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ABSTRACT The growing global demand for electrical energy, together with the significant problem
of increasing carbon dioxide emissions, have become urgent issues. The inefficient use of electricity
exacerbates these challenges. Smart grid technology is emerging as a solution, employing innovative
approaches to solve these problems. Within this context, this research emphasizes the identification of the
most effective forecasting model for demand prediction. Utilizing the Transformer-based model, Temporal
Fusion Transformer (TFT), together with the Naresuan University, School of Renewable Energy and
Smart Grid Technology (SGtech) net metering dataset, we explored the influence of additional features
on forecasting models, categorizing them into net metering data, weather-related attributes including
temperature, dew point, weather conditions, and wind direction, and supplementary features related to the
operational behavior of SGtech, specifically workday and time-of-day. Our experimentation shows that
integrating workday and time-of-day data alongside net metering data significantly enhances prediction
precision compared to other combinations. The TFT model outperforms popular time series forecasting
models, including Neural Basis Expansion Analysis for Time Series (N-BEATS) and Neural Hierarchical
Interpolation for Time Series (N-HiTS), in accuracy and parameter efficiency while maintaining inference
times.

INDEX TERMS Deep learning, sustainable development goals, transformer model, prosumer building,
energy forecasting.

I. INTRODUCTION
Smart grid concept signifies a transformative evolution in
the domain of electrical infrastructure, marking a new era of
intelligent and interconnected energy systems. A smart grid
is a sophisticated network integrating cutting-edge digital
technologies, communication protocols, and real-time data
analytics into the traditional electricity grid. The objective
of the smart grid concept is to revolutionize electricity
generation, distribution, and consumption by introducing
two-way communication between utilities and end-users.
By deploying smart meters, sensors, and automation, smart
grids empower stakeholders with unprecedented insights
and control over the grid’s dynamic behavior. As the
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cornerstone of a modernized energy landscape, smart grids
play a crucial role in addressing efficiency, reliability, and
sustainability challenges, while accommodating the growing
integration of renewable energy sources and enabling novel
demand response strategies. In this context, understanding the
intricacies of smart grid functionalities becomes crucial for
unlocking the full potential of advanced energy management
systems.

The integration of smart grid technology aligns closely
with the United Nations’ Sustainable Development Goals
(SDGs), particularly Goal 7 (Affordable and Clean Energy)
and Goal 13 (Climate Action). By enhancing energy effi-
ciency, reducing carbon emissions, and promoting the use of
clean and renewable energy sources, smart grids contribute
significantly to achieving these global sustainability objec-
tives. Within the context of sustainable energy and climate
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action, the role of accurate net metering forecasting becomes
even more crucial.

Net metering, a billing arrangement that allows consumers
who generate their electricity, typically from renewable
energy sources, to offset their consumption by feeding excess
electricity back into the grid [1], is pivotal in the dynamic
landscape shaped by demand response [2] and energy man-
agement system [3]. Given that electricity usage inherently
follows a temporal pattern characterized by fluctuations
over time, time series forecasting emerges as a crucial
aspect of this endeavor. Accurate predictions of electricity
demand are essential for utilities, grid operators, and energy
stakeholders to efficiently plan and manage resources. The
evolution of forecasting methods has witnessed a remarkable
transition from traditional statistical approaches to the more
sophisticated realms of time series forecasting, machine
learning (ML), and deep learning [4], [5].

Statistical methods such as time series analysis and
regression models have been commonly employed for energy
forecasting. These models relied on historical patterns and
factors such as seasonality and trends to make predictions.
For instance, the Autoregressive Integrated Moving Average
(ARIMA)models werewidely used for their ability to capture
temporal dependencies in energy consumption data [6].

With the advent of ML, predictive modeling for electricity
consumption has become more nuanced and accurate [7],
[8], [9]. ML algorithms, including decision trees, support
vector machines, and random forests, have gained popularity
[10], [11]. For example, a Random Forest model, trained
on historical data, includes various features such as weather
conditions, day of the week, and special events to predict
future electricity consumption [12].

In recent years, deep learning techniques [13], [14],
[15], particularly recurrent neural networks (RNNs) and
long short-term memory networks (LSTMs), have shown
remarkable success in capturing complex patterns and
dependencies in time series data [16]. An example includes
using an LSTM-based model that can effectively capture
long-term dependencies in energy consumption data [17],
[18], making it well-suited for accurate forecasting, similar
to the widely recognized N-BEATS [19] and N-HiTS [20].
Deep learning has found applications across various

domains, and one of the most famous models, the Trans-
former, originally introduced for Natural Language Process-
ing (NLP) tasks, has gained recognition due to its attention
mechanisms. In the field of time series forecasting, the
Temporal Fusion Transformer (TFT) emerges as another
Transformer-based model harnessing attention mechanisms
along with other state-of-the-art techniques in the field. Given
proficiency in handling time series data, TFT is well-suited
for tasks involving data such as net metering, which serves as
the focus of this research.

In our research, the primary dataset comprised the data
from the SGtech net metering dataset, which served as the
cornerstone of our forecasting model. In addition to this
fundamental data, we incorporated weather-related variables,

including temperature, dew point, weather conditions, and
wind direction, as interrelated features. We also incorporated
the workday and time-of-day operational factors, specific to
SGtech, as supplementary features in our multi-input feature
training process. The purpose of incorporating these features
was to enhance the overall accuracy of our forecasting model.

The contributions of this research can be summarized
as follows:

• Our research results highlight the operational behavior-
related featureswithin SGtech as having a greater impact
on enhancing model performance than the utilization of
weather-related features.

• We successfully identified the optimal combination of
correlation features for the TFT model, specifically
SGtech’s workday and time-of-day, contributing to its
effectiveness in time series forecasting.

• The forecasting model developed in this work demon-
strates greater accuracy and parameter efficiency than
that demonstrated in established models like N-BEATS
and N-HiTS, while maintaining efficient inference
times.

II. RELATED WORK
In this section, we focus on methods related to our
Transformer-based model, which has gained popularity
across various fields of deep learning due to its capabilities.

A. TRANSFORMER MODEL
In 2017, Google’s researchers published the Transformer
model in their research paper titled ‘‘Attention is All You
Need’’ [21]. The innovative architecture of the Transformer
model has become mainstream in NLP and ML, reshaping
the landscape of how sequential data is processed and
modeled. The transformative impact of the Transformer
model is evident in its unique self-attention mechanism,
a feature that allows for the simultaneous consideration of
contextual information across the entire input sequence. This
capability enhances the network’s effectiveness in learning
complex relationships within the data, setting it apart from
traditional sequence-to-sequence models. Beyond its initial
introduction, the Transformer model continues to influence
subsequent research, showcasing its enduring significance
and ongoing evolution. With its remarkable ability to handle
parallelization and capture long-range dependencies, the
Transformer Neural Network remains at the forefront of
advancements in NLP and ML, cementing its status as a
pioneering framework.

The Attention Mechanism, the pivotal innovation at
the core of the Transformer architecture, fundamentally
transforms the way models weigh different parts of the input
sequence during predictions. This mechanism represents a
departure from traditional sequential processing, enabling the
model to dynamically assign varying degrees of importance
to different positions in the input sequence simultaneously.
By doing so, the Transformer model can adeptly capture
contextual information from all elements in the sequence,
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FIGURE 1. Attention layer in Transformer model [21].

offering a more nuanced understanding of relationships
and dependencies within the data. The introduction of the
attention mechanism stands as a paradigm shift in NLP,
enhancing the model’s capacity to discern and leverage
intricate patterns in sequential information. Themathematical
formula of the Attention mechanism is shown in (1).

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (1)

where K is the Key, Q is Query, V is Value and
√
dk is

dimension of metrix K
The Transformer architecture is structured around an

encoder-decoder framework. The encoder processes the input
sequence, and the decoder generates the corresponding output
sequence. The key components include multi-head self-
attention, where attention is applied simultaneously across
different positions using multiple attention heads. To address
the challenge of sequence order, positional encoding is
introduced, providing the model with information about
the position of elements in the sequence. Each encoder
and decoder block incorporates position-wise feedforward
networks, injecting non-linearity into the model. The use
of layer normalization and residual connections further
enhances stability during training. This combination of
components results in a highly parallelizable architecture that
excels in capturing dependencies across long distances in the
input sequence.

One of the distinctive features of the Transformer model
is the multi-head self-attention mechanism. By performing
self-attention in parallel through multiple attention heads,
as shown in Fig. 1, the model can attend to different parts
of the input sequence with varying weights. The attention
scores are computed using a scaled dot-product operation,
measuring the similarity between elements and allowing the
model to focus more on relevant information. This not only
improves the efficiency of the attention mechanism but also

FIGURE 2. Temporal fusion transformer architecture.

enables the Transformer model to excel in tasks requiring the
understanding of intricate relationships within the input data.

Positional encoding is introduced to address the challenge
of maintaining the sequence order. This additional informa-
tion helps the model distinguish between the positions of
elements in the sequence, enabling the Transformer model to
process sequential data effectively. Beyond its initial success
in the NLP tasks, similar machines have demonstrated
remarkable versatility and successfully applied to various
domains, including image generation, speech recognition,
and more. The architecture’s adaptability and effectiveness
have spurred ongoing research to optimize further and extend
its capabilities for an even wider range of applications
[22], [23], [24] including time series forecasting [25], [26],
resulting in several models based on the original Transformer
model being developed, including the Temporal Fusion
Transformer Model (TFT), among others.

B. TEMPORAL FUSION TRANSFORMER MODEL (TFT)
The TFT is a deep learning model based on the original
Transformer model and designed for time series forecasting
[27]. Combining elements of both transformers and recurrent
neural networks (RNNs), the TFT aims to efficiently capture
long-term dependencies and temporal patterns in sequential
data. While Transformer-based models have gained popu-
larity for their parallelization capabilities, they may struggle
with sequential data due to their lack of inherent temporal
understanding. TFT addresses this limitation by introducing
a novel architecture incorporating positional embeddings
and attention mechanisms, allowing it to model sequential
dependencies effectively. The TFT architecture is shown in
Fig. 2.
The TFT model introduces an innovative gating mecha-

nism, specifically the gate residual network (GRN), to refine
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FIGURE 3. Data handling overview in TFT model.

its processing capabilities further. The GRN is crucial in
handling the diverse complexities inherent in time series
data. It operates by applying linear transformations to
the input data, followed by a sigmoid gating layer that
determines the relevance of each transformed feature. This
gating mechanism adeptly filters and prioritizes information,
allowing only the most pertinent features to influence the
model’s predictions. Also, the incorporation of residual
connections within the GRN facilitates a smoother flow
of gradients during backpropagation, thereby enhancing the
model’s ability to learn from both short and long-term
temporal dependencies. This approach not only improves the
model’s accuracy in forecasting but also introduces a level of
adaptability, enabling TFT to maintain performance across
various types of sequential data with differing complexity
levels. The mathematical formula of GRN is shown in (2),
(3), and (4).

GRNω (a, c) = LayerNorm (a+ GLUω (η1)) (2)

η1 = W1,ωη2 + b1,ω (3)

η2 = ELU
(
W2,ωa+W3,ωc+ b2,ω

)
(4)

where a is a primary input, c is an optional context, W is a
weight metric, LayerNorm is standard layer normalization,
GLU is the Gated Linear Units, η1 and η2 are intermediate
layers, ω is an index to denote weight sharing, and ELU is
the Exponential Linear Unit activation function.

The TFT model employs a variable selection process
alongside the gating mechanism through a Variable Selection
Network (VSN). These networks are instrumental in pin-
pointing the most relevant variables for each forecasting step.
By assigning importance weights to inputs, VSN effectively
filters out noise, allowing TFT to concentrate on data that is
most predictive of future trends. This mechanism bolsters the
model’s forecasting precision and enhances interpretability
by clearly identifying key influential variables in the time
series data.

One important feature of TFT is its ability to handle
irregularly sampled time series data, as shown in Fig. 3.
It is versatile for real-world applications where observations

FIGURE 4. Flowchart of forecasting method.

may not occur at fixed intervals. This adaptability is crucial
for forecasting tasks in various domains, such as finance,
healthcare, and energy, where time series data can exhibit
complex patterns and irregularities. Additionally, TFT uti-
lizes a combination of global and local attention mechanisms
to capture overall trends and fine-grained temporal patterns
within the data.

The TFT model has succeeded in accurately predicting
future values in time series datasets, outperforming tradi-
tional methods and showcasing its potential for applications
requiring precise forecasting. Overall, the Temporal Fusion
Transformer model represents a significant advancement in
the field of time series forecasting [28], [29], [30], offering
a powerful and flexible architecture for capturing temporal
dependencies in sequential data.

III. METHODOLOGY
This section explains the research process for forecasting net
metering within each building in an SGtech network. The
research process comprises several steps as shown in Fig. 4,
starting with preparing the net metering data from the SGtech
building, considering the relationship of input features, and
data grouping for model training. It also discusses methods
for measuring the model’s performance.

A. DATASET
The dataset utilized in this section belongs to the historical
net metering of SGtech’s prosumer building. This building
can generate electricity from photovoltaic (PV) sources for
self-consumption before resorting to grid electricity imports.
The dataset comprises timestamps and corresponding net
metering measurements in kilowatt-hours, encompassing the
entire year from January 1, 2022, to December 31, 2022. The
net metering profile is shown in Fig. 5.

B. CORRELATION FEATURE
In addition to using historical net metering data for training
the model, the inclusion of other features related to net
metering is another feature that can affect the accuracy
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FIGURE 5. Net metering profile of SGtech prosumer building from January 1, 2022 to December 31, 2022, including 365 days (8,760 hours).

FIGURE 6. Correlation heatmap of additional feature.

of a forecasting model. In this section, we collected and
utilized various additional features expected to influence
the prediction. After gathering this data, we analyzed it to
determine the correlation of each type of additional feature
with the net metering.

To calculate the correlation coefficient of each input
feature, the Pearson correlation method was used to find
the coefficients of all the data. The correlation value from
the range of −1 to 1, where a value close to 1 indicates a
strong positive correlation between the data, a value close
to 0 suggests no correlation, and a value close to −1
signifies a strong negative correlation between the data. The
mathematical formula of Pearson Correlation is shown in (5).

ρ (X ,Y ) =
cov (X ,Y )

σXσY
(5)

where ρ (X ,Y ) is the Pearson Correlation, cov (X ,Y ) is
Covariant between X and Y , σX is standard deviation of X ,
and σY is standard deviation of Y

The correlation heatmap illustrated in Fig. 6, shows the
relationships between various input features, including sup-
ply, wind direction, weather conditions, humidity, pressure,
temperature, and dew point, as we search their correlation
with net metering. Our objective was to identify features that
strongly correlate with netmetering, whichwill be considered
additional features for creating a forecasting model. Notably,
the results showed that wind direction, weather conditions,
temperature, and dew point all exhibited a positive correlation
with net metering. Consequently, we incorporated all these
features into our forecasting model.

The weather condition feature that is used in this
research includes a range of terms commonly employed in
meteorology to describe different weather conditions. ‘‘Fair’’
signifies clear and pleasant weather conditions. ‘‘Shallow
Fog’’ indicates the presence of a thin layer of fog near the
ground. ‘‘Partial Fog’’ implies fog that covers only part of
the area. ‘‘Mist’’ represents light fog with good visibility.
‘‘Mostly Cloudy’’ describes a sky with a majority of cloud
cover. ‘‘Partly Cloudy’’ indicates a sky with some cloud
cover but also some clear areas. ‘‘Light Rain’’ refers to
gentle and scattered rain showers. ‘‘Light Drizzle’’ represents
very fine and light raindrops. ‘‘Cloudy’’ signifies an overcast
sky with significant cloud cover. ‘‘Rain’’ represents steady
and continuous rainfall. ‘‘Fog’’ indicates thick and dense
fog reducing visibility. ‘‘T-Storm’’ stands for a thunderstorm
with lightning, thunder, and heavy rain. ‘‘Haze’’ represents
reduced visibility due to fine dust or pollution particles in
the air. ‘‘Showers in the Vicinity’’ indicates rain showers
occurring nearby without directly affecting the location.
‘‘Thunder’’ signifies the presence of thunder without rain.
The wind direction symbols and descriptions used in this
research are shown in Table 1.

Lastly, we integrated the two features of SGtech, workday
and time-of-day features, into the model. These features
provided valuable insights into SGtech’s operational dynam-
ics. Workday denotes the days when SGtech was actively
working as shown in Fig. 7, enabling us to identify patterns
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FIGURE 7. Illustrating SGtech’s workday (green) and non-workday (gray) data from January 1, 2022, to December 31, 2022. The dataset starts on a
Saturday, resulting in initial unfilled cells for days before January 1, 2022. Similarly, the dataset concludes on a Saturday, leaving cells beyond
December 31, 2022, unfilled.

TABLE 1. Wind direction symbol explanation.

in net metering on these days, which may differ from non-
working days. Meanwhile, the time-of-day feature informed
us about the specific hours, which were divided into before
and after midday, when SGtech officers were engaged in their
tasks. This temporal information helped us capture variations
in net metering that aligned with SGtech’s working hours,
enhancing our model’s ability to predict and adapt to net
metering patterns influenced by SGtech’s operations.

C. EXPLORATORY DATA ANALYSIS
This section describes our use of Exploratory Data Analysis
(EDA) as a crucial step in examining net metering data. EDA
helped us discover important patterns, detect anomaly data,
and discover our dataset’s details. Through statistical and
visual methods, we began our exploration of the net metering
data to gain a fundamental understanding that would guide
our subsequent analyzes.

Initially, we examined the correlation between our selected
features and net metering data, including temperature, dew
point, weather conditions, and wind direction, and identified
any anomalies. To further understand the data distribution,
we employed an hourly count of occurrences for each event,
as shown in Fig. 8, which allowed us to gain insights into their
patterns and relationships.

D. MODEL EVALUATION
Evaluating the efficiency of a forecasting model depends on
the selected measurement method. This evaluation quantifies

the difference between forecasted and actual net metering
values, where smaller errors signify powerful model perfor-
mance. We utilized several loss functions during both the
training and evaluation phases to optimize the efficiency of
the forecasting model, as discussed in upcoming sections.

Quantile loss is a statistical method used in regression
analysis to evaluate a predictive model’s accuracy, especially
in the TFT model when estimating specific percentiles
(quantiles) of a target variable’s distribution, as shown in (6).
Instead of focusing on minimizing the mean error, quantile
loss measures how accurately a model predicts values at
different quantiles of the distribution, giving insights into
the dispersion of the data. This approach is particularly
valuable in scenarios where accurately capturing prediction
uncertainty and extreme values is essential, as it provides a
more comprehensive assessment of a model’s performance
across the entire distribution of the target variable.

LQuantile(ui, ūi)=
{

α × (ui − ūi), ūi ≤ ui
(1 − α) × (ui − ūi), ūi > ui

(6)

where α is the quantile level, ui is the actual value, and ūi is
the predicted value.

The Mean Absolute Error (MAE) measures the aver-
age error magnitude between predicted and actual values.
It calculates the absolute difference between each prediction
and the corresponding actual value and then averages
these absolute differences. MAE provides a straightforward
understanding of how far, on average, the model’s predictions
are from the actual values without considering the direction
of the errors, as shown in (7).

MAE (ui, ūi) =
1
n

n∑
i=1

|ui − ūi| (7)

where ui is the actual value and ūi is the predicted value.
The Mean Square Error (MSE) is another metric for eval-

uating the performance of a forecasting model. It calculates
the average of the squared differences between predicted and
actual values. Squaring the errors gives more weight to larger
errors, which can be useful when penalizing larger deviations
from the actual values. However, it tends to amplify the
impact of outliers, as shown in (8).

MSE (ui, ūi) =
1
n

n∑
i=1

(ui − ūi)2 (8)
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FIGURE 8. Hourly count data of Temperature, Dew Point, Weather Condition, and Wind Direction.

where ui is the actual value and ūi is the predicted value.
The Root Mean Square Error (RMSE) is derived from

MSE but is expressed in the same units as the original data.
It is obtained by taking the square root of the MSE. RMSE
provides a more interpretable measure of the model’s error
compared to MSE. Like MSE, RMSE also penalizes larger
errors but presents them in a format that is easier to relate to
the original data scale, as shown in (9).

RMSE (ui, ūi) =

√√√√1
n

n∑
i=1

(ui − ūi)2 (9)

where pi is the actual value and p̄i is the predicted value.
TheMeanAbsolute Scaled Error (MASE) is a relative error

metric that scales theMAE by theMAE in a sample of a naive
forecasting method. This makes theMASE scale independent
and easier to interpret across different datasets. A MASE
value less than one indicates better performance than the
naive method, while a value greater than one indicates worse
performance, as shown in (10).

MASE (ui, ūi) =

1
n

∑n
i=1 |ui − ūi|

1
n−1

∑n
j=2

∣∣uj − uj−1
∣∣ (10)

where ui is the actual value and ūi is the predicted value.

The Overall Percentage Error (OPE) measures the total
error relative to the actual values, expressed as a percentage.
This metric is useful for understanding the overall accuracy
of the model in terms of percentage error, making it more
interpretable for practical applications, as shown in (11).

OPE (ui, ūi) =

∑n
i=1 |ui − ūi|∑n

i=1 |ui|
× 100 (11)

where ui is the actual value and ūi is the predicted value.
These five metrics are commonly used to assess the

accuracy and performance of forecasting models, with lower
values indicating better predictive capabilities. Each metric
has its strengths and weaknesses, so choosing the most
suitable metric depends on the specific characteristics and
objectives of the forecasting task.

IV. RESULT
The results of this research can be divided into several phases.
Initially, we focused on fine-tuning the hyperparameters to
prepare for all experiments. We then fine-tuned the TFT
model by incorporating correlation features to identify the
most effective input features for building an optimized
forecasting model. Finally, we conducted a comprehensive
comparison with benchmark models to evaluate the overall
performance of our proposed approach.
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TABLE 2. All combinations of input feature sets used in the experiment.

TABLE 3. Hyperparameter tuning result of TFT model.

A. HYPERPARAMETER TUNING
We determined the hyperparameters for the TFT model
by adjusting the three key hyperparameters; the number of
hidden layers, the learning rate, and the number of attention
heads. Through iterative experimentation, we identified a
set of hyperparameters that performed well with the lowest
error in terms of MAE, MSE, and RMSE. We conducted
five rounds of experiments for each hyperparameter set to
calculate the numerical average and standard deviation. Addi-
tionally, we created visual representations of the predictions
with the least error in each experimental set. Among the
various combinations tested, it became clear that the most
optimal set of hyperparameters consisted of 32 hidden layers,
a learning rate of 0.05, and 2 attention heads, as it resulted
in the lowest prediction error. The results of hyperparameter
tuning are shown in Table 3.

B. CORRELATION FEATURE RESULT
In this experiment, we considered various features related
to net metering needs through a selection process based
on correlation analysis. The features examined in the
experiments included temperature, dew point temperature,
weather conditions, wind direction, workday, and time-
of-day. We conducted five rounds of experiments for
each set of relevant features to calculate the numerical
average and standard deviation of error values, as shown in
Table 2. Furthermore, we generated visual representations
of predictions with the least error for each experimental set.

TABLE 4. Forecasting result using net metering with one additional
feature.

This comprehensive approach allowed us to explore these
features’ influence on net metering accurately. Additionally,
the experiment was separated into two parts: testing one
correlation feature and testing two correlation features.

The results for applying net metering in conjunction
with an additional feature set, encompassing temperature,
dew point, weather condition, wind direction, workday,
and time-of-day, evaluated in terms of loss matrix, are
displayed in Table 4. The findings show that by including
the temperature feature as an auxiliary input during model
training, forecasting accuracy was enhanced across all five
error metrics; MAE, MSE, RMSE, MASE, and OPE.

In a further experiment, we utilized two correlated
features alongside net metering as inputs for the forecasting
model. Table 5 visually outlines the 15 combinations of
input feature sets. Among these combinations, it was clear
that incorporating both workday and time-of-day as input
features, alongside net metering, consistently yielded the
lowest error rates in terms of accuracy across all five loss
metrics.

C. WORKDAY AND TIME-OF-DAY WITH OTHER FEATURE
We compared the combination of the workday and time-of-
day features; the two-feature combination, which had previ-
ously demonstrated superior performance, with workday and
time-of-day features combined variously with the additional
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TABLE 5. Forecasting result using net metering with two additional
features.

features of temperature, dew point, weather condition, and
wind direction; as three-feature combinations. The aim
was to determine whether the two-feature combination
outperformed the three-feature combinations. We found
that the two-feature combination outperformed all of the
three-feature combinations.

Table 6 shows the performance of the two-feature combi-
nation of workday and time-of-day combination compared
to the three-feature combinations. Surprisingly, the least
favorable result was observed when adding the temperature
feature to the workday and time-of-day combination. This
observation is intriguing, espec bially considering the strong
correlation between the temperature feature and net metering.
This result may come from the unique characteristics of the
building used for historical net metering data. This building
operates as a prosumer, with a PV system operating for
several years, which can lead to contrasting effects when
solar radiation increases. While higher radiation results in
more energy generation from the PV system, it simulta-
neously increases the air-conditioning load due to rising
temperatures. Adding temperature as a factor resulted in a
greater forecast error, which did not align with the expected
outcomes.

D. COMPARE WITH BENCHMARK
To ensure the effectiveness of our developed model in
forecasting net metering, we compared well-established
deep learning models commonly employed in time series
forecasting tasks. The benchmark models used in this
comparison were statistical methods, i.e., ARIMA, Expo-
nential Smoothing, regression methods, i.e., Support Vector
Regression (SVR), Random forest, and deep learningmodels,
i.e., LSTM, N-BEATS, N-HiTS, and TFT. The visualized
results can be observed in Fig. 9 and Fig. 11, while the
performance metric results in terms of MAE, MSE, RMSE,
MASE, and OPE are presented in Table 7.
Experiments were conducted with prediction lengths of 24,

48, 72, 120, and 168 hours. Table 7 shows that the TFTmodel
outperforms all other methods in all performance metrics
for the 24- and 48-hour prediction lengths. For the 72-hour
prediction length, the TFT model outperforms deep learning

TABLE 6. Compare result of workday and time-of-day with additional
features.

FIGURE 9. Training and validation loss over epochs of TFT model.

and statistical methods, though regression models have lower
error metrics. For the 120-hour prediction length, the TFT
model outperforms statistical methods. Fig. 11 illustrates that
the TFT model’s predictions are more accurate and align
more closely with the actual values. The SVR model, despite
its lower error metrics due to predictions being close to the
mean of actual values, does not fit the actual plot as well.

We compared the computing time required in training
and forecasting using various deep learning models. The
N-BEATS, N-HiTS, and TFT models processed an 8,760
time index of training data. The training was conducted for
50 epochs using an AMD Ryzen 5 2600 CPU with 6 cores
and 12 threads at 3.4 GHz and a GeForce RTX 3090 GPU
with 10,496 CUDA cores and 24 GB of GDDR6X memory.

The results obtained for the statistical method, ARIMA,
were 16.64 seconds for training and 0.01 seconds for fore-
casting. The regressionmethod, SVR, required 47.18 seconds
for training and 0.12 seconds for forecasting. For the deep
learning models, the N-BEATS model took 87.43 seconds
for training and 0.13 seconds for forecasting, followed by
the N-HiTS model, which took 61.83 seconds for training
and 0.14 seconds for forecasting. The TFT model had
the longest training time of 228.09 seconds (2.61 times
longer than N-BEATS and 3.69 times longer than N-HiTS),
with a forecasting time of 0.19 seconds. The experimental
results show that while the TFT model took the longest
time for training, the forecasting times for all three models
were roughly similar. In terms of memory usage, the
N-BEATS model had 8.1 thousand parameters, the N-HiTS
model had 2.1 thousand parameters, while the TFT model
had 0.21 thousand parameters, making it approximately
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TABLE 7. Comparison results in errors, number of parameters, training time, and forecasting time of statistical, regression, and deep learning methods.

FIGURE 10. Net metering profile of SGtech prosumer building from January 1, 2023 to December 31, 2023, including 365 days (8,760 hours).

38.57 times more memory efficient than N-BEATS and
10 times more memory efficient than N-HiTS, as illustrated
in Table 7.

The results in Table 7 show that the TFT model out-
performs other methods in short-term forecasting (24 and
48 hours), achieving the lowest error metrics across all meth-
ods. However, for long-term forecasting horizons, the TFT
model’s accuracy slightly decreases, particularly compared
to regression methods like SVR. However, the TFT model
remains competitive, outperforming statistical and other deep
learning models at 120 and 168 hours. In summary, the TFT

model proves highly effective in short-term predictions, but
further improvements are needed to enhance its long-term
forecasting accuracy.

E. FORECAST ACCURACY WITH EXTENDING DATASET
In this experiment, we used an additional dataset to extend
the training data for the TFT model, that is, the net metering
dataset of 2023, as shown in Fig. 10. Initially, we trained the
TFTmodel using only the 2023 dataset to establish a baseline.
Subsequently, we trained the model using both the 2022 and
the 2023 datasets in two different ways, that is, combining
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FIGURE 11. Comparative forecasting accuracy of ARIMA, SVR, and TFT models over 24, 48, 72, and 120 hour time horizons.

TABLE 8. Mean absolute error (kWh) comparison for forecast horizons:
24, 48, 72, and 120 hours. Datasets: 2022, 2023, 2022&2023, and
2023 with pre-training on 2022 († indicates pre-training).

the data from both years and using the 2022 dataset for
pre-training followed by training with the 2023 dataset.

Table 8 shows the MAE for prediction lengths (24, 48,
72, 120, 168 hours). Generally, the pre-training method out-
performs the baseline and the combined 2022-2023 datasets,
except for the 48-hour prediction, where its performance
is slightly worse but the difference is not significant. The
combined dataset consistently gives higher MAE values than
both the baseline and pre-training models.

The model’s improved performance is due to pre-training
on the 2022 dataset, allowing it to learn patterns and features
that enhance its effectiveness on the 2023 dataset. This
process helps the model capture new data patterns better,
resulting in superior performance across most prediction

TABLE 9. Mean absolute error for 24, 48, 72, 120, and 168 hours
forecasting horizons in ablation experiment.

lengths. Therefore, pre-training shows a clear advantage over
baseline and combined dataset methods, showing the benefits
of enhancing model performance with pre-training.

F. ABLATION EXPERIMENT
To evaluate our proposed TFT model, we conducted ablation
experiments by tuning parameters including dropout, training
loss, normalization layer, and optimizer. The results show
the impact of different configurations on performance across
prediction lengths. The forecasting periods were 24, 48, 72,
120, and 168 hours, with performance measured by MAE,
as shown in Table 9.

In the first experiment, removing dropout from the model
resulted in better accuracy than the baseline model for the
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24- and 72-hour prediction lengths. In the second experiment,
changing the loss function from quantile loss to MSE loss
during the training phase resulted in lower accuracy across
all prediction lengths. In the third experiment, replacing layer
normalization with root mean square (RMS) normalization
layer improved accuracy compared to the baseline model for
the 48- and 120-hour prediction lengths. Lastly, changing
the optimizer from Adam to AdamW slightly lowered the
24-hour prediction accuracy but showed better results for the
48- and 120-hour predictions.

Thus, for short-term prediction lengths (24 hours), remov-
ing dropout and using the AdamW optimizer are recom-
mended for improving accuracy. For 48-hour predictions,
RMS normalization is recommended. For the 72-hour pre-
diction length, removing dropout is still our recommendation
to improve the model. Finally, for 168-hour predictions, RMS
normalization is recommended to achieve better accuracy.

V. EXPERIMENT ANALYSIS
Table 3 summarizes the various hyperparameter sets. The
set of hidden layers, learning rate and attention head with
values 32, 0.05 and 1 was optimal for the model, indicating
that using 32 hidden layers was a good balance between
complexity and efficiency during the training of the model
and the learning rate of 0.05 was an appropriate step size
for training. Interestingly, having just one Attention Head
produced better results than using a higher number, as it
prevents overfitting that results from excessive memorization
of training data.

However, additional features, including temperature, dew
point temperature, weather conditions, and wind direction,
do not significantly improve predictive accuracy. Using too
many related factors led to model confusion during training,
making identifying essential contributors to the model’s
performance challenging.

Finally, segmenting the experiment periods based on
SGtech’s workday and time-of-day shows that using these
features enhances prediction accuracy, particularly during
non-working hours when net metering tends to decrease.
Therefore, these factors, including weekends and holidays,
play a crucial role in improving the accuracy of net metering
predictions.

VI. CONCLUSION
In this study, we explored the effectiveness of the TFT
model in net metering in smart grid prosumer buildings.
We explored the impact of incorporating various features into
the model, combining additional features, such as weather-
related factors, with the usual workday and time-of-day
operational features of the SGtech building. The TFT model
demonstrated superior performance in handling these input
features and showed good potential for accurate net metering
forecasting. The integration of the additional operational
features of workday and time-of-day was especially found to
be a key factor in enhancing themodel’s precision, suggesting

that those additional features played an essential role in net
metering forecasting within the smart grid context.

In terms of all performance metrics for short-term pre-
diction lengths of 24 hours and 48 hours, the TFT model
is 100% better than other deep learning methods, regression
methods, and statistical methods, while the forecasting time
shows no significant difference from other methods. The
TFT model is a promising tool for real-time net metering
forecasting in smart grids. Our results contribute to enhancing
the understanding of energy dynamics in smart grids and sig-
nificantly inform future research into incorporating a wider
range of data sources for improved real-time forecasting
capabilities. Furthermore, Neural Architecture Search (NAS)
can be considered for future work to improve the efficiency
of the TFT model, making it more suitable for other datasets.
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