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ABSTRACT The transition of Control Plane (CP) block functions into software entities, as proposed by
3GPP, necessitates periodic downtime for maintenance activities such as software upgrades or failures. This
downtime requires the disconnection of all User Equipment (UE) connections to the CP, triggering the UE
reattach procedure and resulting in increased UE power consumption and spectrum wastage. To mitigate
these challenges, optimal CP upgrade timings should align with periods of low traffic. In this paper,
we propose an AI/ML-based procedure to autonomously determine the optimal time to upgrade CP block
functions, eliminating the need for manual intervention by operators. Our approach involves analyzing
traffic conditions using statistical data from several CP blocks managing base stations across various areas,
including residential and non-residential zones like subways, shopping complex and hospitals. Leveraging
Seasonal Auto-Regressive Integrated Moving Average (SARIMA) forecasting, we predict bearer statistical
data to calculate the optimal CP software upgrade time, validated using Z-Score analysis at the same time.
In addition to address the suboptimal upgrade timings, we also proposed CP Outage Handling Procedure
(COHP) v2 by preserving UE contexts during CP upgrades. Our results demonstrate SARIMA’s high
accuracy in predicting lean traffic conditions, with an R-Squared score of 0.99. Furthermore, upgrading
CP software during predicted lean periods leads to substantial UE power savings ranging from 80% to 97%
compared to manual upgrades.

INDEX TERMS 5G core, cloud native, control plane, user plane, CNF, AI/ML, SARIMA, power
optimization.

I. INTRODUCTION
The advent of telco cloud has ushered in a new era of network
architecture, integrating software-defined networking, virtu-
alization, and Cloud Native (CN) technology to establish a
distributed computing network. Telco infrastructure deployed
within a CN environment provides businesses with the
opportunity to upgrade and scale operations strategically,
maximizing growth potential while minimizing costs. The
inherent elasticity of the cloud enables dynamic upgrade
and scaling of telco products, facilitating the accommodation
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of faster time-to-market, high-performance workloads and
traffic spikes. To fully capitalize on the benefits of container-
ization within a CN architecture, it is imperative to align
product technologies with the characteristics of distributed
microservices [1].

Leading vendors in the 5G and beyond landscape have
commenced redesigning their telco workload Network Func-
tions (NFs) in the access and core domains to adhere
to the CN and virtualization paradigm [2], [3], [4]. The
evolution of telecommunication networks towards virtual-
ization, containerization, and software-defined architectures,
as envisioned by the 3rd Generation Partnership Project
(3GPP), presents both challenges and opportunities for
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FIGURE 1. CNF (vRAN) deployment in a NFV environment.

network management and optimization. A significant aspect
of this evolution involves the migration of Control Plane (CP)
block functions to software entities, enhancing flexibility and
efficiency in network operations. To meet the demand for
network capacity [5], 3GPP [6] has proposed dividing the
base station, gNodeB (gNB), into two distinct units - the
Central Unit (CU) and the Distributed Unit (DU).

The CP and User Plane (UP) blocks oversee signaling
and data traffic, respectively, and are implemented as Cloud-
native Network Functions (CNFs) within a Network Function
Virtualization (NFV) environment for virtual Radio Access
Network (vRAN) deployment, as depicted in Figure 1.
The CP and UP comprehended the CU, while only DU
encamps the UP. Dynamic upgrade and scaling are essential,
and brings in elasticity to the NFV environment. When
notified of a software upgrade by the Virtualized System
Manager, the CP block necessitates temporary downtime,
prompting a re-attach procedure for all User Equipment
(UEs) connected to the upgrading CP. This interruption
results in data service disruptions and unnecessary power
consumption during re-attach procedures.

The traditional approaches to CP maintenance often rely
on manual intervention by operators, resulting in subop-
timal upgrade timings and unnecessary resource wastage.
To address these challenges, there is a pressing need for
automated procedures that can determine the optimal timing
for CP upgrades, aligning with periods of low network
traffic and minimizing the impact on UE connectivity and
power consumption. In our previous study [7], a CP Outage
Handling Procedure (COHP) was proposed to mitigate these
issues by preserving UE contexts during CP upgrades.
The COHP procedure, while effective for Best Effort (BE)
services, still leaves UEs vulnerable to service interruptions
and power wastage if the upgrade fails or takes longer than
the predetermined stale timer duration. Consequently, there
is a need for a predictive procedure to optimize CP upgrade
timing, minimizing the impact on UEs.

In this paper, we introduce an AI/ML-based approach,
dubbed COHP version 2 (COHPv2), to address the

limitations of the existing COHP process by accurately
determining the optimal CP software upgrade time. COHPv2
leverages AI/ML techniques to analyze traffic behavior,
including seasonality changes, to forecast the optimal
lean period for each CP independently. Our approach,
i.e. COHPv2 additionally leverages statistical data from
multiple CP blocks managing base stations across diverse
geographical areas, including residential and non-residential
zones such as subways and hospitals. By employing
SARIMA forecasting techniques, we predict bearer statistical
data to calculate the optimal CP software upgrade time,
then we validated our proposal through rigorous statistical
analysis. Our key contributions to COHPv2 are as follows,
• Proposal of a three-step automated procedure for
CP software upgrade management, integrating AI/ML
forecasting and dynamic threshold validation.

• Utilization of SARIMA model for lean period predic-
tion and validation, achieving high accuracy with an
R-Squared score of approximately 0.99.

• Implementation of dynamic Z-Score threshold to handle
seasonality changes and ensure precise scheduling of CP
software upgrades.

• Generation of analytics reports containing lean period
information, enabling informed decision-making by
NFV Orchestrator (NFVO) and facilitating automated
upgrade triggering based on operator preferences.

• Achievement of significant UE power savings of
80-97% using the proposed AI/ML-based procedure in
conjunction with COHPv2.

The organization of this paper is as follows: Section II
reviews related work on network management and oper-
ations, with a focus on AI/ML techniques. Section III
introduces the network elements and time series model.
Section IV-A describes the challenges posed by manual CP
software upgrades and the need for a dynamic network. The
time series approach for determining the software upgrade
window is detailed in Section IV-B. Experimental results and
evaluations are presented in Section V, while the conclusions
and the benefits of the proposed software upgrade approach
are discussed in the Section VI.

II. RELATED WORK
In this section, we delve into recent advancements concerning
analytics in network management, insights from exhaustive
surveys [8], [9], [10], [11], [12]. We started with analyzing
existing works focusing on 3GPP standards. The 3GPP’s
technical specification 28.104 sets the groundwork for apply-
ing data analytics and its functionalities in 5G architecture
through Management Data Analytics (MDA) [8]. With the
evolving landscape of 5G services, proactive management of
network faults and performance issues becomes imperative.
MDA Service (MDAS) harnesses real-time operational
intelligence gathered by the MDA Function (MDAF) from
managed NFs, streamlining network automation and service
orchestration.MDAF, acting as anMDAS producer, furnishes
data to corresponding consumers, incorporating internal
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business logic to exploit performance management, alarm
information, and analytics data.MDAS analyzes the collected
data to predict potential issues, such as service disruption or
degradation.

Prior studies predominantly rely on linear forecasting
algorithms to anticipate network traffic patterns and optimize
network services for enhanced user experiences. Researchers,
such as those cited in [9], delve into the analysis of traffic
patterns across millions of cellular base stations, uncover-
ing significant variations in traffic distribution throughout
the day. Further explorations into cellular network traffic
distributions reveal dynamic variations over time periods.
Studies by Wang et al. [10] demonstrate the trimodal distri-
bution [11] of cellular traffic on both spatial and temporal
dimensions, while Lee et al. [12] identify log-normal or
Weibull distribution as best approximations for traffic density
in the spatial domain. While existing approaches establish
periodicity for regular traffic patterns, they exhibit limitations
in deriving the duration of traffic distributions necessary for
network planning activities, such as software upgrades and
load balancing.

Thus, there exists a pattern in the cellular traffic data,
and we need a mechanism to determine the lean period for
network planning activities such as software upgrades. The
authors [13] suggest a multi-model fusion prediction method
combining feature selection and stacking ensemble learning
to predict base station traffic. However, they do not delve
into detailed traffic data type collected from thousands of
base stations. In contrast, COHPv2 utilizes standard-based
Performance Monitoring (PM) traffic data to study base
station traffic, ensuring our solution is compatible with any
telecommunications vendor. We investigate peak and non-
peak traffic distribution to derive the frequency and duration
of the lean period (the time duration when traffic demands
are generally less over a day). The operator can perform
network planning activities during such lean periods, so that
the impact of such activities, as explained in Section I, can
be minimized. The novel contributions of this work are as
follows, a) introduction of a CP software upgrade automation
procedure to identify the potential lean periods for upgrade
activities, b) examination of the traffic characteristics across
CP blocks, considering key bearer features, c) development
of a dynamic threshold algorithm to adapt to changes in
UP traffic time series patterns, enhancing adaptability and
accuracy in the network management.

III. SYSTEM MODEL
In the context of network management, the NFVO plays a
pivotal role in orchestrating the lifecycle of virtualized NFs
and services. NFVO serves as the central entity responsible
for coordinating various network management tasks, includ-
ing resource allocation, service provisioning, and lifecycle
management. In the context of MDAS, NFVO acts as a key
consumer of the real-time operational intelligence provided
by the MDAS. By leveraging the insights derived from
MDAS, NFVO gains valuable information about network

performance, faults, and trends, enabling it to make informed
decisions regarding network optimization, automation, and
service orchestration. This close relationship between NFVO
and MDAS ensures seamless integration of analytics-driven
insights into network management processes, ultimately
enhancing the efficiency, reliability, and performance of
virtualized telecommunication networks.

A. TELCO NETWORK MODEL
In this paper, we have collected data from one of the live 5G
cellular network operators. We have considered an area of
10 km sq. within a densely populated city. This area consists
of 500 base stations (residential as well as non-residential)
with a transmission range of 100m approximately. All these
base stations are connected to 20 DUs which in turn are
connected to 7 CPs as shown in Figure 2.

Further, as discussed in Section I,MDAF is used as a traffic
analyzer to analyze the bearer data. This data is consolidated
by CP blocks from their associated UP blocks. Let CP Ci ϵ

C, where C denotes the set of CP blocks. MDAS consumer
(NFVO) requests MDAF (managing Ci) to identify the best
lean period for Ci to perform software upgrade. MDAF
then collects and analyzes data from Ci to generate the
MDA Report. MDAF contains AI/ML models and Z-Score
statistical method [14] to analyze the PM statistics of
bearer. The Z-Score statistical analysis on bearer data sets
up a threshold value Z_threshold to validate the predicted
lean period. At last, MDAF generates the MDA report
containing lean period information and sends to NFVO.
NFVO, which acts as an MDAS consumer, triggers the
software upgrade based on the operator’s decision. To cater
to the daily trends, Periodic Scalar Update (PSU) function
updates the Z_threshold periodically. Further, AI/MLmodels
are retrained periodically for better performance. These are
further explained in Section IV-B. Table 2 shows the list of
notations used in this study.

B. TIME SERIES MODELLING WITH PM DATASET
As mentioned previously, we have gathered PM data from
both residential and non-residential base stations, comprising
various features related to bearers as outlined in Table 1.
To manage processing load effectively at the management
server (MDAF), we have adopted a data collection interval
of 15 minutes. Ensuring the dataset’s suitability for time
series modeling necessitates verifying its stationarity [15].
In the literature [15], the Augmented Dickey-Fuller (ADF)
Statistical test emerges as a commonly employed method for
assessing stationarity in time series datasets. The ADF test
evaluates the null hypothesis concerning the presence of a
unit root within the time series dataset. This is expressed
mathematically in the equation 1.

zt = c+ βt + αzt−1 +
p∑

n=1

ϕn1zt−n + ϵt (1)

where, zt is the value of the time series at time t , zt−1 is the
first lag of the model at time t − 1, α is the coefficient of the

122880 VOLUME 12, 2024



K. Subramaniam et al.: Optimizing UE Power Efficiency

FIGURE 2. Network model.

TABLE 1. Key bearer features influencing CP SW upgrade procedure.

TABLE 2. List of notations.

first lag in the time series data, 1zt−n is the first difference
of the series at t − n, ϵt is the noise generated, β is the
weighted average at time t, ϕn is the weighted average to the
difference at time t − n, p is the order of the model and c
is the constant. The null hypothesis assumes the presence of
unit root (i.e., α = 1), and thus, the p-value must be less than
a significance level (0.05) [15] to reject the null hypothesis
and prove that the dataset is stationary. From the ADF test

on bearer dataset, using python statistical models library,
the derived p-value is 2.53e−7. This value is less than the
significance level which proves that the time series dataset
is stationary. Hence, forecasting models can be applied to the
dataset without any differencing terms.

C. CORRELATION ANALYSIS OF BEARER FEATURES
We have collected PM data for key bearer features as
depicted in Table 1 for a complete week. Next, we have
performed correlation analysis to find the Pearson Coefficient
of correlation [15] among different bearer features. The
correlation matrix in Figure 3 shows that the least correlation
value is 0.85. This value proves that all the features taken into
account are highly correlated with each other. Hence, in our
work, we have considered one of the features, active bearer
for forecasting. In Table 1, we have shown four different types
of bearer features, such as, active bearer, handover, bearer
modify and bearer release. We have also shown the traffic
analyzer impacts on software upgrade under these bearer
conditions.

IV. PROBLEM STATEMENT AND COHPV2 SOLUTION
A. UNDERSTANDING NETWORK DYNAMICS AND
UPGRADE CHALLENGES
The cellular network is dynamically growing to meet the
service demand. A dynamic next-generation network that

VOLUME 12, 2024 122881



K. Subramaniam et al.: Optimizing UE Power Efficiency

FIGURE 3. Pearson coefficient analysis on bearer features.

supports efficient, robust, and agile management needs to be
in place. These robust and dynamic cellular network need
to undergo many cycles of software upgrades. However,
these upgrades may result in service disruption. Thus,
we need to determine an optimal time to perform software
upgrade. The time period (lean period) with relatively lesser
number of active bearers is the optimal time to perform
software upgrade. Generally, lean periods are determined
using manual approximation by cellular operator. However,
in some cases such as soccer events during midnight and
pandemic situations, there is a chance of having more number
of active bearer connections during the manually determined
lean periods. In such cases, these manually determined lean
periods may not be the optimal time to perform software
upgrade. Therefore, there is a need for an AI/ML-based
procedure which forecasts the accurate lean period to trigger
the software upgrade.

Typically, upgrade activity spans entire night period (con-
sidering night period as lean period) with a series of validation
steps for pre- and post-upgrade. These steps will measure
the network performance based on parameters such as
service availability, accessibility, retainability, performance,
etc. In case of any performance degrade, software upgrade
will be rolled back. This is explained in Figure 4. The operator
uses a set of Key Performance Indicators (KPIs) to compare
pre- and post-upgrade conditions to declare the success or
failure of an upgrade. The entire procedure is automated to
reduce the manual intervention and improve the robustness
of the software upgrade.

B. COHPV2 SOLUTION APPROACH
To solve the above problem,we propose a three-step COHPv2
procedure that automates the CP software upgrade procedure,
which is given as follows:

(a) Leveraging AI/ML for Lean Period Forecasting
(b) Enhancing Prediction Accuracy With Dynamic Z-Score

Threshold Validation
(c) Streamlining MDA Reporting and NFVO Interaction

FIGURE 4. A Typical CU-CP software upgrade cycle.

(d) Validating Software Upgrade Success With Automated
Metrics

The above mentioned COHPv2 solution is described in
Algorithms 1 and 2. Algorithm 1 describes the steps involved
in CP software upgrade procedure. As stated in Section I,
to minimize the impact of the software upgrade, NFVO needs
to determine the lean period of CP Ci that needs to undergo
software upgrade. Thus, NFVO requests MDAF to provide
an MDA report containing the lean period information.
To determine the lean period, MDAF first collects the bearer
statistical data (Table 1) in br_info from Ci (step 2). Next,
MDAF calls Analyze procedure (Algorithm 2) to analyze the
collected br_info (step 3). Analyze procedure returns a set of
optimal upgrade times Optt and predicted bearer statistical
data br_pred during Optt for Ci. MDAF shares the MDA
report containing these parameters with NFVO (step 4).

On receiving the MDA report, NFVO sends feedback
containing operator’s decision opd and selected optimal
upgrade time uptime ϵ Optt . If the operator decides to opt
for different lean period, then it sends opd as negative.
The model will further look for the next optimal time to
upgrade (steps 5-7). Else if opd is positive, the algorithm
monitors real-time Ci data to check for any abnormal
behavior until the current time tci reaches the predicted lean
period uptime. If there is an abnormal behavior in the bearer
data, the algorithm warns NFVO not to perform software
upgrade (steps 9-17). The Z-Score threshold is updated
using threshold_Update function if the upgrade is success
(steps 20-22). Algorithm 1 also describes the PeriodicUpdate
procedure (steps 24-27) which updates the Z_threshold and
retrains the AI/ML models for all Ci ϵ C . This procedure
helps to cater to the seasonality changes in the br_info
dataset.

Algorithm 2 describes the procedure to analyze the bearer
statistical data (Algorithm 1, step 3), predict the lean
period, and generate the MDA report for Ci. To analyze
the bearer statistical data, it is fed into AI/ML SARIMA
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model [16] (step 2). The working of SARIMA is described in
Subsection IV-B1. This model predicts a set of lean periods.
The predicted lean periods are validated using Z_threshold
which is retrieved using get_Threshold function (step 3).

1) LEVERAGING AI/ML FOR LEAN PERIOD FORECASTING
In the section III-B, we have proved that the time series
bearer dataset is stationary. Thus, we propose to use SARIMA
forecasting model [16] for each Ci. SARIMA performs better
on long forecast intervals compared to other models [17].

Algorithm 1 NFVO-MDAF Lean Period Prediction
1: procedure Predict(Ci)
2: br_info← collect_Info(Ci)
3: Optt , br_pred, update_flag← analyze(br_info)
4: uptime, opd ← send_Report(Ci,Optt , br_pred)
5: if opd == NEGATIVE then
6: valid(opd ) = INVALID
7: goto Step 2
8: else
9: tci ← current_timestamp
10: while tci < uptime do
11: br_data← live_DataCollection(Ci)
12: pattern← monitor(br_data, br_pred)
13: wait(15 minutes)
14: tci ← current_timestamp
15: end while
16: if pattern == ABNORMAL_INCREASE then
17: warn(‘‘Do not upgrade’’, pattern)
18: end if
19: end if
20: if update_flag == TRUE then
21: threshold_Update(br_data)
22: end if
23: end procedure

24: procedure PeriodicUpdate
25: retrain_All(C)
26: threshold_Update_All(C)
27: end procedure

Algorithm 2 Bearer Traffic Analysis
1: procedure Analyze(br_info)
2: Optt , br_pred ← ml_Prediction(br_info)
3: Z_threshold ← get_Threshold()
4: if find_ZScore(br_pred,Optt ) <= Z_threshold then
5: update_flag← TRUE
6: else
7: update_flag← FALSE
8: end if
9: return Optt , br_pred, update_flag
10: end procedure

SARIMA(p, d, q, s) model is composed of four
components,
(a) AR component: It models the relationship between the

time series and lagged values. p represents the number
of lagged observations.

(b) Integrated component: It uses differencing terms to
make the time series stationary. d represents the number
of differences used.

(c) MA component: It predicts the future values as function
of lagged errors in forecasting. q represents the size of
the MA window (number of lags of forecast errors).

(d) Seasonal component: It represents the timewindow used
in forecasting and is denoted by s.

The general forecasting equation of SARIMA(p, d, q, s) is
written as,

8p
(
Bs

)
φ(B) (∇s)d ∇dxt = 2q

(
Bs

)
θ (B)wt (2)

where, 8p (Bs) and 2q (Bs) are of orders p and q, and
represent the seasonal AR andMA components, respectively.
B is the backshift operator. The polynomials φ(B) and θ (B)
represent the normal AR and MA components, respectively.
∇
d and (∇s)

d represent the normal and seasonal difference
components. xt represents the time series data, and wt is
the Gaussian noise. The order p of the AR model is found
using the Partial Auto-Correlation Function (PACF) plot [15],
whereas, Auto-Correlation Function (ACF) plot [15] is used
to find the order q of the MA model. Orders p and q are the
lag values when PACF and ACF plots cross the confidence
interval [15] for the first time. After analyzing the data,
we have observed that the values of p and q are (1, 1).
As the time series bearer dataset is proved stationary in
Subsection III-B, the number of differences d is 0. Seasonal
period s is calculated to be 96 (data taken every 15 minutes
in a day). Thus, the equation 2 can be written as,

81

(
B96

)
φ(B)xt = 21

(
B96

)
θ (B)wt (3)

With the derivation of polynomials8p, 2q, φ, and θ [15], the
equation 3 becomes,

xt = 1+21

(
B96

)
+21θ

(
B97

)
− xt81

(
B96

)
+ θ (B)+ xtφ(B)− xt81φ(B)

(
B97

)
+ wt (4)

Thus, the SARIMA forecasting equation 4 predicts the
active bearer count br_pred which is used to derive the
optimal lean period Optt (Algorithm 2, step 2) for Ci. This
model is retrained periodically using retrain_All function to
avoid any model drifts (Algorithm 1, step 25).

2) ENHANCING PREDICTION ACCURACY WITH DYNAMIC
Z-SCORE THRESHOLD VALIDATION
To build a robust lean period prediction, we need to address
the uncommon and rarest of situations. One such example
is hosting soccer games. Typically, the soccer events are
seasonal and are played in floodlights, resulting in the
millions of users connecting to the midnight telecast [18].
The predicted lean period can vary with the actual lean period
during this midnight telecast. These uncommon situations
demand a periodic and dynamic threshold value to calculate
the best lean period. Thus, in this paper, we propose to use
Z-Score threshold validation [14] to validate the predicted
lean period. With Z-Score threshold validation, the proposed
lean period prediction procedure brings robustness to the
upgrade schedule (i.e., retraining the models during such
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FIGURE 5. Lean period threshold calculation.

aforementioned situations, thus less impact on millions of
viewers).

The Z-Score analysis [14] on the active bearer count
shows how far the datapoint varies from the mean value
(µ) calculated on the bearer training data (i.e., the number
of standard deviations (σ ) lying above or below the mean
value). The value of Z-Score Z can be calculated using the
equation 5.

Z = (X − µ)/σ (5)

where X is the data point.
From the Figure 5, we have noticed that σ lies between−2

to +2. To validate the predicted lean period, the lean period
threshold Z_threshold is calculated based on the Z-Score
of the significance level Zα/2 [14] with standard confidence
intervals such as 90% and 95%. In this paper, we have
calculated the Z_threshold with 90% as confidence interval
and 10% as α level (Figure 5). The other standard significance
levels [14], such as 95% confidence interval, exceed the
minimum Z-Score of active bearer count. The Z_threshold
is calculated using the equation 6.

Z_threshold = Zα/2 (6)

The best time to perform software upgrade is the time
when the Z-Score of active bearer count is less than Z-Score
threshold, as they are far away from µ. Let Zt br_pred denotes
the Z-Score for predicted active bearer count at time t . Time
t is predicted as lean period if the criteria mentioned in the
equation 7 is met.

Zt br_pred <= Z_threshold (7)

From the Figure 5, we infer that the lean period threshold
Z_threshold is initially set as −1.5 (Algorithm 2, step 3).
The algorithm uses Z_threshold to validate the predicted lean
period Optt . If the Z-Score of br_pred during Optt is not less
than the Z_threshold , update_flag is set to true. This flag will
update Z_threshold only if the upgrade is success (steps 4-8).
The lean period window size can be changed by modifying
Z_threshold . The scalars (µ and σ ) are updated periodically
using threshold_Update_All function to accommodate the
abnormal trends for short period and the seasonal changes
(Algorithm 1, step 26).

TABLE 3. MDA report format.

FIGURE 6. CPU usage comparison of cp across pre- and post-upgrade.

FIGURE 7. RAM usage comparison of cp across pre- and post-upgrade.

3) STREAMLINING MDA REPORTING AND NFVO
INTERACTION
After the lean period prediction, MDAF generates the
MDA report in format of {Ci, Optt , br_pred}, as given in
Table 3 and sends to NFVO using send_Report function
(Algorithm 1, step 4). The operator decides whether the
CP software upgrade has to be executed based on the
MDA report. The operator may also deploy his strategy
to override MDA report to suitably trigger the upgrade.
For example, to avoid complete blackout in an area where
all cells are connected to various Cis and are undergoing
software upgrades concurrently. In such case, the NFVO
sends negative feedback to MDAF. Further, MDAF sets the
previously predicted Optt as invalid and predicts the new
optimal upgrade time (steps 5-7).

4) VALIDATING SOFTWARE UPGRADE SUCCESS WITH
AUTOMATED METRICS
Apart from identifying the best time to perform software
upgrade with AI/ML-based procedure, we also propose to
extend automation for software upgrade validation. The
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FIGURE 8. Call drop comparison of cp across pre- and post-upgrade.

FIGURE 9. Forecasting the active bearer count of CP.

network periodically reports the network statistics such as
faults, performance, etc. Generally, the stability of software
upgrade is measured as a factor of system stability and
KPIs performance. System stability involves checking on
computation resources of the CP, such as compute and RAM,
across the software upgrade as shown in Figures 6 and 7.
In these figures, the pre- and post-upgrade graphs are almost
consistent except for the thirty minutes between 03:45 to
04:15 AM. This difference is attributed to software upgrade
because of which graph shows a drop in CP resource usage.

We have considered call drop statistics KPI to validate
the CP software upgrade. Call drop statistics are calculated
for the successfully connected calls that are abnormally
dropped due to gNodeB or mobility management function
failure. Figure 8 shows that the call drop percentage increases
when the software upgrade is triggered at 03:45 AM and
eventually became normal around 04:15 to 04:30 AM, within
the monitoring window. However erstwhile, the call drop
event graph shows the same behavior across the software
upgrade. This concludes a successful software upgrade.

V. PERFORMANCE EVALUATION
Our experimental setup is designed to operate within a
Kubernetes cluster, leveraging containerized microservices
for efficient and scalable processing. To store PM data,
we have utilized Prometheus [20] as our time-series database,
deployed on Kubernetes using Helm charts. Data from
Prometheus is streamed to Apache Kafka [21], also deployed
on the Kubernetes cluster to facilitate better scalability and
flexibility. We have created custom Kubeflow Pipeline com-
ponents [22] to handle data incoming from Kafka, preprocess
the data, and train the SARIMA model using pmdarima

FIGURE 10. Active bearer count forecast of CP (Public Transport).

FIGURE 11. Total UE power consumption during CP upgrade on weekday.

2.0.4 python library. The trained model is subsequently
logged and stored in MLflow [23], which is also deployed
within the Kubernetes environment for comprehensive model
management.

Figure 9 shows the train and test data along with the
SARIMA predictions of active bearer count. We have cal-
culated the normalized Root Mean Squared Error (nRMSE)
and R-Squared error (R2E) score [19]. This model has shown
good accuracy of prediction as nRMSE is 0.025 (closer to 0)
and R2E is 0.99 (closer to 1).

Our proposed AI/ML model is specific to each Ci as the
bearer statistical data pattern varies for each Ci. The pattern
depends on the area where base stations are connected to
Cis. For example, Figure 10 shows the active bearer count
forecast of Ci which has consolidated bearer data from the
base stations deployed in the public transport sector. It shows
that this Ci has clusters of lean periods in a day whereas,
in Figure 9, there exists only one lean period for that Ci in
a day.

Figures 11 and 12 show the variations of average total
power consumed by UEs to restore the CP connection during
weekday and holiday, respectively. This depicts the difference
in power consumption made during manual upgrades and
AI/ML-based automatic CP software upgrade. We have
shown in our previous work [7] that the proposed COHP
optimizes the power consumption by UEs to restore the CP
connections. From the Figures, we can infer that 4 AM
and 3 AM are the predicted optimal lean periods during
weekday and holiday, respectively. We can also infer that by
performing CP software upgrade during the predicted optimal
lean period, we can save approximately 72-75% of total
power consumption without deploying COHP (comparing
12 AM with 4 AM and 3 AM data during weekday and
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FIGURE 12. Total UE power consumption during CP upgrade on holiday.

holiday, respectively). With COHPv2 (i.e., COHP deploy-
ment along with optimal lean period prediction), we can save
approximately 80-97% of total power consumption when CP
software upgrade is performed at the predicted optimal lean
period.

VI. CONCLUSION
In this study, we introduced COHPv2, an automated pro-
cedure designed to streamline the software upgrade process
for CP functions within a NFV environment. By harnessing
the power of AI/ML, COHPv2 analyzes bearer statistical
traffic patterns to identify optimal lean periods for scheduling
CP software upgrades, thereby minimizing disruptions to
users. Through extensive experimentation, we demonstrated
the effectiveness of COHPv2 in accurately predicting lean
periods with a high level of precision, as evidenced by
the SARIMA forecasting model’s R-Squared score of
approximately 0.99. Furthermore, we validated the forecasted
lean periods using a dynamic Z-Score threshold, ensuring
adaptability to seasonal variations in network traffic. Our
proposed approach involves the generation of MDA reports
containing lean period information, which are then utilized
by the NFVO to trigger the CP software upgrade procedure
based on operator feedback. The successful implementation
of COHPv2 not only reduces the manual operational
overhead associated with CP software upgrades but also
achieves significant power savings for UEs, ranging from 80-
97%. This work underscores the potential of automation and
intelligence in revolutionizing cellular network management
and orchestration, paving the way for more efficient and
resilient telecommunication infrastructure. In the future,
we plan to explore COHPv2 to ensure uninterrupted service
for 5G Ultra Reliability and Low Latency (URLLC) services.
Delay-critical Guaranteed Bit Rate (GBR) [6] is a specific
type of bearer service designed in 5G systems to support
this URLLC traffic. By incorporating Delay-critical GBR
data into our predictive time series model, we can enhance
COHPv2 to identify optimal CP software upgrade windows
and avoid service disruption of 5G URLLC services.
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