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ABSTRACT Early fault warning for large-scale high-speed rotating machinery can effectively reduce
unplanned downtime and avoid major safety accidents. Aiming at the problems of difficult screening of
multi-source common sensitive features, the challenging training of neural networks with a small number of
sensitive features, and the difficulty of directly using generative adversarial networks for early fault warning,
this paper constructs an early fault warning model based on multi-source common sensitive features and an
improved Wasserstein generative adversarial network, proposing an early fault warning method for rotating
machinery. The model was verified by using the open XJTU-SY bearing laboratory data, the P3409A
centrifugal pump bearing fault engineering case data of a petrochemical company and the rotor system
engineering case data of a circulating hydrogen centrifugal compressor of a petrochemical company. The
early fault warningmethod of rotatingmachinery proposed in this paper warns the bearing fault of centrifugal
pump 160 hours in advance and the rotor system fault of centrifugal compressor 1330 minutes in advance.
Compared with the two published methods, the proposed method has better early fault warning effect, better
normal and abnormal health index discrimination and less false warning.

INDEX TERMS Rotating machines, deep learning, generative adversarial networks, early fault warning.

I. INTRODUCTION
High-speed rotating machinery is extensively utilized in
petrochemical industries on a large scale. To meet the eco-
nomic demands of industrial safety production, maintaining
the equipment’s long-term stable performance is essential.
Once the unplanned shutdown of the equipment occurs, it will
lead to production interruption and even serious safety acci-
dents, resulting in significant economic losses. Early fault
warning is designed to provide timely and precise alerts at
the initial emergence or when the severity of a fault in equip-
ment is still low. This enables the guidance of equipment
operation and maintenance, monitoring of fault progression,
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effective containment of fault escalation, and assurance of
the equipment’s safe, stable, and reliable performance [1].
However, early fault symptoms in rotating machinery are
often weak, with indistinct characteristics, and they operate
in complex environments where fault signals can be easily
obscured by noise. This presents challenges for early fault
warning. Common early fault warning methods are based
on traditional time-frequency signal analysis and processing
methods, traditional machine learning model methods, and
deep learning model methods.

The early fault warning method based on traditional
time-frequency signal analysis and processing relies on
smooth filtering, decomposition, and noise reduction of the
original signal. Subsequently, the time-frequency features
are extracted from the original signal, and the features of
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the real-time signal are compared with the calculated fault
features to identify the early fault. Tian et al. [2] studied
an early warning method for rolling bearing faults utilizing
beta distribution and a noise filtering reduction algorithm.
They employed the XJTU-SY dataset along with experi-
mental bearing data to validate the algorithm’s precision.
Guo et al. [3] proposed an improved version of symplectic
geometry mode decomposition for rotating machinery faults
detection and confirmed its effectiveness with numerical and
experimental investigations.Wang et al. [4] proposed an early
fault warning method utilizing a multi-scale enhanced mor-
phological top-hat filter based on adaptive variational mode
decomposition-sample entropy noise reduction. The method
demonstrated superior diagnostic capabilities for detecting
weak faults amidst noise interference, as evidenced by both
experimental and engineering outcomes. Xu and Li [5] pro-
posed a novel empirical variational mode decomposition and
exact Teager energy operator for early fault detection of
rotatingmachinery and confirmed its effectivenesswith simu-
lation data and experimental data. These methods have strong
interpretability, but they have the following shortcomings:
(1) The need to manually establish standards and thresholds
frequently compromises the adaptability of these methods.
(2) Noise reduction is often necessary. However, while it
eliminates interference, it can also diminish the early signs
of faults.

The early fault warning method based on the traditional
machine learning model extracts the spectral features [6],
wavelet features [7], time-frequency features [8], entropy
features [9], etc. of the condition monitoring signal, and then
trains the machine learning model based on the extracted
features to construct the alarm threshold line to achieve
early fault warning. Shi et al. [10] introduced a novel early
fault warning approach utilizing density clustering and the
extreme gradient boosting algorithm, which was validated
using data from wind turbines. Xiao et al. [11] proposed a
method for early warning and diagnosis of sudden imbal-
ance faults in rotating machinery. The method’s effectiveness
was confirmed through the application of real-world engi-
neering fault cases from petrochemical companies as test
data. Wang et al. [12] researched a data-driven model for
early fault detection in rotating machinery. Utilizing wavelet
packet decomposition and dynamic kernel principal com-
ponent analysis among other techniques, they developed an
early warning model. This method was validated using both
public datasets and real-world engineering fault data. Kang
et al. [13] employed a self-supervised deep one-class clas-
sification approach, trained exclusively with normal class
samples, for the early detection of faults in rolling bear-
ings. The efficacy of this method was confirmed through
the application of two distinct sets of actual rolling bearing
fault data. Wang et al. [14] introduced a method for early
fault detection that combines improved L1 Trend Filtering
with Support Vector Data Description (L1TF-SVDD). This
approach has been validated using public bearing datasets

and engineering datasets. The above methods are based on
the normal equipment data, but there are still some shortcom-
ings in the practical industrial application: (1) Characterizing
fault features under complex operating conditions is chal-
lenging when only individual feature modeling is employed;
(2) While traditional machine learning techniques like sup-
port vector machines and autoencoders are prevalent, they
fall short in extracting deeper features that require more
sophisticated architectures.

The method of early fault warning utilizing deep learning
models has garnered significant interest among researchers
in the domain of early fault warning, owing to the powerful
feature learning capabilities of neural networks. Liu et al. [15]
proposed a method for early fault warning in nuclear steam
turbines using a Bayesian long short-termmemory neural net-
work. The experimental findings indicate that this approach
can deliver precise early warnings during the initial phase
of fault development. Gao et al. [16] proposed a method for
early fault warning that utilizes an enhanced long short-term
memory network combined with ensemble empirical mode
decomposition energy moment entropy. This method was
validated using publicly available bearing datasets. Peng et al.
[17] proposed a MixMatch-based adversarial domain adap-
tive network for early fault warning of permanent magnet
synchronous motors under various operating conditions. The
method was tested and verified by four kinds of early fault
data in permanent magnet synchronous motors under various
operating conditions. Ding et al. [18] introduced a self-
supervised pre-training based early fault warning method for
rolling bearings, which was validated through the application
of data from two different bearing test benches. Since the
Generative Adversarial Network (GAN) was proposed, it has
attracted extensive attention from researchers in many fields.
GAN has a wide range of research in the field of fault diagno-
sis, but less research in the field of fault warning. Xu et al. [19]
proposed an anomaly detection model based on AutoEncoder
and Generative Adversarial Network (AE-GAN), which is
applied to the early fault warning of high-speed trains.

However, the early fault warning method based on deep
learning model also has some difficulties. Aiming at the
problems that it is difficult to screen multi-source common
sensitive features, the number of sensitive features is small,
the neural network training is difficult, and the generative
adversarial network is difficult to be directly used for early
fault warning, this paper constructs an early fault warning
model based on Multi-source Common Sensitive Features
and Improved Wasserstein Generative Adversarial Network
(MCSF-IWGAN-GP), and proposes an early fault warning
method for rotating machinery. Additionally, this method
overcomes the shortcomings of traditional time-frequency
signal analysis and processing methods as well as traditional
machine learning model methods. The contributions of this
paper are as follows:

(1) A multi-source common sensitive feature screening
method based on variance analysis F test is proposed, which
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can automatically screen out early fault sensitive features
with good generalization.

(2) An improved Wasserstein generative adversarial net-
work is proposed. An input adaptive layer is added before
the two-dimensional convolutional layer of the discriminator,
so that it can adapt to input data of different lengths, and
map low-dimensional features to high dimensions for neural
network learning. The training function of WGAN-GP is
improved to have the ability to discriminate ’ normal ’ or ’
abnormal ’ input data.

(3) An early fault early warning method for rotating
machinery based on MCSF-IWGAN-GP is proposed. This
method only needs the historical normal data of the equip-
ment to be tested, and does not depend on expert experience
or prior knowledge to achieve intelligent early warning of
equipment faults.

The structure of this paper is organized in the following
manner: Section II presents the empirical wavelet transform,
Wasserstein generative adversarial network, and input adap-
tive layer. Section III details the proposed method. Section IV
validates the proposedmethod using open laboratory data and
engineering case data. Section V conducts a comparison of
the proposed method with two existing published methods.
Section VI concludes with a summary of findings and out-
lines directions for future work.

II. BASIC THEORIES
A. EMPIRICAL WAVELET TRANSFORM
Empirical Wavelet Transform (EWT), a novel method for
adaptive wavelet construction, was introduced by Gilles [20].
It utilizes the fast Fourier transform to acquire the spectrum
of the fault signal. According to the Shannon criterion, the
spectrum is within [0, π]. The spectrum is divided into N
segments, and ωn is its boundary, that is ω0 = 0 and
ωN = π . Then each frequency band is 3n = [ωn−1, ωn],
so
⋃N

n=13n = [0, π] [21], [22]. The scaling function φn (ω)
and wavelet function ψn (ω) of empirical wavelets are as
follows [23]:

φn (ω) =


1, if |ω| ≤ (1− γ ) ωn

cos
[
π
2 β
(

1
2γωn

(|ω| − (1− γ ) ωn)
)]
,

if (1− γ ) ωn ≤ |ω| ≤ (1+ γ ) ωn
0, otherwise

(1)

ψnω =



1, if (1+ γ ) ωn ≤ |ω| ≤ (1− γ ) ωn+1
cos

[
π
2 β
(

1
2γωn+1

(|ω| − (1− γ ) ωn+1)
)]
,

if (1− γ ) ωn+1 ≤ |ω| ≤ (1+ γ ) ωn+1
sin
[
π
2 β
(

1
2γωn

(|ω| − (1− γ ) ωn)
)]
,

if (1− γ ) ωn ≤ |ω| ≤ (1+ γ ) ωn
0, otherwise

(2)

where β (x) = x4
(
35− 84x + 70x2 − 20x3

)
, τn = γωn,

0 < γ < 1.

The detail coefficient W ε
f (n, t) and approximation coeffi-

cientW ε
f (0, t) of empirical wavelet transform are as follows:

W ε
f (n, t) = ⟨f , ψn⟩

=

∫
f (τ ) ψn (τ − t)dτ =

(
f̂ (ω) ψ̂n (ω)

)∨
(3)

W ε
f (0, t) = ⟨f , φ1⟩

=

∫
f (τ ) φ1 (τ − t)dτ =

(
f̂ (ω) φ̂1 (ω)

)∨
(4)

Therefore, the original signal is reconstructed as:

f (t) = W ε
f (0, t) ∗ φ1 (t)+

N∑
n=1

W ε
f (n, t) ∗ ψn (t)

=

(
Ŵ ε
f (0, ω) ∗ φ̂1 (ω)+

N∑
n=1

Ŵ ε
f (n, ω) ∗ ψ̂1 (ω)

)∨
(5)

whereˆ is the Fourier transform,ˇ is the inverse Fourier trans-
form,¯ is the complex conjugate, and ∗ is the convolution.

B. WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK
WITH GRADIENT PENALTY
Generative Adversarial Network (GAN) [24] is a powerful
generative model, which is composed of generator G and
discriminator D. The two compete with each other through
a game theory framework, and then get optimized. The struc-
ture of GAN is shown in Fig.1. Although traditional GAN
can generate high-quality samples, it faces problems such
as instability and mode collapse during training. In order to
solve these problems, Arjovsky et al. [25] proposed WGAN,
which introduces Wasserstein distance as a method to sta-
bilize the training process. On this basis, Gulrajani et al.
[26] proposed WGAN-GP, which further introduced gradient
penalty to ensure the Lipschitz continuity of the discrimina-
tor, thus improving the training stability and sample diversity.

FIGURE 1. Architecture of GAN.

WGAN-GP uses Wasserstein distance instead of Jensen-
Shannon divergence in traditional GAN. The Wasserstein
distance provides an effective way to quantify the difference
between the generated data distribution and the real data
distribution. Compared with the Jensen-Shannon divergence,
the Wasserstein distance can provide a more continuous gra-
dient, even when there is no overlap between distributions,
which helps to improve the stability and convergence of
GAN training. In addition, in order to force the discriminator
to satisfy the Lipschitz constraint, WGAN-GP introduces a
gradient penalty. This technique imposes constraints on the
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gradients of the random interpolation between the real sample
and the generated sample by the discriminator to ensure that
the norm of these gradients does not exceed a predetermined
constant. This penalty is achieved by adding a regular term to
the discriminator loss function, which penalizes the behavior
of the gradient norm deviating from 1.

The training of WGAN-GP involves a max-min game,
where the discriminator aims to maximize the following loss
function:

LD = EZ∼PZ [D (G (z))]− EX∼Pdata [D (x)]

+ λEX̂∼PX̂

[(∥∥∇X̂D (x̂)∥∥2 − 1
)2] (6)

where D(x) is the output of the discriminator, x is the sample
from the real data distribution Pdata, and G(z) is the sample
generated by the generator from the data distribution PZ . x̂ is
the interpolation between the real sample and the generated
sample, which is used to calculate the gradient penalty. λ is
the weight of gradient penalty.

The generator’s goal is to minimize its own losses:

LG = −EZ∼PZ [D (G (z))] (7)

The maximum and minimum objective function of
WGAN-GP is:

min
G
max
D

EX∼Pdata [D (x)]− EZ∼PZ [D (G (z))]

− λEX̂∼PX̂

[(∥∥∇X̂D (x̂)∥∥2 − 1
)2] (8)

C. INPUT ADAPTIVE LAYER
In comparison to one-dimensional CNNs, two-dimensional
CNNs exhibit superior capabilities in feature extraction
and classification [28]. In the field of fault diagnosis,
many scholars use two-dimensional convolution structure
to construct neural network model [29], [30], [31]. Con-
sequently, the generative adversarial network proposed in
this study incorporates a two-dimensional convolutional
structure. Nonetheless, the vibration signals from rotating
machinery are one-dimensional and often cannot be directly
transformed into two-dimensional data for convolutional
operations. Furthermore, the data volume diminishes after
the initial vibration signal undergoes feature extraction and
sensitive feature selection. Zhou et al. [32] developed an
input adaptive layer capable of converting one-dimensional
data of any length into two-dimensional data suitable for
convolutional operations. This layer also enables themapping
of low-dimensional features to higher dimensions, facilitating
neural network learning and accommodating varying lengths
of input data.
The one-dimensional signal with length m is defined as:

Sinput =
[
a1 a2 · · · am

]
(9)

where Sinput represents one-dimensional input data, and ai
represents the value of node i of one-dimensional waveform
data.

To transform one-dimensional data of non-square length
m into two-dimensional data of the desired size, an input

vector Sinput of size (1,m) is multiplied by a weight matrix
of size (m, n). This process converts the input data into a
one-dimensional vector of square length n, after which the
results are adjusted as demonstrated in (10).

S = FA
(
Sinput · K + b

)
(10)

where K represents the weight matrix formulated by the
kernel layer, as indicated in (11); b denotes the bias vector
produced by the bias layer, as referenced in (12); FA(·) is the
activation function utilized within the neural network.

K =


k11 k12 · · · k1n
k21 k22 · · · k2n
...

...
. . .

...

km1 km2 · · · kmn

 (11)

b =
[
b1 b2 · · · bn

]
(12)

By substituting (11) and (12) into (10), the transformed value
of the i-th node can be determined as follows:

Si = FA

 m∑
j=1

aj × kji + bi

 (13)

Given that n is a perfect square, it simplifies the transfor-
mation of one-dimensional data with length (1,n) into a
two-dimensional array with dimensions (

√
n,
√
n).

Soutput = FR (S) (14)

where FR (·) denotes Reshape function.
Equations (9) through (14) detail the derivation process of

IAL. IAL is defined in the following manner:

S2D = IA (S1D) (15)

where IA(·) denotes the input adaptive function that
takes one-dimensional data of any length and outputs
two-dimensional data of the specified size.

When the length of one-dimensional data is small, the
expected size of two-dimensional data can be set to a larger
square by inputting the adaptive layer, and this process
enables the mapping of low-dimensional features to a higher-
dimensional space, facilitating the feature learning process
for neural networks.

III. PROPOSED METHOD
A. CONSTRUCTION OF MCSF-IWGAN-GP MODEL
The structure of the early warning model based on
multi-source common sensitive features and IWGAN-GP is
shown in Fig.2. The model consists of three parts: multi-
scalemixed feature extraction of rotatingmachinery vibration
signals, early fault sensitive feature screening of multi-source
data, and early warning of IWGAN-GP. Firstly, the original
vibration signals of rotating machinery collected by sensors,
such as bearing signals, rotor system signals, etc., are decom-
posed by empirical wavelet transform to obtain the three order
IMF components of the original signal. The time domain fea-
tures, frequency domain features and time-frequency features
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FIGURE 2. Structure diagram of early warning model based on MCSF-IWGAN-GP.

of the original signal and the three order IMF components are
extracted respectively, and the multi-scale mixed features are
obtained. Then, the Fuzzy C-means clustering (FCM) is used
to obtain the health level label of multi-source data, which is
used as the category label, and the sensitive feature screening
based on the Analysis of Variance F test (ANOVA-F) is
used. Then, the sensitive features selected from the normal
data of the equipment to be tested are extracted as training
samples. Finally, IWGAN-GP is trained for early warning
using normal samples of the equipment to be tested.

1) MULTI-SCALE MIXED FEATURE EXTRACTION
Upon the failure of specific equipment, concurrent alterations
occur in associated signal characteristics. These include
changes in amplitude and probability distribution within the
time domain, variations in energy across different frequencies
in the frequency domain, shifts in the primary energy spec-
trum’s leading edge, and modifications in the time-frequency
power’s structural distribution. When a potential fault occurs
in a rotating machinery, extracting early faults sensitive fea-
tures is the key to early fault warning. To screen features
that are indicative of early faults and possess generalizability,
it is essential to initially perform feature extraction in the
time domain, frequency domain, and time-frequency domain
from multi-source data. Under complex working conditions,
decomposing the vibration signal to create multi-scale mixed
features provides a more comprehensive representation of
the health status of rotating machinery. This study intro-
duces a multi-scale mixed feature extraction approach for the
vibration signals of rotating machinery. The method involves

decomposing the original vibration signal using EWT, fol-
lowed by extracting multi-scale mixed features of the time
domain, frequency domain, and time-frequency domain from
both the original signal and its Intrinsic Mode Functions
(IMF).

The vibration signal is decomposed by empirical wavelet
transform to obtain the three order IMF components IMF1,
IMF2 and IMF3 of the original signal. For the original signal
and the three order IMF components, 15 time-domain fea-
tures p1 − p15, 13 frequency-domain features p16 − p28 and
8 time-frequency features p29−p36 are extracted respectively.
The time domain features p1−p15 are shown in TABLE 1, the
frequency domain features p16− p28 are shown in TABLE 2,
and the time-frequency features p29 − p36 are analyzed by
three-layer wavelet packet analysis of the vibration signal.
The energy percentage of the eight sub-bands in the last layer
is used as the time-frequency feature.

Let a signal time domain sequence x (n) , n = 1, 2, · · · ,N ,
N be the number of sample points, then the above 15 time
domain characteristic parameters are defined as shown in
Table 1.
Let s (k) be the frequency spectrum of the signal x (n),

k= 1, 2, · · · ,K , K be the number of spectral lines, fk be the
frequency value of the kth spectral line, and 13 frequency
domain characteristic parameters are defined as shown in
Table 2.
The multi-scale mixing features of the original signal are

denoted as p01 − p
0
36, the multi-scale mixing relative features

of the first-order IMF component are denoted as p11 − p136,
the multi-scale mixing relative features of the second-order
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TABLE 1. feature parameter in Time domain.

TABLE 2. feature parameter in frequency domain.

IMF component are denoted as p21 − p
2
36, and the multi-scale

mixing relative features of the third-order IMF component are
denoted as p31−p

3
36, totaling (15+ 13+ 8)×4 = 144 multi-

scale mixing features.

2) MULTI-SOURCE COMMON SENSITIVE FEATURE
SCREENING
Different features have different sensitivity to the early fault
of different data. Based on the sensitive features of multi-
source data, the common sensitive features are screened out.
This process strengthens the generalization capability of sen-
sitive features, thereby enhancing the performance of early
fault warning models. In order to screen out the common
sensitive features with good generalization for early faults,
this paper proposes a multi-source common sensitive fea-
ture screening method based on ANOVA-F test. Analysis
of Variance F test [27] is a statistical method for feature
selection, which is based on ANOVA to assess whether there
are significant differences in the mean values between differ-
ent groups. In machine learning, ANOVA is especially used
to determine whether the relationship between each feature
and the response variable is statistically significant, thereby
helping to select the features most relevant to the prediction
task. The sensitive features required for early warning need
significant differences between the normal state and the fault
state, so ANOVA can be used to screen for these sensitive
features.

Firstly, FCM is applied to obtain health level label of
multi-source data as the response variable of ANOVA.
According to the health level label, each feature is divided
into several groups, and the same health level is classified into
one group.

According to the grouping of health levels, the F statistic
is calculated:

F =

k∑
i=1

ni (xi − x)2 / (k − 1)

k∑
i=1

ni∑
j=1

(
xij − xi

)2
/ (N − k)

(16)

where k represents the number of groups, which is the health
grade. Generally, the whole life data of rotating machinery is
divided into four levels. ni represents the number of eigenval-
ues in group i, x̄i is the average value of eigenvalues in group
i, x̄ is the average value of all eigenvalues of the feature, and
N is the total number of eigenvalues.
Then, the F statistics of 144 multi-scale mixed features are

calculated, and the first 36 features with the largest F statistics
are recorded as follows:

PF i =

 pF1 · · · pF6
...

. . .
...

pF31 · · · pF36

 (17)

The ranking of the selected features represents their degree of
sensitivity to early faults, so the top-ranked F statistic is given
a high weight value. The ranking weight matrix is defined as:

Kscore i =

 w1 · · · w6
...
. . .

...

w31 · · · w36

 (18)
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Due to the different personality features of different data, the
sensitive features selected will be different. In order to screen
out the features with good generalization, ANOVA F test is
performed on the multi-source data, and the selected features
are assigned weight values according to the ranking.

The sensitive feature weight values ofmulti-source data are
superimposed to calculate the sensitive score matrix:

S =
∑

SSCFunction(PF i, Kscore i)

=



s1 s2 · · · s12
s13 s14 · · · s24
...

si
...

...

si+1
...

...

· · ·

...

...

si+12
...

s133 s134 · · · s144


(19)

where SSCFunction(·) is the formula for calculating the
sensitive score, and si represents the sensitive score of the
ith feature among the 144 features.

Finally, the first 16 features with the largest sensitivity
scores are taken as multi-source common sensitive features.

3) IWGAN-GP
The discriminator of WGAN-GP can discriminate true or
false samples. In the training function, the true sample is
labeled as 1, and the false sample is labeled as 0. In order
to use WGAN-GP for early fault warning, its training func-
tion and discriminator structure are improved to enable it to
distinguish between normal and abnormal.

FIGURE 3. Structure diagram of IWGAN-GP.

The improved WGAN-GP structure diagram is shown in
Fig.3. The training sample of IWGAN-GP is only the nor-
mal sample of the equipment to be tested. In the training
function, the training sample (normal sample) is defined
as 0, and the sample generated by the generator is 1. During
model training, if the generator’s performance is suboptimal,
it results in low-quality samples that do not match the data
distribution of the training set. Therefore, the discriminator
will discriminate it as 1, which is opposite to the normal defi-
nition and is defined as abnormal. As training optimization
advances, both the discriminator and generator improve in
performance, leading to a steady enhancement in the qual-
ity of generated samples which increasingly resemble the
training data distribution. In this process, the discriminator
becomes increasingly accurate in identifying normal samples.

The discriminator’s final layer employs a Sigmoid activation
function, producing an output value ranging between 0 and 1.

During the training of the original WGAN-GP, the adver-
sarial process optimizes both the generator and the discrimi-
nator, eventually reaching a Nash equilibrium. At this point,
the discriminator is unable to distinguish real samples from
generated ones, resulting in an output value of 0.5. Therefore,
when IWGAN-GP is used for early fault warning, the alarm
threshold line is defined as 0.5. If the discriminator’s output
falls within the range of [0, 0.5), the input is classified as a
normal sample. Conversely, if the output lies within the range
of [0.5, 1], the input is classified as an abnormal sample.

Fig.3 illustrates the addition of an input adaptive layer
prior to the first convolutional layer in the discriminator.
According to the definition of the multi-source common sen-
sitive feature screening part, the number of sensitive features
screened is only 16. Training neural networks requires a
substantial amount of data, so insufficient data can hinder
the effectiveness of the model training process. The input
adaptive layer is capable of transforming one-dimensional
data into two-dimensional data, and it can also elevate
low-dimensional features to higher dimensions during this
process, thereby facilitating the neural network model’s
ability to learn the characteristics of the input data more
effectively. In Equation (11), where n is a number exceeding
16, the low-dimensional feature data, initially with an input
length of 16, can be transformed into high-dimensional fea-
ture data of length n. This approach addresses the challenge of
having a limited number of sensitive features and the neural
network training is difficult.

B. EARLY FAULT WARNING METHOD BASED ON
MULTI-SOURCE COMMON SENSITIVE
FEATURES AND IWGAN-GP
In this paper, an early fault warning method for rotating
machinery based on MCSF-IWGAN-GP is proposed. The
early fault warning model architecture of off-line training and
on-line monitoring is adopted. The method flow is shown in
Fig.4. The specific steps are as follows:

Step 1: The empirical wavelet transform is used to decom-
pose the multi-source data DM and extract the multi-scale
mixed feature FMSM ;

Step 2: Use FCM to obtain the health level label L of multi-
source data;

Step 3: The feature screening method based on variance
analysis F test is used to screen multi-source common sen-
sitive features, and the index IndexFC of common sensitive
features in 144 multi-scale mixed features is obtained;

Step 4: After the normal data DN of the equipment to be
tested is decomposed by empirical wavelet transform, the
common sensitive featureFCN obtained by step 3 is extracted;

Step 5: The common sensitive feature FCN of the normal
data of the equipment to be tested is used as the training data,
and the IWGAN-GP is trained as the early warning model;

Step 6: The real-time dataDT of the equipment to be tested
is decomposed by empirical wavelet transform;
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Step 7: Extract the common sensitive feature FCT obtained
by step 3;

Step 8: The common sensitive features of the real-time data
of the equipment to be tested are input into the early warning
model obtained by step 5, and the early fault warning result
REW can be obtained.
In the above steps, steps 1-5 are offline trainingmode, steps

6-8 are online monitoring mode, and the pseudo code of early
fault warning method is shown in Algorithm1.

FIGURE 4. Flow chart of early fault early warning method.

Algorithm 1 Early Fault Warning Method Based on MCSF-
IWGAN-GP
# Offline training mode
Input: DM ,DN
Output: IndexFC ,Model
1. IMF1i, IMF2i, IMF3i= EWT (Di) , i = 1, 2, · · · ,m
2. FMSM= FeaExt (DM , IMF1, IMF2, IMF3)

3. Li = FCM (Di) , i = 1, 2, · · · ,m
4. IndexFC = MSCFS (FMSM ,L)
5. IMF1N , IMF2N , IMF3N= EWT (DN )
6. FCN = MSCFE

(
IndexFC ,DN , IMF1N , IMF2N , IMF3N

)
7. Model← Model.fit(FCN )
8. returnIndexFC ,Model
# Online monitoring mode
Input: DT
Output: REW
1. IMF1T , IMF2T , IMF3T= EWT (DT )
2. FCT = MSCFE

(
IndexFC ,DT , IMF1T , IMF2T , IMF3T

)
3. REW= Model (FCT )
4. returnREW

IV. EXPERIMENTAL VALIDATION
A. LABORATORY FAULT DATA VERIFICATION
1) INTRODUCTION OF BEARING LABORATORY DATASET
The XJTU-SY dataset [33] encompasses life cycle data for
rolling bearings under three distinct operational conditions.

The experimental setup is depicted in Fig.5. Data were sam-
pled at a frequency of 25.6 kHz, with each sample lasting
1.28 s and sampling occurring every minute. Six datasets
from three operational conditions in the XJTU-SY dataset
serve as multi-source data for the screening of common sen-
sitive features. The remaining four datasets of rolling bearing
life cycle data are utilized as test data to validate the proposed
method for early fault detection, as illustrated in Table 3.

FIGURE 5. XJTU-SY test bench [33].

TABLE 3. Multi-source data and test data.

FIGURE 6. The original signal and IMF component.

2) MULTI-SCALE MIXED FEATURE EXTRACTION
The multi-source data in Table 3 are decomposed by
EWT to obtain IMF1, IMF2 and IMF3.Taking Bearing
1_1 as an example, the waveform is shown in Fig.6. The
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FIGURE 7. Multi-scale mixed features.
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FIGURE 7. (Continued.) Multi-scale mixed features.
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15 time-domain features, 13 frequency-domain features and
8 time-frequency features of the original signal and its
IMF three order components are calculated respectively.
The multi-scale mixed features are shown in Fig.7. The red
image corresponds to 15 time-domain features, the green
image corresponds to 13 frequency-domain features, and
the blue image corresponds to 8 time-frequency features.
Fig.7 illustrates that the time domain, frequency domain,
and time-frequency domain features of the original signal,
along with its IMF, prominently exhibit characteristics of
early faults. However, certain features display a lack of sen-
sitivity to these early faults. Consequently, it is imperative to
identify and select those features from the multi-scale mixed
features that are sensitive to early faults for effective fault
diagnosis.

3) MULTI-SOURCE COMMON SENSITIVE FEATURE
SCREENING
The features of early fault sensitivity should show obvi-
ous differences between normal state and abnormal state.
In the multi-scale hybrid features, there are some features
that have no obvious difference between normal state and
abnormal state. Therefore, before using multi-scale mixed
features to train the neural network, it is crucial to screen
out early sensitive features, eliminate the features that have
no significant difference between normal state and abnormal
state, and avoid affecting the training of early fault warning
model.

As shown in Fig.8, Fig.8 (a) is a feature diagram of p01,
Fig.8 (b) is a feature diagram of p06, Fig.8 (c) is a feature
diagram of p031, and Fig.8 (d) is a feature diagram of p032.
It can be seen from the figure that although the eigenvalues are
not the same, significant differences exist between the normal
state and the fault state of these features. Such features are
early fault sensitive features.

FIGURE 8. Early fault obvious features.

As shown in Fig.9, Fig.9 (a) is a feature diagram of p04,
Fig.9 (b) is a feature diagram of p010, Fig.9 (c) is a feature
diagram of p012, and Fig.9 (d) is a feature diagram of p024. The
figure indicates that the features exhibit no notable distinction
between the normal and fault states, characterizing them as
early fault insensitive features.

FIGURE 9. Early fault not obvious features.

The multi-source data in Table 3 is used for common
sensitive feature screening. Firstly, the FCM is utilized to
obtain the health level label of the multi-source data in
Table 3, as shown in Fig.10. The health level label is used as
the response variable of variance analysis. According to the
health level label, each feature is divided into several groups,
and the same health level is classified into one group.

FIGURE 10. Multi-source data health level label.

According to the grouping of health levels, the F statistic
is calculated by (16), and the first 36 features with the largest
F statistic are taken. The results are presented in Table 4.
The ranking of the selected features represents their degree
of sensitivity to early faults, so the top-ranked F statistic is
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given a high weight value. The value of (18) is:

Kscore i =


3.6 3.5 3.4 3.3 3.2 3.1
3.0 2.9 2.8 2.7 2.6 2.5
2.4 2.3 2.2 2.1 2.0 1.9
1.8
1.2
0.6

1.7
1.1
0.5

1.6
1.0
0.4

1.5
0.9
0.3

1.4
0.8
0.2

1.3
0.7
0.1

 (20)

TABLE 4. Multi-source data F statistics sorting.

The weight values of (20) are sorted according to the F
statistic of multi-source data in Table 4, and the weight values
are given respectively. For example, the F statistic calculated
by the Bearing 1_1 data ranks the first as p031 feature and the
36th as p318, then the weight value of p031 is given to be 3.6,
and the weight value of p318 is given to be 0.1. The sensitive
feature weight values of multi-source data are superimposed

to calculate the sensitive score matrix. Fig.11 displays the
sensitivity scores for 144 multi-scale mixed features. The top
16 features with the highest sensitivity scores are identified
as multi-source common sensitive features. The multi-source
common sensitive features are extracted from the test data
in Table 3. Taking the Bearing 2_1 data as an example, the
multi-source common sensitive features are shown in Fig.12.

FIGURE 11. Sensitive score matrix.

FIGURE 12. Bearing 2_1 early fault sensitive features.

4) IWGAN-GP TRAINING AND TESTING
The IWGAN-GP model utilizes solely the normal data from
the equipment under test for its training samples. The first
100 sets of data in Table 3 are taken as the normal data, and
the multi-source common sensitive features are extracted as
the training samples of IWGAN-GP. As shown in Table 5, the
IWGAN-GP generator constructed in this paper uses three
two-dimensional deconvolution layers. The filters are set to
32, 16, and 1, the convolution kernel size is (3, 3), (4, 4), and
(4, 4), and the strides is 1, 2, and 2, respectively. Following
three deconvolution layers, a Flatten operation is applied,
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after which the output of the fully connected layer is utilized
with 16 neurons. All generator’s layers use the ReLU activa-
tion function. The discriminator uses three two-dimensional
convolution layers. The filters are set to 16, 32, and 64, the
convolution kernel size is (3, 3), (3, 3), and (3, 3), and the
strides is 1, 2, and 2, respectively. The Dropout layer is used
after each convolutional layer, and the forgetting rate is set
to 0.5. Before the first convolution layer, the input adaptive
layer is used to convert the training samples from (100, 16)
to (100, 28, 28). After the last convolution layer, Flatten is
performed, and then the fully connected layer output is used,
and the neuron is 1. In addition to the full connection layer
using the Sigmoid activation function, the rest all use the
LeakyReLU activation function. Both the generator and dis-
criminator employ the Adam optimizer, with learning rates of
10−4 and 2× 10−4, respectively. The batch size is established
at 16. The incorporation of the Wasserstein distance and
gradient penalty into the model ensures that the generator’s
gradient remains stable, evenwhen the discriminator achieves
high accuracy. Therefore, the generator is optimized once for
every 5 discriminators.

TABLE 5. Parameters of IWGAN-GP.

The early fault warning test results of the test data in
Table 3 are depicted in Fig.13. Fig.13 (a) is the early fault
warning result of Bearing 2_1, with a total of 491 sets of
data files. The proposed method realizes early warning at the
453rd set of data files. Fig.13 (b) is the early fault warning
result of Bearing 2_3, with a total of 533 sets of data files. The
proposed method realizes early warning at the 128th set of
data files. Fig.13 (c) is the early fault warning result of Bear-
ing 2_5, with a total of 339 sets of data files. The proposed

method realizes early warning at the 123rd set of data files.
Fig.13 (d) is the early fault warning result of Bearing 3_1,
with a total of 2538 sets of data files. The proposed method
realizes early warning at the 2387th set of data files. The
acceleration RMS curve depicted in the diagram intuitively
displays the bearing’s performance degradation trend. The
proposed method realizes the alarm before the serious deteri-
oration of the fault.

FIGURE 13. Early fault warning test results.

B. ENGINEERING CASE DATA VERIFICATION
1) CENTRIFUGAL PUMP BEARING ENGINEERING CASE DATA
VERIFICATION
The methodology presented in this study has been validated
using the engineering case data from a P3409A centrifugal
pump bearing failure at a petrochemical plant. The location
of the vibration sensor on the centrifugal pump bearing is
depicted in Fig.14. The pump operates at a rotational speed
of 2980 r/min, with a sampling frequency set at 25.6 kHz.
Sampling was performed once every 2 hours, and the data
length was 16384.

FIGURE 14. P3409A pump measuring point diagram.

There are 332 sets of data files in this project case. The
previous 100 sets of data files are used as normal data. The
multi-source common sensitive features are extracted to train
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FIGURE 15. Centrifugal pump bearing engineering case data early fault
early warning results.

IWGAN-GP, and the discriminator is used as an early warn-
ing model to test 332 sets of life-cycle data. The results are
shown in Fig.15. The proposedmethod realizes early warning
at 142 sets of data files, which is (222− 142) × 2 = 160h
earlier than the fixed threshold line alarmmethodwidely used
in industry.

2) CENTRIFUGAL COMPRESSOR ROTOR SYSTEM
ENGINEERING CASE DATA VALIDATION
Fig.16 is a project case of a circulating hydrogen centrifugal
compressor rotor system in a petrochemical company. The
rotor fouling causes the rotor to be unbalanced. The speed is
12100 r/min, and the data are collected every 10 min.

FIGURE 16. Centrifugal compressor rotor imbalance fault case.

There are 1782 sets of data files in this project case. The
previous 200 sets of data are normal data. The multi-source
common sensitive features are extracted to train IWGAN-GP,
and the discriminator is used as an early warningmodel to test
1782 sets of life-cycle data. The results are shown in Fig.17.
The proposed method realizes early warning at 1086 sets of
data files, which is (1219− 1068)× 10 = 1330min ahead of
the fixed threshold line alarm method.

V. METHODS COMPARISON
The proposed method is compared with the published early
fault warning methods L1TF-SVDD [14] and AE-GAN
[19]. L1TF-SVDD extracts the spectral distance index and

FIGURE 17. Centrifugal compressor rotor imbalance fault case.

multi-scale dispersion entropy of normal data, and uses the
improved L1 trend filtering method to obtain the trend fac-
tor with less fluctuation. According to the characteristics of
training data, the kernel function bandwidth of SVDD is
determined and the SVDD model is trained. In the SVDD
model, the distance from the real-time data trend factor to
the hypersphere’s center serves as a health indicator for early
fault warning. The L1TF-SVDD model structure is shown in
Fig.18. AE-GAN integrates an autoencoder with a generative
adversarial network, utilizing normal data training to refine
the adversarial network. This enables the generator to accu-
rately reconstruct the normal data distribution. Subsequently,
the trained generator functions as a decoder, coupled with an
auxiliary encoder, to establish an autoencoder module. The
reconstruction error produced by this autoencoder serves as a
health indicator for early fault warning. The AE-GAN model
structure is shown in Fig.19.

The open bearing life data set XJTU-SY dataset [33] is
used as the test and verification data of the three compar-
ison methods. The Bearing 2_1, Bearing 2_3, Bearing 2_5
and Bearing 3_1 in the XJTU-SY dataset, and the previous
100 sets of normal data are used as the training data of
the model. The L1TF-SVDD, AE-GAN and the proposed
method MCSF-IWGAN-GP are used for model verification.

Bearing 2_1 has a total of 491 sets of data, and the model
verification results are shown in Fig.20. Fig.20 (a) shows
the verification results of L1TF-SVDD. The warning line is
HI=0.267, and the model alarms at the 456th group of data.
Fig.20 (b) is the verification result of AE-GAN, the warning
line is HI=0.182, and the model alarms at the 453rd set of
data. Fig.20 (c) shows the verification results of the proposed
methodMCSF-IWGAN-GP. Thewarning line is HI=0.5, and
the model alarms at the 453rd group of data.

Bearing 2_3 has a total of 533 sets of data, and the model
verification results are shown in Fig.21. Fig.21 (a) shows
the verification results of L1TF-SVDD. The warning line is
HI=0.102, and the model alarms at the 324th set of data.
Fig.21 (b) is the verification result of AE-GAN, the warning
line is HI=0.198, and the model alarms at the 128th set
of data. Fig.21 (c) is the verification result of the proposed
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FIGURE 18. L1TF-SVDD structure diagram [14].

FIGURE 19. AE-GAN structure diagram [19].

methodMCSF-IWGAN-GP. Thewarning line is HI=0.5, and
the model alarms at the 128th set of data.

There are 339 sets of data in Bearing 2_5, and the model
verification results are shown in Fig.22. Fig.22 (a) is the veri-
fication result of L1TF-SVDD, the warning line is HI=0.146,
and the model alarms at the 184th set of data. Fig.22 (b) is the
verification result of AE-GAN, the warning line is HI=1.290,
and the model alarms at the 122nd set of data. Fig.22 (c) is the
verification result of the proposed method MCSF-IWGAN-
GP. The warning line is HI=0.5, and the model alarms at the
123rd set of data.

There are 2538 sets of data in Bearing 3_1, and the model
verification results are shown in Fig.23. Fig.23 (a) shows
the verification results of L1TF-SVDD. The warning line is
HI=0.230, and the model alarms at the 2396th group of data.
Fig.23 (b) is the verification result of AE-GAN, the warning
line is HI=0.295, and the model alarms at the 2344th set
of data. Fig.23 (c) is the verification result of the proposed

methodMCSF-IWGAN-GP. Thewarning line is HI=0.5, and
the model alarms at the 2387th set of data.

In order to verify that the early fault warning results are
credible, the envelope spectrum analysis is performed on the
data before and after the early fault warning point to find
the first early fault point with fault characteristic frequency.
Bearing 2_1 presents fault data for the inner ring, with a
theoretical fault characteristic frequency of 184.4 Hz. The
envelope spectrum of the 453rd data set, as depicted in Fig.24,
exhibits frequency components at 179.7 Hz and its harmonic,
closely aligning with the theoretical fault frequency. Bearing
2_3, representing cage fault data, has a theoretical fault char-
acteristic frequency of 14.5 Hz. Fig.25 displays the envelope
spectrum for the 130th data set, featuring frequency com-
ponents at 13.3 Hz and its harmonic, aligning closely with
the theoretical fault characteristic frequency. Moreover, these
frequency components were also present in the 128th data
set’s envelope spectrum. Bearing 2_5, representing outer ring
fault data, has a theoretical fault characteristic frequency of
115.6 Hz. Correspondingly, Fig.26 illustrates that the 121st
data set’s envelope spectrum contains frequency components
at 118Hz and its harmonic, which approximate the theoretical
fault characteristic frequency. Similarly, Bearing 3_1, another
outer ring fault data set, has a theoretical fault characteris-
tic frequency of 123.3 Hz. This is corroborated by Fig.27,
where the envelope spectrum of the 2376th data set includes
frequency components at 124.2 Hz and its harmonic, nearing
the theoretical fault characteristic frequency.

Through the above comparative test, the following conclu-
sions can be drawn:

(1) The early fault warning effect of MCSF-IWGAN-GP
and AE-GAN is better than that of L1TF-SVDD. In the
model verification tests of Bearing 2_1, Bearing 2_3, Bear-
ing 2_5 and Bearing 3_1, the early fault warning results of
the proposed methods MCSF-IWGAN-GP and AE-GAN are
earlier than those of L1TF-SVDD, as shown in Table 6. The
trend of performance degradation in bearings can be clearly
observed through the acceleration RMS curve. Both the pro-
posed methods MCSF-IWGAN-GP and AE-GAN achieve
alarm before the fault deteriorates seriously.

(2) The proposed method MCSF-IWGAN-GP is superior
to AE-GAN and L1TF-SVDD in distinguishing normal and
abnormal health indicators. As shown in Table 7, calculate
the average value of health indicators HI of normal data
before the warning point, and the ratio of the average value
of health indicators of normal data to the health indicators of
the warning point H̄I

/
HI%, the greater the ratio, the smaller

the discrimination between normal and abnormal health indi-
cators. The health indicators of AE-GAN and L1TF-SVDD
normal data are less different from those of early faults. The
health indicators gradually increasewith the severity of faults,
while the health indicators of the normal data of the proposed
method are different from those of early faults.

(3) The false alarm rate for MCSF-IWGAN-GP is lower
compared to AE-GAN and L1TF-SVDD. Referring to
Table 8, the ratio of the average health indicator values for
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FIGURE 20. Model verification results of Bearing 2_1.

FIGURE 21. Model verification results of Bearing 2_3.

FIGURE 22. Model verification results of Bearing 2_5.

TABLE 6. Multi-source data F statistics sorting.

normal data to the health indicators at the early warning
threshold is represented as H̄I

/
HI%. The greater the ratio,

the closer the early warning line is to the health indicators

of the normal data. It can be seen from Fig.20 to Fig.23 that
the early warning lines of AE-GAN and L1TF-SVDD are
very close to the health index HI of normal data. When the
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FIGURE 23. Model verification results of Bearing 3_1.

TABLE 7. Discrimination between normal and abnormal health indicators.

TABLE 8. The ratio of normal data H̄I to early warning line HI.

FIGURE 24. Envelope analysis of Bearing 2_1.

operating conditions fluctuate, the health index is easy
to exceed the early warning line and false alarm occurs.

FIGURE 25. Envelope analysis of Bearing 2_3.

However, the warning line of the proposed method is greatly
different from the health index of normal data, and there
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FIGURE 26. Envelope analysis of Bearing 2_5.

FIGURE 27. Envelope analysis of Bearing 3_1.

are few false alarms due to the fluctuation of operating
conditions.

VI. CONCLUSION
Aiming at the problems that it is difficult to screen
multi-source common sensitive features, difficult training
of neural network with small number of sensitive features,
and WGAN-GP is difficult to be directly used for early
fault warning, an early fault warning method for rotating
machinery based on MCSF-IWGAN-GP is proposed. The
proposed method is verified by XJTU-SY bearing laboratory
data, centrifugal pump bearing fault engineering case data
and centrifugal compressor rotor system engineering case.
The conclusions are as follows:

(1) Using XJTU-SY bearing laboratory data Bearing
1_1, Bearing 1_2, Bearing 1_3, Bearing 2_2, Bearing 2_4,

Bearing 3_5 multi-source data, the multi-source common
sensitive features with generalization can be screened out by
the feature screeningmethod based on variance analysis F test
proposed in this paper.

(2) The IWGAN-GPmodel is constructed, which can com-
plete the discrimination of normal and abnormal with a small
number of sensitive features, and realize early fault warning.
The discriminator structure is improved. The input adaptive
layer added to the network structure can map a small number
of sensitive features to high-dimensional features to complete
the learning of the neural network. The training function of
WGAN-GP is improved, and the original discrimination of
true or false samples of the discriminator is improved to
the discrimination of normal or abnormal samples, which
is successfully applied to the early fault warning of rotat-
ing machinery. The equipment under test can complete the
training of the model only by providing historical normal
data.

(3) The proposed method has realized the alarm on the
XJTU-SY bearing laboratory data Bearing 2_1, Bearing 2_3,
Bearing 2_5 and Bearing 3_1 before the serious deterioration
of the fault. The proposed method is applied to the fault
engineering case data of P3409A centrifugal pump bearing in
a petrochemical company, and the alarm is 160 h earlier than
the fixed threshold line alarmmethod widely used in industry.
On the case data of SC petrochemical company ’s circulating
hydrogen centrifugal compressor rotor system engineering,
the proposed method alarms 1330 min earlier than the fixed
threshold line alarm method.

(4) Compared with the two published methods L1TF-
SVDD and AE-GAN, the proposed method has better early
fault warning effect, better normal and abnormal health index
discrimination and less false alarm by comparing tests on
XJTU-SY bearing laboratory data Bearing 2_1, Bearing 2_3,
Bearing 2_5, and Bearing 3_1.

In future studies, we will use more engineering case data
to verify the proposed method.
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