into
an assortment of topics, such as the establishment of anchors
for spectrograms and the development of more complex SEN
designs (such as stacking SEN after FPN or PANet). The
created feature aggregation submodels can be additionally
integrated with more recent Sound Event Localization and
Detection models to compare performance.
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