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ABSTRACT The enhanced functionality of the smart grid depends on the robust interconnection between its
physical and cyber-layer components. Two distinct categories of control data packets exist within smart grids:
fixed-scheduling (FS) and event-driven (ED). An intelligent routing strategy is required to satisfy latency
requirements for FS and ED packets across various quality-of-service (QoS) levels and must be resilient
to failures. Our proposed software-defined routing strategy balances requirements by dynamically adjusting
decisions based on packet types. It prioritizes paths with lower latency and higher throughput for ED packets
while prioritizing paths with higher redundancy and lower congestion for FS packets. This strategy switches
between proactive and resilient modes based on network conditions. First, the proactive routing module
(PRM) utilizes a graph neural network (GNN) and a Q-learning (QL) algorithm to fix sub-optimal routes for
efficient packet delivery under normal conditions. Second, the resilient routing module (RRM) combines
a deep Q-network with GNN to select optimal routes that remain viable even during failures, ensuring
continued operation and robustness. Both modules update the queue service rate (QSR) using QL-agent
while avoiding congestion. The GNN ensures proactive module selection based on excessive congestion
violations indicating failure conditions. Given the efficient performance of the PRM in normal conditions and
the resilience of the RRM under failures, the proposed strategy presents a dual-mode routing that minimizes
overhead with a high level of resilience. The proposed approach, evaluated using the IEEE 39-bus test system
cyber-layer, effectively ensures desired QoS routing regardless of the conditions of the cyber-layer.

INDEX TERMS Smart grids, software-defined routing, data traffic prediction, graph neural network, deep
Q-networks, resilient proactive routing.

I. INTRODUCTION
In light of advancements in traditional power grids, smart
grids offer numerous consumer benefits, including increased
reliability, economic viability, operational effectiveness,
environmental friendliness, and security [1]. The cyber layer
receives two distinct types of packets from field devices
such as actuators and phasor measurement units (PMUs):
event-driven (ED) and fixed scheduling (FS) packets [2].
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Under normal conditions, FS traffic occurs at predefined
intervals to ensure uninterrupted monitoring and control
of the power system. However, ED packets are generated
during emergencies like inclement weather, physical attacks,
vandalism, etc. As a result, the ED traffic follows a pattern
of sporadic arrivals related to unexpected emergencies.
In addition, timely delivery of ED packets is vital to handle
any emergency event effectively. Therefore, an efficient,
resilient routing strategy is a proactive one capable of
dynamically switching transmission between both types of
packets depending on network conditions. Such a routing
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strategy must be capable of avoiding congested routes while
being immune to the unexpected failure of communication
nodes in the cyber layer.

The fundamental prerequisite for avoiding a congested
or failed route is global observability and rapid net-
work state updates, which can be accomplished using
the software-defined networking (SDN) paradigm [2].
OpenFlow [3] is a communication protocol that grants
network-based access to the forwarding plane of the router
or forwarding switch. It is used by the SDN paradigm to
facilitate communication between the SDN controller and
switches in the cyber layer of the smart grid. Separating
the control plane from the data plane in SDN unlocks the
possibility of integrating advanced intelligence, enabling
smart grids to adopt adaptive routing strategies. SDN
generates a forwarding rule and installs it on OpenFlow
switches along the path from source to destination. Changing
routes is necessary to avoid congested switches as well as
failed ones. To switch to a new route, we need to set up a new
path from the central control of the network to the switches
along the new direction. This route installation incurs delay,
which causes additional packet delays and eventually raises
the percentage of packets that do not meet the ED and FS
latency constraints.

To avoid route installation delays, we proposed an adaptive
routing strategy in SDN using RL, as described in [2]. In [2],
we configured distinct queues for forwarding ED and FS
packets. This separation ensures that ED packets are not
impeded by FS packets when these packets are forwarded
using a single queue. TheRL-based routing approach satisfies
various QoS (i.e., the percentage of packets that fail to meet
the latency thresholds, packet loss, and average latency)
achieved by selecting a sub-optimal route and adjusting the
QSR (It measures how many packets can be served by the
switch’s queue in a given amount of time) based on the arrival
rate. As we adapt the QSR tomatch the arrival rate for ED and
FS packets, the already-received packets persist in congesting
the forwarding switches. Hence, some packets fail to meet
their required latency thresholds.

To address the issue of congestion in the forwarding
switch, we proposed a GNN-based proactive routing strategy
in [4]. This strategy involved selecting a sub-optimal fixed
route, predicting congestion levels at the forwarding switches
in real-time, and proactively adjusting queue service rates
to accommodate the congestion and meet the desired QoS
requirements. While our routing strategy in [4] satisfies
all the intended QoS standards, it relies on a pre-fixed
suboptimal route. Hence, the strategy is vulnerable to failure
if a forwarding node malfunctions during real-time routing
operations. To summarize, our previous work in [2] utilizes
a data-driven approach based on QL, but it cannot predict
future traffic congestion. In another work in [4], we employ a
data-driven approach using GNN and a QL-based adaptive
routing algorithm. However, this approach is not adaptive
to switch failure conditions in the cyber layer of the smart
grid. In this paper, we aim to propose a resilient, proactive

routing strategy operating in dual mode (i.e., PRM, RRM)
based on cyber layer conditions. The proposed strategy
avoids congestion and is adaptive to node failure conditions
to meet the desired QoS criteria under normal and failure
conditions. The QoS requirements for network operations
are crucial for the effective utilization of resources and
immediate response during emergencies. In regular scenarios,
the network resources must be used optimally to achieve
the desired latency and packet loss for all types of traffic,
particularly for ED packets. Hence, under failure conditions
such as switch failure, timely and accurate communication
is critical for the next course of action. Resilient network
operations, such as RRM, help to maintain the stability of
the network by constantly redirecting the traffic around the
paths that are either unavailable or congested. This flexibility
ensures that QoS is not compromised during disruptions and
improves the grid’s reliability. The main contributions of the
dual-mode resilient, proactive routing strategy are as follows:

• First, we propose a dual-mode routing strategy based
on normal and failure conditions of the cyber layer.
Under normal conditions, the PRM utilizes GNN and
RL techniques to proactively update the QSR on a fixed
source-destination path [4]. Under failure conditions, the
RRM combines deep Q-network (DQN) and GNN to
select feasible routes.

• Second, we employ DQN agents trained to consider all
outgoing ports. Their task is to find optimal and alternate
routes in the event of failures, avoiding overloaded and
failed nodes. DQN agents ensure timely transmission
of ED and FS packets with low latency across the
cyber layer. By predicting congestion and failures in the
cyber layer, we formulate the ahead-of-time route that
eliminates the route installation delay incurred by SDN.

• Third, we develop a GNN-based prediction module
integrated into the intelligence plane to predict all out-
going port traffic conditions. The proposed GNN-based
prediction model is then compared with multi-layer per-
ceptron (MLP), convolutional neural network (CNN),
and long-short-term memory (LSTM).

• Fourth, we test our proposed routing strategy using the
cyber layer of the IEEE 39-bus test system [5] under
both normal and failure conditions. Our investigations
reveal that the proposed routing strategy, namely PRM
and RRM, effectively guarantees the desired QoS for
the smart grids, regardless of whether the cyber layer is
functioning normally or experiencing failure.

The remainder of the paper is organized as follows. Related
works are discussed in Section II. In Section III, the
system model is presented. The problem statement and the
proposed resilient proactive routing strategy are presented
in Sections IV and V, respectively. Section VI presents
the implementation details, hyperparameter optimization,
prediction performance metrics, results, and discussions.
Finally, conclusions and directions for future research are
presented in Section VII.
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II. RELATED WORKS
In this section, we summarize related works on data
routing in the smart grid and prediction models in data
and transportation networks that motivated us to build the
prediction model of the cyber layer network conditions.
In addition, we summarize works that used DQN as a solution
to the routing problem.

A. TRADITIONAL ROUTING STRATEGIES
To mitigate the overloading of data networks due to emer-
gency conditions, the works in [6] devised a load-balancing
following position-based QoS-aware protocol. The work
in [7] proposed a data collection strategy that considered FS
traffic only. The work in [8] studied the relationship between
throughput and transmission latency for smart meter data
transfer while satisfying latency requirements. The objective
of the multi-cast routing strategy proposed in [9] was to
reduce the end-to-end delay while simultaneously satisfying
bandwidth limits. The work in [10] introduced heuristic
greedy algorithms designed for data routing where there was
either no demand for latency or only a minimal latency
requirement exists. An opportunistic routing approach for
power line communications was proposed in [11] to reduce
the delay associated with the delivery of packets.

B. SDN-BASED ROUTING STRATEGIES
By exploiting the flexibility of SDN, the work in [12]
proposed an SDN data routing algorithm that guarantees
QoS constraints and controls congestion in smart grids.
However, the proposed strategy did not consider the type of
packets used. A risk-aware route planning mechanism for
an SDN based on an evolutionary algorithm was proposed
in [13]. The work in [14] investigated various traffic
flow routing strategies while considering various service
classes required to increase the system’s dependability.
Additionally, a content-aware queuing algorithmwas adopted
to maximize capacity for different types of traffic. In the
queue management system detailed in [14], lower priority
packets were discarded to prioritize data packets with higher
priorities. In [15], the authors proposed an SDN-based
routing system that achieved low end-to-end delay with high
delivery ratios by employing global load-balanced routing in
an advanced metering infrastructure (AMI) communication
network. A fog-enabled smart grid data transfer approachwas
proposed in [16] based on the Dijkstra algorithm.

C. PREDICTION IN DATA NETWORKS
To the best of the authors’ knowledge, no existing work has
explored predicting ED traffic or utilized such predictions in
the routing process within the cyber layer. Previous studies
have predominantly concentrated on forecasting traffic
intensity in data networks. One approach for forecasting
sensory input in wireless sensor networks was proposed
in [17], which employed a 1-D CNN with a bi-directional
LSTM. A model proposed in [18] to predict the network’s

future status to proactively reduce congestion problems.
A hybrid model combining LSTM and MLP was utilized
in [19] to estimate network traffic based on previous
traffic observations; however, this work did not consider
traffic classes that may display stochastic arrival patterns.
In addition, the work in [20] presented a deep learning model
for predicting future traffic loads and congestion events in
SDN-based Internet-of-Things (IoT) networks. The authors
in [21] introduced a model for predicting data traffic in a
cyber-physical smart grid using GNN. The model utilizes a
unique dataset of emergency events (i.e., ED packets) in the
smart grids.

D. PREDICTION IN TRANSPORTATION NETWORKS
We examine prediction models in transportation networks
because of the resemblance between the data and trans-
portation networks. In particular, data packets and routing
links can be similar entities to roads and vehicles in this
analogy. In [22], a temporal CNN model was proposed for
short-term traffic forecasting while capturing the temporal
and spatial characteristics of the traffic flow. The work
in [23] presented a city-wide deep-learning prediction model
of traffic congestion based on image data. The work in [24]
proposed a hybrid deep learning method for long-term traffic
forecasting based on wavelet decomposition and a CNN-
LSTM model. Additionally, in [25], LSTM was adopted to
extract spatial-temporal dependencieswhile estimating future
traffic flow.

E. DEEP Q-NETWORKS IN ROUTING SOLUTIONS
Deep Q-learning (DQL) was adopted in [26] as a potential
routing scheme for application in SDN data center networks.
In this work, DQN agents were trained to meet the
various requirements presented by mice and elephant flows.
To address the routing problem, the work in [27] adopted
a dual double QL (DDQL) architecture with prioritized
memory experience and the ϵ-greedy policy. This design
improved learning consistency and addressed the issue of
inflated Q-values. In [28], a DQN approach was adopted
for routing optimization in SDN using a unique ‘‘conjoint
optimization’’ mechanism to address the challenge of global
routing. A DQL method for solving the global routing
problem was proposed in [29]. This method enabled an
agent to produce an optimal policy for routing problems
by leveraging the conjoint optimization mechanism of deep
reinforcement learning.

F. LIMITATIONS
The limitations of existing works can be summarized as
follows:

• Traditional Routing: Traditional routing solutions
depend on local observations at the routing node. Most
of the existing works, e.g., [6], [7], [8], [9], [10], and [11]
did not consider the mutual interaction between FS and
ED packets and their competition on network resources.
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FIGURE 1. Illustration of the system model.

None of these approaches were adaptive to network
conditions.

• SDN-based Routing: Although these solutions [12],
[13], [14], [15], [16] relied on global observations, they
did not adapt to network conditions. Accurate math-
ematical models are necessary for handling different
types of data traffic.

• Prediction Works: Prediction models adopted in [17],
[18], [19], [20], [22], [23], [24], and [25] were not
directly applicable to the cyber layer of smart grids
because there was no ready dataset to train these models.
In addition, none of the models are topology-aware
models for time-series prediction.

• DQN Applications: DQN used in [26], [27], [28],
and [29] are not directly applicable in the cyber layer
of the smart grids. In the context of smart grid routing,
novel routing data was generated specifically for the
application of DQN.

III. SYSTEM MODEL
Figure 1 illustrates the system model and the architecture of
the proposed SDN-based resilient, proactive routing strategy.

The interconnection between smart grid field devices (e.g.,
PMUs and actuators) and the cyber plane constitutes a cyber-
physical plane. The control plane includes an SDN controller
that provides a global perspective of the cyber plane.
On top of the control plane, the PRM and RRM modules
interconnected with the GNN-based prediction model have
been included as the intelligence plane. The details are as
follows.

A. CYBER-PHYSICAL PLANE
The components of this plane consist of the physical
and cyber layers that are tightly integrated, in addition to
the link between the field devices in the physical layer
and the OpenFlow switches in the cyber layer. The following
are the specifics:

• Physical Layer: This plane consists of power nodes and
field devices. Power nodes (substations) include power
generation and consumption nodes, while field devices
include PMUs and actuators. These field devices are
installed on the power nodes for real-time monitoring.
PMUs are activated to generate a signal for any sensor
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update, which is subsequently transformed into a data
packet and sent to the control center (CC) over the cyber
plane. Similarly, actuators receive signals/data packets
from the CC via cyber plane switches. As previously
mentioned, these data packets fall into the FS and ED
categories. The CC here is the server of the utility office.

• Cyber Layer: In a smart grid, the cyber layer is
where the CC and the field devices in the physical
plane can communicate. The cyber plane must maintain
connectivity with the field devices and the CC of the
grid. As per the forwarding rule (how the packets
will reach the destination) implemented by the SDN
controller, OpenFlow switches [3] are specifically
engineered within the cyber layer to direct incoming
packets to their designated outgoing ports.

B. CONTROL PLANE
As shown in Figure 1, the control plane is connected with
the cyber-physical plane through the southbound interface
of the OpenFlow protocol [3]. The controller detects the
cyber layer topology using the Link Layer Discovery Protocol
(LLDP) [30]. The controller will send state query messages
to each switch of the cyber layer to collect the current states
of the switches regularly. This information includes the status
of the flow table, ports, and the number of packets currently
in the queues. When a new packet enters the network, the
controller will first engage with the intelligence plane to
determine the most efficient path for the packet. After that,
it will install those paths to the OpenFlow switches alongwith
the path the packet will travel from its origin to its destination.
If the type of service (ToS) bit indicates an ED packet, then
the optimal route is specified using the ED queue state. If this
is not the case, the computation will be according to the FS
queue state information.

C. INTELLIGENCE PLANE
The plane shown in Figure 1 consists of the model’s intel-
ligent components, which include a GNN-based prediction
module, a PRM (RL-based sub-optimal fixed route), and
an RRM (DQN-based feasible routes). The plane serves as
the core component of the system. The GNN prediction
determines the network condition in the cyber layer of the
smart grid, indicating whether there is a failure (such as
a high congestion violation indicating a node failure) or a
normal condition. Under normal conditions, the PRMmodule
operates, while under failure, the RRM module functions as
described next.

• Proactive RoutingModule (PRM): This module works
when the cyber layer operates under normal conditions.
The QL agent learns to find fixed sub-optimal routes
from source to destination. Another QL agent proac-
tively updates the QSR using GNN-based predicted
future conditions of the network to reduce congestion
in the queues on fixed sub-optimal routes from source
to destination. QL-agent lowers the overhead and

complexity of operating PRM, making it a lightweight
and simple-to-operate system.

• Resilient Routing Module (RRM): This module is
selected when there is a failure condition in the cyber
layer. In this module, the DQN agents learn to find
feasible routes under failure conditions in the cyber layer
and proactively adjust the QSR to reduce congestion.
This module supplies alternative routes to adapt to
the failure conditions. The training of the DQN agent
considering all the outgoing interfaces of the switches
incurs a significant computational burden but is resilient
in dealing with failures.

Intelligent routing policies are updated dynamically to reduce
the end-to-end latency for ED and FS packets and to
maximize the percentage of packets that satisfy the latency
threshold under any condition (failure or usual) of the cyber
layer of the smart grids. This plane obtains the network state
information from the control plane using the northbound
interface of the OpenFlow protocol [3]. The GNN-based
model predicts the network’s future condition using these
network statuses. The RL and DQN agents use this infor-
mation (predicted by the GNN model) to design intelligent
routes that avoid congestion and combat failure. To combat
failure conditions, reduce congestion, and set an adaptive
QSR, the PRM, RRM, and GNN-based prediction models
collaborate.

D. DATA TRAFFIC PATTERN AND QUEUING SYSTEM
The data traffic pattern and associated queuing models are
explained as follows:

• Data Traffic Pattern: The arrival of FS packets is a
deterministic process with a defined rate λFS, whereas
the arrival rate of ED packets λED(t) is determined by
different conditions such as harsh weather, fuel supply
shortfalls, physical attacks, etc. [31] during time t ∈ T .
As a result, the ED packet follows a stochastic process
that features an arrival rate λED(t) that varies over time
T = {1, 2, . . . ,T }. Let the set of ED and FS packets,
represented by PED(t) and PFS(t), available during t ∈
T , respectively. Therefore, the set of total packets in the
cyber layer can be found using P(t) = PED(t)∪PFS(t).

• Queuing System: Two hierarchical token buckets
(HTB) [32] class high-priority and low-priority queues
are set up for each OpenFlow [33] switch to serve
ED and FS packets separately. HTB class queues are
functional for managing howmuch outbound bandwidth
is used on a particular link because they allow different
types of traffic to be sent via various links using
a single physical link. HTB uses the token bucket
filter algorithm [34] to shape traffic. This algorithm
is independent of the interface characteristics. Hence,
it does not need to be aware of the outgoing interface’s
underlying capacity. The maximum buffer size for each
ED and FS queue type is represented by the symbol Cx,
where x ∈ {ED,FS}.

VOLUME 12, 2024 111173



M. A. Islam et al.: Software-Defined Networking-Based Resilient Proactive Routing in Smart Grids

FIGURE 2. An illustration of the cyber layer of the IEEE 39-bus test system and a mapping of
emergency events that have occurred in the different states connected to the Eastern
Interconnections in the United States of America [35].

IV. PROBLEM STATEMENT
We define the cyber layer of the smart grid as an undirected
graph as

G = (V, E), (1)

where V = {sw1, sw2, . . . , swN} is set of OpenFlow switches
and E = {eij, ejk, . . .} is the set of links that connect those
switches. The SDN controller must discover the best route
(e.g., swsrc −→ swi −→ swj −→ swk −→ swcc)
from source to destination (CC) for a given packet in the
cyber layer to meet a predefined QoS for ED and FS packets
under both normal and failure conditions. The installed best
and next best route must satisfy various latency thresholds
based on the types of traffic (ED or FS) while minimizing
end-to-end latency and maximizing reliability. Since the ED
packets are generated in response to emergency conditions,
each ED packet must arrive within the restricted threshold

limits. Therefore, it is crucial to minimize the average packet
delay to keep it low or eliminate the percentage of ED packets
that do not meet the specified criterion.

The end-to-end latency for each data packet is determined
by the total queuing and propagation (negligible) delays
across all the switches and links from source to destination.
The average delay for each type of traffic can be derived by
aggregating the per-packet latency and dividing it by the total
number of packets available within T . LED and LFS denote
the average end-to-end delay for the ED and FS packets,
respectively. The packet loss rate is the ratio of the number
of packets dropped to the total number of packets sent to
a specific switch for a specific type of packet. The average
packet loss ratio is determined for each type of traffic by
summing the per-switch packet loss rate and dividing it by the
total number of packets within T . DED and DFS represent the
average packet loss ratio for ED and FS packets, respectively.

111174 VOLUME 12, 2024



M. A. Islam et al.: Software-Defined Networking-Based Resilient Proactive Routing in Smart Grids

The resilient routing strategy formed as the optimization
problem presented below.

min
A
{(LED,LFS), (DED,DFS)},

subject to : LED ≤ Lmax
ED , LFS ≤ Lmax

FS ,

DED ≤ Dmax
ED , DFS ≤ Dmax

FS . (2)

The desirable routing strategy aims to discover the best
routing paths (with alternative paths) and a service rate for
the ED and FS queues at the OpenFlow switches, such that
the average latency and packet loss rate satisfy Lmax

ED/FS and
Dmax
ED/FS, which denote the latency thresholds on the average

latency and packet drop, respectively, for ED and FS traffic.
The standard range for latency is typically between 20 and
200 milliseconds, and a high level of reliability, with a packet
loss rate of up to 99.99%, is required [36]. An additional
(neutral) constraint for each switch is the number of incoming
and outgoing traffic equals. It is the default constraint that
the vendor design specification guarantees. The proposed
routing strategy aims to maintain equal incoming and out-
going packet flows at OpenFlow switches by implementing
dynamic traffic allocation based on real-time grid response,
alternative path discovery, traffic prediction, proactive
management, service rate adjustment, and vendor-specific
constraints.

V. PROPOSED RESILIENT PROACTIVE ROUTING
The proposed routing strategy will determine the routing
option based on the GNN prediction update under normal
or failure conditions. Under normal conditions, the PRM
utilizes a GNN and a QL agent to fix sub-optimal routes for
efficient packet delivery. In the event of failure, the RRM
combines GNN and DQN to choose viable routes in the
cyber layer of the smart grids. Both modules update the
QSR using QL-agent for adaptive QSR based on the arrival
rate of the packets while avoiding congestion. The routing
operation for normal conditions will be selected, following
the approach used in our prior work [4] i.e., PRM. For the
failure event, the DQN agents will require the current and
future conditions of the network to select the path that is
most efficient in terms of end-to-end latency per packet while
having alternative paths that are next-best at the time of
failure conditions in the cyber layer of the smart grid. It is
essential to develop a prediction model to forecast the future
conditions of ED traffic, providing DQN agents with insights
regarding future conditions (congestion/failure). A dataset
representing the ED traffic pattern is necessary to train the
prediction model. The trained prediction model will be able
to offer future state information so that the DQN agents
can be adaptive to both the current and future states of ED
traffic to find the paths that avoid and alleviate congestion
while bypassing failure nodes. This results in the assimilation
of data generation, the development of prediction models,
and the DQN routing mechanism, enabling a comprehensive
resilient-proactive routing strategy detailed below.

A. DATA GENERATION AND ENHANCEMENT
In our earlier work [21] on the traffic data prediction
in cyber-physical smart grid, the Electric Emergency and
Disturbance Report [31] of USA was used to generate ED
packets across the cyber layer of the smart grid. The report
provides several emergency events along with their starting
and ending times, affected areas, and event types, such as
vandalism, system malfunctions, transmission interruptions,
sabotage, severe weather, etc. In [21], we used the emergency
events over 5 years from 2017 to 2021 to generate the ED
traffic. In this propsed work, we have generated ED traffic
data for the cyber layer shown in Figure 2b.

Mininet [37] was utilized to simulate the cyber layers based
on the routing protocol of [2]. Next, the number of ED packets
waiting at each switch is counted and recorded as time-series
data. For example, the number of packets waiting in a queue at
the switch is denoted by the label sw4, depicted in Figure 3a.
The duration of five years is represented by the timestamps
0 − 6, 468 in Figure 3a. The queue length represents sparse
time-series data because emergencies are rare. For example,
Figure 3a shows the queue length data of switch sw4 related
to the emergency occurrences in Mississippi from 2017 to
2021. Due to the sparse aspect of the time-series queue length
data, it is arduous to train a machine learning model based
on gradient descent optimization to predict the future queue
length of ED packets at each switch. Hence, the conversion
of sparse data into dense data is required. As FS packets
are generated due to regular updates from the grid, a regular
arrival pattern with a load of 60 packets per second [38] is
used for the FS packets.

1) DATA CONVERSION
It is not essential to make an accurate prediction of the length
of the ED packet queue on each switch. Instead, it is sufficient
to be aware of the current state of the queue (i.e., congested,
as the queue length approaches a certain threshold). When
such information is available, congestion can be avoided,
which makes proactive routing possible. As a result, the
purpose is not to estimate the precise length of the queue;
rather, it is to predict the moment when the ED queue will
begin to reach the threshold for queue capacity. The sparse
queue length data has an embedded time stamp for when an
ED queue is congested. As a result, when a certain threshold
for queue length is exceeded, we convert the queue length
data into a timer indicator. Let xn denote the queue length at
timestamp n,Cth is the queue length threshold, then the timing
indicator yn is described as

yn =

{
yn-1 + 1, for xn ≤ Cth,

0 for xn > Cth,
(3)

According to the definition of (3), yn is a dense signal unlike
xn. Given the value of yn, the objective is to predict the value
of yn+k for some duration k . This prediction of yn+k can
then be interpreted as an indicator of congestion. However,
the dense data from this conversion procedure has a high
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FIGURE 3. Illustration of dense timing indicator data for switch sw4 that corresponds to sparse ED queue length.

peak-to-average ratio (PAR). If threshold violations occur
far apart in time, y will have a large amplitude. If these
events occur near each other, y will have an extremely low
amplitude. This high PAR data may skew the results of the
prediction model. Data normalization is a solution that can
be used to address this problem.

2) DATA NORMALIZATION
Normalizing y so that the influence of each event has the same
amount of impact on the overall prediction loss is one way to
reduce the PAR. It is possible to apply the hyperbolic tangent
(tanh) function in such a way that

yn← tanh (yn/ymax), (4)

where ymax is an estimate of the maximum value of yn.
In contrast to the sparse queue length data displayed in
Figure 3a, the normalized timer indicator signal shown in
Figure 3b reflects a dense signal. The threshold is set at 80%
of the queue’s maximum capacity. When the queue length
equals or exceeds 80% of the queue’s capacity, a congestion
event is encountered, as indicated by the falling edge of the
signal in Figure 3b.

We generate a dataset of ED traffic patterns by applying
the previously mentioned strategy to the cyber layer shown
in Figure 2. This dataset is adopted to implement a prediction
model and data-driven routing strategy.

B. PREDICTION OF CONGESTION EVENTS USING GNN
AGNN is a deep learning architecture developed specifically
for graph-structured data [39]. This type of architecture
allows for associated feature vectors to be assigned to the
nodes, edges, and the entire graph itself. The most necessary
property of GNN is its ability to simultaneously capture
features at both the adjacency level and the node level, which
allows it to capture spatiotemporal features in time-series
prediction.

The cyber layer shown in Figure 2b can be represented
as (1). For a given switch swi, the feature is determined by the
timer indicator signal y, e.g., as shown in Figure 3b for switch
sw4. On the other hand, the connectivity feature is described

by the adjacency matrix given in (5).

Aij =

{
1 if swi→ swj,

0 otherwise,
(5)

where swi and swj are OpenFlow switches in the cyber layer.
The Laplacian of graph G in (1) can be formulated as

L = InAD−1, (6)

where In is the identity matrix,A is the adjacencymatrix in (5)
while D is the diagonal degree matrix such that Dii =

∑
j Aij.

The eigendecomposition of L can be represented as L =
U3UT where U and 3 stand for the matrix of eigenvectors
and the diagonal matrix of eigenvalues, respectively, and T
stands for the transpose operator.

The graph signal y (switch features) is filtered by a kernel
gθ resulting in z = gθ ∗G y = gθ (U3UT)y = Ugθ (3)UTy
where ∗G denotes the graph convolution operator, gθ (3) =
diag(θ) is a nonparametric kernel, and θ is a vector of
Fourier coefficients [40]. However, the nonparametric kernel
is nonlocalized and presents high computational complexity.
Hence, gθ is approximated by D-localized Chebyshev
polynomials [40], and hence, we have

z =
D−1∑
d=0

θdTd (L)y, (7)

where θd denotes the learned Chebyshev coefficients, the
Chebyshev polynomial of order d is Td (L) = 2L ◦Td−1(L)−
Td−2(L), with T0(L) = In,T1(L) = L, and ◦ is the Hadamard
(element-wise) matrix product. In practice, a rescaled version
of L, namely, 2L/λmax − In is considered instead of L with
λmax being the largest eigenvalue of L. This is to confirm the
orthogonality of the basis Td (L).

In this paper, a multi-layer GNN model is adopted where
the input graph signal y is filtered by a Chebyshev according
to (7), then a ReLu activation function is adopted, followed
by another Chebyshev layer and ReLu function, etc. Finally,
a dense layer is adopted to predict y a 3 step ahead to
install route and adaptive QSR in advance. The optimal
hyperparameters are given in Section VI-C.
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To compare, we also investigate a collection of
topology-unaware prediction models. In these models, the
interactions (adjacency matrix/connectivity) between the
switches are not considered, but the timer indicator signals
y. Deep prediction models adopted in [21] based on MLP,
LSTM, and CNN are considered, with each model trained
to employ y data from all the switches. The hyperparameter
optimization procedures are described in Section VI-C.

C. PRM: PROACTIVE ROUTING STRATEGY
Under normal conditions, the PRM utilizes a GNN and
a QL agent to fix sub-optimal routes for efficient packet
delivery. PRM updates the QSR using QL-agent for adaptive
QSR based on the arrival rate of the packets while avoiding
congestion. The routing operation for normal conditions will
be selected, following the approach used in our prior work [4]
i.e., PRM. We train two Q-learning agents: one to identify
sub-optimal paths from the source to the destination and
another to determine the adaptive queue service rate. The
algorithm 2 outlines the process of training the QL agent
for the QSR setting. The process for training QL agents for
routing actions is summarized as follows.

1) STATE
The state is defined by the collective queue status of all
OpenFlow switches in the cyber layer and the arrival state
of the packets that can be divided as the low, medium, or high
arrival rate. The elaborate procedure has been explained
in [4].

2) ACTION
The routing action encompasses all the possible routes
from the source to the destination, while the QSR action
represents the discrete levels of adjustable QSR at a switch.

3) REWARD
To compute end-to-end delay, the queuing delay is the major
delay whereas the delay caused by the communication link
itself is negligible in comparison to the overall delay per
packet. Therefore, the reward function is formed to prioritize
the depletion of the queue for the designated switch.

The GNN prediction model is used to forecast the
forthcoming congestion state of the cyber layer. The QSR
agent updates the QSR of the queue at a specific switch based
on predicted future congestion. Once adequately trained,
the routing agent, QSR setting agents, and GNN prediction
model collaborate.

D. RRM: DQN-BASED RESILIENT ROUTING STRATEGY
DQN is amethod that combines QL and deep neural networks
(DNN) to provide a good generalization capacity [41]. DQN
uses DNN, such as CNN, to estimate the Q-value rather
than a Q-tabular form. In this sub-section, we begin by
elaborating on how DQN is used to formulate resilient
routing as defined in Section IV to generate routes that

satisfy the latency threshold for ED and FS packets in
smart grids. Since the arrival rate of ED packets varies
based on whether or not an emergency event is occurring
and the severity of the event, it is not guaranteed that the
chosen route will meet the intended latency and packet loss
thresholds for each traffic type. It is necessary to mitigate
congestion to minimize the latency experienced by each
packet. The route must be reinstalled to reroute a packet from
a congested path to a less congested path. It is evident that
route re-installation from the controller is required to avoid
congestion/failure; nevertheless, this route installation results
in additional latency, which may also increase the latency
per packet and violate the latency thresholds. Consequently,
we intend to predict congestion/failure using a GNN-based
time-series prediction model, enabling the SDN controller
to install the route in advance and eliminating the route
installation delay. In addition, we train another QL agent
to proactively reconfigure the adaptive QSR to mitigate the
queue’s underlying congestion. The DQN routing strategy is
represented by the relational tuple (S,A,R,S ′), where
• S is the state space defined by the queue’s current and
future predicted state,

• A is the action space defined by the possible route from
source to destination,

• R is a reward function,
• S ′ is the updated state after the action is carried out.

1) STATE
The state instances at time t are reflected by the present
and future states of all of the queues for ED packets on the
switches that comprise the cyber layer of the smart grid. The
state instances can be represented by

s = [ssw, ¯ssw],

ssw = [ρ(ED,sw(1,K)), ρ(ED,sw(2,K)), . . . ..ρ(ED,sw(N,K))],

¯ssw = [ ¯ρ(ED,sw(1,K))
, ¯ρ(ED,sw(2,K))

, . . . . ¯ρ(ED,sw(N,K))
], (8)

where ssw and ¯ssw denotes the current and future queue state
of all switches in the cyber layer, respectively, ρ(ED,sw(1,K))
is the state of the ED packet queues on all of the interfaces
linked to switch sw1’s neighboring switches, K is the number
of those neighboring switches, N denotes the number of
switches in the cyber layer, and ¯ρ(ED,sw(1,K))

represents the
predicted state of ρ(ED,sw(1,K)). To construct the state space,
we first address the issue of data sparsity by converting
the queue length data into a timing indicator utilizing (3).
Next, we normalize the data utilizing (4) to address the PAR
previously discussed in this section. To compute the future
state, we adopt a prediction model based on GNN. The details
of this model are presented in Section V-B.

2) ACTION
The action spaceA is defined based on two action setAr and
As as follows

A = [Ar,As], (9)
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whereAs denotes the configurable discrete levels of QSR for
the queues on a given switch, and Ar can be represented as

Ar = {α1, α2, α3, . . . . , αP }, (10)

where action αi is any feasible path.
Feasible Path Search (FPS): This algorithm produces the

routing action space Ar with G = (V, E), swsrc, swcc, and
P as inputs. In the cyber layer of smart grids, we use Yen’s
technique [42] to determine the P loopless shortest paths
that lead from source switches to the destination. When P is
sufficiently large, the action space will have many pathways.
Nevertheless, the expense of training grows in proportion as
P increases.

3) REWARD
The objective stated in (2) is to be optimized by the DQN
agents while complying with the associated constraints.
In light of the definitions of the state space and action space,
we propose two distinct reward functions: one for discovering
the optimal route from the source to the destination and
another for the adaptive discrete level of QSR by the QL
agent. We have

RED =

{
η1 if LED ≤ Lmax

ED ,

−η1 otherwise,
(11)

RFS =

{
η2 if LFS ≤ Lmax

FS ,

−η2 otherwise,
(12)

where LED and LFS represent the time needed to transit
from the source to CC for ED and FS packets, respectively,
Lmax
ED and Lmax

FS denote the latency thresholds for ED and FS,
respectively, and η1 and η2 are big numbers.

The following is the definition of the reward function used
to train the QL agent for configuring adaptive queue service
rate:

RSR = η3(CED − ρED), (13)

where CED and ρED are maximum queue capacity and current
queue length, respectively. η3 is a large integer. The reward
function defined in (11) promotes the routing mechanism that
discovers the route that avoids congestion and minimizes the
end-to-end delay by offering a significant reward. In addition,
the reward function in (13) benefits the routing mechanism
that empties the ED and FS queues as quickly as possible,
as this mitigates congestion and decreases the average packet
loss rate.

E. RESILIENT PROACTIVE ROUTING
Resilient proactive routing operates in dual modes: proactive
routing mode (usual condition) and resilient routing mode
(failure). In proactive mode, the PRM module is used as in
our prior work [4] and summarized in Section V-C. In RRM,
the DQN agents’ training is based on the QL algorithm,
which uses deep CNN to map the relationship between state
and action and achieve an expedited solution to the issue

of large-scale system state. As was stated before, our goal
is to enable rerouting and reconfiguring of the QSR based
on current and future conditions of the cyber layer of the
smart grid. This allows us to avoid congestion and better
address node failures. Therefore, to mitigate the extra delay
introduced by the installation of forwarding rules, which
results from rerouting and reconfiguration, it’s imperative
to perform rule installation in advance. To do so, a GNN
prediction model is used to determine the future network
condition (ED traffic congestion or failures in the cyber layer)
based on the current state of the network. If the congestion
persists for a duration that exceeds the QSR updating period
(5 seconds), a failure condition occurs in the cyber layer.
If the length of congestion is greater than the QSR interval,
then this is considered a congestion condition. According
to this cyber-layer condition, the routing mode is swapped
between proactive (i.e., PRM) and resilient (i.e., RRM). The
DQN agent chooses an alternative route for any failures along
with the optimal path. The QSR agent updates the QSR of
the queue in the switches along the path from source to
destination based on the predicted congestion event. The SDN
controller will then reinstall the future route and configure the
QSR accordingly. As a result, we train DQN agents to seek
out the best route and QL agents to provide an adaptive QSR.

1) LEARNING FOR DQN ROUTING
In QL, by executing an action at at a state st , an agent learns
the expected discounted cumulative cost Q(st , at ), which is
called Q-value. For a given current state st , the agent chooses
its action at that exhibits the maximum Q-value among all
possible actions in its action spaceA. DQN updates the value
function as follows

Q(st , at )← Q(st , at )

+ α(r + γ max
at+1

Q(st+1, at+1)− Q(st , at )), (14)

where α and γ are the learning rate and discount factor,
respectively, and Q(st , at ) and Q(st+1, at+1) are the Q-value
of current time t and next timestamp t + 1, respectively.

Instead of looking for Q values in the Q-table, the DQN
algorithm uses a deep neural network like CNN to estimate
Q(st , at ), i.e., Q(st , at , θ) ≈ Q(st , at ), where θ stands for the
parameters of the neural network that are the sets of weights
and biases. A loss function is as follows

yt = rt+1 + γQ(st+1, (arg max
at∈A∇

Q(st , at , θ)); θ−),

Loss(θ ) = (yt − Q(st , at ; θ ))2, (15)

where yt represents the desired Q-value, whereas Q(st , at ; θ )
denotes the current best estimate for Q-value; our objective
is to bring the current best estimate for Q-value as close
as possible to the desired Q-value. We use two separate
neural networks, assessed Q-network and target Q-network,
which have the same basic structure to generate the two
distinct kinds of Q-value. The former produces the estimated
Q-value based on the present and future conditions. Every
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episode has a different set of parameters to lessen the loss.
The latter prepares the target Q by producing a Q-value
corresponding to the subsequent condition. Every few steps,
the parameters are updated with the assessed Q-network.
The DQN architecture includes an experienced buffer that
compiles and saves historical information from which the
neural network is trained using a random selection process.

Algorithm 1 DQN Training for Path Selection
Input: α, γ

1 Variables: Ar
2 G(V, E)← Open-Flow Network Discovery
3 Ar=FPS(G = (V, E), swsrc, swcc, P)
4 Initialize experience buffer E to capacity C
5 Initialize current and target action-value functions with

random weights θ and θ−, respectively
6 Initialize state s based on the current and future condition as

given in (8)
7 repeat
8 Based on the probability ϵ, select an action at randomly

from action space Ar ; otherwise select from
at = argmaxat∈A∇ Q(st , at , θ)

9 Select an action from action space Ar randomly
10 Execute the selected action at enabling SDN controller

to install forwarding rule on the switches
11 Obtain updated network state for computing st+1 and

Rt+1
12 Append the interaction data tuple (St ,At ,Rt+1, St+1) in

experience buffer E
13 Select random mini-batch e from E
14 Set target yt = rt+1 + γQ(st+1, (argmaxat∈A∇ Q(st ,

at , θ)); θ−)
15 Perform a gradient descent step on

(yt − Q(st , at ; θ ))2 with respect to θ
16 Set θ− = θ every L step
17 until new packet;

As shown in Algorithm 1, the agent in step 2 uses
OpenFlow Network Discovery to find the network topology
G(V, E). Step 3 involves triggering the FPS to establish
the action space A for the provided topology G(V, E) (for
more details, see FPS under the definition of action in
Section V-D2). During steps 3 and 4, the agent performs
initialization of the E buffer. After that, it sets the default
values for the current value function Q(st, at; θ ) and the
desired value function Q(st, at; θ−), accordingly. These are
approximated by the deep neural networks using θ and θ−

as their parameters. In step 5, the controller supplies state
information to initialize the state space.

2) LEARNING FOR QSR UPDATE
To train the QL-agent that specifies the queue service rates,
the arrival rate of the ED packet Sar is monitored, and actions
As are selected, which update the Q-value QSR as

QSR(st , at )← (1− αSR)QSR(st , at )+ αSR(RED(st , at )

+ γSR max
at+1∈A∫

QSR(st+1, at+1)),

(16)

where αSR and γSR are the learning rate and discount factor,
respectively, and st ∈ Sar and at ∈ As. Since the arrival of
FS packets is a deterministic process with a fixed rate while
the arrival of ED packets is a stochastic process with a varying
rate, the adaptation of the queue service rates is based on RED.

Algorithm 2 QL Training for Service Rate Update
Input: αSR, γSR

1 Variables: QSR,As
2 Initialize: QSR ← All zero
3 repeat
4 Select an action from action space As randomly
5 Compute RED using (13) and monitor the next state
6 Update Q-value QSR using (16)
7 until training is complete;

The training of the QL agents for adaptive QSR is based on
Algorithm 2. The Q-value QSR is initialized with zeros and
an action is selected at random from the action spaceAs. The
reward is then computed using (13) and the Q-value QSR is
updated using (16). Finally, the Q-values QSR are used as the
trained agents for adaptive QSR on the switches, as detailed
next.

F. PREDICTION BASED ROUTING ALGORITHM
Algorithm 3 consists of the summary of the proposed
resilient proactive (i.e., PRM, RRM) routing strategy. The
controller collects the network state and then determines if
the condition of the cyber layer is normal or a failure. For
normal conditions, the controller generates the forwarding
rules using PRM and configures the QSR using QSR for
both ED and FS packets. For the failure condition, the
RRM operates where the DQN agents supply the next best
alternative path to forward the packets from the source to
the destination. In addition, configures the QSR using QSR
as in PRM. Following that, the SDN controller installs the
forwarding rules on the switches along the path from the
source to the destination.

G. COMPLEXITY ANALYSIS
This subsection analyzes the complexity of the scalability
of the proposed routing scheme. The proposed approach
consists of two steps: (a) utilizing GNN to predict the network
condition, specifically congestion or failures, and (b) making
routing decisions using QL during normal conditions and
DQN during failures.

To begin with the GNN prediction model, we initially
find the number of trainable parameters. Each K-localized
Chebyshev layer l has cl channels for 1 ≤ l ≤ L, which
presents K × cl−1 × cl Chebyshev coefficients and cl bias
terms with Nr is neighborhood order. The final dense layer
has |V| × cL dense weights and bias terms. Therefore, the
GNN prediction model has a total number of parameters as

6 = K
l=L∑
l=1

((cl−1 + 1)× cl)+ |V| × cL + 1. (17)
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Algorithm 3 Resilient Proactive Routing Algorithm
Input: 1

1 Variable: t
2 repeat
3 repeat
4 Collect the current and future state
5 Determine whether the network condition is normal

or failure
6 if normal then
7 Determine the best route using PRM
8 end
9 if failure then
10 Determine the best alternative route using

RRM
11 end
12 until new packet;
13 if 1 slots have elapsed then
14 Estimate the arrival rate of ED packets
15 Set the QSR using Q-value QSR
16 end
17 Inform the switches about the forwarding rule
18 Each switch forwards packets based on the forwarding

table
19 t = t + 1
20 until T is complete;

The equation in (17) shows that the number of parameters
in the GNN model is independent of the bus size |V|,
except for the last dense layer. Furthermore, the number
of parameters varies linearly with Nr , the size of the
neighborhood. Additionally, the final dense layer scales in a
linear fashion with |V|, the bus size.
For the QL-based routing decision under normal con-

ditions, the complexity of the Q-learning algorithm is
O((|S|2 · |A|)/(ϵQ3(1 − γ )3)) [4] where |.| corresponds to
the cardinality of space. In this proposed routing system,
it approximates toO((|Ssw×Sar×Sc|2 · |Ar×As|)/(ϵQ3(1−
γ )3)) for discount factor γ and ϵQ is the exploration-
exploitation probability. Hence, the RL strategy presents
polynomial complexity with the state and action space.

The primary factor contributing to the computational
complexity of the RRM routing module (namely, the DQN-
based routing) in the presence of cyber layer failures is the
computation of the neural network. During the testing phase,
the duration of action computations is done by the design of
the neural network used by DQN [27]. The process primarily
comprises a sequence of matrix multiplications, which is
O(n1 × n2 + n2 × n3 + . . . + nd-1 × nd), where ni is the
number of neurons in each layer of the neural network and
d is the number of layers. In our design d = 3, n1=|St|
and nd=|A|. The number of neurons in the remaining layers
(i.e., n2, n3 . . . nd-1) is 64.

VI. SIMULATION
A. EXPERIMENT SETUP
We set up the network topology (cyber layer of the IEEE
39-bus test systems [5] in Figure 2) with the help of the
Mininet [37] emulator, which offers virtual elements that

make it possible to set up a network that is compatible with
the OpenFlow protocol. Pox [43] is an open-source SDN
controller that has been implemented and used to run the
network. The traffic is generated using socket programming
based on the translated timing of real-time emergency events
as stated in [31]. We used Tensorflow-Keras to implement
all the prediction models. Torch is used to implement DQN
agents. In the cyber layer of the IEEE 39-bus test system,
switch sw3 is assumed to be the CC server. The collected
reports for 2017-2021 [31] are converted into 100 minutes.
The first 60 minutes of the simulation are dedicated to data
generation and model training. The last 40 minutes are spent
evaluating the system with PRM and RRM. The arrival
pattern for ED packets is based on the real-time emergency
events discussed in SectionV-A.A regular arrival patternwith
a load of 60 packets per second [38] is used for the FS packets.
The latency thresholds range from 20 to 200 milliseconds,
which conform to most of the QoS standards established for
network performance. These thresholds are crucial for ensur-
ing the reliability of various applications, particularly those
involving real-time services and data-processing tasks [36].
The values were determined using criteria that define the
permissible latency for preserving optimal performance and
customer satisfaction. We set the latency threshold bar at
100 milliseconds for the ED and 120 milliseconds for the
FS packets. This will determine the percentage of ED and
FS packets that failed to reach the control center within the
latency threshold. The target reliability is 99.99% [36], the
standard for crucial networking services and guarantees that
data is not distorted during transmission. The hardware used
for this study has the following configuration: memory 500
GB, AMD EPYC 7402 24-Core Processor × 96, OS 64-bit
(Ubuntu 20.04.4 LTS).

B. BENCHMARK PREDICTION MODELS FOR ED TRAFFIC
STATE
For comparison’s sake, we also investigate several prediction
models (MLP, LSTM, CNN detailed in [21]), which are
developed for all ports to predict the network state in the cyber
layers shown in Figure 2b. The spatial information recorded
by the interaction (adjacency matrix/connectivity) between
the switches is not considered in these models; only the timer
indicator signal y is used at the switches. Each model is
trained as in [4]. Then, the only difference in the RRMmodule
is the consideration of all ports’ traffic rather than a single port
along the sub-optimal route in [4] adopted here as PRM. The
following is a basic description.

1) MULTI-LAYER PERCEPTRON
It is an addition to a feed-forward neural network [44]. The
input, hidden, and output layers are the three different layers
that make up this system [21]. Each layer consists of a
collection of neurons. The input layer gets the signal (y) that
needs to be processed. To extract relevant information an
arbitrary number of hidden layers is formed between the input
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TABLE 1. Optimized hyper-parameters.

and output layers. Optimal hyperparameters are provided in
Section VI-C.

2) CONVOLUTIONAL NEURAL NETWORKS
This model can capture spatial correlation within the input
signal y. It consists of a set of convolution layers, pooling
layers, and fully-connected layers [21]. Pooling layers are
used after convolution layers to carry out a downsampling
operation while maintaining the input data quality. The values
obtained from the convolution layer are sent to the pooling
layer for feature extraction [45]. After the pooling operation,
the output data is flattened and forwarded to the dense layer.
Eventually, it makes a 1D output sequence. The optimal
hyperparameters are detailed in Section VI-C.

3) LONG-SHORT-TERM-MEMORY
This model captures the temporal correlation within the
input signal y. It is a variant of recurrent neural network
(RNN) that can overcome the problems of gradient vanishing
and gradient explosion in RNN [46]. It stores the infor-
mation in the preamble data and uses it in the subsequent
processing. An LSTM network employs memory cells and
gates to remember the long-term dependencies in temporal
sequences [47]. It calculates a hidden state as detailed in [4].

C. HYPERPARAMETER OPTIMIZATION
During the training phase, in addition to optimizing the
parameters of each model while using gradient descent
optimization, a random search strategy is used to optimize
the hyper-parameters using cross-validation to have the best
results possible. Table 1 presents an overview of the optimal
hyper-parameters about the activation function, the optimizer,
and the number of neurons discovered in each hidden layer.
This table includes the optimized parameters for the models
trained for the cyber layer of the IEEE 39-bus test system
considering all outgoing Ethernet ports. For example, in the
GNN model for the cyber layer of the IEEE 39-bus test
system, 4 Chebyshev layers are adopted with ReLu activation
functions. For the CNNmodel, 3 hidden layers with 112, 112,
and 512 neurons are adopted. The selected optimizers and
activation functions for each model are listed in Table 1.

D. PREDICTION PERFORMANCE METRICS
To assess the performance of prediction models for the cyber
layer of the IEEE 39-bus test system in the smart grids, the

FIGURE 4. Illustration of performance metrics for the prediction model.

following metrics are utilized: valid hits (VH), missed hits
(MH), and false triggers (FT). As discussed earlier, the time is
divided into several discrete intervals, namely, slot-1, slot-2,
slot-3, etc, as presented in Figure 4. In time slot-1 of Figure 4,
both the ground truth congestion event-1 and its prediction are
hit within the same time slot. This represents a VH. On the
other hand, event-2 and event-3 were not correctly predicted
in the same time slot of their ground truth. This is calledMH.
Finally, events 3 and 4 were predicted in slot-4 and slot-5,
respectively, where there is no ground truth event. These are
denoted as FT.
In Figure 5a, we provide the average VH rate for total

events and all the ports of all the switches. The values of
MH are excluded because they are complementary to VH.
By taking into account the feature presenting all the ports on
the cyber layer of the IEEE 39-bus test systems, VH for our
proposed GNN-based prediction model and baselines (MLP,
LSTM, CNN) are provided in Figure 5a. In the results, the
GNN-based model for PRM outperforms all the baselines.

In Figure 5b, the prediction performance metric FT for the
GNN-based prediction model and baseline are depicted. Our
proposed GNN-based prediction model beats the baselines
(MLP, LSTM, and CNN) because it considers both temporal
and spatial features, whereas the baselines only consider
temporal features. Because it operates directly on graph-
structured data, the GNN-based model is topology-aware
while others are not.

The functionalities of PRM and RRM are contingent upon
the predictive performance of the GNN-based prediction
model. The GNN-based prediction model demonstrates
superior performance compared to other models such as
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FIGURE 5. Performance evaluations of GNN models in comparison to MLP, CNN, and LSTM for RRM.

CNN, LSTM, and MLP. Consequently, the PRM and RRM
modules also exhibit better performance.

E. RESULTS, PERFORMANCE, AND DISCUSSIONS
The proposed strategy is evaluated on the cyber layer of the
IEEE 39-bus test system. To measure the performance of
the proposed approach, we utilize average delay per packet,
percentage of packets failing to meet latency thresholds,
and packet loss rate as assessment metrics. We tested
our proposed routing strategy under two conditions in the
cyber layer: normal and failure conditions. We assessed the
effectiveness of our proposed routing strategy by comparing
it to our previous QL-based routing method as an adaptive
baseline and another non-adaptive baseline where the SDN
controller employs the Bellman-Ford (BF) algorithm to
determine the routing path from the source to the destination.
Under failure conditions, our proposed RRM strategy offers
QoS routing for smart grids.

1) RESULTS UNDER NORMAL CONDITION
Figure 6a displays the average delay for ED and FS
packets on the cyber layer of the IEEE 39-bus test systems
under normal conditions. These results are achieved by
the proposed resilient-proactive routing strategy (PRM in
conjunction with GNN-based prediction). The results are
then compared to the adaptive QL [2] and the non-adaptive
benchmark (BF). The x-axis shows the QSR, which remains
constant for the non-adaptive benchmark (BF) and indicates
the initial QSR for the adaptive benchmark (QL) and our
proposed resilient-proactive strategy (PRM). Based on the
data presented in Figure 6a, under normal conditions, the
mean delay achieved by the proposed mechanism (PRM) on
the cyber layer of the IEEE 39-bus test systems is below
57.36 milliseconds for both ED and FS packets. In contrast,
the average delay for the non-adaptive benchmark (BF) and
adaptive QL strategy increased to 8900 and 206.85 millisec-
onds, respectively. Hence, the results demonstrate that under
normal conditions of the cyber layer, our proposed resilient
proactive routing strategy outperforms the adaptive (QL) and
non-adaptive approach (BF).

Figure 6c illustrates the percentage of latency not satisfied
for ED and FS packets on the cyber layer of the IEEE
39-bus test systems using the proposed resilient-proactive
technique (PRM) compared to the adaptive QL [2] and
non-adaptive benchmark (BF). Based on the results presented
in Figure 6c, the percentage of latency not satisfied with
the proposed routing strategy is below 1%. In contrast, the
corresponding percentages for the non-adaptive benchmark
(BF) and adaptive QL-based strategy on the cyber layer of
the IEEE 39-bus test systems are above 28.50% and up
to 14.0%, respectively. Hence, the results demonstrate that
under normal conditions of the cyber layer, our proposed
resilient-proactive routing outperforms the adaptive (QL) and
non-adaptive approach (BF).

Figure 6e depicts the average packet loss percentage
under normal conditions of the cyber layer for both ED
and FS packets on the cyber layer of the IEEE 39-bus
test system adopting the proposed resilient-proactive routing
strategy (PRM) in comparison to the adaptive QL [2]
and non-adaptive benchmark (BF). The target reliability is
99.999% [36]. According to Figure 6e, the average packet
loss rate using the proposed strategy (PRM) is 0%, whereas
it is up to 24.38% for the non-adaptive benchmark (BF),
and nearly 0% for the adaptive QL. Hence, the results
demonstrate that in terms of average packet loss percentage,
under normal conditions, our proposed resilient-proactive
strategy outperforms the adaptive (QL) and non-adaptive
approach (BF).

The proposed resilient-proactive (PRM phase) routing
demonstrates its advantages under normal conditions of
the cyber layer due to its ability to predict congestion,
adjust the QSR, and utilize separate queues for different
types of ED and FS packets. The resilient-proactive strategy
leverages congestion prediction using GNN to eliminate
the additional delay required for installing forwarding
rules (by SDN controller) on the forwarding switches
between the source and the destination. Configuring the
adaptive QSR beforehand reduces queuing delay, mini-
mizes the likelihood of packet loss, and enhances system
reliability.
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FIGURE 6. Results analysis on the cyber layer of the IEEE 39-bus test system [5] under both normal and failure condition.

2) RESULTS UNDER FAILURE CONDITION
The forwarding device (OpenFlow switch) may become
dysfunctional for various reasons, including physical attacks,
cyberattacks, packet jamming, etc. When any forwarding
device from the source to the destination cannot work, the
route becomes useless. Figure 7 presents the cyber layer of
the IEEE 39-bus test system under failure conditions, where
the failed nodes are marked using the red cross symbol. As in
Figure 7, switch sw16 is under failure condition. So, the route
(e.g.sw21→ sw16→ sw4→ sw3) from sw21 to destination
server sw3 is no more active route. The average latency per
packet becomes infinite when using the PRM in conjunction
with GNN-based prediction because it relies on a fixed
sub-optimal route. Therefore, the non-adaptive benchmark

(BF), adaptive QL-based routing, as well as the proactive
approach presented in [4] are unable to function during failure
conditions since they depend on a fixed sub-optimal route
from the source to the destination. Any node failure on the
fixed sub-optimal route makes the route unreachable, i.e.,
the packets will never reach the destination. There is no
standardized routing approach that adeptly operates under
failure conditions and comparable to our proposed innovative
resilient-proactive routing strategy.

Figure 6b, 6d, and 6f present the results when the cyber
layer is under failure conditions. The average delay on
the cyber layer of the IEEE 39-bus test system under
failure conditions is less than 62.67 milliseconds for ED
packets and less than 43.13 milliseconds for FS packets.
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FIGURE 7. Illustration of the cyber layer of IEEE the 39-bus test system
under failure. The red-crossed switches (e.g. sw-2, sw-6) are failed
devices which means that the paths over that device are no longer active.

This performance is similar to that of the PRM under usual
conditions in the cyber layer of the smart grids. Figure 6d
demonstrates that the proposed method under failure exhibits
an unsatisfied delay percentage of less than 1% for both
the ED and FS packets, aligning with the intended QoS
targets. In Figure 6f, our proposed strategy (RRM) achieves
an average packet loss ratio of approximately 1% in the
presence of a failure in the cyber layer of the IEEE 39-bus
test system. This performance is slightly higher than that of
PRM under normal conditions but still within an acceptable
range for ensuring the reliability of the smart grids.

The success of the proposed resilient-proactive routing
under failure conditions can be attributed to the DQN agents
and GNN-based prediction model. The ability of the DQN
agents to generate an alternate route based on the network’s
present and potential future conditions (congestion or failure)
ensures that resilient-proactive routing remains active even
under failure. The future condition of the cyber layer of the
smart grids is predicted by the GNN-based prediction model,
which considers all outgoing port features of all switches in
the cyber layer and reduces the additional latency required for
setting the forwarding rule on the switches from the source to
the destination.

Our proposed software-defined routing strategy balances
requirements by adjusting decisions based on traffic types.
It prioritizes paths with lower latency and higher throughput
for ED packets while prioritizing paths with higher redun-
dancy and lower congestion for FS packets.

VII. CONCLUSION
This paper proposes a resilient proactive routing strategy
for smart grids to improve routing efficiency, enhance
reliability, and react to failure circumstances. The proposed
software-defined routing approach achieves equilibrium by
dynamically adapting decisions according to the types of
traffic. The strategy prioritizes paths with lower latency and
higher throughput for ED packets while preferring paths
with more redundancy and lower congestion for FS packets.
We developed PRM and RRM using RL and DQN along with

a GNN-based prediction model to meet latency thresholds
for ED and FS packets under both normal and failure
conditions. PRM and RRM function based on the conditions
of the cyber layer. When the cyber layer is functioning
normally, the PRM operates. If the cyber layer has a failure,
the RRM takes over. While the RRM uses DQN agents
to create feasible routes under failure, the PRM uses a
QL agent for routing decisions and another QL agent for
adaptive QSR settings under normal conditions. The results
demonstrate that the proposed dual-mode routing method,
namely PRM and RRM, effectively guarantees the desired
QoS (e.g. normal condition: average latency less than 57.36,
unsatisfied latency percent less than 1%, packet loss 0%;
failure condition: average latency less than 62.67, unsatisfied
latency percent nearly 1%, packet loss nearly 0%) for smart
grids, regardless of whether the cyber layer is functioning
normally or experiencing a failure.
Directions for Future Research: Although the proposed

routing strategy can surmount the failure conditions of the
forwarding node, it is not adaptable to controller failure
conditions, which could result in a single point of failure
within the cyber layer of the grid due to the adoption of
the single controller-based SDN paradigm. Consequently,
our forthcoming research will formulate a routing strategy
that employs several SDN controller-based routing paradigms
to handle situations where controllers fail. A multiple-
controller-based SDN paradigm consists of several joint
controllers. Under the failure of a single controller, another
controller can act as an alternative.
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