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ABSTRACT Research on multi-agent systems has extensively modeled real-world phenomena across
various domains including epidemiology, urban planning, and financial transactions. These systems often
struggle to produce agent behaviors that comprehensively capture the dynamics of the real-world ecosystem
and the unique behaviors of each agent type. Furthermore, the limited explainability of these models due to
non-iterative calibration poses significant challenges. This paper introduces an iterative model calibration
algorithm that dynamically adjusts the multitude of parameters in a multi-agent simulation platform. Initially
treating the simulation model as a black box, our method refines simulation parameters through cycles of
adjustments based on clusters of observed behaviors comprising the behavior of both agents and actors.
This approach allows for the identification and correction of inaccuracies, introduces new parameters, and
discards erroneous ones within the agent-based model as demonstrated in a Mobile Money Transaction
Simulator (MoMTSim). The calibration algorithm enhances the realism and applicability of the simulation
model by ensuring that the generated synthetic datasets closely mirror real transaction data. The effectiveness
of this calibration method was determined by validating the generated data through comparing the real and
synthetic datasets using statistical methods including the Kolmogorov-Smirnov test, the sum of squared
errors (SSE) method, and Bland-Altman plots. We computed the delta between the real and synthetic data
using the SSE approach and found that the synthetic datasets resemble real data. This shows that MoMTSim
effectively generates synthetic data that closely matches real mobile money transaction data, validating the
accuracy of our model calibration algorithm in simulating complex financial ecosystems.

INDEX TERMS Multi-agent-based simulation, model calibration, synthetic data, mobile money.

I. INTRODUCTION
Research on calibrating multi-agent systems to model com-
plex scenarios of real-world ecosystems, epidemiology, urban
planning, and financial transactions, continues to advance.
Many of the studies have focused on the modeling of the
multi-agent systems including epidemics [1] and pandemics
such as COVID-19 [2], urban form [3], climate scenar-
ios [4]. Similarly, agricultural management scenarios [5],
drone strikes and radicalization [6], micro-level dynamics
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of water reuse [7], traffic, and disaster response [8] have
been modeled. Social networks created due to financial
transactions have also been studied using multi-agent-based
simulation (MABS) of the actions of entities involved in the
transactions [9], [10], [11]. However, it is notoriously difficult
to ensure that agents in the multi-agent systems produce
realistic behaviors that cover in detail, characteristics of the
real ecosystem and also represent the unique attributes and
operations of each agent type [12] without the calibration
of the numerous parameters of a simulation model. Several
studies achieved the simulation of credible agents including
common scenarios of disease spread [1], [2], [8] based on data
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on properties of real actors. Nevertheless, without explicitly
calibrating simulation parameters using a combination of
simulation logs and real data, the explainability of such
models is limited [12] and this hinders their usage. Besides
the missing behaviors of agents, lacking interactions and
errors in simulation can hardly be traced when limited, non-
iterative approaches are employed for validating simulations
in multi-agent systems [12], [13].
The core contribution of this paper is the development and

implementation of an iterative model calibration algorithm
that is used to dynamically calibrate several parameters of
multi-agent systems. Our algorithm begins by treating the
multi-agent simulation model as a black box, progressively
refining the simulation parameters through cycles of adjust-
ment based on observed behaviors of agents and properties of
real transaction data. This method not only corrects inaccura-
cies but also adapts the simulation to incorporate emergent
behaviors and interactions, a significant advancement over
static, non-iterative calibration methods [14], [15], [16] that
are limited by predefined equations and models. Thus, the
iterations in this approach allow for the discovery of missing
behaviors and the introduction of new parameters in the
simulation model as well as the removal of errors.

The effectiveness of our approach has been demonstrated
through the calibration of the multi-agent mobile money
financial system, whereby the generated synthetic datasets
were validated against real financial data using statistical
methods such as the sum of squared errors (SSE), the
Kolmogorov-Smirnov (KS) test, and Bland-Altman plots.
This validation confirms that our calibrated simulation
model produces data that closely resembles real financial
transactions, enhancing the realism and applicability of the
algorithm in calibrating an agent-based system.

In this study, we focus on the mobile money domain to
demonstrate the utility of the calibration algorithm, lever-
aging a multi-agent simulation platform MoMTSim [17].
MoMTSim models mobile money transactions representing
transactions in the real world that are carried out via
mobile devices without the need for traditional banking
infrastructure. MoMTSim simulates a spectrum of mobile
money transactions such as deposits, withdrawals, transfers,
debits, and payments, reflecting the complex interactions
within a typical financial ecosystem. Agents in the simulation
platform represent customers, banks, and merchants and
they possess unique attributes derived from real-world data,
ensuring an accurate and detailed representation of the
real financial ecosystem. This paper makes the following
contributions:

• We introduce an iterative algorithm that dynamically
calibrates multi-agent systems based on simulation
observations and real-world data, significantly improv-
ing the accuracy and realism of the models.

• We apply our model calibration approach to mobile
money transactions using the MoMTSim platform,
which realistically models the intricate dynamics of

the financial ecosystem and transactions conducted via
mobile devices.

• This study validates the efficacy of ourmodel calibration
approach by comparing the synthetic datasets generated
from the calibrated MoMTSim model with actual
mobile money transaction data using statistical methods,
including the KS test, SSE method, and Bland-Altman
plots, thereby confirming the enhanced realism of the
MoMTSim simulations.

The rest of the paper is organized as follows: section II
describes related work on model calibration. Section III
presents the modeling and calibration algorithm for a
multi-agent system and demonstrates its usage in the
calibration of MoMTSim. Section IV discusses the results of
model calibration for a multi-agent mobile money financial
simulation platform and conclusions are made in section V.

II. RELATED WORK
Singh et al. [1] use survey data to aid the calibration of
a large multi-agent simulation for epidemics. The study
applied a Markov Decision Process (MDP) to model agent
decision-making regarding disease avoidance behaviors.
Each behavior (such as washing hands or using hand
sanitizers) was mapped to interventions in the simulation
that could affect the susceptibility of an agent to influenza.
Parameters of the MDP, including the cost associated with
each behavior, were adjusted. The costs influenced how likely
an agent was to adopt a behavior, balancing the cost against
the benefit of reducing infection risk. Parameters of themodel
were iteratively tuned using optimization algorithms such as
Numerical Gradient Descent (NGD), Cross Entropy (CE),
and Smoothed-Cross Entropy (SCE) methods to minimize
the difference between the modeled behaviors and those
observed in the survey. Outputs from the calibrated epidemic
model were validated against the survey data to ensure that
the distribution of behaviors matched those observed during
real-world influenza outbreaks.

Züfle et al. [3] introduces the Urban Life agent-based
simulation which was calibrated by adjusting parameters to
ensure that the outputs of the simulator align with observed
or expected patterns in real urban settings. The study relied on
these observations to assess the conformity of the agentmodel
to the real world. In the model, agents meet in places forming
a social network. An infectious disease modeling was carried
out in the study to predict the spread of a hypothetical disease
and prescribe measures to mitigate the spread. Themodel was
implemented using the MASON toolkit which is core in Java
and has a GIS extension, GeoMASON [18].

Another study [4] adopted a two-step process for calibrat-
ing the WRAP (water reuse adoption by farmers) model.
Codewalkthroughs and testing the effects of input parameters
on the model results were used to verify the model. Then
sensitivity analysis involved using a fractional factorial
design to investigate the significance of the daily flow rates of
wastewater treatment plants, the availability of primary water
sources, and the pricing of recycled water factors and their
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interactions, focusing on how they affected the total recycled
water consumption of farmers.

Groves-Kirkby et al. [2] calibrates an agent-based model
for the COVID-19 pandemic scenarios to support healthcare
planning. The calibration method involved adjusting model
parameters to match hospital admissions, intensive care
occupancy, and deaths due to COVID-19 until the model
output closely resembles the three daily data streams. The
study demonstrates that the calibrated model was able to
provide acceptable fits to unseen data streams, including
official estimates of COVID-19 incidence.

Ullah et al. [5] model agricultural management scenarios
encompassing business as usual (BaU) and a climate-smart
(no-till) practice using an agent-based modeling approach.
A combination of geospatial data, historical crop data, and
socio-economic factors was used in the model calibration.
The adoption of carinata by farmers was modeled as a
function of both economic profitability and social influence
from neighboring farmers. Model parameters were iteratively
adjusted to align the model outputs with observed data
and literature regarding farmer behavior and economic
conditions.

Shapiro and Crooks [6] set initial conditions and param-
eters for a simulation model informed by empirical data on
drone strikes and terrorist attacks. The study relied on data
from the Bureau of Investigative Journalism and the National
Consortium for the Study of Terrorism and Responses to
Terrorism (START). Key parameters such as the rate of
drone strikes, the likelihood of carrying out terrorist attacks
following a strike, and the distributed lag between drone
strikes and resulting terrorist activities were adjusted based on
parametric explorations. Therefore, the relationship between
the frequency of drone strikes and the resulting terrorist
attacks was calibrated against observed data to ensure that the
simulated outcomes aligned with real-world data. The model
outputs were cross-validated using unseen data to validate the
model.

The calibration of the PaySim [19] model involved
model verification where behaviors are inspected and model
validation where the error rates for the real and synthetic
datasets are compared using the SSE approach. PaySim is a
financial simulator for mobile money transactions, designed
following the MABS approach. Its initial version was not
calibrated using real mobile money transaction data. PaySim
was revised [9], [10] and calibrated using a sample of real
mobile money transaction data with a focus on financial
fraud detection. The validation of synthetic output in PaySim
and the validation strategy used in our work are closely
related, however, this study uses an iterative approach for
the model calibration which allows for the identification of
missing behaviors based on a behavioral questionnaire, the
introduction of new parameters, and systematic removal of
errors among other things.

Related studies mainly cover the modeling of artifi-
cial ecosystems using an agent-based modeling approach.
However, they highlight the need for efficient calibration

of model parameters to explain agent interactions, missing
behaviors, and errors in the system. These studies lack
iterative algorithms that dynamically calibrate the numer-
ous parameters of the simulation model. Our approach
enhances the state-of-the-art in calibrating multi-agent sys-
tems. We provide insights into model calibration using an
iterative algorithm that has been demonstrated to calibrate
an artificial financial system with many parameters for
generating realistic synthetic datasets.

III. MODELING AND CALIBRATION
Several multi-agent platforms for either general purpose or
domain-specific purpose exist in literature [20]. This study
used MASON [21] to model MoMTSim [17]. MASON is a
comprehensive and validated MABS toolkit with extensive
features. It is generic and can be used for modeling any
scenario of an artificial world. We found MASON suitable
for our use case because it supports parallel processing,
enhancing its ability to manage computationally demanding
simulations more effectively than other simulation toolkits
such as NetLogo [22], RePast [23] and AnyLogic [24].
MoMTSim has a client agent with a profile and the

simulation model has other files including initial balance
distributions, types of transactions, overdraft limits for
clients, and the maximum number of occurrences per
client among other things. These files form the input data
for a simulation [9], [10] in MoMTSim. Similar to the
real ecosystem, clients carry out transactions including
deposits, transfers, debits, payments, and withdrawals, which
are recorded within the system. Client involvement in a
transaction is determined by a random variable, which
is dependent on probabilities calculated from the analysis
of real mobile money data [9], [10]. To arrive at the
random variable for determining client participation in a
transaction, probabilities were first computed by analyzing
real mobile money transaction data. This analysis involved
examining patterns and frequencies of client transactions in
the historical mobile money financial data. Based on this
analysis, probabilities were assigned to different scenarios
and conditions under which clients typically participate in
financial transactions. Thus the probabilities were used to
define the random variable, which dictates the likelihood of
the participation of a client in any given transaction in the
simulation model. The random variable was generated in a
way that mirrors the observed behaviors in the real mobile
money financial data. Consequently, the state of the client can
be modified in the simulations.

A. SIMULATION MODEL
1) SCENARIO-BASED ANALYSIS
Simulating the mobile money service with more detail
requires the simulation of the various types of transactions
that are present in the real ecosystem.

Transactions were grouped by similarity based on their
characteristics forming scenarios. The payment of domestic
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bills, and purchase of airtime, goods, and services fall under
payment transaction type. Whenever a mobile money user
puts money in their account via a mobile money merchant,
it is a deposit, while withdrawal involves a user removing
e-money off their account as hard cash via a mobile money
merchant. The intermediate movement of money in the
system by users such as a client sending money to another
client is transfer. With online and mobile banking services
in the Sub-Saharan region, users often send money to bank
accounts from mobile money accounts and this type of
transaction is debit.

Some transactions involve a user of amobilemoney service
and a non-user commonly referred to as a voucher that
is often created and then redeemed. Credit is the opposite
of a debit transaction and saving money on the mobile
money platform is a transaction aimed at promoting savings
among the masses. Due to the insignificance of savings,
vouchers, and credit transactions in the real ecosystem
including in the sample of the real transaction data used for
statistical analysis, we decided not to include them in the
artificial financial ecosystem. Regular users who participate
in major transactions such as deposits, withdrawals, transfers,
payments, and debits are often recorded significantly in the
real transaction data. These users are usually the ones who
can save money on the platform. They also participate in
other minor transactions including savings, vouchers, and
credits. An agent-based financial platform with the major
transaction types would sufficiently output datasets that
represent attributes of the real ecosystem. A summary of the
mobile money transaction types with their significance and
transaction rules is presented in Table 1.

2) STATISTICAL ANALYSIS
Real transaction data includes transaction amounts associated
with transaction types, transaction IDs for the initiator and
recipient of the transaction, and the initial and final balance
for the initiator and recipient of a transaction, among other
things. The count statistics of the real data were computed
to determine the frequency of the transactions over time
using Poisson regression [25]. Poisson regression supports
the modeling of the count of transactions that happen at a
consistent rate within a fixed interval of time. It is given by (1)

λi = e(β0+β1X1i+...+βkXki) (1)

where λi is the expected count of transactions for unit i and
X1i, . . . ,Xki are the explanatory variables.
While aggregating the transaction amounts, summary

statistics including the sum, mean, and totals across different
categories (per user and period) were determined. The mean
is given by (2)

x̄ =
1
n

n∑
i=1

xi (2)

for the individual transaction amounts xi and the number of
transactions n. The standard deviation σ for the aggregated

transaction amount was determined using (3)

σ =

√∑n
i=1(xi − x̄)2

n− 1
. (3)

For the initial balance distributions for clients, the continuous
data including the account balance in the real data were
categorized into discrete ranges (bins). Supposing that X is
the balance that we want to bin into intervals of width w. The
bin for a given balance x is determined using (4)

Bin(x) =

[
x − min(X )

w

]
(4)

where min(X ) is the minimum balance in the dataset.
It follows that the counting of the number of data points
that fall into each bin is given as fi = count of X such
that min_rangei ≤ X max_rangei for a given bin i and
frequency fi.

Thus, the percentage pi is calculated using (5)

pi =

(
fi
N

)
× 100 (5)

where N is the total number of observations. The client
profiles were analyzed using cluster analysis [26] to segment
clients into groups with similar transaction behaviors. This
was achieved using K-means clustering, as shown in the
flowchart in Fig. 1. Sequential steps involved in clustering
a batch of real mobile money transactions to extract client
profiles are presented in the flowchart. Starting from the data
collection phase, where transaction data were gathered from
financial institutions from Sub-Saharan Africa, followed
by data cleaning and preprocessing, which ensures data
quality and usability. Features in the data were engineered
and selected to identify and refine features that effectively
represent transaction behaviors including the transaction
frequency, amount, and location of the user.

After preparing the data and standardizing it, K-means
clustering is initialized. The clustering loop involves assign-
ing transactions to clusters and updating cluster centroids
iteratively until convergence is achieved.

Post-clustering, the clusters undergo a series of validations
including computing the Silhouette score and calculating the
Davies-Bouldin Index to assess the quality and distinctive-
ness of the clusters. Visual Assessments were performed to
further confirm the clustering results. Depending on these
assessments, a decision is made (Re-cluster Needed?) on
whether additional clustering iterations are required.

Once validated, the clusters are used for analysis and
profiling, leading to the reporting and utilization phase.
The derived client profiles were employed as inputs for
MoMTSim. This supports the realism and effectiveness of the
simulation model in MoMTSim. This marked the end of the
K-means clustering for the generation of the client profiles
from the real data as presented in Fig. 1.
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TABLE 1. Transaction types in the real mobile money financial ecosystem.

FIGURE 1. Flowchart for clustering mobile money transaction data.

3) SOCIAL NETWORK ANALYSIS
The interactions between users of mobile money services
form a social network, and social network analysis [27]
enabled us to uncover patterns of money flows across
the network. The actors including clients, mobile money

merchants, and banks, and their attributes form the nodes
while the transaction types form the edges of the network
graph. The degree of centrality of nodes determines the
number of direct connections each node has, indicating active
users of mobile money services. The degree of centrality is
given by (6)

CD(i) =
Degree of i

n− i
(6)

for a node i and the total number of nodes in the social
network graph n. While betweenness centrality establishes
the frequency at which a node appears on the shortest paths
between other nodes in the network. For mobile money
services, nodes with high closeness centrality can execute
transactions quickly.

The design of the simulation platform is based on the key
processes of the real financial ecosystem. The simulation
model relies on aggregated mobile money transaction data
and transaction rules to schedule agents to participate in
transactions during a simulation. The interactions of the
agents in the virtual ecosystem produce synthetic output logs
as shown in Fig. 2. At this point, the simulation platformmust
be calibrated to enforce realism. Once optimal parameters are
achieved, the resulting synthetic datasets from the simulation
platform are validated using the SSE method, KS test,
and Bland-Altman plots. The SSE method computes the
difference between the real and synthetic data. SSE is given
by (7)

SSE =

n∑
1

(yi − ŷi)2 (7)

where n is the total number of data points and yi is the
observed value for the ith data point. ŷi is themodel-generated
prediction for the ith data point. Therefore, the SSE approach
quantifies the deviation of the predictions of the simulation
model from the observed data across all points.
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FIGURE 2. High-level view of the MABS model for mobile money
transactions.

We computed the KS statistics to compare the distributions
of the real and synthetic mobile money transaction datasets.
KS statistic D quantifies the maximum distance between
the cumulative distribution functions (CDFs) of the two
transaction datasets. It is given by (8)

D = sup
x

|F1,n(x) − F2,m(x)| (8)

where F1,n(x) and F2,m(x) are the empirical distribution
functions of the real and synthetic datasets, respectively, n
and m are the number of observations in each dataset, sup
denotes the supremum (maximum difference across all values
of x). The significance of the KS statistic was assessed by
the p-value, which helps determine whether the observed
differences in distributions could occur by chance under the
null hypothesis. A high p-value (typically greater than 0.05)
indicates a lack of evidence to reject the null hypothesis,
suggesting that the two datasets could be from the same
distribution.

To validate the agreement between the real and synthetic
data, we visualized the transaction count, total transaction
value, and average transaction value using the Bland-
Altman plot. Bland-Altman plot determines how well the
synthetic dataset approximates real data on the transaction
count, total transaction value, and average transaction value
metrics thus identifying any biases and inconsistencies in the
synthetic data generation process. It follows that for each
paired measurement of real data xi and synthetic data yi
for transaction count, total transaction value, and average
transaction value metrics, the differences di given by (9)

di = xi − yi (9)

and averages ai given by (10)

ai =
xi + yi

2
(10)

are determined and they form the basis for plotting and
analyzing the agreement between datasets. Each difference
di is plotted against its corresponding average ai. The mean
difference d̄ is calculated as the average of all differences,
given by (11)

d̄ =
1
n

n∑
i=1

di (11)

and is plotted as a horizontal line across the Bland-Altman
plot, indicating the central tendency of the differences. The
limits of agreement are calculated to determine the range
within which most differences are expected to lie. Assuming
that the differences are normally distributed, it follows that
the standard deviation of the differences SDd is (12)

SDd =

√
1

n− 1
(di − d̄)2 (12)

whereby the limits are defined as d̄ ± 1.96 × SDd and
are added to the Bland-Altman plot as two horizontal lines,
framing the mean difference line.

B. MODEL PARAMETERS
Simulations are managed using various parameters such as
simulation configuration parameters, entity parameters, and
fraud probability parameters among other things which are
described as follows.

1) SIMULATION CONFIGURATION PARAMETERS
These are variables and settings that define the operations
and behaviors of the simulation platform. The simulation
configuration parameters include the number of steps, the
seed, and a scale factor (multiplier).

• Number of steps. A step maps to an hour in the real
world. Therefore, the total number of 720 steps in
the artificial world represents 30 days of transactions,
implying a month of activity in the real world.

• Multiplier. This is a scale factor for amplifying or reduc-
ing numerical values including amounts of transactions
during a simulation.

• Seed. Simulations are random and the seed is a
foundational parameter that influences the initial state
and subsequent progressions of simulations. It primarily
governs the reproducibility and randomness of simula-
tions.

2) ENTITY PARAMETERS
The entity parameters are the number of agents set for a
given simulation. They include the number of banks, clients,
fraudsters, and mobile money merchants in the simulation
environment. The number of agents enables the specification
of a definite population of agents in the artificial world,
similar to the real financial ecosystem. The fraudster is
either a client or a mobile money merchant (can at times
be the bank) exhibiting financially dishonest behavior. For
every agent, the total number is set for a given simulation
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before it commences. Other agent metrics can be introduced
in the artificial financial ecosystem using an entity-specific
parameter based on the properties of actors in the real-world
financial ecosystem.

3) FRAUD PROBABILITY PARAMETERS
These parameters are specifically formulated for assigning
probabilities for agents designed to act fraudulently so
that they can participate in transactions. Fraud probability
parameters were determined by analyzing historical mobile
money transaction data to identify patterns and behaviors
indicative of fraud. Key fraud indicators such as abnormal
transaction frequencies and amounts were identified through
this analysis. These indicators were then statistically modeled
to assign probabilities to each parameter, quantifying the
likelihood of fraud. These probabilities were aggregated to
create an overall fraud probability score for each transaction
or actor involved. The fraud probability parameters in the
simulation model include:

• The likelihood of a fraudulent client to commit fraud.
• The probability of a fraudulent client using a previous
mobile money merchant to commit fraud. In the
real ecosystem, legitimate clients have favorite mobile
money merchants for carrying out transactions. Simi-
larly, fraudulent clients often look out for their favorite
mobile money merchants.

• The likelihood of a fraudulent client targeting new
victims for fraud.

• The probability of mobile moneymerchants being at risk
for fraud.

4) TRANSACTIONAL AND FINANCIAL CONSTRAINTS
These include limits on transactions such as the maximum
transaction limit for transfers in mobile money among other
things. Transactional and financial constraints are used for
assessing the efficacy of common financial crime control
mechanisms in the real ecosystem. These can be adjusted
based on financial regulation policies in the real ecosystem.

5) INPUT DATA FILES
Essential data from real transactions is needed for the
simulations to happen and the input data files have paths
specified to CSV files containing the types of transactions,
client profiles, initial balance distributions, overdraft limits
for clients, and the maximum number of occurrences per
client.

• Types of transactions. These are transactions to be simu-
lated including deposits, transfers, debits, payments, and
withdrawals.

• Client profiles. They contain the transaction behavior for
clients.

• Initial balance distributions. This file describes the
initial balance for entities (clients) within the simulation
environment. This file mimics the initial balance for
clients in the real financial ecosystem.

• Overdraft limits for clients. These limits influence the
validity of transactions.

• Maximum number of occurrences per client. These
limits determine the maximum number of times a client
is involved in transactions during a simulation.

6) SIMULATION OUTPUT AND FRAUD PATTERN
PARAMETERS
Simulation output parameters include paths to output files
while fraud pattern parameters are meta-data on fraud
typologies.

• Folder for fraud typologies. This folder contains data on
the properties of various fraud scenarios. It is necessary
for simulating unique fraudulent behaviors.

• Path for output files. Once the simulation has been
completed, the output files are stored in this specified
directory.

7) DATABASE CONFIGURATIONS
The database configurations provide an alternative for saving
synthetic files to a database, especially for easy querying
during analysis [9], [10]. All parameters are useful for
refining and tailoring the simulation process to accurately
mirror real-world situations. Additionally, they enable the
expansion of simulations to encompass a vast number
of agents and transactions. A successful simulation in
MoMTSim undergoes the following processes.

• Loading of input files, assignment of initial balance for
every client, and mobile money merchants are set up so
that clients and mobile money merchants can participate
in transactions during the simulation.

• MoMTSim converts a simulation into a day/hour pairing
once input files have been loaded. In the simulation,
a probability is assigned to each transaction. This
probability is integrated into the client’s model [9],
[10], making the client aware of several key factors:
the number of transactions they are involved in, their
participation in subsequent phases of the simulation,
the probability distribution for controlling their engage-
ment in specific transactions, and their initial account
balance [19]. Thus, MoMTSim models the stochastic
processes based on Markov processes, strictly adhering
to probabilistic rules extracted from real mobile money
transaction data. This methodological foundation allows
the simulation to accurately replicate the dynamics
observed in the real mobile money ecosystem. A client
that has been generated carries transactions with other
clients based on the loaded distributions.

• Saving of log files, CSV files of raw mobile money
transactions, and aggregated transactions that resemble
one for the real data together with parameter file history
finalize the simulation process [9], [10].

Calibration of MoMTSim encompasses the verification of
agent behavior so that it reflects the behaviors of actors in
the real ecosystem. This is possible by tuning the parameters
of the simulation platform and the validation of the synthetic
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Algorithm 1Model Calibration Algorithm
1: Input: Initial parameters P = {p1, . . . , pi}, transaction

data, questionnaire results.
2: Output: Calibrated parameters for MoMTSim.
3:

4: Initialization:
5: Cluster behaviors:
6: CM : Shared by agents and actors.
7: Ca: Agent errors, removed.
8: CA: Actor misses, added.
9:

10: Model Verification:
11: Analyze logs, data, and transaction history.
12: Use questionnaires to verify agent behaviors.
13:

14: Calibration Iteration:
15: for each agent behavior do
16: Preserve CM , remove Ca, adjust for CA
17: end for
18: Validate global behavior accuracy.
19:

20: Parameter Set Formulation:
21: Generate new sets:
22: Select P(ai) = Pi where p(Pi) = n ·

p(b)
|Pj|

23:

24: Parameter Space Exploration:
25: Sample new sets Pk /∈ P , include if valid.
26:

27: Iterative Calibration:
28: Refine model, incorporate new data.
29:

30: Validation:
31: Compare with real data, adjust as needed.
32:

33: Documentation:
34: Record changes, update MoMTSim parameters.

datasets to ensure that they are as close as possible to the real
data.

C. MODEL VERIFICATION AND CALIBRATION
In this study, model verification is an iterative process lever-
aging documented properties of mobile money transactions,
expert opinions, transaction patterns in the real data, and our
understanding of the real mobile money financial ecosystem.
We present a calibration algorithm for an agent-based model
with the logic shown by Algorithm 1. Analysis of the
transaction logs, aggregated transactions, and parameter file
history form a critical part of model verification. In support
of the model verification process, we used a behavioral
questionnaire from a survey to analyze the components of
the simulation model and elucidate agent behavior. Clusters
of behaviors were formulated out of the properties of agents
and actors. Actors are real-world entities in the mobile
money ecosystem while agents are their representatives in

the artificial financial ecosystem. The clusters formulated
include.

• A cluster of behaviors associated with both agents and
actors CM .

• A cluster of behaviors exhibited by only agents Ca.
• A cluster of behaviors exhibited by only actors CA.

CM denotes clusters that are correctly reproduced in the
simulation. Whereas Ca are errors in the simulation whose
parameter sets should be removed while CA are missing
behaviors in the simulation platform that are injected in
subsequent iterations.

1) CALIBRATING THE AGENT MODEL
The agent model in MoMTSim was initially considered
a black box implying it can produce different behaviors
based on the initial parameters. Therefore, model calibration
ensures that every agent’s behavior is believable [12],
[13] based on documented properties of mobile money
transactions and attributes of the real financial ecosystem.
This implies that the parameter set P = {p1, . . . ., pi}
where i represents the number of parameters is individually
valid. On execution of one iteration of the simulation,
valid parameters leading to behaviors CM were preserved.
Parameters for Ca and CA were further examined in the next
iterations. Besides, calibration guarantees that the distribution
of parameter sets P = {P1, . . . .,Pn} with n representing the
number of agents globally reproduces the behaviors of actors
in the real ecosystem [12], [13]. Thus, we removed parameter
sets for Ca from the group of valid parameter sets since they
did not reflect any behaviors of real-world actors.

2) FORMULATING NEW PARAMETER SET
New agent behaviors were generated by defining new
parameter sets after the first iteration. This implies we define
valid parameter sets Pv related to valid behaviors Bv with
momtsim(Pi) = b ∈ B the spectrum of feasible behaviors,
and p(b) the proportion of actors showing this behavior.
Given that multiple sets of parameters can result in identical
behavior, the production of a parameter set P(ai) with i ∈

{1, . . . ., n} for n agents means to choose among several
parameter sets.

We select the parameter sets using the following criteria:
P(ai) = Pi ∈ Pv with the probability p(Pi) depending on
the proportion of observed behaviors b and the number of
parameter sets Pj leading to b. Hence,

p(Pi) = n ·
p(b)
|Pj|

(13)

with

Pj ∈ Pv|momtsim(Pi) = b. (14)

Consequently, the probability of producing agent behaviors
that were under-represented is increased because the likeli-
hood of selecting a parameter set that is compatible with these
behaviors is higher and the reverse holds for over-represented
behaviors [12], [13]. Moreover, by utilizing Pv exclusively,
without employing P all invalid parameter sets are removed.
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3) PARAMETER SPACE EXPLORATION AND ITERATING THE
METHOD
Parameter space exploration covers missing behaviors that
might not otherwise be produced [12], [13]. Once missing
behaviors have been established, we use an exploration
function by choosing parameter sets in non-explored areas of
the parameter set [12], [13]. This follows that

P(ai) = Pi ∈ Pv, if p > γ (15)

else

P(ai) = Pk /∈ P (16)

where γ is an exploratory parameter for searching new agent
behaviors and p is a uniform random value. Pk is a candidate
parameter set that is being evaluated to determine if it leads to
a valid behavior. It ought not to have been selected in any of
the previous steps of the parameter space exploration process.
If Pk results in a valid agent behavior, it is included in the set
of valid parameters Pv if not, it is discarded.
Once the desired behaviors have been reproduced in

the simulations, iterating the calibration process potentially
enables the discovery of new agent behaviors, fixing more
errors using behavioral questionnaires on mobile money
actors. A high-level view of the calibration process is shown
in Fig. 3. The resulting synthetic datasets from theMoMTSim
platform after successful calibration were evaluated against
the real data to assess the closeness of their statistical
qualities. Validation of the datasets enabled us to affirm
the effective calibration of the numerous parameters of the
simulation platform.

D. VALIDATION OF SYNTHETIC DATA
Validation of the synthetic data involved the computation of
the difference between the real and synthetic data using the
SSE method among other things. For various simulations,
MoMTSim recorded varying total errors between the real
and synthetic data, and the dataset with the least total error
was chosen for analysis [19]. The aggregated transactions for
the real and synthetic datasets were visualized to assess the
closeness of the datasets.

1) VISUALIZATION OF ENTIRE MOBILE MONEY
TRANSACTIONS
The distributions of the total transaction value, average trans-
action value, and the count of transactions were visualized
for the real and synthetic data. The total transaction value
and average transaction value were measured in virtual units
(VUs) due to a non-disclosure agreement on the actual
currency units. Violin plots were also used for visualization,
combining box plots and density plots to compare the
datasets. Violin plots are rich enough, showing both the box
plot and the kernel density plot, unlike the use of only a
box plot. Besides, it is easy to compare and contrast the
distributions of real and synthetic data (including for large
datasets), visually using violin plots [28], [29].

2) VISUALIZATION OF EACH MOBILE MONEY TRANSACTION
TYPE
Data visualization was also performed for each transaction
type (deposit, withdrawal, transfer, debit, and payment)
for the total transaction value. This allowed for a detailed
comparison of the real and synthetic data to draw insight into
the validity of the simulation model.

IV. RESULTS
A. TOTAL ERRORS ACROSS DIFFERENT SIMULATIONS
Synthetic datasets arbitrarily named MoMTSim_202301,
MoMTSim_202311, and MoMTSim_202312 with varying
numbers of clients were generated. The MoMTSim_202311
simulation registered the least total error even though other
simulations recorded low total errors as shown in Table 2.
Nonetheless, the total errors registered by the different
simulations are close to each other even though different
numbers of clients were involved in the simulations. This
indicates consistency in error propagation across different
simulations of MoMTSim with varying counts of clients.
MoMTSim_202311 was used to assess the resemblance of
the total transaction value, average transaction value, and
the count of transactions for the entire dataset to real data
as well as examine the statistical similarities of the distinct
transaction types.

TABLE 2. Total errors for different simulations with MoMTSim.

B. QUANTITATIVE VALIDATION OF SYNTHETIC DATA
ACCURACY
In the evaluation of synthetic datasets meant to mimic
real mobile money financial transactions, the KS test and
Bland-Altman plots were used to assess the fidelity and
agreement of the datasets.

Table 3 shows a comparison of the distribution of the
transaction count, the total and average transaction values
between the real and MoMTSim_202311 datasets. We report
low KS statistics of 0.0213 for the transaction count and
average transaction value, and 0.0142 for the total transaction
value accompanied by high p-values of 0.838 for the
transaction count and average transaction value, and 0.996 for
the total transaction value. This indicates minor differences
between the CDFs of the real and synthetic mobile money
transaction datasets. These results suggest that the synthetic
data closely mimics the distribution of the real data and
confirms the effectiveness of the synthetic data generation
process of MoMTSim in replicating these distributions.

Bland-Altman plots were constructed to further reveal
the agreement between the real and synthetic datasets
on a more granular, point-by-point basis as shown in
Fig. 4. The majority of differences between the datasets for
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FIGURE 3. Calibration process for multi-agent-based simulation model for mobile money transactions.

FIGURE 4. Bland-Altman plots for transaction count, total transaction value, and average transaction value between the real and MoMTSim_202311 data.

TABLE 3. KS statistics and p-values for transaction count, total
transaction value, and average transaction value between the real and
MoMTSim_202311 data.

the transaction count, total transaction value, and average
transaction value were consistently within the limits of the
agreement. The clustering of data points around the mean
difference line and the containment within the limits highlight

a strong agreement between the datasets, with few exceptions.
These findings affirm the validity of theMoMTSimmodel for
the realistic synthesis of mobile money transaction datasets.

C. CONGRUENCE OF SYNTHETIC DATA TO REAL DATA
Fig. 5 shows the distributions of the total transaction value,
average transaction value, and the transaction count for the
entire real and synthetic data. The synthetic data exhibits a
higher degree of overlap with the real data, both in terms
of the extent of the overlapping areas and the similarity
in their respective shapes with some differences in peak
and tail densities. Minor differences in the shapes of the
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FIGURE 5. Distribution of real and MoMTSim_202311 data.

FIGURE 6. Violin plots for real and MoMTSim_202311 data.

FIGURE 7. Distribution of total transaction values for the distinct transaction types in the real and MoMTSim_202311 data.

data are expected since synthetic data should resemble real
data but not be a replication [30]. Slight variations in agent
participation in carrying out transactions in MoMTSim to
actor participation in the real financial ecosystem resulted
in the minor differences presented. Fig. 6 shows the violin
plots for the entire real and synthetic data. Similar shapes

are observed indicating the resemblance of the datasets
and this reinforces our earlier observations made from
Fig. 5. To examine detailed patterns of each transaction
type, we repeated the visualization process, for deposit,
withdrawal, debit, payment, and transfer transactions as
shown in Figs. 7 and 8. The degree of overlap in the
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FIGURE 8. Violin plots for the total transaction values for the distinct transaction types in the real and MoMTSim_202311 data.

distributions of the different transaction types is significant
indicating a high level of resemblance of the synthetic
data to the real data. The differences in the tails and peak
densities for the distinct transaction types imply the synthetic
data is not a direct copy of the real data [30]. With an
agent-based modeling approach, the synthetic data is a result
of interactions between the agents, with varying behaviors.
These differences prevent direct mapping of the synthetic
data to real data [30]. The statistical similarities between the
real and synthetic data confirm the validity of the simulation
platform used for data synthesis. The synthetic data can be
used to test hypotheses and train machine learning models for
fraud detection especially when fraudulent activity has been
introduced in the simulation platform.

Results in this study align closely with the findings and
perspectives demonstrated in similar research [9], [10], [11],
[12], [13], [30].

Our model calibration algorithm has been rigorously
tested and validated within the context of a multi-agent
mobile money financial system. However, its applicability to
calibrate complex ecosystems beyond the financial domain
remains unexplored and warrants further investigation.
Additionally, potential computational costs associated with
this algorithm were not examined in this study and could
be addressed in future research. Despite these limitations,
MoMTSim effectively produces substantial and realistic
synthetic financial datasets, suitable for various financial
analytics applications.

V. CONCLUSION
This study developed and demonstrated an iterative cal-
ibration algorithm for multi-agent systems, significantly

improving the realism and accuracy of simulations such
as the MoMTSim platform, which models mobile money
transactions. Our method represents a departure from tra-
ditional static calibration techniques, allowing for dynamic
adjustments based on real-world data and emergent behav-
iors. The model calibration approach relied on clusters of
behaviors of agents and actors, behaviors of agents only, and
behaviors of actors only. This was carried out with the help
of a behavioral questionnaire and real transaction data for
determining missing behaviors, removing invalid parameter
sets, and adding new parameters in the agent model through
the iterative calibration process.

This study successfully demonstrated the usage of the
calibration algorithm in the MoMTSim platform for the
synthesis of mobile money transactions. The degree to which
the synthetic data generated with MoMTSim mirrors the
real data was determined using the SSE method, KS test,
and Bland-Altman plots. In particular, the SSE method
computes the delta between the real and synthetic mobile
money transaction datasets. We showed that the generated
data statistically resembles the real data and this affirms our
calibration approach. Also, the findings in this study are
consistent with results from related studies [9], [10], [11],
[12], [13], [30].

Future work could extend the validation of our model cal-
ibration algorithm to additional domains such as healthcare
and urban planning. It will also be important to assess the
computational costs associated with this method. Despite
these limitations, our approach refines the accuracy of sim-
ulations, offering researchers and policymakers insights into
complex systems and enabling the generation of extensive
synthetic datasets for financial applications.
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