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ABSTRACT The transmission system of a tractor is a crucial component, so it is crucial to promptly
identify and correctly diagnose faults in it. However, due to the limited samples of faults occurring during its
operational processes, employing existing fault diagnosis methods directly yields unsatisfactory results. This
paper proposes a fault diagnosis model combining Time Generative Adversarial Networks (Time GAN) and
Transformer. To enhance diagnostic accuracy, we first employ Time GAN for data augmentation, addressing
the issue of imbalanced fault samples in practical scenarios. Then, we integrate a Transformer network with
improved multi-head self-attention mechanisms, leveraging the advantages of the Transformer’s encoder-
decoder architecture and attention mechanism to enhance diagnostic performance. Bearing data from Case
Western Reserve University (CWRU) was used to validate the diagnostic performance of the proposed
model, while gear data from an experimental rig built by the author was used to validate the model’s
generalization capability. Experimental results indicate that the accuracy reached 98.96% and 95.36% in
CWRU Dataset and Self-made Dataset respectively. In strong noise environments, the accuracy remains
above 93%. In conclusion, the diagnostic model presented in this paper can reliably diagnose tractor
transmission system problems in few-sample conditions and noise environments compared to traditional
machine learning models.

INDEX TERMS Transformer model, Time GAN, data augmentation, fault diagnosis.

I. INTRODUCTION transportation of crops, thereby causing substantial losses in

The tractor gearbox, as a critical component of the
mechanical transmission system, plays a vital role in power
transmission [1]. During operation, it constantly rotates and is
subjected to variable speed loads and severe impacts, leading
to damage and issues such as inner race fault in bearing,
outer race fault, miss tooth, chipped tooth in the gearbox,
and other faults. Statistics show that approximately 18%
of tractor failures in agricultural operations are attributed
to transmission system faults. These faults result in pro-
longed downtime, significantly affecting the harvesting and
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agricultural production. To mitigate the severe impact of these
failures, timely and reliable condition monitoring and fault
diagnosis of the tractor transmission system are essential.
Existing diagnostic methods can generally be classified
into two categories. One category is non-intelligent fault
diagnosis, which primarily relies on time-frequency domain
processing of vibration signals [2], [3], and typically does
not involve deep learning. These methods study fault signals
using signal processing techniques such as wavelet analy-
sis [4], empirical mode decomposition [5], et al, to extract
fault characteristic frequencies. For instance, Zhang et al.
[6] suggested a technique for feature extraction using a
combination of time-domain and frequency-domain data
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with variational mode decomposition. Initially, the original
vibration signals undergo variational mode decomposition
to obtain modal functions. Subsequently, singular value
decomposition is employed to further extract the modal
features of the modal functions. These extracted modal
features are combined with the time-domain and frequency-
domain features of the original signals to generate hybrid
features, and finally, SVDD kernel functions are used for
parameter optimization. However, these methods have the
following shortcomings, (1) Non-intelligent fault diagnosis
methods rely on physical information and domain expertise
for fault diagnosis, resulting in a relatively low degree of
automation. (2) Massive fault data will not be effectively
learned due to manual feature extraction. (3) Rich prior
knowledge is necessary for diagnostic professionals to
perform the feature extraction method [7].

The second category of fault diagnosis techniques, referred
to as ““intelligent fault diagnosis,” has also evolved and
is maturing with the emergence of artificial intelligence.
The majority of these techniques rely on deep learning,
which can eliminate the need for specialist knowledge and
manual feature extraction procedures. In intelligent fault
diagnosis methods, Convolutional Neural Network (CNN)—
based diagnostic approaches are commonly employed. For
instance, a fault detection model based on Google Net and
Gramian Angular Field (GAF) was presented by Huang et al.
[8]. You et al. [9] introduced a fault detection model
based on PCA-CNN. Chen et al. [10] combined Smoothed
Pseudo Wigner-Ville Distribution (SPWVD) with CNN for
fault diagnosis. Although the aforementioned studies have
achieved good results, they are mostly constructed and vali-
dated on balanced datasets with rich typical fault information
and sufficient healthy labeled data, overlooking the problem
of sample class imbalance. Moreover, CNN has limitations
in modeling dependencies over a wide range of low-level
features [11]. The aforementioned intelligent fault diagnosis
methods require a sufficient variety of fault types to achieve
high accuracy. When the labeled sample size is adequate and
balanced, the diagnostic accuracy of the network model is
high. However, when labels are missing, the sample size is
small, or fault samples are imbalanced, the network training
becomes inadequate, leading to suboptimal accuracy and
significant degradation in algorithm performance. In practical
diagnostic processes, although a large amount of monitoring
data for tractor transmission systems can be obtained through
signal acquisition, most of this data represents normal
conditions. The scarcity of fault data results in an imbalanced
sample set, preventing the neural network from being fully
trained and consequently affecting the subsequent diagnostic
accuracy. Therefore, effectively diagnosing faults in tractor
transmission systems using traditional diagnostic methods is
extremely challenging.

The multidimensionality, class imbalance, and concur-
rency of fault data present three major challenges for fault
diagnosis [12]. In fault diagnosis, the lack of sufficient
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sample data to train intelligent diagnostic models often
results in sacrificing the accuracy of minority classes to
achieve higher accuracy across the entire dataset, greatly
reducing diagnostic accuracy. Therefore, many scholars have
begun researching data augmentation methods to enhance
data. Yu et al. presented a technique for sophisticated
few-fault diagnosis in rotating machinery based on Convo-
lutional Neural Networks (CNN), which utilizes Mechanism
Characteristic Generation Models (MCGM) integrated with
Generative Adversarial Networks (GAN) to generate virtual
samples [13]. A gearbox defect diagnosis technique based on
Wasserstein distance enhanced Auxiliary Classifier Genera-
tive Adversarial Network (AC-GAN) models and Bayesian
optimization was presented by Li et al., which simultaneously
optimizes the generator and discriminator through adversarial
gaming mechanisms, significantly enhancing the model’s
generalization and fault feature extraction capabilities [14].
Qin et al. proposed a model named FBC-GAN, which
stands for Frequency-Domain Bidirectional Long Short-
Term Memory (Bi-LSTM) Cycle Generative Adversarial
Network (CycleGAN). In this model, Bi-LSTM is used
to enhance feature extraction capabilities. By using FBC-
GAN and Fourier Transform, simulated fault location signals
that closely resemble actual signals are generated, thereby
achieving data augmentation [15]. Ruan et al. suggested a
novel deep learning-based FDD method under the condition
of imbalanced samples that converts the time-series signals
into an image signal to extract the timing and coupling
features, and then applies the improved conditional varia-
tional autoencoder-generative adversarial network (CVAE-
GAN) to generate fault samples [16]. Liao et al. introduced
a conditional auxiliary classier cycle-consistent generative
adversarial network restrained by Wasserstein distance with
gradient penalty (CAC-CycleGAN-WGP). This model can
generate superior-quality signals of the minority classes
with stability from the majority class [17]. Qin et al.
proposed a digital twin—based fault data—generation method
that inverses physics—informed neural network (PINN) built
to recognize dynamic model parameters by embedding a
bearing dynamic model into a neural network to produce fault
samples under multiple working conditions [18]. Pei et al.
utilized an improved few-shot Wasserstein auto-encoder (fs-
WAE), which can strengthen the representational power of
the encoder and provide a flexible optimization function
for fault data—generation [19]. Wang et al. presented an
effective deep learning method, namely, domain adaptive
efficient sub-pixel network (DAESPN) that can enhance the
resolution of the original sample for data augmentation [20].
Data augmentation models can produce a large amount of
new data that resembles the distribution of the original
data, effectively addressing the issue of the scarcity of fault
samples. Additionally, these models can specifically resolve
the problem of sample imbalance. However, the generator and
discriminator in the network still face mode collapse issues
during training, necessitating optimization and improvement.
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Based on the analysis above, to address the imbalance issue
of fault samples in practical scenarios and the limitations of
existing neural networks in handling data, we propose a fault
diagnosis technique tailored for few-fault data. The aim is
to enhance diagnostic accuracy from multiple perspectives,
leveraging data augmentation with Time GAN and an
improved self-attention mechanism within a Transformer
classifier. The following is a summary of this paper’s primary
contributions.

(1) Utilizing the Time GAN equipped with an auto-
encoding module, consisting of embedded and recovery
functions, this module, compared to traditional GAN net-
works, generates higher-quality samples to tackle the issue
of scarce fault samples in practical scenarios.

(2) An improved Transformer fault diagnosis method
is introduced. This method transforms time-step attention
into sensor attention, addressing the issue of weak global
information modeling capacity in CNN. Enhanced diagnostic
accuracy and convergence speed.

(3) The Time GAN data augmentation model generates
fault samples through its inherent adversarial mechanism and
unique auto-encoding module, thereby balancing the dataset.
The augmented and balanced dataset is then sent into the
Transformer model, which utilizes the advantages of the
Transformer’s encoder-decoder architecture and improved
attention structure for feature extraction and fault classifi-
cation. Experimental validation demonstrates that the model
exhibits high accuracy and feasibility.

The paper’s remaining portions are arranged as follows.
In Section II, the basic principle is presented. Section III
delineates the proposed fault diagnosis process and the
framework of the diagnostic model. The dataset and network
settings utilized in the fault diagnosis experiments are shown
in Section IV. Section V comprehensively analyzes the
experimental results from various aspects and compares
them with other models, verifying the suggested method’s
performance. Finally, a summary of the entire content is
provided.

Il. PRELIMINARIES
The fundamental structure and essential elements of the Time
GAN and Typical Transformer will be covered in this part.

A. DATA AUGMENTATION

Deep learning network models, which can automatically
extract multiple complex features from input samples without
human intervention, have been extensively applied in the fault
diagnosis field. However, from a mathematical perspective,
their use of gradient descent optimization can easily lead
to the problem of local optima, and their learning style and
generalization ability are closely related to the selection of
samples. Due to the inherent characteristics of imbalanced
sample classes and complex distributions in tractor gearbox
data, directly inputting the data into deep learning network
models may not effectively diagnose and classify them.
In this article, we employ Time Series Generative Adversarial
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Networks (Time GAN) to alter the data distribution, balanc-
ing the various data samples to prevent skewness and thereby
enhancing the diagnostic capability and generalization of the
model.

The steps for data augmentation using Generative Adver-
sarial Networks (GANSs) are as follows:

To address the issue of model overfitting or underfitting
due to the small training sample size, this paper employs
the Time GAN to augment the fault samples. Time GAN is
a branch of Generative Adversarial Networks (GAN) [21].
Typically, the main component of a GAN is an adversarial
module consisting of two neural networks: the generator and
the discriminator. These two neural networks continuously
compare generated data with real data to improve the quality
of the generated data. Equation (1) represents the value
function for evaluating the generator and discriminator.

Lu=sx,, {ns —dll+ > x —fnz] (1)
L

where: s, x(1.) represent the original dataset, 5, X denote
the reconstructed form of the original dataset, and the
conditional distribution that corresponds to the original data
is represented by p.

The Time GAN network features not only the typical
adversarial module found in conventional GANs but also
an auto-encoding module [22]. The primary role of the
autoencoding module is data dimensionality reduction. Two
neural networks make up this module: the embedding
function and the recovery function, connected via a latent
function. The embedding function transforms the data into
latent codes h(he H), which are then fed into the discriminator
for data selection. Subsequently, the recovery function
performs the inverse transformation, ultimately outputting the
enhanced dataset. An illustrative diagram of data generation
in Time GAN is depicted in Figure 1. In Time GAN, the
neural network formed by the embedding function and the
recovery function is evaluated using equation (2).

LR =10y [Z I x — r(e)(x») |I2} @

where: r represents the reconstruction function, and e
represents the embedding function.

Generating time-correlated data is inherently challenging
for GANSs, especially when the input data consists of long
sequences with multiple features. To incorporate the temporal
relationships between data into the learning architecture,
Time GAN employs a supervised loss function based on
autoregressive learning algorithms. This allows the GAN
network to introduce time-conditioned probability.

The real datasets collected in this study consist of time-
series data, specifically vibration signals from the tractor
gearbox collected every minute during operation. Therefore,
the data in the dataset exhibit characteristics of long
sequences with multiple features. Consequently, collecting
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FIGURE 1. The process of data generation in Time GAN.

real datasets aligns well with the applicability of Time GAN
for data augmentation purposes.

B. TRANSFORMER MODEL

The Transformer model is based on the attention mechanism,
featuring an encoder-decoder architecture [23], [24], [25].
The main component of the Transformer network is stacked
encoders and decoders. A typical Transformer network is
illustrated in Figure 2.

Output Probabilities

’7—& Decoder ...
I Decoder 2
Encoder ...
T Decoder |
Ehtoderd Add&Norm -
| Encoder 1
| il
i Add&Norm = SGRIDIC T
| Scaled Dot-Production ]
i [_FeedForward | Multi-Head Attention ] =
| Add&Norm Add&Norm — LT—’ w *—T—’

Masked Multi-Head
Attention
De——— Positional Encoding ﬂ—

Input Output
Embedding Embedding

Multi-Head Attention

FIGURE 2. Typical transformer network.

1) ENCODER

The encoder consists of a positional encoding layer, feed-
forward neural network layer, residual, layer normalization
layer, and multi-head self-attention layer. The core of
the encoder is the multi-head self-attention mechanism,
primarily used to allocate attention (weights) to the input
feature sequence, enabling the model to focus more on
important information within the input feature sequence. The
feedforward neural network layer is mainly responsible for
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transforming the output of the multi-attention layer. Addition-
ally, residual and layer normalization layers are added after
the multi-head self-attention layer and feedforward neural
network layer to address issues such as gradient vanishing
caused by excessive network depth, thereby accelerating
network convergence speed and enhancing network gener-
alization ability. The main components of the encoder are
described as follows.

a: POSITION ENCODING

The attention mechanism is the primary component of the
Transformer network [26]. However, the attention layer
alone cannot learn the positional information of sequences.
Therefore, positional encoding is introduced to incorporate
positional information into the sequences. Positional encod-
ing applies functions to alternate even and odd dimensions of
input feature samples, as shown in equations (3) and (4).

. ] pos
PE(pos, 2i) = sin (m) A

. 0s
PE(pos, 2i + 1) = cos (m) @

where: pos represents the position of input feature samples,
i denotes the dimension of input features,2i and 2i 4 1 cor-
respond to even and odd dimensions, d 4 ¢ represents the
dimensionality of positional encoding, which is equivalent to
the dimensionality of input features.

b: MULTI-HEAD SELF-ATTENTION

This layer calculates the similarity between input feature
sequences to allocate weights, representing the importance
of information [27], [28], [29]. Firstly, the input feature
sequence X is multiplied by three distinct weight matrices
to get the query matrix @, key matrix K, and value matrix
V. Then, the query matrix is used to compute the dot product
with the key matrix K and SoftMax normalization to calculate
attention weights. Finally, the output feature sequence is
obtained by weighting the value matrix V based on the
attention weights, as shown in equations (5) to (8).

0=XwW, (5)
K = XW, (6)
V =XW, (7
. OK"
Self — Attention(Q, K, V) = SoftMax(———)V  (8)

kY dmudel

where: W, Wy, W, are the weight matrices corresponding
to @, K, V respectively.

Equations (9) and (10), which show the concatenation
and linear transformation of several self-attention processes,
represent the multi-head self-attention mechanism.

Multi — Head(Q, K, V) = Concat(H{,Ha, --- , H))W (9)
H; = Self — Attention(XWg,, XWk,, XWy,) (10)

where: H;(i € {1, 2, - - -, n}) represents the ith self-attention
head, n is the number of self-attention heads, the Concat
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function concatenates the outputs of multiple self-attention
heads. W is the weight matrix for multi-head self-attention
and Wg, Wg,, Wy, represent the Q,K and V weight
matrices, respectively, for the ith self-attention head.

Input time-
step feature

)

FIGURE 3. Improved multi-head self-attention.

2) DECODER
The decoder consists of a masked multi-head self-attention
layer, an encoder-decoder multi-head self-attention layer, and
a residual and layer normalization layer [30]. The masked
multi-head self-attention is utilized to allocate attention
(weights) to the input label sequence [31]. Subsequently,
the encoder-decoder multi-head self-attention mechanism is
employed to learn the dependency between the intermediate
vectors from the encoder’s output and the input label
sequence [32]. The main components of the decoder are
described as follows.

(1)Masking Multi-Head Self-Attention

The masked multi-head self-attention mechanism can
prevent the model from learning future label sequence
information at each time step [33], [34], [35]. The masking
operation involves introducing a lower triangular unit matrix
M (with elements above the main diagonal being 0, elements
on the main diagonal, and below being 1) and performing
element-wise multiplication with QK during the computation
of scaled dot-product self-attention. This operation zeros out
future label sequence information, as shown in equation (11).

OK™™
LY, d mod el)

(2) The encoder-decoder self-attention represents the label
sequence information and is denoted as Qp [36], [37].
The key matrix K and value matrix V are derived from the

Masked(Q, K, V) = SoftMax( ) (11
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intermediate vectors of the encoder’s output, representing the
feature sequence information, and are respectively denoted as
K and Vg, as shown in equation (12).

T
OpKp

E — Dncoder(Q, K, V) = SoftMax(———
vV d mod el)

We (12)

IIl. FAULT DIAGNOSIS MODEL

We will present our fault diagnostic model in this part. The
model is trained, validated, and tested on the bearing and gear
dataset. The fault diagnosis process is shown in Figure 4,
while the architecture of the fault diagnosis model is depicted
in Figure 5.

Data pre-processing

Collecting the bearing/gear vibration signals,
slicing of data

v

‘ Data normalization, division of Training set,

Validation set, Test set
I

Training set,

Test set

Input Improved
Transformer model
for training

\ 4

Time GAN Network |

Generator

[Z

Discriminator

Save the highest
accuracy model

| Test set data input
model

Output fault
i is results

‘ Save parameters,

generate samples

Expand training set , N
validation set with 1 | [ End )
generated data -
Data i ) Fault classification

FIGURE 4. Fault diagnosis process.

The paper is based on one-dimensional raw vibration
signals and completes the entire process of the fault diagnosis
model from pre-training to practical application. The steps
involved are as follows:

(1) Collect vibration signal characteristics of the tractor
transmission system (bearing/gear) and divide them propor-
tionally into training, validation, and testing sets. Normalize
the data and complete the pre-training process of the vibration
data.

(2) Input the training and testing set samples along with
random noise into the Time GAN. Alternately train the
generator and discriminator until reaching Nash equilibrium.
Retain the parameters and generate synthetic samples similar
to the original samples, enhancing the dataset through data
augmentation.
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FIGURE 5. Proposed fault diagnosis structure.

(3) Input the augmented samples into the Transformer
model improved with a multi-head self-attention mechanism
for training. Extract crucial features from the input feature
sequences for multi-label fault diagnosis, considering differ-
ent time steps and sensors. Save the diagnostic model with
the highest accuracy after reaching the maximum iteration
count.

(4) Use the trained Transformer model with the highest
accuracy to diagnose and classify various fault types by
inputting the testing set. Obtain the final fault diagnosis
results.
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(5) Utilizing four assessment metrics, assess the improved
model’s diagnostic performance.

A. IMPROVED MULTI-HEAD SELF-ATTENTION FOR
TRANSFORMER

In domains like natural language processing, the Transformer
has had great success. However, its unique structure poses
limitations in the fault diagnosis field. Therefore, addressing
the multi-label fault diagnosis problem, this paper proposes
an improved Transformer model.

The traditional Transformer model focuses solely on
attention (weights) across different time steps in the input
sequence, disregarding the importance of different sensors
within the input sequence. Therefore, this paper introduces
an improved Transformer model. This enhancement involves
integrating the improved attention mechanism into the
encoder of the Transformer model to extract crucial features
from different time steps and different sensors within the
input feature sequence.

The improved self-attention of the Transformer model is
illustrated in Figure 3. First, the time-step feature sequence
0., K,, V is input and processed through multi-head time-
step self-attention to acquire the weighted time-step feature
sequence W,V , as shown in Equation 13. By applying
multi-headed attention to the feature sequences at different
time steps, a weighted feature sequence of time steps is
obtained. Subsequently, this weighted feature sequence of
time steps is transposed to yield a feature sequence of sensors
0,5 K.s Vo, as shown in Equation 14. Finally, the sensor
feature sequence is processed through multi-head sensor self-
attention to acquire the weighted sensor feature sequence
W,V i, as shown in Equation 15.

: 0K/
T K,V) =SoftMax(———)V, =W,V
ime(Q,, K, V,) oft aX(\/m)) L Y
(13)
WV =0, =Kn=Vy (14)
Q.K,,
Sensor(Q,,, Ky V) = SoftMax(m)Vm =W,V
(15)

where: Q,, K;, V,, W, show the weight matrices for the time
step features,Q,,, K,,,, V,,,, W, represent the weight matrices
for the sensor features.

Therefore, the improved self-attention not only extracts
important features from different time steps but also different
sensors. Enhanced attention mechanisms in Transformer
models enable better extraction of global information,
thereby improving the model’s capability to learn various
fault categories and enhancing classification accuracy.

B. TIME GAN DATA AUGMENTATION

Before inputting the original dataset into Time GAN for
training, it needs to be sliced into three-dimensional data with
certain step sizes. This process can be considered as grouping
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the data to different degrees, and the generation process
involves training and generating based on each group of data.
This preprocessing step will determine the multiplication
factor for augmenting the data. Due to the varying sizes of
the original dataset, different numbers of slices will to some
extent determine the quality of the augmented dataset.

After slicing the data, normalization is uniformly applied
to the data [38]. This is beneficial for reducing model training
time and improving training accuracy. The normalization
method chosen is min-max normalization, as shown in
equation (16), which scales the data range to (0, 1). Compared
to mean normalization, min-max normalization is more
suitable for time series data and data with fewer extreme
values.

r_ X — min()f) (16)
max(x) — min(x)
where: X represents the sample mean,min(x) means the
minimum value of the sample set x and max(x) represents
the maximum value of the sample set x.

Finally, to ensure the relative independence of the sliced
data before generation, the segmented slices are shuffled
before inputting them into Time GAN to generate data.

IV. EXPERIMENTAL DATASET AND NETWORK
PARAMETERS

This section introduces the sources of experimental data and
the configuration of parameters for the fault diagnosis models
utilized.

A. CASE WESTERN RESERVE UNIVERSITY(CWRU) DATASET
To assess the proposed model, experiments were conducted
using a bearing dataset provided by the laboratory at
CWRU, USA. The bearing test rig is depicted in Figure 6.
The drive-end bearing is of the SKF6205 model, while
the fan-end bearing is of the SKF6203 model. Various
conditions of the bearings were simulated using electrical
discharge machining. Accelerometers were positioned to
capture vibration acceleration signals of faulty bearings. A
16-channel data logger was used to record vibration signals
at sampling frequencies of 12 kHz and 48 kHz [39].

Electric
Fan end motor
bearing

Torque Dynamometer
transducer
&encoder

Drive end
= bearing

FIGURE 6. CWRU rolling bearing experimental rig.

The dataset comprises four different bearing health con-
ditions: normal, inner race fault, outer race fault, and ball
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fault. Each fault condition has three fault diameters: 7 mils,
14 mils, and 21 mils. Vibration signals were collected from
the motor under four different loads (OHP, 1HP, 2HP, and
3HP) and at four speeds(1730r/min, 1750r/min, 1772r/min,
and 1797r/min).

This paper focuses on the 6205-2RS JEM SKF deep
groove ball bearing as the research subject. The damage to
the bearing is created using electrical discharge machining
to induce single-point damage with the motor load at
0 horsepower and the bearing speed at 1797 rpm, with
a sampling frequency of 12 kHz. Vibration signals from
10 different categories of data collected at the drive end are
selected for analysis. The classification of labels is presented
in Table 1.

TABLE 1. Classification of bearing vibration signals.

Fault diameter ~ Speed(r/min)  Fault severity =~ Location  Label

/ 1797 / Normal 0
7Tmils 1797 Mild Ball 1
14mils 1797 Moderate Ball 2
21mils 1797 Severe Ball 3
7Tmils 1797 Mild Inner race 4
14mils 1797 Moderate Inner race 5
21mils 1797 Severe Inner race 6
7Tmils 1797 Mild Outer race 7
14mils 1797 Moderate Outer race 8
21mils 1797 Severe Outer race 9

B. SELF-MADE DATASET

The dataset collected in the laboratory consists of gear
vibration signals acquired from a tractor transmission system
loaded on an experimental test rig. The physical representa-
tion of the laboratory tractor transmission system test rig is
depicted in Figure 7.

Tested PTO

Signal Acquisition g
Device

FIGURE 7. Tractor transmission system loading experimental rig.

The tractor transmission system test rig mainly consists of
the driving unit, front axle loading unit (Motor A), right rear
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axle loading unit (Motor B), PTO (Power Take-Off) loading
unit (Motor C), left rear axle loading unit (Motor D), PTO
gearbox, and frequency converter unit. This experimental rig
simulates the operating conditions of the tractor transmission
gearbox and primarily collects vibration signals from various
fault types of gear.

The vibration data from the gearbox is collected using three
channels, with acceleration sensors mounted on the gearbox
to capture vibration signals in the X, Y, and Z directions of the
planetary gears, with a frequency of 5 kHz. The experimental
study focuses on a condition with a speed-load combination
of 30 Hz and 2V. The fault states of the gears are categorized
into five classes: normal, chipped tooth, miss tooth, root fault,
and surface fault. Therefore, the fault diagnosis task based
on the dataset collected in the tractor transmission system
experimental rig is a 5-class classification problem, the labels
as shown in Table 2.

TABLE 2. Classification of gearbox vibration signals.

Location Type Label
Normal 0
Chipped tooth 1
Gearbox Miss tooth 2
Root fault 3
Surface fault 4

C. EXPERIMENTAL DATASET SETTING

The fault diagnosis dataset mentioned in the subsequent
sections of this paper simulates the imbalance of fault classes
in real-world conditions before augmentation. For each type
of fault, 20 real samples were extracted, and each sample
had 1024 sampling points for diagnostic testing. The training,
validation, and testing sets of these samples are split up in a
3:1:1 ratio. After augmentation using the Time GAN network,
100 mixed samples are extracted from both real and synthetic
samples for each fault type, with 1024 sampling points per
sample. In a similar vein, these enhanced samples undergo
preprocessing and are split into 3:1:1 training, validation, and
testing sets. Table 3 shows the quantity of samples both before
and after augmentation.

D. NETWORK PARAMETERS

The experimental environment utilizes Python 3.10 and the
PyTorch 1.13.1 deep learning framework. The experiment is
divided into two parts: Time GAN data augmentation and
Transformer fault classification. In the experiment, the Time
GAN network is first used to generate the training, testing,
and validation sample sizes, as shown in Table 3. Then, the
improved Transformer model and other comparative experi-
mental models are trained and evaluated. During the training
of the machine learning models, the grid search method is
employed to determine the optimal hyperparameters for each
machine learning model, ensuring their best performance.
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TABLE 3. Experimental fault samples.

Before data After data augmenta-

Dataset/Samples augmentation tion (Mixed samples) Label
20 100 0
20 100 1
20 100 2
20 100 3
20 100 4
CWRU Dataset
20 100 5
20 100 6
20 100 7
20 100 8
20 100 9
Samples 200(120/40/40) 1000(600/200/200)
20 100 0
20 100 1
Self-Made Da- 20 100 5
taset
20 100 3
20 100 4
Samples 100(60/20/20) 500(300/100/100)

The model parameters selected through grid search are as
follows: The parameters for the Time GAN model are listed in
Table 4, while the parameters for the improved Transformer
model are shown in Table 5, and other comparative model
parameters are presented in Table 6 of Section V.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section validates the performance of the proposed
diagnostic model through experimentation and compares it
with other diagnostic algorithms.

A. FAULT DATA AUGMENTATION

The batch size and iteration count in the Time GAN network
are set to 128 and 5000, respectively, during the data
production phase. The learning rate is 0.001. As shown in
Figure 8, the discriminator’s loss plot from the training phase
is used to more clearly visualize the data that the network
generates.

From the above figure, it can be observed that the Time
GAN network used in this paper achieves convergence within
a short training time in both the CWRU dataset and the
self-made dataset, with minimal network fluctuations. This
suggests that Time GAN pays closer attention to the temporal
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TABLE 4. Time GAN parameters.

Model Parameters
Batch size 128
Iterations 5000
Time GAN Learning rate 0.001
Hidden size 24
Optimizer Adam
Activation function Sigmoid
TABLE 5. Improved Transformer model parameters.
Model Parameters
Batch size 64
Model dimension 64
Encoders 4
Decoders 4
Improved Transformer Improved Multi-Head Self-Attention 4
Attention dropout 0.1
Hidden layers 128
Dropout 0.1
Learning rate 0.0005
5
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FIGURE 8. Time GAN discriminator loss curves.

characteristics of the data and benefits from the incorporation
of the auto-encoder module, which enables the generation of
higher-quality samples. Consequently, Time GAN exhibits
a significant advantage in data generation, producing more
effective results.
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To assess the quality of the data generated by Time GAN
in two datasets, this paper introduces t-distribution Stochastic
Neighbor Embedding (t-SNE) [40] to visualize and compare
the distributions of the original data and the data that was
generated. The visualizations of the distributions of the two
experimental datasets before and after data augmentation are
illustrated in Figure 9. In Figures 9 (a) and (b), the points
corresponding to colors 0-9 on the right side represent the ten
labels for bearing classification. In Figures 9 (c) and (d), the
points corresponding to colors 0-4 on the right side represent
the five labels for gear classification. The labels are defined
in Table 1 and Table 2 in Section IV.
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FIGURE 9. Visualization of synthetic data via t-SNE. (a) before data
augmentation in CWRU dataset, (b) after data augmentation in CWRU
dataset, (c) before data augmentation in self-made dataset, (d) after data
augmentation in self-made dataset.

Observing the visualizations, it is apparent that the data
generated by Time GAN closely resembles the distribution
of the original data in both datasets. Furthermore, the feature
points of the fault samples appear to be more abundant
and concentrated, enhancing the distinguishability between
categories and facilitating the network’s learning of data
features. Therefore, it can be concluded that the Time GAN
data augmentation model effectively addresses the issue of
insufficient fault samples.

B. FAULT DIAGNOSIS EVALUATION METRICS
We utilize four metrics to assess the fault diagnosis model
performance.

Accuracy is commonly the most prevalent evaluation
metric, defined as the percentage of properly classified
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samples out of all samples, as shown in equation (17).

q q
> tpn+ my
Accuracy = 7 njl n? 7 (17)
D nt+ 2 g+ Y fon+ 2 frn
n=1 n=1 n=1 n=1

Precision refers to the number of real positive samples
contained within the predicted positive results. Precision is
defined as shown in equation (18).

q
Z Pn
Precision = =t (18)

q q
Z Ipn + prn

n=1 n=1
Recall, also known as sensitivity, refers to the number of
accurately predicted positive samples out of all samples in
the dataset. Recall is defined as shown in equation (19).

q
Z P

Recall = ——"=——— (19)
Z tpn + Z S
n=1 n=1
where: n € {1,2,---, 10} represents fault types; g = 10 is

the total number of fault types, #p, indicates how many real
positive samples were accurately predicted, fp, represents
the number of false positive samples where positive samples
are incorrectly predicted, tn, shows how many true negative
samples accurately predicted, fi, signifies the number of
false negative samples where negative samples are incorrectly
predicted.

Due to the occasional negative correlation between preci-
sion and recall, it is necessary to introduce the F1-score to
further assess the model performance. The F1-score, which
represents their weighted harmonic mean, is derived from
recall and precision. The Fl-score is defined as shown in
equation (20).

Precision x Recall

F1=2x — (20)
Precision + Recall

C. RELATED ALGORITHMS AND PARAMETERS

Three machine-learning fault diagnostic models and the
typical Transformer model are compared to the Improved
Transformer in order to assess the effectiveness of our
method. Table 6 provides an outline of its parameters.

1) CNN-BILSTM [41]

Compared to traditional LSTM, the BILSTM model enhances
the ability to capture bidirectional information within time
series. When combined with CNN, the network can effec-
tively extract key features from the input data, improving the
model’s understanding of the data.

2) WDCNN [42]
The Wide Deep Convolutional Neural Network (WDCNN)
effectively addresses multi-condition problems. Its main
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TABLE 6. Model parameters.

Kernel Func-

Model .
tion

Parameters

Batch size=64
CNN kernels =64
CNN-BiLSTM - CNN kernel size=3
CNN pool size=2

BiLSTM units=64

Batch size=64
First CNN kernels =16
First CNN kernel size=64
WDCNN -
Other CNN kernels =64
Other CNN kernels size =3

CNN pool size=2

Sigmoid C=100, gamma=1

Linear C=100, gamma=1
SVM

Rbf C=1000, gamma=0.01

Poly C=10, gamma=3

Batch size =64
Model dimension =64
Encoders =4

Decoders =4

Typical Trans- Multi-Head Self-Attention
former =4

Attention dropout =0.1
Hidden layers =128
Dropout =0.1

Learning rate =0.0003

feature is a large convolution kernel in the first layer,
which is trained using optimization algorithms. This allows
it to automatically learn diagnostic-relevant features while
removing those that do not aid diagnosis.

3) SVM [43]

Support Vector Machine (SVM) is a classifier that categorizes
predictions into different classes by learning the distinctive
features of the training dataset. It is a classic machine-
learning model. As SVM has evolved, four commonly
used kernel functions have emerged: Sigmoid, Linear, RBF
(Radial Basis Function), and Poly. This study conducts
experiments sequentially for each of these four kernel
functions to validate their performance.
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4) THE TYPICAL TRANSFORMER

Following feature input, an attention mechanism is incorpo-
rated to provide multiple representation subspaces, allowing
the Transformer model to concentrate on feature information
from distinct representation subspaces at various positions.

D. CASE 1: CWRU DATASET

In this section, various evaluation metrics are utilized as
criteria, and the proposed diagnostic model’s performance in
bearing fault diagnosis is validated through comparisons with
other algorithms.

1) RESULTS

First, imbalance samples without data augmentation are
inputted into the Transformer model for training and
classification. The obtained accuracy curve and loss curve are
depicted in Figure 10 (a). From the graph, it can be observed
that due to the imbalance in the dataset, the network fails
to adequately learn the corresponding features of each fault
type. The network rapidly converges, reaching stability after
50 iterations. However, the final training set accuracy only
reaches 94.5%, and the test set accuracy only reaches 93.7%.
Additionally, the training loss remains relatively high.

p =

—s— Training Data Accuracy|

Accuracy/Loss

\*mc_; =040 g

01

. - 0.0
0 25 50 7 100 0 25 50 75 100
Epoch Epoch

(a)

FIGURE 10. Training accuracy and loss curves (a) Before data
augmentation, (b)After data augmentation.

Next, Time GAN is utilized to generate data, and the
generated samples for each fault type are added to the original
imbalanced sample set, thus forming a balanced sample set.
This balanced sample set is then inputted into the Transformer
model for training and fault classification. The resulting
accuracy curve and loss curve are depicted in Figure 10 (b).

From Figure 10 (b), it is evident that after data aug-
mentation, the network can adequately learn the feature
distributions of various fault types. There is a signifi-
cant improvement in training performance. After iterating
50 times, the network stabilizes, achieving a final training set
accuracy of 99.3%, while the test set accuracy stabilizes at
98.9%.

In Figures 11 (a) and 11 (b), the points corresponding to
colors 0-9 on the right side represent the ten labels for bearing
classification.

From Figure 11 (a), it can be observed that although there
are discernible boundaries for fault type recognition before
sample augmentation, the accuracy of fault recognition is
compromised due to the scarce samples, resulting in overlaps
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FIGURE 11. Visualization of CWRU dataset the classification results via
t-SNE (a) Before data augmentation, (b)After data augmentation.

among some points. In Figure 11 (b), after augmentation,
clear boundaries between ten classes are established, facili-
tating efficient fault classification.

Confusion matrices are introduced to assess the exper-
imental findings and provide a more lucid demonstration
of the recognition results of the proposed model for each
category in the test set. Confusion matrices are plotted for
the classification results before and after data augmentation,
presenting the classification results for each fault category
before and after data augmentation. The confusion matrices
are depicted in Figure 12.

Confusion Matrix Confusion Matrix
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FIGURE 12. Classification confusion matrix of CWRU dataset:(a) Before
data augmentation, (b)After data augmentation.

From Figure 12, it is evident that after data augmentation,
the classification accuracy of the network for normal bearings
increased from 93% to 100%. Moreover, the classification
accuracy for the three fault types (namely inner race faults,
outer race faults, and ball faults) with three different fault
depths each (labels 1-9), all improved from an average of 93%
to over 97%, achieving excellent classification performance.
Comparing the results before and after data augmentation,
there is a significant improvement in both overall classifica-
tion accuracy and individual fault classification accuracy.

2) METHOD COMPARISON
The experiment employed the same training set as

the improved Transformer model and tested four types
of machine-learning models: CNN-BiLSTM, WDCNN,
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TABLE 7. Diagnostic results of different fault diagnosis models after Time GAN data augmentation.

Model Data augmentation Kernel Function Accuracy/% Precision/% Recall/% F1-score/%
. NO 88.36 88.01 87.33 89.25
CNN-BILSTM YES 90.62 90.33 89.25 90.18
NO 90.42 89.52 88.68 84.20
WDCNN YES ) 91.58 90.46 90.35 89.68
NO Sigmoid 91.32 89.24 90.74 89.98
YES 93.53 92.36 92.52 92.44
NO Linear 88.57 90.36 85.48 87.85
SVM YES 93.22 91.24 87.54 89.35
NO Rbf 90.36 90.33 87.49 88.89
YES 93.41 92.76 89.53 91.12
NO Pol 90.24 93.28 89.34 91.27
YES Y 92.32 94.36 91.34 92.83
Typical Transformer NO ) 92.66 93.83 91.46 92.95
YES 93.68 94.72 92.23 93.24
fmproved Transformer NO ) 93.76 94.77 92.16 93.45
YES 98.96 95.00 94.23 94.61

SVM, and the Typical Transformer. Each sample contains
1024 sampling points, each model was run ten times and
averaged. Evaluation metrics for fault diagnosis results
before and after dataset augmentation are presented in
Table 7.

(1) Compared to the composite neural network CNN-
BiLSTM, the Transformer network model with improved
attention mechanism and encoder-decoder architecture out-
performs the above neural networks in all aspects of fault
diagnosis tasks. After dataset augmentation, the accuracy of
the Transformer model is 11.34% higher than that of the
CNN-BiLSTM model; the precision is increased by 9.67%;
the recall is improved by nearly 7.98%; and the F1-score is
enhanced by 8.43%.

(2) Compared to the neural network WDCNN, the
improved Transformer model outperforms the WDCNN
model in all evaluation metrics, indicating that the multi-head
attention enables the Transformer to concentrate on more
critical fault information. In multi-label fault diagnosis tasks,
single-head self-attention cannot improve the recurrent neural
network as effectively as multi-head attention does.

(3) Compared to the classical machine learning method
SVM with four different kernel functions, the improved
Transformer network demonstrates superior performance,
achieving the best results in all four evaluation metrics.
This showcases the model’s strong capability in handling
multi-class classification problems.

(4) The improved Transformer model incorporates better
encoder attention compared to the Typical Transformer
model. This enhancement aims to extract critical features
from input feature sequences with varying time steps and
from different sensors, thereby enhancing the model’s fault
diagnosis performance. All evaluation metrics indicated that
the improved diagnostic model outperforms the typical
Transformer model.

From Table 7, it is evident that there are differences
in classification accuracy among various networks before
and after data augmentation. This discrepancy stems from
two main reasons: (1) when the input training samples are
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limited, the networks fail to sufficiently learn the sample
features, leading to overfitting and ultimately reducing the
classification accuracy of the networks; (2) the preprocessing
of vibration data is relatively simple and direct, overlooking
the correlations among data points, thereby missing some
features. Therefore, conducting data augmentation before
diagnosing faults with limited samples is crucial. It effec-
tively enhances diagnostic performance.

From Figures 13 and 14, it is evident that the overall fault
diagnosis performance of the WDCNN model is the worst.
However, after data augmentation, all evaluation metrics
improved. The Transformer fault diagnosis model, after
improvements, demonstrated the best performance, with all
four evaluation metrics surpassing those of the other four
comparative models both before and after data augmentation.
Experimental results indicate that when an adequate number
of training samples are available, the proposed diagnostic
models in this study achieved fault diagnosis accuracy
reaching as high as 98.9%.

2 9036 021 b4 %036 9033
9 | 5536 885 0| g0 gL 8924

FIGURE 13. Diagnostic performance of different models before data
augmentation in CWRU dataset.
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FIGURE 14. Diagnostic performance of different models after Time GAN
data augmentation in CWRU dataset.

To further demonstrate the superiority of the proposed
model in diagnosing faults in tractor transmission systems,
we conducted an ablation experiment. We employed a
traditional GAN network for data augmentation, followed
by fault diagnosis experiments using the aforementioned
comparative models. The results are as follows.

As shown in Figure 15, the diagnostic accuracy of each
model after data augmentation with the traditional GAN
network is lower than that achieved with the Time GAN
network (results from Table 7). This is because the proposed
Time GAN network can generate higher-quality samples
during data augmentation, enabling the diagnostic models to
learn more useful fault features and thus improve the models’
accuracy.
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®CNN-BILSTM 88.65 90.62
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HSVM-Poly 91.38 92.32
m Typical Transformer 92.87 93.68

FIGURE 15. Diagnostic accuracy of different models after GAN and Time
GAN data augmentation.

Figures 14 and 15 illustrate that the fault diagnosis model
proposed in this paper, which combines Time GAN and
Improved Transformer, can generate high-quality samples
while also achieving excellent classification accuracy in
fault diagnosis. Therefore, even in cases with a limited
number of fault samples, the model proposed in this paper
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can accurately diagnose faults in the tractor transmission
system.

To quantitatively illustrate the diagnostic efficiency of the
proposed model, the training and testing times for each model
after data augmentation were recorded. The results are shown
in Table 8.

TABLE 8. Different model training and testing time and accuracy.

Training Testing

Model time/s time/s Accuracy/%
CNN-BiLSTM 365.3 22.7 90.62
WDCNN 387.7 233 91.58
SVM-Sigmoid 325.5 10.7 93.53
SVM-Linear 316.9 9.3 93.22
SVM-Rbf 3187 10.7 93.41
SVM-Poly 332.6 10.5 92.32
Typical Transformer 423.6 26.8 93.68
Improved Transformer 413.8 26.3 98.96

After Time GAN data augmentation, the training time
for each model increases due to the larger volume of data
input into each network. As shown in Table 8, the training
time of the proposed model is slightly slower than that
of other models. However, due to its excellent processing
and classification capabilities of data features, it achieves
the highest diagnostic accuracy, offering a new solution
for fault diagnosis in few-sample conditions. Therefore,
the computational efficiency of the proposed method is
acceptable.

To verify the noise robustness of our model, this study
added Gaussian white noise with five different signal-to-
noise ratios (SNR = —10dB, —5dB, 0 dB, 5 dB, 10dB) to
the original bearing signals. This simulates the real-world
scenario where the vibration signals of the tractor are easily
affected by strong environmental noise interference. The
SNR is shown in equation (21).

P .
SNR = 10 x 1g 2 1)

noise
where: Py;gnq represents the power of signal and Py means
the power of noise.

As seen from equation (21), the smaller the SNR, the
greater the noise power.

After data augmentation under the four different signal-
to-noise ratios, the training methods and parameters for
each model remained the same as previously described,
each model was run ten times and averaged. The diag-
nostic accuracy of each model is shown in Table 9. The
experiments demonstrate that as the SNR decreases, the
accuracy of all methods declines. This is due to the greater
variance in data distribution and positional information
caused by the lower SNR. However, even when the SNR
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is —10dB, the accuracy of the proposed method remains
above 93%.

TABLE 9. Accuracy of each model under different signal-to-noise ratios.

Model SNR=-10 SNR=-5 SNR=0 SNR=5 SNR=10
CNN-
BILSTM 83.62 8526  88.57  89.32 90.32
WDCNN 81.58 85.78 87.65  90.23 90.88
SVM- 62.65 6535 8873 8926 9125
Sigmoid
SVM- 63.11 66.22 89.67  90.64 92.36
Linear
SVM-Rbf 62.32 68.78 87.65  91.34 92.65
SVM-Poly 61.15 65.32 8646  91.63 92.15
Typical 90.25 91.03 9206  92.13 93.26
Transformer
[mproved 93.32 94.23 96.78  97.25 98.58
Transformer

To visually present the test diagnosis results of different
methods, a corresponding bar chart was created based on
Table 9, as shown in Figure 16. This figure reflects the
diagnostic capability of the proposed method under the five
different SNR.
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FIGURE 16. Classification accuracy of each model under different
signal-to-noise ratios.

It can be seen that the SVM model performs poorly
in classification under strong noise environments, whereas
the model proposed in this paper exhibits a higher noise
robustness. Compared to other models, the method presented
in this paper improves the attention mechanism, facilitating
the acquisition of more data features and demonstrating
better performance. Therefore, the proposed method can
extract more effective features from noisy samples and
is more robust than other networks in different noisy
environments.
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E. CASE 2: SELF-MADE DATASET

In this section, gear data collected from a self-made dataset
was used for experiments, and the proposed diagnostic
model’s generalization ability is validated through compar-
isons with other algorithms.

1) RESULTS

The generalization ability of the combined approach of
the Time GAN and Transformer model proposed in this
study was validated through testing against several classical
machine learning fault diagnosis methods on the self-made
dataset. To lessen the impact of unpredictability in the
data and outcomes, each model was run five times and
averaged.

We first utilized t-SNE visualization of extracted features
and confusion matrices to illustrate the performance of the
proposed diagnostic model, as shown in Figures 17 and 18.
In Figures 17 (a) and 17 (b), the points corresponding to
colors 0-4 on the right side represent the five labels for gear
classification.
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FIGURE 17. Visualization of self-made dataset classification results via
t-SNE (a) Before data augmentation, (b)After data augmentation.
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FIGURE 18. Classification confusion matrix of self-made
dataset:(a) Before data augmentation, (b)After data augmentation.

As shown in Figure 17(a), before sample augmentation,
the accuracy of fault identification is affected due to the
scarcity of samples. In Figure 17(b), after augmentation,
clear boundaries are established between the five categories,
enabling effective fault classification. The results indicate
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FIGURE 19. Diagnostic accuracy of different models before and after data
augmentation in self-made dataset.

that after data augmentation, the proposed model demon-
strates robust learning capabilities and effectively learns the
hidden features that distinguish between the five different
types of faults, significantly improving fault classification
performance.

From Figure 18, it is evident that after data augmentation,
the classification accuracy of the network for normal bearings
increased from 95% to 98%. Moreover, the classification
accuracy for the four fault types, namely chipped tooth,
missing tooth, root faults, and surface faults, all improved
from an average of 92% to over 94.5%, achieving excellent
classification performance. Comparing the results before and
after data augmentation, there is a significant improvement
in both overall classification accuracy and individual fault
classification accuracy.

2) METHOD COMPARISON

To further elucidate the diagnostic performance of our
method in detecting faults in tractor gearbox gears, com-
parative experiments were conducted with other diagnostic
models. The average accuracies of different diagnostic
models on the test set before and after data augmentation are
depicted in Figure 19.

It is evident that the diagnostic model applied in this
study performs similarly on the CWRU dataset as it
does on the self-made dataset. After data augmentation,
the diagnostic accuracy significantly improves compared
to before augmentation. Following data augmentation, the
Transformer model with improved multi-head self-attention
can emerge as a significant solution for fault diagnosis of
gear. This highlights the combined approach of the Time
GAN and Transformer model proposed in this study has
strong generalization ability in accurately diagnosing faults
in tractor transmission systems even with limited fault
samples.

VI. CONCLUSION

To address the problem of the tractor transmission system’s
low fault diagnosis accuracy resulting from a lack of
fault samples during actual operating conditions, this paper
proposes a fault diagnosis model based on the fusion of
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Time GAN and Transformer. The effectiveness of this method
was validated using the CWRU bearing dataset and the
self-made gear dataset. Comparative analysis was conducted
in the experiments, contrasting the diagnostic results of
existing neural networks such as CNN-BiLSTM, WDCNN,
and SVM, serving as control groups for the proposed
fault diagnosis method. The following are the primary
results:

(1) Under the constraint of limited real fault sample
data, the proposed method in this paper demonstrates
excellent performance. Experimental results indicate that
the Time GAN network can generate higher-quality data
without substantially increasing the amount of data, thereby
enhancing the fault diagnosis performance of various models
under small-sample conditions.

(2) Through comparative experiments with models such
as CNN-BiLSTM, WDCNN, and SVM, the improved
Transformer diagnostic model proposed in this paper
exhibits stronger capabilities in acquiring global information.
Although the training time of our model is slightly longer
than that of other models, it can accurately identify fault
types under varying levels of noise and minimizes the
misclassification of normal samples as certain types of
fault samples, thereby enabling accurate and rapid diagnosis
of faults occurring in tractor transmission systems during
operation.

(3) The model for fault diagnostics put forth in this
article combines Time GAN with Transformer, The Time
GAN sample augmentation model generates high-quality
fault samples through its excellent adversarial mechanism,
resulting in balanced data. The augmented and balanced
dataset is then fed into the Transformer classification
model, which leverages the advantages of the Transformer
model’s encoder-decoder architecture and improved attention
mechanism for feature extraction and pattern recognition.
This process yields the final fault diagnosis classification
results and addresses the issue of limited fault samples
in actual tractor operating conditions while also explor-
ing the potential of the Transformer model in the fault
diagnosis field. In future research, we will continue to
delve into the network optimization of sample generation
models and diagnostic models, aiming to enhance the
diagnostic accuracy and the model generalization ability
under the condition of scarce samples in tractor transmission
systems.

In conclusion, combining Time GAN with Transformer
provides an accurate and efficient approach for fault diagno-
sis in tractor transmission systems. After data augmentation,
the diagnostic accuracy for all fault types of bearings and
gears listed in this paper has improved. This indicates that
the method proposed in this paper has strong generalization
ability and can more accurately identify fault types and locate
fault positions in the fault diagnosis of tractor transmission
systems, thereby improving diagnostic efficiency. Its excel-
lent performance offers a new solution for fault diagnosis
when fault data are scarce.
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