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ABSTRACT Remote monitoring of individuals with special healthcare needs and controlling their living
spaces using emerging technologies is a significant focus for researchers from various disciplines, forming
a crucial element of future healthcare development. Digitizing the healthcare sector demands expertise and
knowledge transfer to create new paradigms and innovative solutions to enhance life quality and reduce
healthcare burdens. One of the most promising technologies in this area is the Digital Twin (DT), a virtual
replica of the real world with advanced features for data clustering, classification, and forecasting. This paper
introduces an innovative context-aware framework for monitoring indoor air quality and human activity,
integrating technologies like the Internet of Things (IoT), 6G networks, sensing and localization techniques,
Edge Computing, Deep Learning models, and cloud platforms. The multidisciplinary research emphasizes
the interaction of the DT concept with its environment and other technologies. The contributions include:
establishing an architecture with sensors, gateways, and a DT object on Azure cloud, validated with Al
models; linking 6G network sensing and communication capabilities with IoT-based techniques to enhance
performance; and developing deep learning models for Human Activity Recognition (HAR) using inertial
sensors, achieving a test accuracy of 99.34% and a real-time accuracy of 92.10%.

INDEX TERMS IMU sensors, deep learning, edge computing, 6G, terahertz frequency, IoT, azure cloud,

DT.

I. INTRODUCTION

Over the past ten years, there has been significant growth
in the provision of networking services aimed at a variety
of applications with specific requirements, covering areas
ranging from agriculture to education to tourism and health
services. Although many services have been automated
through the use of intelligent applications, human inter-
vention remains essential, especially for data collection.
This activity has become tedious for individuals because
these systems require a large amount of data to refine their
results. Thus, the idea of automating data collection was
proposed. To this end, new architectures allowing instan-
taneous data collection have been suggested. Nowadays,
the best solution for a precise and immediate analysis of
human needs is the notion of digital twins. This innovative
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process relies on automation, requiring process orchestration
and synchronization. For this, a holistic system composed
of orchestrated components, paradigms and decisions was
proposed.Traditionally, the healthcare field was considered
a distinct discipline, where doctors, nurses, caregivers
and pharmacists constituted the main human resources.
However, with the advent of new technologies such as the
Internet of Things, cloud computing, artificial intelligence,
cybersecurity and ultra-high performance communication
systems, new disciplines and specific level of expertise
have been introduced into the health sector. These advances
aim to create a complex system that coordinates multiple
tasks, achieves various goals, improves decision-making, and
optimizes the use of shared resources. DT, as a complex
system that extends IoT concepts, new communication tech-
niques, theory-based modeling and processes, and decision-
making approaches, is one of the new potential technologies
offering a wide spectrum of new services and a plethora
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of operations to digitize, scale, automate, optimize, and
improve the quality of life and optimize resources. The
DT is a digital replica of the physical world, integrating
sophisticated components such as cloud storage, functions for
task automation, artificial intelligence models, and decision-
making capabilities. The idea of a DT first appeared in
the product lifecycle management course taught by Michael
Grieves around 2002 [1]. The number of research articles rose
considerably starting from 2010 when John Vicker introduced
the term DT from NASA, it was related to space and earth
studies and imaging, reflecting the need to build a virtual
replica of the real world with additional functionalities and
intelligence.The DT idea is older and was related to all
tasks, models, and activities preceding and following the
manufacturing of a given product to optimize the operational
and maintenance cost. The DT idea exists in the past in some
monitoring platforms, such as Operation & Maintenance
Center(OMC) architecture, for wireless cellular networks to
monitor an extensive wireless distributed network and alarms
and possible failures. In this context, DTs existed in the past
without consideration of new components such as artificial
intelligence(Al), cloud services, the Internet of Things (IoT)
paradigm, and network flexibility and agility. The main
drivers of the new vision of the DT are the new emerging
technologies in networking, sensing, and communication.
DT concept requires open access to the cloud, edge network,
and IoT network, interfacing with existing networks, and
ease of use capability. DT can revolutionize the healthcare
sector by introducing new services and optimizing resources
to assist vulnerable persons with small human interventions
when needed. DT can improve the quality of life using
Al models to forecast and classify activities and detect
abnormalities in the living environment. Vulnerable people,
including aged persons and people with long-term diseases,
are prone to incidents, and their physical activities are
limited and need continuous monitoring. Staying inactive
for a long time in indoor places can trigger serious
health consequences, including the development of diseases
such as diabetes, blood lipid problems, heart disease, and
colon disease [3]. According to a recent United Nations
Department of Economic and Social Affairs report, the
number of people aged sixty and over is expected to grow
to 2.1 billion by 2050. This will increase the burden on the
healthcare system to provide an acceptable quality of life
and care. This statistic highlights the impending pressure on
healthcare resources, as nearly 50% of healthcare resources
are dedicated to caring for the elderly [3]. Traditionally, long-
term care facilities (LTCF) or nursing homes have been the
solution for elderly people. Living in these facilities can
often lead to older adults losing their independence and
experiencing depression. To enable older adults to complete
their daily lives independently, it is crucial to transform
residents into smart environments. This transition can be
seen as a sustainable solution that provides a sense of
independence, prevents social isolation, and promotes family
self-sufficiency. Sensor technology advancements without
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affecting residents’ privacy (e.g., strategically placed motion,
door, and temperature sensors in homes) [4]. The power
of deep learning models in identifying daily activities [5]
and the use of information and communication technologies
(ICT) [6] facilitate communication between families and
caregivers and pave the way for assisted living. The concept
of assisted living effectively aids older adults in maintaining
a degree of independence in daily activities at home [7].
There are still gaps that exist in connecting caregivers
with elderly homes. To bridge these gaps, a fundamental
shift toward digital transformation becomes necessary, where
creating a virtual counterpart allows caregivers to control and
interact in real-time within the digital space. Incorporating
a DT facilitates this digital interaction by establishing a
conduit through a knowledge graph [8]. We developed
a DT framework leveraging state-of-the-art technology to
address the challenges mentioned earlier. In this framework,
deep learning models embedded in edge devices handle the
classification of human activities and seamlessly synchronize
the data of environmental parameters. The combined data is
transferred to a cloud-based DT, where a knowledge graph
visually represents the information. Our contributions in this
paper can be summarized as follows:

1) Experimental setup including data collection using
Raspberry PI and sensors, the configuration of
non-standalone DT using Microsoft Azure platform
supporting cloud services and sophisticated functional-
ities, and finally establishing the link between the DT
and sensors via the edge hardware.

2) Elaboration and integration of time series Al models
for human activity recognition(HAR) at the edge using
data collected from IMU sensors, the choice of using
the edge to host HAR models is constrained by
hardware capabilities and other QoS requirements.

3) Proposing a theoretical framework for 6G join sensing
and communication based on beam forming and
steering assisted by a DT, including assessment of
localization error and sensing.

The paper is structured as follows: Section II explores
related research works. Section III presents our proposed
framework. Technical details about the experimental setup
are provided in Section IV. Next, Section V presents the
experimental results. Finally, Section VI concludes our
findings.

Il. RELATED WORKS

In recent years, the DT has indicated great potential in the
areas of smart homes and smart healthcare. This part provides
an overview of related works, as briefly summarized in
table 1, and provides detailed information in the following
subsections.

A. DT FOR SMART HOME

DT has been considered a promising solution to smart
home problems such as resource management and security
management. It is reported [9] that real-time management of
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TABLE 1. DT applications for smart home and healthcare.

Field Literature Main Contributions Technologies
DT Energy [9] Developing a DT and cloud platform for real-time build- | BIM, DT, XR
Smart Home ing management.

DT lighting [10]

Visual management and intelligent lighting control sys-
tems are powered by DT-driven methods based on com-
puter vision

DT, Computer vision

in a digital space and monitor daily life activities using
deep meta-class sequence models.

DT DT air quality management | Model-Driven DT Engineering on indoor air quality | DT, EC, CP, ML

[11] management using Edge and Cloud computing

DT for modern house [35] Developing a realistic 3D model of DT of modern house | DT,Al,sensing,3D
suitable for visualization and engineering simulation model, VR

. Architectural framework and key requirements

Cloud DTH architectural [12] DT, ML, CP, EC

of HDT,technical challenges and future directions
Health Monitori Cloud DTH [13] Reference framework of Cloud DTH and construction of | CP, DT
calthcare Monitoring DTH model for elderly monitoring
Intelligent DT [8] A framework that replicates the elderly home using DT | DT, CP, DL

DT-assisted Blockchain [14]

Context-aware physical activity monitoring using DT
and Blockchain

DT, IoT, DT, FoT, CoT,
Blockchain

Cloud DT [15]

DT model aimed at improving health monitoring in
smart homes, with intelligent algorithms for fall detec-
tion and atrial fibrillation prediction

DT, DL, CP, 3D model

Edge Cloud RPM [16] Remote patient monitoring system based on federated | DT, ECC, DT
LSTM for privacy-preserving smart healthcare

SmartFit [17] DT system that helps trainers to optimize actions of | DT, ML
athetes “behavior by computing trustable predictions of
the real or spoofed users .

Human Motion DT (HMDT) [37] InMoDT which aims to capture and estimate human | DT
motion accurately

Respiration DT (ResDT) [36] ReDT aims to monitor and classify patient breathing | DT,PCA,ML

patterns, including both binary and multi-class classifi-
cations

building energy can be achieved using a DT platform based
on Building Information Modeling (BIM) and Extended
reality (XR). In [10], a computer vision-based DT driving
method is proposed to intelligently control lighting systems
and improve the energy efficiency of smart buildings.
Govindasamy et al. [11] worked on model-driven DT
engineering which focused on air quality management. This
example applies the former to monitor carbon dioxide,
temperature, and humidity levels in rooms within a building.
These values could be used to develop measures to increase
work efficiency and reduce the risk of viral infection.
Furthermore, in [35] the authors used artificial intelligence,
advanced sensors and virtual reality (VR) to develop a
sophisticated DT of a modern house. The process involved
creating a realistic 3D model of the house, suitable for both
visualisation and engineering simulation, and establishing it
as a standalone DT. The DT was updated in real-time by
various sensors installed in the physical house to reflect any
changes.

B. DT FOR HEALTHCARE MONITORING
The DT, a complex system of processes and components,
has been considered an attractive tool for monitoring
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physiological parameters, proactive early disease detection
and managing fitness, advanced and precise personalized
healthcare services will be also delivered to reduce healthcare
cost burden in broadcasting and providing the information for
patients and persons with vulnerability. We present in this
paragraph previous recent works on the application of DT
in healthcare, emphasising the importance of digitizing and
describe the overall state of the art.

In the context of personalized healthcare, Okeg-
bile et al. [12] introduced human DTs (DTs) emphasizing
the importance of addressing architectural considerations
in modeling the human DTs. The authors explored
the integration of emerging technologies like integrated
cloud-edge computing and machine learning to empower
human DTs. Finally, They provided the future research
directions. Liu et al. [13] proposed a cloud-based DT
framework for elderly monitoring, the DT was combined
with cloud healthcare to provide high-quality services
for patients, and effective management of medical data
records.In addition, [13] included a case study to assess
the real-time monitoring DT system’s feasibility for elderly
patients and discuss future healthcare challenges. In [8]
Fahim et al. presented an intelligent system by combining
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Cloud computing and deep learning techniques to replicate
the elderly home in digital space which can offer a
suitable way to monitor the resident’s daily life activities
aiming to deliver the necessary assistance and services.
A useful approach [14] involves the integration of various
advanced technologies, including the Internet of Things
(IoT), DT, Fog of Things (FoT), Cloud of Things (CoT),
and Blockchain. The researchers introduced an intelligent
contextual physical activity monitoring framework designed
to enhance sensitivity within the healthcare domain. This
framework leverages deep learning models for sequential
data processing to analyze the movements of elderly
individuals,and detects irregular body events. Moreover, the
proposed framework prioritizes the security of personal data
by incorporating progressive security features provided by
blockchain technology. Zhou et al. [37] developed an Inertial
Motion Capture System for Human Motion Digital Twin
(InMoDT) which aims to capture and estimate human motion
accurately. It consists of a hub node and inertial measurement
units (IMUs) attached to the body to enable accurate motion
data collection. The system employs sensor fusion and
pose calibration algorithms to ensure accurate orientation
measurements. A DT model that is designed for health
monitoring in smart homes was introduced by [15]. Two
intelligent algorithms were developed to detect falls using
WiFi signals and atrial fibrillation using electrocardiograms
captured by wearable devices. Gupta et al. [16] presented
a remote monitoring system using DT and edge cloudlet
computing (ECC). which employs an LSTM-based AD
model. The edge cloudlets was employed for avoiding user’s
data sharing and hierarchical federated learning architecture
for certain computational requirements. In a similar work,
Barricelli et al. [17] introduced a DT framework aims at
predicting, suggesting, and then optimizing the behavior
of athletes, using SmartFit which contains sensors for
continuous data collection. Moreover, in [36] the researchers
developed an innovative Respiration Digital Twin (ResDT)
model using Wi-Fi Carrier State Information (CSI), advanced
signal processing techniques and machine learning (ML)
algorithms. This framework aims to monitor and classify
patient breathing patterns, including both binary and multi-
class classifications.

Ill. THE PROPOSED FRAMEWORK

In our proposal, we combined the use of Edge and Cloud
technologies to create a powerful health monitoring system
for real-time virtual representation of the physical envi-
ronment. This enables continuous and detailed monitoring
of environmental conditions such as temperature, humidity,
air quality, and performed activities. Through real-time
simulation and modeling, scenarios can be anticipated and
system performance optimized, while advanced analysis
algorithms enable rapid detection of anomalies and unusual
behavior. A locally, AI model has been embedded in the
Edge device to intelligently process the sensory data stream
and provide information about activities performed at home.
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On the other hand, cloud technology serves as the Digital
Twin, providing monitoring, data management, long-term
storage and accessibility. In the figure 1, we present the
architecture of the proposed framework.

A. PHYSICAL SPACE
The physical entity layer is the hardware foundation of the
DT model framework. The physical entity layer transmits the
perceived and acquired body state and environmental data to
the digital layer, promoting the creation of the proposed DT
model. We consider the home as a focus for elderly people
to provide assistance services based on ambient sensors (i.e.,
motion, temperature, and humidity). These sensors detect and
cover the data, then they are intelligently processed using
an Edge Computing Al model to identify the individual’s
daily activities, synchronize them with the environmental
data, and then transmit them to the DT in the cloud using
the communication protocol. The Al model is the core of our
proposed framework to process the sensory data and provide
information about the activities performed by the person. The
traditional approach of sending the raw data to the Cloud for
computing, processing, and storage poses various challenges.
These issues include low throughput, high latency, bandwidth
bottlenecks, data privacy, centralized vulnerabilities, and
additional costs (such as transmission, energy, storage, and
calculation costs) [18]. To address the limitations associated
with cloud computing mentioned above, the concept of edge
computing has emerged as a promising solution. The use of
Edge computing Al can help to reduce data transmission time
and device response times, reduce the pressure on network
bandwidth, reduce the cost of data transmission, and also
achieve decentralization [16], [18]. In our proposed method,
we utilized edge computing to implement real-time activity
recognition using the Deep Learning model. The classified
activity data and temperature and humidity readings are then
transmitted to the virtual space. This integration enables
comprehensive monitoring of environmental parameters and
motion tracking. Processing data in the cloud has many
drawbacks including:

« Increased energy consumption

« High latency

« subject to QoS and QoE fluctuation

« Data can be altered and additional efforts required for

privacy

Moving pre-processing and data analysis to the Edge can
improve latency and QoS/QoE and reduce possible attacks
on data.

B. COMMUNICATION LAYER

The communication layer was designed to exchange informa-
tion between telecommunication devices; the communication
medium can also be shared with the DTs in parallel
with existing communication systems. Therefore, DT can
benefit opportunistically from RT and NRT device data, for
example, medical data collected from the Wireless Body
Area Network(WBAN) network. different technologies are
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FIGURE 1. The architecture of the proposed DT framework for health monitoring consists of three layers:(a) The physical layer integrates sensors and
edge devices for developing Al models for Human Activity Recognition (HAR).(b) The communication layer facilitates data transmission. (c) The digital

layer includes the DT, historical reporting, and visualization tools.

available for data transmission with different requirements,
architectures, and communication mediums. A DT requires
a different traffic profile with stringent and tolerant quality
of services and user profiles. Most DT studies focus on the
tolerant quality of services(QoS) approaches to exchange
low data rate traffic with low delay; however, for healthcare
applications, one may think about ultra-high data rate with
zero latency transmission to reduce response time during
a local or global healthcare crisis, where a low delay is
required to manage resource and make convenient rescues,
moreover data rate are required if low data rate sensing
channel shows some anomalies and a raw massive data should
be exchanged. The new 6G technology is enabled by a
terahertz band suitable for sensing small particles in the air
and also achieving an ultra-high data rate simultaneously;
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a recent work communication and sensing models for DTs
was recently proposed in [20], a research study was proposed
in [21] describing how 6G features, coupled with IoT and
cloud, can advance DT technology in term of accurate
sensing, Al and ultra-high communication and low latency.

In this section, first, we set up our requirements for the

communication layer to the following points:

o DT performs position collection and sensing tasks and
assists in monitoring communication links.

o The communication layer, assisted by DT, supports Joint
communication and sensing; communication should be
directional to reduce interferences and multipath and
support ultra-high data rate using wide bandwidth;
sensing can be boosted by additional techniques to
detect gases and particles in the air and measures
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temperature, we limit this study to temperature and
humidity measures.

o High availability: DT should be ready all the time to
receive and process data from sensors and to broadcast
and transmit valuable data

o The Communication channel supports mobility in an
indoor environment. The DT should be able to track the
position of the device to manage the beam’s direction

o Physical integrity: protection of sensitive data from
intrusion and modification

o High data rate: a DT can transmit and receive a high
volume of data ranging from multivariate time series
data to videos or virtual reality information.

To our knowledge, no existing work aligned with the
proposed DTs communication channel and 6G technology
requirements, where the performances of DT complement
and assist the future 6G network. The second task in this
section, which represents a novelty, is to assess, via modeling
and simulation, some 6G techniques, such as indoor user
tracking and DT-assisted beam steering using collected
data, to exchange reliable ultra-high data rate multimodal
data. This part will not be included in the experimental
setup. DT benefits from advances in new communication
technologies such as 5G, 5G advanced, and the future 6G
system; 5G and beyond can deliver ultra-high data rates
with ultra-low delays and good reliability in terms of packet
loss rates. Among the techniques used to enable the 5G and
6G technology is user tracking and signal beam-forming
using antenna arrays. The terahertz band(THz), ranging from
100GHz to 10THz, offers an unprecedented wide bandwidth
reaching 70GHz at 300GHz frequency and will be used in the
next generation of 6G networks. Current work on the design
of THz antenna demonstrates the feasibility of reaching a
high data rate and improving communication range using
beamforming.

A 6G access point(AP) is placed vertically at an indoor

wall to transmit and receive THz signal, The AP gain is given
by [24]:

sin (M, [sin(6) cos(¢) — sin (60) cos (¢)1)
sin (£ [sin(9) cos(@) — sin (60) cos (¢0)])
sin (Na £ [sin(9) sin(@) — sin (60) sin (¢0)])
sin (L5 [sin(®) sin(¢) — sin (6) sin ()] )

v, 9)=¢

& is the inter-element spacing, f the operating frequency in
Hz, M, x N, is the antenna array size, g is the isotropic
gain, (r, 6, ¥) the polar coordinate of the mobile device
against a frame linked to the antenna array as shown in
figure 2. 6y and ¢¢ are, respectively, the tilt angle against
z-axis and ¢g the azimuth angle against x-axis in the wall
plane(antenna array plane). The antenna gain is maximum
at the direction (6p, ¢o). Assuming that the mobile device
is equipped with a THz antenna and IMU sensor to collect
accelerometer and gyroscope data, the relative position can
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be updated as per [23]. Let (Ax, Ay, Az) the infinitesimal
cartesian displacement of the mobile between two instants,
the polar displacement (Ar, A8, A¢) is expressed as:

(Ar, AO, A@) = (J(r,0,$) " (Ax, Ay, Az)' (1)

J(r, theta, phi) is the Jacobian matrix. The equation of the
gain and equation 1 will be implemented in the DT to perform
the new beam’s direction (61, ¢1) and new distance update |
between the phased array antenna and the mobile device. The
following equation gives the new direction and distance:

(r1, 61, 1) = (r0, 6o, $0)' + (J(r0, 60, $0) "' (Ax, Ay, Az)'
2

The exactitude of the beam direction depends on the
estimation of the new position of the mobile using available
IMU sensors on the mobile device; this operation will be
performed at the DT level. Moreover, the new beam direction
also depends on the previous position’s Jacobian matrix.
We assume that positioning error is a Gaussian random
variable with mean vector (A_x, A_y, A_Z)’ and covariance
matrix X.; the displacement is given by:

_ _ _ 1
(Ax, Ay, A7) = (Ax, Ay, A7) + 22N, By3)  (3)

Therefore, the precision of beam’s direction and distance is
given by the covariance matrix:

¥, =, 0,0) 2 (U, 0, ¢)! “)

where, U(r, 0, ¢) = (J(r, 0, ¢))', the error intensity of the
beams pointing error and distance can be expressed in terms
of det (X,), this intensity is given by:

det (Z,)

det() = ————— 5
) = et 6. 9P ©)
The determinant of the Jacobian in our case is:

det(J(r, 0, $)) = r* sin(0) (6)

Finally, the intensity of beams and distance error is:

det (2.)

det(X)) = ———— 7
) = A sin0)2 M

We assume that the antenna is placed in one of the walls
or fixed at the ceiling of an indoor environment. In that
case, the accuracy of the beam steering toward the mobile
user depends on its instantaneous position. As explained
before, the polar coordinate suits well for wave propagation
and beam steering. The user’s device position is determined
using data from the IMU sensor; DT collects data from
IMU to estimate position and recognize human activities.
Estimated positions are mapped with polar position, and
device spatial displacement is transformed into polar change
to assist the THz AP in pointing its beam toward the new
device’s location.

Based on the result described by equation 7, to reduce
the intensity of pointing error, we need to improve the
performance of positioning algorithms using IMU sensors,
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increase the distance between antenna and mobile, the
antenna height should be maximized to increase sin (6),
However, increasing r leads to lower received power,
therefore low data rate. A DT is supposed to assist in
solving this issue by improving beam steering accuracy with
less impact on data rate; 6G system will also possess its
independent features for beam management and tracking.
Therefore, 6G and DT can collaboratively enhance beam
steering performance in future implementation.

Figure 2 represents the general communication architec-
ture, including two main interfaces; the first is for low-
rate communication, and the second uses a higher-rate
communication system such as 5G/6G. 6G technologies
outperform the existing 5G technology in terms of QoS and
new functionalities; sensing the air and indoor environment is
also crucial using the THz band, and the Beer-Lambert law is
used to describe attenuation due to gas absorption. Moreover,
the 6G communication link will carry ultra-high and zero
latency signal for downlink and uplink and contribute to the
channel sensing and assessment of air quality. The absorption
loss due to atmospheric factors is given by:

Lam = e~ laa(f T .P)y+an(f,AH,T,P)]r ®)

where f is the frequency in GHz, T temperature in °C, P is
the atmospheric pressure in Pascal, r the path propagation
length in meters and AH is the absolute humidity expressed
in g/m?, ag attenuation for the dry environment and
ap attenuation with humidity. Based on ITU-R P.676-10
recommendation [22], electromagnetic molecular attenuation
exists for frequencies higher than 10GHz, mainly water vapor,
and oxygen. We assume in 8 that the indoor environment
is a mixture of different gases, such as water vapor(H,0O)
and oxygen(0); other gases can exist and interact with 6G
signal but will be studied in future works. DHT11 measures
temperature and humidity data in the room, the values stored
in the DT repository. the gas mixture, water vapor, and others,
along with temperature and pressure, will affect the received
signal; the DT will inform the 6G AP about the required
transmitted power to overcome this molecular loss. Moreover,
the THz link can assess the loss in particular frequency
windows; however, this operation is complex and requires
additional THz sensors. This paragraph aims to highlight the
relationship between the 6G signal and data measured by
sensors; sensor data can improve the 6G power management
by recommending the convenient transmitted power if the
molecular loss is high, and also performing extensive sensing
of the air using the mmwave/THz frequency band. Figure 8
presents the power loss of the received signal as a function
of atmospheric parameters, distance, and gas concentration.
We used the ITU model [22].

C. DIGITAL LAYER

The implementation of a DT model addresses the limitations
of traditional activity recognition systems [25], [28], [29],
[30]. In traditional systems, sensor data are transferred to a
machine-learning model for activity recognition, but there
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is no way to interact with the home and understand the
underlying behavioral patterns [8]. However, using the DT
technique the caregivers and doctors can access and monitor
the home environment in real-time, ensuring privacy and
providing valuable information. The DT not only provides
real-time access to the user and home but also advanced
storage, analysis, and management of data. If the DT detects
a critical situation or abnormal behavior, it can trigger
notifications or alerts to caregivers or healthcare staff. Major
companies such as AWS,! Eclipse,2 and Azure 3 have started
to offer a platform for creating and operating DTs in cloud
environments.

IV. EXPERIMENTAL SETUP

In this section, we describe the main steps for the experi-
mental setup of our proposed framework involving available
open-source technologies, hardware used, communication
protocols, and tools, emphasizing data flows and interactions.
The aim is to build our proof of concept(PoC) fulfilling
the proposed tasks of the DT as specified in section III.
In figure 4, we present the architecture of the proposed
experiment highlighting all devices such, as communica-
tion protocols, the type of data collected, and the Cloud
services.

A. PHYSICAL LAYER CONFIGURATION AND SETUP
In our scenario, the physical twin represents the user
motion and their living space such as atmospheric variables.
We utilized specific hardware for sensing to collect data
and pre-processing activities. The hardware part of the
experiment consists of: carte Raspberry Pi 4 with a quad-
core Cortex-A72 processor and 2 GB of memory was
used as an edge gateway device, an iPhone 11 Pro Max
smartphone including an inertial measurement unit (IMU),
this unit includes an accelerometer and gyroscope sensors,
The edge device will be linked to the mobile phone to
process IMU data. The Raspberry Pi is connected toa DHT11
sensor that gathers humidity and temperature data. These
measurements are sent as raw data to DT. Additionally,
the Raspberry Pi integrates a pre-trained Deep Learning
(DL) model for Human Activity Recognition (HAR). The
controller, connected to the internet via WiFi, enabled easy
reading and sending of the resulting data to the Cloud DT.
We developed a Python script running on the Raspberry Pi
to streamline this process. This script collects data from the
DH11 and IMU sensors.

To recognise human activities using Al models and
collected data, the following steps will be followed:

1) DATA COLLECTION AND PREPROCESSING
The dataset was gathered from a group of 5 subjects
ranging in height from 1.54 to 1.78 meters. IMU data

1 https:/https://aws.amazon.com/fr/greengrass/
2https :/leclipse.dev/ditto/
3 https://azure.microsoft.com/fr/products/digital-twins/
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and sensing part, collected data of mobility, air quality, and

atmospheric variables will be collected using associated sensors and transmitted to the gateway, processed, and re-transmitted to the DT via
WI-FI access point. The decision will be made if a user needs to downlink ultra-high data rate data using a 5G/6G network; phased arrays will
then receive a command to steer their beams toward the user to perform communication and additional sensing.

was collected by attaching smartphones to each subjects
waist to measure 3-axis acceleration and velocity data. Each
participant performed one of the following ten activities:
falling, sitting, walking, standing, lifting, lowering, ascending
stairs, descending stairs, getting up, or sitting down. The
minimum number of repetitions was 5 for each activity.
Each activity was performed for 6 seconds and data were
recorded at a sampling frequency of 100 Hz. The data
collection process was simplified using the Physics Toolbox
Smartphone application, a flexible tool for recording sensor
data. All collected data was then transferred to the PC, where
it was stored as a CSV for preprocessing and subsequent
analysis. In total, 150,000 samples were collected during this
process.

After collection and cleaning the sensor data, a data
augmentation technique was employed to increase the size
of the dataset by adding white Gaussian noise [19] to the
sensor data signal with zero mean and a std of 0.02.The
augmented samples were combined with the original cleaned
dataset, resulting in a final augmented dataset. A samples
attributes of our dataset are presented in figure 5. The figure 6
shows the number of samples for each activity type after
applying the data augmentation. Various preprocessing steps
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were applied to the input to enhance the dataset’s quality
before feeding it into the deep learning models. Initially,
5-point moving average filters were applied for all samples
to smooth and remove the noise from the signal. Secondly,
a global normalization was used using the maximum and
minimum values of the recordings to maintain the magnitude
information of each activity [23]. Also, we used a sliding
window overlap technique [23] to balance the epoch datasets
of the ten activities. In this work, a sliding window size of
100 with 20 overlaps was used. Finally, data segmentation
was performed, and the dataset was divided into training
(80% )and testing(20%).

2) DEEP LEARNING MODELS ARCHITECTURES FOR HAR

In this study, we used and trained four deep-learning models
RNN, LSTM, BiLSTM, and GRU. These four models have
demonstrated their merits and advantages over previous
sensor-based HAR works [8], [23], [25], [32]. Figure 7
shows the architecture of these models. We used Python
3.9 with TensorFlow and Keras libraries for training and
testing models. All models were trained 180 epochs each with
The Adam optimizer, learning rate of 0.002, batch size of 32,
and Tanh as activation function.
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linked to the edge device via wired connection, the communication protocol used to transfer data from edge device to the DT is MQTT over WIFI
connection.

o Recurrent Neural Network the RNN model processes data recurrently and uses
Natural language processing (NLP) or speech recogni- hidden states, which are commonly known as memory
tion problems use the RNN model as a basic framework components, on each node to maintain sequential
to extract features and patterns from sequential activity information from past input data. Our performed RNN
signals. In contrast to feed-forward neural networks, model as shown in 7 is composed of a total of three
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FIGURE 5. Samples attributes of our dataset after applying data augmentation technique.

RNN layers with 32 units followed by a dense layer with
32 hidden units and an Softmax layer with ten output

neurons.

o Long-Short-Term Memory
The LSTM model is an improved version of RNN. It can
solve the problem of vanishing gradients by retaining
feature information longer. The model uses a mechanism
consisting of three gates, namely forget gate, input gate
and output gate. The process begins with the forget
gate deciding what relevant information to retain for
the current LSTM unit based on the hidden state of the
last state and the current input value. Then Input gates

determine what new data can be added from the current
time step. this The new context state is updated based on
the results of these two goals. Finally, the output value
create a new hidden sum between the initial context state
and the current input Context state for the next LSTM
model [25].The LSTM classifier as shown in Figure 7
consists of two unidirectional LSTM layers. Each of the
LSTM layer consists of 64 units followed by two fully
connected dense layers. Each one with 128 units.The last

layer was a softmax with ten output neurons.
« Bidirectional Long-Short-Term Memory

The Bidirectional Long Short-Term Memory (BiLSTM)
model allows input flow in both directions (backward
and forward). The BiLSTM model allows the extraction
of features related to future and past time steps [27] Our
BiLSTM model as presented in Figure 7. The model
architecture consists of two BiLSTM layers. Each one
consists of 128 units followed by a dense layer with
254 neurons and a SoftMax layer with ten neurons for

classification.
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o Gate Recurrent Unit Gated Recurrent Units (GRUs) is a
compact neural network version of LSTM that removes
contextual state. The GRU model only uses hidden states
to convey previous relevant information. The model is
used to maintain memory capacity in a compact form,
which can reduce the number of tensor operations and
train the model faster [27]. Our implemented GRU
model as shown in Figure 7 consists of two GRU layers.
Each GRU layer contain 32 units followed with one fully
connected layer consists of 32 neurons and a SoftMax

layer with ten output neurons for classification.

3) EVALUATION METHOD
To evaluate the effectiveness of the models, we employed
the k-fold cross-validation (k-CV) technique, K-CV aver-
ages multiple hold-out estimates from different data splits.

It randomly splits the data set into k separate folds, ensuring
that each fold is of roughly the same size. One fold is used
for testing, while the model is trained on the remaining
k—1 folds. By repeating this process k times, the overall
performance is calculated by averaging the accuracy obtained
from each iteration [38]. Specifically, a value of k = 5
is chosen. We assess the classification performance of the
four deep learning models by comparing accuracy, precision,
recall, F1-score metrics, as presented in Equations 9, 10, 11,
and 12. These metrics assessed the model’s ability to classify
the performed activity. On the other hand,two others metrics
were used to evaluate the performance of HAR models on
the edge device. The inference time Tipference represents the
time needed for the model to output a classification label. The
inference time is given by Equation 13. The size of the model
(KB) is another important metric, as it directly impacts the
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FIGURE 6. Labels distribution in our dataset after applying data augmentation technique.

memory and storage requirements of the edge device.

TP 4+ TN
Accuracy = )
TP+ TN + FP+ FN
.. P
Precision = —— (10)
TP + FP
TP
Recall = —— (11)
TP + FN
2 x Precision x Recall
Fl1 = — (12)
Precision + Recall
Tinference(Ms) = Tout — Tinp (13)

where:

TP represents the number of true positive predictions
(correctly classified activities).

FN represents the number of false negatives (missed
classifications).

TP (True Positive) represents the number of samples
with correct prediction results.

FP (False Positive) represents the number of samples
whose result was wrong.

Tinp is the time value when the data is input to the model.
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- Tou is the time value when the resulting classification
label is obtained.

B. COMMUNICATION PROTOCOLS

After testing, evaluating and comparing the performance of
the various HAR models, we selected the most suitable one
for the Edge. The classification result from the HAR model
was then synchronised with the temperature and humidity
data and transmitted to the cloud.In our case, we used the
Azure platform as a service to create the DT. Azure IoT Hub
4 act as the cloud gateway. The IoT hub supports MQTT
over WebSockets, AMQP, AMQP over WebSockets, and
HTTPS, with bidirectional communication support. There are
different typologies for direct or indirect device connectivity.
The Azure IoT Hub received data as telemetry using the
MQTT protocol ( Message Queuing Telemetry Transport)
protocol [33]. The edge device was authenticated to the
Azure cloud service using a key provided by the Azure
platform. Furthermore, a virtual implementation and setup
is proposed for next generation 6G network, we proposed to

4https://azure.microsoft.comfen-gb/products/iot-hub
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link the DT to the 6G access point, to steer its data to the
user. Works related to 6G communication is performed using
MATLAB to simulate the channel attenuation in presence of
user movement and atmospheric parameters such as humidity
and temperature.

C. DIGITAL TWIN CREATION AND IMPLEMENTATION

Previous works on DT configurations and creation for
healthcare applications can be found in [31], [11], and [16]
respectively, we used Azure DT service’ to create DT of
the elderly room. It is acts as DT Repository. Azure DT
is written in DT Definition Language (DTDL).® DTDL is
used along with JavaScript Object Notation for Linked Data
(JSON-LD). In this framework,the JSON-LD representation
of the Elderly Room Interface, including properties for
Temperature, Humidity, and Activity is shown in 8. Azure
DT uses Explorer7 for visualization, write queries, and edit
models and relationships. The IoT Hub service acts as the
Communication Middleware between the Azure DT and the
edge, it aggregates received messages from the edge device
and forwards them to the DT service using an Azure function®
and triggered by EventGridTrigger.” Every update in the DT
Repository, which hosts the DT service, triggers an execution

5 https://azure.microsoft.com/services/digital-twins

Shitps://github.com/Azure/opendigitaltwins
dtdl/blob/master/DTDL/v2/dtdlv2.md

7https://docs.microsoft.com/en—us/azure/digital-twins/overview

8 https://azure.microsoft.com/en-gb/products/functions

9https://learn.microsoft.com/en—us/azure/azure—functions/functions—
bindings-event-grid-trigger
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of the History Service that stores historical data of the DT in
the History Repository. The Azure Data Explorer!” cluster
acts as History Repository that stores the twin property
updates in database. The implementation of History Service
was using Azure Event Hubs!!

V. EXPERIMENTAL RESULTS

This section discusses the experimental results from the tests
conducted on both PC and edge devices. Firstly, we presented
the results of evaluating the HAR models on the PC.
Secondly, we transferred them validated the accuracy, size,
and inference time to determine the best model for edge
devices. Then, two selected models are optimized in their
architectures and embedded into a Raspberry Pi device, and
the performance of these models is validated with continuous
data. Finally, we select the most suitable model for the
Raspberry Pi and integrate the output of this model with a
cloud DT.

A. HUMAN ACTIVITIES CLASSIFICATION

The performance of the four DL models trained on our dataset
was evaluated with and without the cross validation protocol.
Referring to table 2 and table 3,the Bi-LSTM and LSTM
models have the highest accuracy, with Bi-LSTM achieving
an accuracy of 99.34 %. and LSTM achieving an accuracy of
99.27% without cross validation. After applying 5-fold cross
validation, Bi-LSTM maintained its lead with an average

10https://microsoft.com/en—us/azure/data—explorer
1 https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about
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"@id": "dtmi:example:ElderlyRoom;1",
"@type": "Interface”,

"displayMame"; "ElderlyRoom",
"contents™: [

{
"@type": "Property”,
"name": "Temperature”,
"schema": "double”
b
{
"@type": "Property”,
"name"; "Humidity",
"schema": "double”
b
{
"@type": "Property”,
"name": "Activity",

n, n

"schema": "string"

i
I

"@context": "dtmi:dtdl:context;2"

i

FIGURE 8. JSON program fragment of elderly room for Azure DT.

TABLE 2. Performance metrics of HAR from the four deep learning
models tested on PC.

Model Precision | Recall F1-score Accuracy
(%) (%) (%) (%)

RNN 93.99 94.10 93.96 94.06

LSTM 99.26 99.26 99.26 99.27

BiLSTM 99.31 99.34 99.32 99.34

GRU 98.70 98.61 98.65 98.67

accuracy of 98.23%, while LSTM achieved 97.29%. The
GRU model has a relatively high accuracy of 98.67% without
cross validation technique, dropping slightly to 97.12%
after applying it. When compared to other models, RNN
consistently performed poorly, with an accuracy of 94.06%
without cross-validation and an average accuracy of 90.09%
with cross-validation. According to the confusion matrix9 of
the four HAR models’classification, Bi-LSTM, LSTM, and
GRU are successful in classifying all ten activities. The RNN
model exhibits misclassifications, particularly between the
activities of “Getting up”” up and “lifting”’. Therefore, due to
its inferior performance, especially in accurately classifying
activities, the RNN model may not meet the necessary
criteria to advance to the next evaluation stage on the edge
device.

109620

TABLE 3. Performance metrics of HAR from the four deep learning
models tested on PC and evaluated using 5-fold cross validation.

Model Precision | Recall F1-score Accuracy
(%) (%) (%) (%)

RNN 91.58 89.30 89.37 90.09

LSTM 97.48 97.15 97.27 97.29

BiLSTM 98.36 98.23 98.23 98.23

GRU 97.13 97.12 97.12 97.12

1) PERFORMANCE COMPARISON WITH RELATED WORKS

In our work, the BiLSTM model achieved the highest
accuracy of 99.34% compared to other trained models.
Table 4 compares the results of BilSTM model and similar
works. As each work tries to use a set of HAR dataset,
different classifier. Those reasons make it difficult to give a
precise area of comparison between the model and existing
ones.

B. RESULTS ON THE EDGE DEVICE

Three of the four trained HAR models (LSTM, BiLSTM,
GRU) were transferred to the Raspberry Pi for performance
assessment.

The evaluation of performance of the models on Raspberry
Pi included several metrics such as size (KB), interference
time (ms), and accuracy. We used one subject of the collected
dataset to assess the performance of these models. The results
are presented in Table 5. On the one hand, the BiLSTM model
achieved the best results in terms of accuracy. It reached
97.20%. However, on the other hand, it was the worst in terms
of the interference time, which was higher than 102 (ms)
and the model size of 7105 (kB). The BiLSTM model was
dropped from the continuous HAR test with the edge device.
Therefore, we selected the LSTM and GRU models because
they offer a reasonable compromise between accuracy, size,
and interference time.

The selected models have been optimized in their archi-
tectures by reducing the number of units in the layers.
Specifically, for the LSTM model, the number of units in each
layer was decreased from 64 units to 32 units, resulting a new
model named LSTM-2L. In the case of the GRU model, the
number of units in the second layer was reduced from 32 units
to 16 units and named GRU-2L. This optimization was
carried out to reduce their size and optimize interference time.
After training the two optimized model with our collected
dataset on PC they achieving an accuracy of 97.02%. and
95.60 % respectively. The sizes, accuracy’s, and inference
times of the optimized HAR models with the Raspberry
Pi board and one subject as continuous data are shown in
figure 10. Based on the results, we selected the GRU-2L
model as the HAR model to be embedded in the Raspberry Pi.
Its output (activities performed) will be transferred to the DT.
This decision was made because the GRU-2L model showed
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FIGURE 9. Normalized confusion matrix of each Model: (a) RNN, (b) LSTM, (c) BiLSTM, and (d) GRU.

Performance Metrics of LSTM-2L and GRU-2L
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FIGURE 10. The optimized HAR models size, accuracies, and inference
time with the raspberry Pi board and continuous subject.

a promising performance in terms of the size of 123 KB and
the inference time of 63 ms, with only a small difference in
the accuracy of 92.10% compared to the LSTM model of
93.04%.

Figure 11 illustrates the continuous HAR results against
the ground truth activity labels using the GRU-2L model,
and the figure presents the correspondent confusion matrix
in figure 12. The HAR results demonstrate accurate
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FIGURE 11. Continuous real-time GRU-2L model results from one subject
in raspberry Pi.

classification overall. Occasionally, there are instances of
confusion during transitions between activities, which indi-
cate occasional errors in classification when one activity
transitions to another. The classes of selected HAR model
was synchronized with DH11 reading data of temperature and
humidity and transferred as telemetry to IoT hub.

C. 10T HUB STATUS
The IoT hub, the interface component of the DT at
the cloud side, receives MQTT messages for the edge.
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TABLE 4. HAR model performance comparison with related works.

Reference Locations Sensors

Activities Classifier Accuracy (%)

Ramya et al. [26] Waist Accelerometer

Lying, Sitting,
Walking, Standing, 2D CNN-LSTM | 91%

Downstairs, Upstairs

Boujnah et al. [23] Waist

Accelerometer, Gyroscope

Walking, Sitting, LSTM 97.15%
. ‘0

Standing, Falling

Nia et al. [34] Wrist, Ankle, Waist

Accelerometer, Gyroscope

Walking, Sit up,
Jogging, Upstairs,
Downstairs, Walking RFC 97.67%
on the heel, Walking

on the toe, Standing

Mekruksavanich [30] Ankle, Knee

Accelerometer, Gyroscope

Walking, Jump,

Lie down, Sit,

ResNeXt 97.68%

Stairs down, Stairs up,
Stand, Walk

Our proposed method | Waist

Accelerometer, Gyroscope

Walking, Sitting,
Standing, Falling,
BiLSTM

Stairs down, Stairs up, 99.34%

Lifting, Lowering,

Sitting down, Getting up

TABLE 5. HAR accuracies, model sizes, and inference time obtained from
one subject with the Raspberry Pi and our dataset.

Model TIME (ms) | SIZE (KB) | Accuracy (%)
LSTM 102.10 957.20 94.23
BiLSTM | 264.27 7105.73 97.20
GRU 83.55 183.09 93.60

Normalized Confusion Matrix (%)

Falling RISl 0.00% 0.00% 0.00% 12.50% 0.00% 0.00% 0.00% 0.00% 0.00%
Getting up - 0.00% JUNRMER 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Lifting - 0.00% 0.00%

JUlRelopi! 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Lowering - 0.00% 0.00% 0.00% pGUROEE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

sitting - 0.00% 0.00% 0.00% 8.33% 0.00% 0.00% 0.00% 0.00% 0.00%

sitting down - 0.00% 0.00% 0.00% 0.00% BLEES 0.00% 0.00% 0.00% 0.00%

Stair ascend - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% NEKLER 0.00% 0.00% 0.00%
stair descend - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 10.00% JERNEE
Standing - 0.00% 0.00% 0.00% 0.00% 6.67% 0.00% 6.67% 0.00%

Walking - 0.00% 0.00% 0.00% 0.00% 0.00% 6.25% 0.00% 0.00%

falling -
tting up -
Lifting -
swering -
sitting -
1g down -
ascend -
descend -
tanding -
Walking <

FIGURE 12. Confusion matrix of continuous real-time GRU-2L results
from one subject in raspberry Pi.

Messages contain raw data and HAR classes As described
in subsection I'V-B, temperature and humidity are exploited
to determine the molecular attenuation loss of the 6G signal.
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This data will be used to build an outlier detection AI model
to detect extremely abnormal values. IMU data are also used
to predict the pointing error of the beam directed to the user,
the user in some circumstances; it requires a high data rate
and available service to contact the hospital or his doctor.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a multi-layered DT architecture
encompassing physical, communication, and virtual layers to
empower the healthcare sector applications. The proposed
architecture collects kinetic data using IMU sensors and
indoor environmental data using DHT11 sensor for temper-
ature and humidity measurement. The Collected data from
IMU are used to train deep learning models for human activity
recognition. The model achieved a test accuracy of 99.34%.
The model was deployed at the edge to aggregate sensor data
and transmit it to the IoT hub via MQTT messages. Moreover,
through theoretical and simulation studies, we demonstrated
how raw sensor data can be utilized for managing indoor
6G networks, addressing key parameters like phased array
beam steering pointing error and attenuation loss due to
molecular attenuation. However, our work has identified
some limitations. We observed a decrease in accuracy after
transferring the trained DL models to the edge, indicating
a need for improvement in edge computing capabilities.
Additionally, misclassifications were noted between similar
activities, such as stairs ascend and descend or sitting down
and lowering. To address these limitations, we plan to explore
advanced hardware options, like Nvidia GPUs, for direct

VOLUME 12, 2024



R. Brahmi et al.: Elaboration of Innovative DT Models for Healthcare Monitoring With 6G Functionalities

IEEE Access

model training on the edge. We also aim to refine our
activity recognition models to better distinguish between
similar activities. We will focus on collecting more data and
deploying new sensors, and new Al models. For multivariate
data, we will exploit the spatiotemporal distribution and tune
theoretical models for 6G network resource management to
deliver required QoS. Al models will be deployed both at the
edge and the cloud, and simulators will be linked to the DT
for prediction. In addition, we expect to enhance the DT with
a 3D model and integrate VR technology to provide a more
comprehensive and immersive healthcare solution.
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