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ABSTRACT Electric vehicle (EV) drivers aim to charge their vehicles cost-effectively and with minimal
charging time. Meanwhile, the ever-increasing number of EVs without charging control strategies could
result in a massive surge in peak demand, potentially overloading distribution equipment and violating
voltage constraints. To tackle this challenge, this paper introduces a transactive energy market (TEM)
framework for an EV parking lot (EVPL) equipped with photovoltaic (PV) panels and battery systems (BSs),
considering the preferences of both EV drivers and the EVPL operator. In this framework, EVs parked in
the EVPL participate in the TEM by submitting their charging flexibility through response curves, which
indicate the compensation required for different values of flexibility. Furthermore, the proposedmodel allows
the EVPL operator to utilize the flexibility of EVs in the vehicle-to-grid (V2G) program by incentivizing
EV drivers, considering their preferences and the degradation cost of EV batteries. The study employs the
stochastic programming method to model uncertainties in PV output, electricity prices, and EV availability.
It also incorporates BS degradation costs and carbon emissions constraints into the EVPL scheduling
problem. Linearization techniques are then applied to transform the non-linear optimization problem into
a mixed-integer linear programming (MILP) model. Finally, applying the model to a case study validates its
superiority in satisfying the preferences of both EV drivers and EVPL.

INDEX TERMS Transactive energy market, electric vehicle parking lot, vehicle-to-grid (V2G) operation,
uncertainty modeling, mixed-integer linear programming, carbon emissions constraint.

NOMENCLATURE
A. INDICES/SETS
s/S Index/Set of scenarios.
t/T Index/Set of time intervals.
v/V Index/Set of plugged EVs.

The associate editor coordinating the review of this manuscript and
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B. CONSTANTS AND PARAMETERS
n/N Index/Set of binary variables.
α Base rate for charging EVs.
βv,t Price required to convince EV driver for V2G

operation.
dpEVv Degradation price for EV battery.
ρs,t Price of exchange electric power between EV

parking lot and grid.
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πs Probability of scenario occurrence.
γ BS , δBS Coefficients for calculating degradation cost

of BS.
ηBS Efficiencies of BS’s charging and

discharging.
SoCmin,BS SoC level of BS presenting deep discharge.
pPVs,t Output power of on-site PV panels.
prated,BS Rated power of BS.
EBS Rated capacity of BS.
SoC ini,BS Initial SoC for BS.
prated,EV
v Rated power of EVs.
EEVv Rated capacity of EVs.
Us,v,t Binary parameter representing EVs’ plugged

in/out status.
kv,t Inverse of the response curve’s slope.
1pmaxs,v,t Maximum response offered by EVs.
SoCmin,EV

v Minimum allowable limit for EVs’ SoC.
ηEVv Charging and discharging efficiency for EVs.
SoC ini,EV

v Initial SoC for EVs at arrival.
tarrv , tdepv Arrival and departure times for EVs.
emgridt Carbon emission rate associated with

imported electric power from the grid.
CEmax Limitation of daily carbon emissions for EV

parking lot.
M1 −M4 Sufficiently big positive numbers used in

linearization procedure.

C. VARIABLES
pch,EVs,v,t EV’s charging power.
pdis,EVs,v,t EV’s discharging power.
pgrids,t Exchanged electric power between EV park-

ing lot the grid.
�
cmp,ch
s,v,t Compensation paid to EV drivers for their

flexibility in charging mode.
�
cmp,dis
s,v,t Compensation paid to EV drivers for their

flexibility in discharging mode.
�BS
s,t Degradation cost of the BS.

1pcls,v,t EV’s reduced charged power.
λs,t TEM clearing price.
pch,BSs,t BS’s charging power.
pdis,BSs,t BS’s discharging power.
SoCBS

s,t BS’s SoC level.
0s,t Binary variable representing charging or

discharging status of BS.
3s,v,t Binary variable representing charging or

discharging status of EVs.
SoCEV

s,v,t EV’s SoC level.
pscht Optimal scheduling plan of EV praking lot.
In,s,t Auxiliary binary variable utilized in the

linearization procedure.
Xn,s,v,t Auxiliary continuous variable utilized in the

linearization procedure.
Qs,v,t Auxiliary binary variable utilized in the

linearization procedure.

Ys,v,t Auxiliary continuous variable utilized in the
linearization procedure.

Ws,v,t Auxiliary continuous variable utilized in the
linearization procedure.

I. INTRODUCTION
A. MOTIVATION
The increasing public enthusiasm for achieving heightened
efficiency and environmentally sustainable energy technolo-
gies stands as one of the foremost reasons behind the
global proliferation of electric vehicles (EVs) over the past
few decades [1]. According to a study, the penetration of
EVs in India will be around 30% by 2030, which will
lead to a reduction of 474 megatons of oil demand and
accordingly 846.3 megatons of carbon dioxide emissions
over the deployed vehicles’ lifetime [2]. Along with the
remarkable benefits, the charging demands of a large fleet of
EVs are regarded as a substantial uncertain electrical load,
presenting potential challenges to the secure and economic
operation of distribution networks [3]. Addressing these
challenges requires the development of coordinated charging
strategies and advanced energy management systems that
can optimize the integration of EVs into the existing power
infrastructure [4]. By implementing coordinated charging
strategies, such as off-peak charging and demand-side
management programs, we can not only alleviate the stress on
distribution networks but also contribute to amore sustainable
and resilient energy ecosystem [5].

B. RELATED LITERATURE
Over the last few years, a rich body of literature studies
suggested a variety of EV charging strategies to overcome
the operational challenges associated with a substantial
volume of EV charging demands [6]. In [7], a mixed-integer
non-linear programming (MINLP) problem is proposed to
schedule the charging/discharging profile of EVs optimally.
In this work, the distribution network operator (DNO)
utilizes the flexibility of EVs to decrease electricity expenses,
mitigate battery wear, and alleviate strain on the grid.
A dynamic multi-objective EV scheduling model based
on the particle swarm optimization algorithm is presented
in [8] to satisfy the DNO’s and EV drivers’ preferences.
Authors of [9] and [10] propose coordinated EV charging
management frameworks to shave the peak demand and
fill the demand valley through the vehicle-to-grid (V2G)
strategy. A Hierarchical charging control framework that
simultaneously decreases EVs’ charging costs and improves
the distribution network’s power quality is presented in [11].
Reference [12] develops a coordinated charging management
strategy for EVs to maximize social welfare and avoid
congestion between EV parking lots (EVPLs).

While the reviewed papers have made important con-
tributions to the state-of-the-art literature, they have not
considered the impact of uncertain parameters on EV charg-
ing schedules. Specifically, the uncertainties associated with
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renewable energy resources (RERs), electricity prices, and
EV availability (arrival and departure times) have not been
integrated into the presented charging control frameworks.
These uncertainties directly affect the availability of green
energy for charging EVs, impact the cost and feasibility
of charging schedules, and are critical considerations for
both EV drivers and system operators aiming to optimize
their objectives. Addressing these uncertainties is crucial for
enhancing the efficiency and reliability of EV charging strate-
gies, particularly in dynamic and uncertain environments.

To address this issue, current research works in EV
charging management have primarily modeled the uncer-
tainties using two approaches, i.e., robust optimization (RO)
and stochastic programming (SP) [13]. In [14], a robust
scheduling problem is developed to obtain the optimal
charging/discharging profile of an EV aggregator aiming
at maximizing its profit under the upstream grid price
uncertainty. Authors of [15] propose a multi-objective
robust scheduling framework for EVs aiming at achieving
peak shaving, valley filling, and promoting clean energy
consumption based on real-time pricing and incentives.
In [16], a robust multi-objective energy management model
is introduced to effectively schedule smart buildings with EV
charging infrastructure, addressing uncertainties related to
RERs and demand. The main limitation of the RO approach
in modeling uncertainties lies in its inability to model the
stochastic behavior of uncertain parameters, particularly
those experiencing significant fluctuations throughout the
day, such as RER production, demand, and prices.

To address this issue, numerous studies focusing on
the coordinated strategy for managing EV charging have
employed the SP approach to model uncertainties effectively.
In the stochastic game-theoretic EV charging management
model in [17], a mixed-integer linear programming (MILP)
formulation is employed to simultaneously minimize the
charging cost of EVs and maximize the economic benefit of
the EVPL. Reference [18] proposes a two-stage stochastic
optimization model to manage the charging demand of
EVs with the primary objective of reducing the charging
cost of EVs and concurrently alleviating adverse effects on
distribution networks. Authors of [19] formulate a stochastic
optimization model designed to schedule EVs to minimize
the deviation between the actual EV charging profile and
the pre-specified charging profile under the uncertainties
of EV availability. Authors of [20] propose a stochastic
programming framework for optimizing the scheduling
of EVs with the main goal of minimizing the cost of
the aggregator considering EV availability uncertainty and
distribution grid limits.

The research works reviewed in [14], [15], [16], [17], [18],
[19], and [20] have considered different types of uncertainties
in their presented coordinated strategies for charging EVs.
Nevertheless, a key assumption in all the above studies was
that the system operator is permitted to schedule the EV
batteries. In other words, in the reviewed studies, the EV
drivers’ active participation in achieving their preferences and

the cost imposed on the system operator when leveraging
the flexibility of EVs have not been considered. To address
this issue, the transactive energy market (TEM) concept has
emerged as an innovative, market-based energy management
platform, facilitating the active participation of responsive
end-users [21]. In this regard, [22] proposes a three-level EV
charging scheduling strategy with TEM framework, where
EV drivers submit their bids in the lower level, the available
charging power is allocated to the EVs in the middle level,
and a market clearing mechanism is established by the
DNO in the upper level. The authors of [23] propose a
response curve that allows EV drivers to participate in the
TEM by representing the EV’s required compensation for
different response values. Taking these response curves into
account, the building energy management system organizes
a TEM to utilize the charging flexibility of EVs based
on their preferences. To solve the nonlinear scheduling
problem, a heuristic optimization method, namely the genetic
algorithm, is applied. Besides, authors of [24] employ the
proposed response curve in the previous study and develop
a MILP-based TEM framework for managing the charging
demand of EVs plugged in an office building parking lot
considering EV drivers’ preferences and requirements and
uncertainties related to PV output. However, this study does
not consider the uncertainties associated with electricity
prices and EV availability, nor does it model the flexibility
of EVs in V2G operation.

Another crucial aspect in the optimal scheduling of
EV charging is the effectiveness of these models in mit-
igating carbon emissions. While the electrification of the
transportation system holds promise for cutting down on
carbon emissions, charging EVs during periods of high
carbon intensity might undermine the overall environmental
benefits intended from their adoption [25]. In the literature,
several studies, such as [26], [27], [28], have incorporated
carbon emission reduction policies into their proposed EV
scheduling models. Authors of [26] propose a charging
management model for EVs to reduce carbon emissions
related to charging the EVs and mitigate wind curtailment.
Reference [27] develops a bi-level MINLP optimization
model for low-carbon EV charging coordination, which is
iteratively solved using a modified particle swarm algorithm.
A carbon-aware EV charging control framework based on an
improved local search genetic algorithm is proposed in [28],
integrating both static time-of-use pricing and marginal
emission factors, and demonstrating a notable reduction in
both costs and carbon emissions compared to uncontrolled
charging. Despite these efforts, to the best of the authors’
knowledge, the integration of carbon emission reduction
strategies into EV chargingmanagement algorithms using the
TEM framework remains relatively unexplored.

C. MAIN CONTRIBUTIONS
To identify the main research gaps in the reviewed studies,
Table 1 presents a summary of these studies. This table
provides a concise summary of the reviewed studies in terms
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TABLE 1. Taxonomy of related research works.

of modeling different types of uncertainties, EV drivers’
active participation, degradation of the battery systems and
EV batteries, the V2G mode of operation in EV batteries,
consideration of the carbon emissions constraint, and types
of optimization problems. As seen in this table, a notable
gap in the reviewed studies is the lack of consideration
for the carbon emission constraint and the flexibility of
EVs in the discharge mode (V2G operation) within the
proposed TEM-based EV scheduling frameworks. Although
some studies have modeled the V2G operation of EVs
in their scheduling problems, they have not included an
appropriate pricing strategy that accounts for the required
compensation of EV drivers and the costs incurred due to
discharging. Additionally, in the majority of the reviewed
studies, uncertainties are either not modeled in their proposed
EV scheduling problems or only one category of uncertain
parameters has been considered. It is important to note,
however, that various uncertainties exist, each characterized
by a distinct nature of uncertainty.

To bridge the research gaps identified in the literature,
this work introduces a TEM framework for day-ahead
scheduling of an EVPL equipped with photovoltaic (PV)
panels and the battery system (BS), leveraging the charging
and discharging flexibility of EVs while considering EV
drivers’ and the EVPL operator’s preferences. This model
addresses various uncertainties, including those related to PV
output, electricity prices, and EV availability. In the proposed
model, to incorporate the preferences of EV drivers, they are
enabled to actively participate in the TEM by submitting their
response curves to express their required compensation for
different response levels in charging mode. To leverage the
flexibility of EVs in discharging mode, the EVPL operator
can then calculate the price to incentivize EV drivers to
participate in the V2G program, considering the required
compensation of the EV drivers and the costs incurred due
to discharging. After collecting the response curves and

determining the required price to convince the EV driver to
participate in the V2G program, the EVPL operator solves
the scheduling optimization problem to clear the TEM among
EVs and obtain the optimal clearing price for the offered
flexibility and the charging and discharging power of each
EV. The objective function of the scheduling problem is to
maximize the EVPL’s expected profit, taking into account
the costs associated with utilizing the flexibility offered by
EVs and the degradation cost of the BS. Additionally, the pre-
sented model is subjected to various operational constraints,
including limitations on EVs, the BS, and daily carbon
emissions. Finally, recognizing the non-linearity inherent in
the degradation cost of the BS and the presented response
curve, the mathematical formulation is initially structured as
a MINLP model. To address the computational complexities,
the model is then reformulated into a MILP form employing
suitable linearization techniques. The primary contributions
of this work are as follows:

1) Developing a MILP stochastic scheduling model to
organize a TEM with the EVs parked in an EVPL
equipped with the BS and PV panels, considering
the degradation cost of the BS, carbon emissions
constraint, and uncertainties in PV output, electricity
prices, and EV availability.

2) Introducing a preference- and cost-based pricing strat-
egy that allows EV drivers to offer their vehicles’
charging flexibility by submitting the response curve
and enables the EVPL operator to utilize the flexibility
of EVs in G2V and V2G programs by incentivizing
EV drivers, considering their preferences and the
degradation cost of EV batteries.

D. PAPER ORGANIZATION
The rest of this paper will be organized as below. The main
structure of the proposed model for scheduling the EVPL is
presented in section II. The mathematical formulation of the
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FIGURE 1. Schematic structure of the proposed scheduling model.

optimization problem is provided in section III. Section IV
presents the analysis and discussions on the simulation study,
and lastly, the key findings are summarized in Section V.

II. BACKGROUND
The proposed model aims to obtain the optimal day-ahead
scheduling of an EVPL equipped with PV panels and the
BS. While some studies in the literature have proposed
control methods for PV generation, such as [29], [30],
our approach assumes that all available PV generation is
utilized and focuses on the charging/discharging scheduling
of EVs and the BS. The schematic representation of the
proposedmodel is shown in Fig. 1 encompassing components
such as uncertainty modeling, response curve, optimization
problem, and the final solution for the scheduling problem.
The optimization problem aims to maximize the expected
day-ahead profit of the EVPL considering various constraints
related to EVs, BSs, exchanged electric power with the main
grid, and daily carbon emissions. This section elaborates on
the uncertainty modeling and EV’s response curve, while the
subsequent section provides a detailed presentation of the
optimization problem.

A. UNCERTAINTY MODELING
As previously mentioned, there are several uncertain param-
eters in the scheduling problem of the EVPL equipped with
PV panels and BSs. Three primary categories of uncertainties
influencing the optimal plan are associated with PV output,
price in the main grid, and EV availability (EVs’ arrival and
departure times). Integrating these uncertain parameters into
EV charging control frameworks is essential for developing
robust and adaptive solutions that can effectively manage
EV charging operations under varying and uncertain environ-
ments. To incorporate these uncertainties into the optimiza-
tion problem using the SP approach, probability distribution
functions (PDFs) are initially attributed to every uncertain
parameter. Subsequently, considering the determined PDFs,
a large number of scenarios is generated for uncertain
parameters using a suitable scenario generation method [31].
Given that this substantial number of scenarios imposes a
computational burden on the optimization problem, it is
imperative to implement an appropriate scenario reduction

FIGURE 2. A sample of response curve.

method. In this study, Monte Carlo simulation is employed
for scenario generation, and the fast-forward selection (FFS)
method is utilized for scenario reduction in the uncertainty
modeling process [32].

B. RESPONSE CURVE
In this study, to exploit the flexibility of EVs, i.e., the
difference between the plugged-in period and the required
time to achieve the fully charged battery, the EVPL operator
implements a TEM among plugged EVs. In this regard, each
EV independently submits its response curve to engage in the
TEM and offer its flexibility. In other words, by participating
in the TEM, the EVs enable the operator to adjust the
charging power of EVs according to the EV drivers’ specified
response curves in return for compensation. Thus, EV drivers
receive compensation for the flexibility they contribute to
the scheduling of the EVPL. Fig. 2 depicts a sample of
the response curve employed in this study. This illustration
depicts how the EV driver defines its response curve by
specifying two values: i) maximum response (1pmaxv,t ), and ii)
desired price for the maximum response (λmaxv,t ). Considering
this figure, the response curve can be expressed as follows.

1pclv,t =


kv,tλclt λclt <

1
kv,t

1pmaxv,t

1pmaxv,t λclt ≥
1
kv,t

1pmaxv,t

(1)

Here, kv,t represents the inverse of the response curve’s
slope, while λclt and 1pclv,t denote TEM clearing price and
EVs’ reduced charged power, respectively. For the sake of
simplicity and a better understanding of the concept, the
deterministic model for TEM is considered in this section.
A higher value of parameter kv,t results in a greater decrease
in the charged power for the corresponding EV within the
same clearing price. This indicates that the corresponding
EV driver is more inclined to provide charging flexibility.
Moreover, the variables λclt and 1pclv,t are determined by
clearing the TEM by solving the optimization problem
described in the next section. Given the above explanations,
the EVs’ actual charging power can be presented below.

pch,EVv,t = prated,EV
v − 1pclv,t (2)
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After acquiring the clearing prices and the EVs’ reduced
charging power, it becomes possible to compute the cost for
the consumed energy by the EVs and the compensations paid
to the EV drivers for the response they have contributed. The
cost of energy consumed by EVs (�ch

v,t ) is determined by
multiplying the consumed energy by the base charging rate
(α). The compensation paid to the EV due to its response
(�cmp,ch

v,t ) equals the TEM clearing price multiplied by the
reduced charged power. Finally, the actual cost of charging
EVs (�v,t ) is determined by subtracting the compensation
paid to the EV from the cost of consumed energy, as expressed
below.

�v,t = �ch
v,t − �

cmp,ch
v,t = αpch,EVv,t − λclt 1pclv,t (3)

The response curve and descriptions presented above relate
to leveraging the flexibility of EV batteries in their charging
mode. If the EVPL operator intends to utilize the flexibility
of EVs in discharging mode, it is essential to convince
the EV drivers. In this regard, in addition to compensating
the EV driver for the full flexibility in charging mode, the
compensation paid to the EV driver in discharging mode
must cover the required remuneration for flexibility in V2G
operation, the cost of EV battery degradation, and the cost of
recharging. Therefore, the cost that the EVPL operator must
pay to the EV driver to employ the flexibility in discharging
mode is calculated as follows.

�
cmp,dis
v,t = λmaxv,t p

dis,EV
v,t + dpEVv pdis,EVv,t + α

pdis,EVv,t

ηEV
2

v
(4)

where, the first item represents the EV driver’s required
compensation for the flexibility they provide in discharging
mode, calculated by multiplying the EV driver’s desired
price for maximum response by the discharged power. The
second item calculates the EV battery’s degradation cost,
which is equal to the degradation price multiplied by the
discharged power. The third item calculates the recharging
cost as the product of the base charging rate and the recharged
power. Considering the above relation, the price required for
convincing the EV drivers to participate in the V2G program
is formulated as relation (5).

βv,t =
�
cmp,dis
v,t

pdis,EVv,t

= λmaxv,t + dpEVv +
α

ηEV
2

v
(5)

III. FORMULATION FOR SCHEDULING THE EVPL
The proposed model aims to obtain the optimal scheduling
plan for an EVPL consisting of EV charging piles, PV panels,
and BSs. The optimization problem including the objective
function and operational constraints is presented below.

A. OBJECTIVE FUNCTION

max
∑
t∈T

∑
s∈S

πs

[ ∑
v∈V

(αpch,EVs,v,t − �
cmp,ch
s,v,t − �

cmp,dis
s,v,t )

− ρs,tp
grid
s,t − �BS

s,t

]
(6)

�
cmp,ch
s,v,t = λs,t1pcls,v,t (7)

�
cmp,dis
s,v,t = βv,tp

dis,EV
s,v,t (8)

�BS
s,t = γ BS

(
pch,BSs,t ηBS + pdis,BSs,t /ηBS

)
+ δBS

(
max{SoCmin,BS

− SoCBS
s,t , 0}

)
(9)

As previously mentioned, the optimization problem aims
to maximize the expected profit of the EVPL, which includes
five items. The first one is the revenue from charging EVs,
calculated by multiplying the base charging rate by the
amount of energy charged. The second and third items are the
compensations paid to the EV drivers due to their flexibility
in charging and discharging modes, respectively. Relation (7)
calculates the value of compensation paid to the EV drivers
for their charging flexibility by the product of TEM clearing
price and decreased charged power. The relation (8) computes
the compensation of the EV drivers in their discharging
mode, which equals the product of the price required to
incentivize EVs for discharging, as calculated in (5), and their
discharging power. The next item is the cost/revenue of the
EVPL from the exchanged electric power with the main grid
which is calculated by multiplying the price in the main grid
by the exchanged electric power. Finally, the last item is the
degradation cost of the BS during the DA scheduling of the
EVPL. In (9), the degradation cost of the BS, which includes
both the degradation cost of charging/discharging and the
degradation cost of deep discharge of batteries, is calculated.
Both of these parameters might have a negative impact on
the useful lifetime of batteries [33]. Thus, it is necessary to
consider the degradation of batteries as an operating cost in
the optimization problem from the perspective of its owner.

B. CONSTRAINTS
The constraints of the optimization problem include the
power balance constraint (10), the operational limitations
of the BS (11)−(16), the operational limitations of the
EV battery (17)−(22), the relations representing the EVs’
response curves and TEM clearing (23) and (24), and the
carbon emissions constraint (25).

1) POWER BALANCE CONSTRAINT

pgrids,t =

∑
v∈V

(pch,EVs,v,t − pdis,EVs,v,t ) + pch,BSs,t − pdis,BSs,t − pPVs,t

(10)

This equality constraint ensures the electric power balance
between supply and demand in the EVPL, as well as the
power exchanged with the upstream grid.

2) OPERATIONAL CONSTRAINTS OF THE BS

0 ≤ pch,BSs,t ≤ prated,BS0s,t (11)

0 ≤ pdis,BSs,t ≤ prated,BS (1 − 0s,t ) (12)

SoCBS
s,t+1 = SoCBS

s,t +
pch,BSs,t ηBS − pdis,BSs,t /ηBS

EBS
(13)

108736 VOLUME 12, 2024



M. Alanazi et al.: Developing a Transactive Charging Control Framework for EV Parking Lots

0 ≤ SoCBS
s,t ≤ 1 (14)

SoCBS
s,t = SoC ini,BS

; t = 1 (15)

SoCBS
s,t = SoC ini,BS

; t = 24 (16)

Relations (11) and (12) limit the charging and discharging
power of the BS, and (13) updates the BS’s state-of-charge
(SoC) for the next time interval based on the current SoC
as well as the charging and discharging power during the
current time interval. Constraints (14), (15), and (16) present
the permissible levels of SoC during the operation of the BS,
the initial SoC of the BS, and the equality of initial and the
final SoC levels of the BS, respectively.

3) OPERATIONAL CONSTRAINTS OF THE EVS

0 ≤ pch,EVs,v,t ≤ prated,EV
v Us,v,t3s,v,t (17)

0 ≤ pdis,EVs,v,t ≤ prated,EV
v Us,v,t (1 − 3s,v,t ) (18)

SoCmin,EV
v ≤ SoCEV

s,v,t ≤ 1 (19)

SoCEV
s,v,t+1 = SoCEV

s,v,t +
pch,EVs,v,t ηEVv − pdis,EVs,v,t /ηEVv

EEVv
(20)

SoCEV
s,v,t = SoC ini,EV

v ; t = tarrv (21)

SoCEV
s,v,t = 1; t = tdepv (22)

Relations (17) and (18) establish the constraints on the
charged and discharged power of EV batteries. Binary
parameters Us,v,t identify the plugged status of EVs, while
binary variables 3s,v,t present the charging or discharging
mode of the EVs. The limitation on the SoC level of EV
batteries is provided by (19). The equality constraints include
EVs’ energy balance in successive time intervals (20), EVs’
initial SoC level (21), and ensuring that the battery is fully
charged at departure (22).

4) RESPONSE CURVE MODEL

1pcls,v,t =


kv,tλcls,t λcls,t <

1
kv,t

1pmaxs,v,t

1pmaxs,v,t λcls,t ≥
1
kv,t

1pmaxs,v,t

(23)

pch,EVs,v,t = (prated,EV
v − 1pcls,v,t )Us,v,t (24)

As previously discussed, the mathematical formulation of
the EVs’ response curves is presented as (23), while the
relation (24) computes the charging power of EV batteries
based on the offered flexibility by the EVs.

5) CARBON EMISSION CONSTRAINT∑
t∈T

∑
s∈S

πsem
grid
t pgrids,t ≤ CEmax (25)

This constraint ensures that the carbon emissions associ-
ated with purchased electric power from the main grid do not
exceed their maximum allowable value (CEmax) [34].

After solving the optimization problem described above,
the day-ahead scheduling plan of the EVPL is determined as

the expected value of the exchanged electric power between
the EVPL and the main grid, as shown in equation (26).

pscht =

∑
s∈S

πsp
grid
s,t (26)

C. LINEARIZATION PROCEDURE
The optimization problem presented above excluding (7),
(9), and (23) are modeled as a MILP problem. To achieve
global solutions through available solvers, the originally non-
linear formulations are substituted with linear presentations
below [35], [36].

To linearize relation (7), we begin by approximating the
continuous variable λcls,t through a set of binary variables
In,s,t . Hence, (7) is reformulated as shown below.

�
cmp,ch
s,v,t = λcls,t1p

cl
s,v,t =

∑
n∈N

2n−1In,s,t1pcls,v,t (27)

Let In,s,t1pcls,v,t = Xn,s,v,t ; employing the Big-M
technique, relation (7) is linearized by following relations.

λcls,t =

∑
n∈N

2n−1In,s,t (28)

�
cmp,ch
s,v,t =

∑
n∈N

2n−1Xn,s,v,t (29)

0 ≤ Xn,s,v,t ≤ In,s,tM1 (30)

1pcls,v,t − (1 − In,s,t )M1 ≤ Xn,s,v,t ≤ 1pcls,v,t (31)

Relation (9) can be linearized by replacing the following
relations.

�BS
s,t ≥ γ BS

(
pch,BSs,t ηBS + pdis,BSs,t /ηBS

)
+ δBS

(
SoCmin,BS

− SoCBS
s,t

)
(32)

�BS
s,t ≥ γ BS

(
pch,BSs,t ηBS + pdis,BSs,t /ηBS

)
(33)

To linearize relation (23), we introduce a binary variable
Qs,v,t . Thus, the relation can be expressed in a linear form as
follows.

1pcls,v,t = kv,tλcls,tQs,v,t + 1pmaxs,v,t (1 − Qs,v,t ) (34)

λcls,t ≥
1
kv,t

1pmaxs,v,t (1 − Qs,v,t ) −M2Qs,v,t (35)

λcls,t ≤
1
kv,t

1pmaxs,v,tQs,v,t +M2(1 − Qs,v,t ) (36)

In above relations, the non-linearity arises from the prod-
ucts involving the binary variable Qs,v,t and the continuous
variables λcls,t and 1pmaxs,v,t . To address this, we introduce
auxiliary variables Ys,v,t = λcls,tQs,v,t and Ws,v,t =

1pmaxs,v,tQs,v,t , and replace the original relations as follows.

1pcls,v,t = kv,tY cls,v,t + 1pmaxs,v,t −Ws,v,t (37)

λcls,t ≥
1
kv,t

(1pmaxs,v,t −Ws,v,t ) −M2Qs,v,t (38)

λcls,t <
1
kv,t

Ws,v,t +M2(1 − Qs,v,t ) (39)

λcls,t − (1 − Qs,v,t )M3 ≤ Ys,v,t ≤ λcls,t (40)
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FIGURE 3. Probability distribution functions of EVs’ arrival and departure
times.

0 ≤ Ys,v,t ≤ Qs,v,tM3 (41)

1pmaxs,v,t − (1 − Qs,v,t )M4 ≤ Ws,v,t ≤ 1pmaxs,v,t (42)

0 ≤ Ws,v,t ≤ Qs,v,tM4 (43)

Finally, employing the linearized expressions described
earlier, the MILP model for our proposed transactive-based
EV scheduling problem is formulated as follows.

obj : (6) (44)

(8), (10) − (22), (24) − (26)

(28) − (33), (37) − (43) (45)

IV. CASE STUDY
In the simulation, we consider an EVPL equipped with on-
site PV panels, the BS, and EV charging piles. The parking lot
has 200 charging piles, with the probability density functions
(PDFs) illustrating EVs’ arrival and departure times depicted
in Fig. 3. The initial SoC at arrival is assumed to be a
certain parameter, with EVs randomly assigned a uniform
distribution between 0.2 and 0.3 for its value. Moreover, the
probability spaces for electricity prices in the main grid and
the normalized PV output are shown in Fig. 4. The rated
power of installed PV panels is assumed to be 400 kW.
To obtain the scenarios for the uncertainties, we first generate
a large number of scenarios using their PDFs. Then, the FFS
method is applied to the generated scenarios and reduces the
number of scenarios to a tractable number (10 scenarios).

For simplicity, we assume that the response curve of EV
drivers remains consistent across plugged-in time intervals.
Besides, the maximum offered response of EVs is considered
equal to the rated power of their batteries, and the parameter
λmaxv,t for EVs is randomly assigned a uniform distribution
within the between 0.4 Cent/kWh and 1 Cent/kWh. The
time-dependent carbon intensity and the degradation price of
EV batteries are taken from [26] and [37], respectively. The
remaining key input data of the model related to the EVs [38],
the battery storage system [39], and PV panels are reasonably
assumed and reported in Table 2.

FIGURE 4. Probability spaces for uncertainties of upstream grid prices
and PV output.

TABLE 2. Other key input data.

The MILP EV scheduling problem is implemented in
the GAMS software and is solved on a PC with a Core-i7
processor and 16GB main memory using the CPLEX solver.
The duration of solving the presented optimization problem
with the above-described input data averages approximately
54 minutes.

A. SIMULATION RESULTS
To conduct a more comprehensive analysis of our proposed
model’s performance, we examine three distinct cases;
Case I: implementing our proposed model, Case II: uncon-
trolled charging, where EVs are charged immediately upon
connection, and Case III: direct control, wherein the main
objective is to minimize the cost of purchased electric power
from the upstream grid without taking into account the
response curves of EVs. In all the above cases, EV drivers will
receive compensation for adjusting the EV batteries’ charging
schedule. The optimal scheduling plan of the BS for the three
aforementioned cases is the same and is depicted in Fig. 5.
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FIGURE 5. Optimal scheduling plan for the BS.

The similar scheduling plan for the BS stems from two key
factors: Firstly, there are no constraints imposed on the EVPL
regarding the exchanged electric power with the upstream
grid. Secondly, the constraint related to carbon emissions has
not been violated across all three cases. This figure shows
that to increase the profit of the EVPL, the BS is discharged
during hours with higher prices, 16:00-19:00, and then is
charged during hours with lower prices, 1:00-4:00.Moreover,
the degradation cost of the BS at the day-ahead scheduling
amounts to 1.45 $.

In addition, the expected demand for charging EVs and
the parking lot’s imported/exported electric power from/to
the grid are depicted in Figs. 6 and 7. As seen in these
figures, under the direct control model, EV charging has been
deferred to the hours of 11:00-04:00 when the upstream grid
price is low. However, in this case, the EVs will be greatly
compensated due to their charging flexibility (postponing
charging EVs for a long time). In the uncontrolled case,
as the charging of EVs occurs without any delay, they will
not receive any compensation. Our proposed model, which
strikes a balance between two other cases, harnesses the
charging flexibility of EVs to charge at lower prices while
also aiming to expedite the charging process compared to the
direct control case. As depicted in this figure, the primary
charging demand for EVs has shifted from the hours of
16:00-19:00 in the uncontrolled case to 19:00-21:00 in our
proposed model. The rationale behind not further postponing
the charging of EVs in the proposed model is that the rise
in compensation must paid to the EVs for utilizing their
flexibility surpasses the increase in acquired profit.

For clarity regarding the above analysis, Table 3 reports
the balance of the parking lot’s scheduling for the three
aforementioned cases. This table illustrates that while the
direct control model minimizes the cost of purchasing electric
power from the main grid, the delay in charging EVs results
in significant compensations, consequently reducing the total
profit. Further, the table demonstrates that the total profit
of our proposed model exceeds that of Cases II and III by
more than 8.5% and 13.4%, respectively. Also, this table
illustrates that our proposed model not only satisfies the
comfort preferences of EV drivers but also, on average,
reduces the actual charging cost of EVs by 8.2% compared
to uncontrolled charging.

FIGURE 6. Optimal charging demand of EVs in the optimal scheduling of
EVPL.

FIGURE 7. Optimal imported/exported electric power from/to the grid
(positive: imported, negative: exported).

TABLE 3. Balance of the EVPL’s scheduling.

In terms of carbon emissions, the optimal scheduling
among these three cases results in the following emis-
sions: the direct control model yields the lowest emis-
sions at 296.4 kgCO2, followed by our proposed model at
360.9 kgCO2, and lastly, the uncontrolled model emits the
highest amount of carbon at 427.5 kgCO2. The lower carbon
emissions observed in Case III can be attributed to the
data sourced from [26], indicating that the carbon intensity
during nighttime hours, 22:00-05:00, is lower compared to
daytime hours. To further examine the impact of carbon
emissions limit on the obtained profit of the EVPL, Fig. 8
illustrates the variations in profit across different values
of carbon emissions limits. This figure shows that as the
carbon emission limit decreases, the profit of the EVPL also
decreases. Furthermore, it illustrates that the difference in
acquired profit between the proposed and the direct control
model decreases as the carbon emission limit decreases.
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FIGURE 8. EV parking lot’s profit for different levels of carbon emission
limits.

The reasoning behind this trend is that, in such conditions,
the EVPL operator tries to charge EVs during periods of
lower carbon intensity, typically during the midnight hours.
Consequently, it incurs higher compensation due to increased
utilization of the charging flexibility inherent in EVs. For
instance, when the carbon emission limit is set at 280 kgCO2,
the EVPL operator chooses to discharge 400 kWh of the
stored energy in EV batteries during the hours of 18:00-20:00
to adhere to the carbon emission constraint and avoid
deviation.

B. COMPARATIVE ANALYSIS WITH PREVIOUS STUDIES
In the above, the performance of our proposed model against
uncontrolled charging and the direct control model has been
evaluated. In this subsection, we compare the effectiveness of
our proposed model with that of a reviewed study in TEM-
based EV scheduling [24] to identify strengths and areas
for improvement. Unlike the model presented in [24], our
proposed model allows the EVPL operator to harness the
flexibility of EVs in V2G operation, aiming to maximize
profit while adhering to the daily carbon emissions constraint.
Given the significant cost associated with battery degradation
in EVs, employing the discharging flexibility of EVs in
normal market conditions (with standard prices) does not
economically justify the expenses incurred by the EVPL
operator. To assess the applicability of our proposed model
for V2G operation, we consider a scenariowith a sudden price
increase, where the electricity price in the main grid from
20:00 to 22:00 rises to 12 Cent/kWh.
Fig. 9 shows the scheduling of EVs in two new cases,

i.e., with and without considering the V2G operation of EV
batteries. As depicted in the figure, during an emergency
condition when the electricity price in the main grid spikes,
the EVPL operator opts to discharge EVs at their rated
power. This strategy is preferred because the required price to
incentivize the EV drivers’ participation in V2G operations
is lower than the elevated electricity price. Consequently,
both the EVPL operator and the EV drivers benefit, with
the operator increasing its profit and the drivers receiving

FIGURE 9. Optimal scheduling of EVs in the scenario with price spikes.

TABLE 4. Balance of the EVPL’s scheduling in the scenario with price
spikes.

compensation for their provided flexibility in charging and
discharging modes. However, without considering V2G
capability, the EVPL operator not only loses revenue from
selling electricity to the grid by discharging EVs during
price spikes but also denies EV drivers the opportunity to
benefit from their offered flexibility in discharging mode.
To illustrate this, Table 4 presents the expected profit of the
EVPL operator from scheduling EVs and the associated costs
and compensations for EV drivers. As shown, discharging
EVs during price spike hours increases the total profit of the
EVPL by 59%, even after accounting for the compensation
paid to EV drivers for their flexibility, the degradation cost of
EVs, and the recharging cost. Moreover, the results indicate
that the actual charging costs of EVs are 184.3 $ with V2G
capability and 206 $ without V2G capability, representing a
10.5% decrease due to the higher compensation for EVs in
the case with V2G capability.

C. SENSITIVITY ANALYSIS
A key parameter in our proposed TEM-based EV charging
model is the degradation price of EV batteries, which
significantly influences the compensation paid to EV drivers
for leveraging their vehicles’ flexibility in V2G operations.
To explore the influence of this parameter, the amount of
EVs’ discharged power for various values of the degradation
price is shown in Fig. 10. As observed in this figure, when the
degradation price exceeds 3 Cent/kWh, the EVPL operator
prefers not to utilize the flexibility of EVs in V2G operation.
Moreover, as the value of dp decreases, the discharging power
of EVs exhibits a linear increase. It is worth noting that
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FIGURE 10. Discharging power of EVs for different values of degradation
price.

TABLE 5. Computational performance of the presented model.

considering lower values for the EV battery degradation price
is reasonable given the expected advancements in battery
technology, which will likely reduce the degradation cost of
EV batteries and consequently their degradation price in the
future.

D. COMPUTATIONAL EFFICIENCY
In this subsection, we examine the efficiency of the presented
MILP formulation in comparison to the basic MINLP prob-
lem in terms of running time and solution precision. To this
end, Table 5 presents the running time (RT) and objective
function (OF) values of the optimization problem formulated
in both MILP and MINLP representations. As indicated
by the table, our proposed linearized model achieves the
optimal solution more rapidly than the original non-linear
optimization problem, while maintaining an acceptable level
of precision. Additionally, it indicates that the presented
MINLP optimization problem does not yield a feasible
solution for cases involving more than 150 EVs. These
observations prove that linearizing the non-linear relations
in the original MINLP formulation carried out in this paper
substantially enhances the computational performance of the
EVPL scheduling problem.

V. CONCLUSION
In this paper, we develop a TEM model to manage the
scheduling of an EVPL equipped with BSs, PV panels, and
EV charging piles, taking into account the preferences of both
EV drivers and the system operator. Alongside considering
the system operator’s preferences within the objective func-
tion of the optimization problem aimed at maximizing the

profit, the scheduling problem also incorporates EV drivers’
preferences through the response curve. By integrating the
V2G operation mode for EVs, considering the degradation
cost of both EVs and the BS, modeling uncertainties, and
adhering to carbon emissions limits, the model provides
a comprehensive solution to the scheduling problem for
EVPLs.

Our proposed model is compared with three distinct
cases, i.e., uncontrolled charging, the direct control model,
and the TEM-based EV scheduling model without V2G
capability. The simulation study has demonstrated that,
from the viewpoint of the EV drivers, our proposed model
achieves a balance between uncontrolled charging and direct
control by reducing the charging cost of EVs compared to
uncontrolled charging and achieving fully charged batteries
faster than the direct control model. Additionally, from
the viewpoint of the EVPL operator, the numerical results
show that our model increases EVPL profit by 8.5%
and 13.4% compared to uncontrolled charging and direct
control cases, respectively. Moreover, in the scenario with
price spikes, our model leverages the flexibility of EVs
in discharging mode, increasing EVPL profit by 59% and
reducing EV charging costs by 10.5% compared to the
TEM-based EV scheduling model without V2G capability.
Finally, the adaptability of our proposed model to incor-
porate carbon emission limits highlights its potential for
promoting sustainable energy management in EV charging
infrastructure.

In future work, several directions could be pursued
to further enhance the proposed model. Firstly, exploring
advanced optimization techniques such as machine learning
algorithms to handle the complexity of large-scale EV fleets
considering distribution network constraints could improve
model robustness and scalability. Secondly, integrating the
response curve proposed in this study with peer-to-peer
(P2P) energy trading systems could enable direct interaction
between EVs and RERs. This integration would facilitate
bidirectional energy exchange (G2V and V2G), thereby
enhancing the integration of renewable energy and optimiz-
ing the use of distributed energy resources. Additionally,
exploring real-time operational strategies, including efficient
methods likemodel predictive control, to handle uncertainties
in EV charging schedules beyond the day-ahead horizon
could significantly enhance the model’s applicability in
practical scenarios.
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